code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__: str = logging.get_logger(__name__) A__: Optional[int] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict = "marian" __UpperCamelCase : Dict = ["past_key_values"] __UpperCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Any , SCREAMING_SNAKE_CASE :Union[str, Any]=5_8_1_0_1 , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Union[str, Any]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=4_0_9_6 , SCREAMING_SNAKE_CASE :Tuple=1_6 , SCREAMING_SNAKE_CASE :str=1_2 , SCREAMING_SNAKE_CASE :Any=4_0_9_6 , SCREAMING_SNAKE_CASE :Dict=1_6 , SCREAMING_SNAKE_CASE :List[str]=0.0 , SCREAMING_SNAKE_CASE :int=0.0 , SCREAMING_SNAKE_CASE :str=True , SCREAMING_SNAKE_CASE :Union[str, Any]=True , SCREAMING_SNAKE_CASE :List[Any]="gelu" , SCREAMING_SNAKE_CASE :int=1_0_2_4 , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.0 , SCREAMING_SNAKE_CASE :List[str]=0.0 , SCREAMING_SNAKE_CASE :str=0.02 , SCREAMING_SNAKE_CASE :str=5_8_1_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :str=5_8_1_0_0 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :List[Any]=True , **SCREAMING_SNAKE_CASE :Dict , ) -> Optional[int]: '''simple docstring''' _a : str =vocab_size _a : List[str] =decoder_vocab_size or vocab_size _a : Optional[Any] =max_position_embeddings _a : Dict =d_model _a : List[str] =encoder_ffn_dim _a : Any =encoder_layers _a : str =encoder_attention_heads _a : Optional[Any] =decoder_ffn_dim _a : Optional[Any] =decoder_layers _a : Dict =decoder_attention_heads _a : str =dropout _a : str =attention_dropout _a : str =activation_dropout _a : Tuple =activation_function _a : List[str] =init_std _a : List[Any] =encoder_layerdrop _a : Dict =decoder_layerdrop _a : Tuple =use_cache _a : List[Any] =encoder_layers _a : Optional[Any] =scale_embedding # scale factor will be sqrt(d_model) if True _a : Any =share_encoder_decoder_embeddings super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) class A__ ( UpperCAmelCase__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Optional[Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _a : Any ={0: """batch"""} _a : Tuple ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _a : str ={0: """batch""", 1: """decoder_sequence"""} _a : Any ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _a : str =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _a , _a : Dict =self.num_layers for i in range(SCREAMING_SNAKE_CASE ): _a : Optional[int] ={0: """batch""", 2: """past_sequence + sequence"""} _a : List[Any] ={0: """batch""", 2: """past_sequence + sequence"""} else: _a : str =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Optional[int] =super().outputs else: _a : Optional[int] =super(SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: _a , _a : Optional[int] =self.num_layers for i in range(SCREAMING_SNAKE_CASE ): _a : Tuple ={0: """batch""", 2: """past_sequence + sequence"""} _a : List[str] ={0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _a : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Generate decoder inputs _a : List[Any] =seq_length if not self.use_past else 1 _a : Union[str, Any] =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] ={f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _a : Union[str, Any] =dict(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _a , _a : Any =common_inputs["""input_ids"""].shape _a : Any =common_inputs["""decoder_input_ids"""].shape[1] _a , _a : List[str] =self.num_attention_heads _a : Union[str, Any] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a : Union[str, Any] =decoder_seq_length + 3 _a : List[Any] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a : List[Any] =torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] , dim=1 ) _a : List[str] =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a : List[Any] =self.num_layers _a : Any =min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[Any] =max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - min_num_layers _a : List[str] ="""encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. _a : Dict =encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) ) return common_inputs def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _a : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _a , _a : Union[str, Any] =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _a : Union[str, Any] =seqlen + 2 _a , _a : Union[str, Any] =self.num_layers _a , _a : Tuple =self.num_attention_heads _a : Any =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a : List[str] =common_inputs["""attention_mask"""].dtype _a : Optional[int] =torch.cat( [common_inputs["""attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) _a : List[Any] =[ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(SCREAMING_SNAKE_CASE ) ] return common_inputs def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a : Optional[Any] =compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a : Union[str, Any] =tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE ) _a : Any =compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence _a : Optional[Any] =[""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _a : int =dict(tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) ) return common_inputs def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Dict =self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) else: _a : Any =self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) return common_inputs def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Tuple ) -> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Any =super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: _a : Dict =super(SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property def __UpperCAmelCase ( self :Optional[int] ) -> float: '''simple docstring''' return 1e-4
694
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
1
from __future__ import annotations def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
719
def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __lowercase = len(_UpperCamelCase ) if (len(_UpperCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(_UpperCamelCase ) , '''Postfix'''.center(_UpperCamelCase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCamelCase ) == 0: stack.append(_UpperCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_UpperCamelCase ) # push x to stack print( x.center(8 ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , sep=''' | ''' , ) # Output in tabular format while len(_UpperCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , (''''''.join(_UpperCamelCase )).ljust(_UpperCamelCase ) , sep=''' | ''' , ) # Output in tabular format return "".join(_UpperCamelCase ) # return Postfix as str def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = list(infix[::-1] ) # reverse the infix equation for i in range(len(_UpperCamelCase ) ): if infix[i] == "(": __lowercase = ''')''' # change "(" to ")" elif infix[i] == ")": __lowercase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_UpperCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a : Union[str, Any] = input('''\nEnter an Infix Equation = ''') # Input an Infix equation a : Optional[Any] = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
527
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase_ = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } lowerCAmelCase_ = { 'facebook/m2m100_418M': 10_24, } # fmt: off lowerCAmelCase_ = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int]=None , _A : Union[str, Any]=None , _A : Any="<s>" , _A : Union[str, Any]="</s>" , _A : List[Any]="</s>" , _A : Any="<pad>" , _A : Any="<unk>" , _A : Optional[int]="m2m100" , _A : Optional[Dict[str, Any]] = None , _A : Any=8 , **_A : List[str] , ) -> None: """simple docstring""" lowercase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase : Union[str, Any] = language_codes lowercase : List[Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase : Any = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} lowercase : int = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_A ) for lang_code in fairseq_language_code if self.get_lang_token(_A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_A , tgt_lang=_A , bos_token=_A , eos_token=_A , sep_token=_A , unk_token=_A , pad_token=_A , language_codes=_A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_A , **_A , ) lowercase : Any = vocab_file lowercase : Dict = load_json(_A ) lowercase : List[str] = {v: k for k, v in self.encoder.items()} lowercase : Optional[int] = spm_file lowercase : int = load_spm(_A , self.sp_model_kwargs ) lowercase : Optional[Any] = len(self.encoder ) lowercase : str = { self.get_lang_token(_A ): self.encoder_size + i for i, lang_code in enumerate(_A ) } lowercase : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_A )} lowercase : int = {v: k for k, v in self.lang_token_to_id.items()} lowercase : List[str] = src_lang if src_lang is not None else '''en''' lowercase : Union[str, Any] = tgt_lang lowercase : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase : Dict = num_madeup_words @property def __a ( self : Any ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def __a ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __a ( self : Optional[Any] , _A : str ) -> None: """simple docstring""" lowercase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __a ( self : Dict , _A : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __a ( self : Dict , _A : List[str] ) -> Dict: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_A , self.encoder[self.unk_token] ) def __a ( self : List[Any] , _A : int ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_A , self.unk_token ) def __a ( self : Optional[Any] , _A : Optional[int] ) -> List[str]: """simple docstring""" lowercase : List[Any] = [] lowercase : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_A ) + token lowercase : Optional[Any] = [] else: current_sub_tokens.append(_A ) out_string += self.sp_model.decode(_A ) return out_string.strip() def __a ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) lowercase : int = [1] * len(self.prefix_tokens ) lowercase : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __a ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self : Tuple ) -> Dict: """simple docstring""" lowercase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Dict: """simple docstring""" lowercase : int = self.__dict__.copy() lowercase : List[str] = None return state def __setstate__( self : Optional[int] , _A : Dict ) -> None: """simple docstring""" lowercase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : List[Any] = {} lowercase : Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def __a ( self : List[str] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : List[str] = Path(_A ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) lowercase : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowercase : Any = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _A ) if os.path.abspath(self.spm_file ) != os.path.abspath(_A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _A ) elif not os.path.isfile(self.spm_file ): with open(_A , '''wb''' ) as fi: lowercase : int = self.sp_model.serialized_model_proto() fi.write(_A ) return (str(_A ), str(_A )) def __a ( self : Optional[int] , _A : List[str] , _A : str = "en" , _A : Optional[List[str]] = None , _A : str = "ro" , **_A : Optional[Any] , ) -> BatchEncoding: """simple docstring""" lowercase : Any = src_lang lowercase : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_A , _A , **_A ) def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Optional[str] , _A : Optional[str] , **_A : str ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase : List[Any] = src_lang lowercase : Union[str, Any] = self(_A , add_special_tokens=_A , **_A ) lowercase : int = self.get_lang_id(_A ) lowercase : Any = tgt_lang_id return inputs def __a ( self : List[str] ) -> List[Any]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def __a ( self : Optional[int] ) -> Tuple: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self : Union[str, Any] , _A : str ) -> None: """simple docstring""" lowercase : List[Any] = self.get_lang_token(_A ) lowercase : Optional[Any] = self.lang_token_to_id[lang_token] lowercase : Optional[Any] = [self.cur_lang_id] lowercase : Tuple = [self.eos_token_id] def __a ( self : Union[str, Any] , _A : str ) -> None: """simple docstring""" lowercase : Union[str, Any] = self.get_lang_token(_A ) lowercase : List[Any] = self.lang_token_to_id[lang_token] lowercase : str = [self.cur_lang_id] lowercase : Dict = [self.eos_token_id] def __a ( self : Optional[int] , _A : str ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def __a ( self : Optional[Any] , _A : str ) -> int: """simple docstring""" lowercase : Any = self.get_lang_token(_A ) return self.lang_token_to_id[lang_token] def snake_case( __magic_name__ , __magic_name__ ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' lowercase : Any = sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def snake_case( __magic_name__ ) -> Union[Dict, List]: '''simple docstring''' with open(__magic_name__ , '''r''' ) as f: return json.load(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' with open(__magic_name__ , '''w''' ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
217
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('T') class _A ( Generic[T] ): def __init__( self : Optional[Any] , _A : T ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] = data lowercase : Node[T] | None = None def __str__( self : List[str] ) -> str: """simple docstring""" return f"""{self.data}""" class _A ( Generic[T] ): def __init__( self : str ) -> None: """simple docstring""" lowercase : Node[T] | None = None def __iter__( self : List[str] ) -> Iterator[T]: """simple docstring""" lowercase : int = self.top while node: yield node.data lowercase : List[str] = node.next def __str__( self : Tuple ) -> str: """simple docstring""" return "->".join([str(_A ) for item in self] ) def __len__( self : Tuple ) -> int: """simple docstring""" return len(tuple(iter(self ) ) ) def __a ( self : List[str] ) -> bool: """simple docstring""" return self.top is None def __a ( self : List[Any] , _A : T ) -> None: """simple docstring""" lowercase : Any = Node(_A ) if not self.is_empty(): lowercase : str = self.top lowercase : Any = node def __a ( self : List[Any] ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , _A ) lowercase : int = self.top lowercase : Optional[int] = self.top.next return pop_node.data def __a ( self : Optional[Any] ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def __a ( self : Dict ) -> None: """simple docstring""" lowercase : str = None if __name__ == "__main__": from doctest import testmod testmod()
217
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE__ ( __A ): def __init__( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE_ : int = split if split or isinstance(lowercase__ , lowercase__ ) else '''train''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = features SCREAMING_SNAKE_CASE_ : List[Any] = cache_dir SCREAMING_SNAKE_CASE_ : Optional[int] = keep_in_memory SCREAMING_SNAKE_CASE_ : Tuple = streaming SCREAMING_SNAKE_CASE_ : Dict = num_proc SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs @abstractmethod def __lowerCamelCase ( self ): """simple docstring""" pass class SCREAMING_SNAKE_CASE__ ( __A ): def __init__( self , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = features SCREAMING_SNAKE_CASE_ : Any = cache_dir SCREAMING_SNAKE_CASE_ : Union[str, Any] = keep_in_memory SCREAMING_SNAKE_CASE_ : int = streaming SCREAMING_SNAKE_CASE_ : Dict = num_proc SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs @abstractmethod def __lowerCamelCase ( self ): """simple docstring""" pass
708
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'spiece.model'} snake_case_ = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } snake_case_ = { 'AI-Sweden/gpt-sw3-126m': 2_0_4_8, 'AI-Sweden/gpt-sw3-350m': 2_0_4_8, 'AI-Sweden/gpt-sw3-1.6b': 2_0_4_8, 'AI-Sweden/gpt-sw3-6.7b': 2_0_4_8, 'AI-Sweden/gpt-sw3-20b': 2_0_4_8, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] def __init__( self , lowercase__ , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__ = None , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ : Dict = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) SCREAMING_SNAKE_CASE_ : str = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing SCREAMING_SNAKE_CASE_ : List[Any] = "<|endoftext|>" if eos_token is None else eos_token SCREAMING_SNAKE_CASE_ : Dict = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: SCREAMING_SNAKE_CASE_ : Tuple = unk_token if pad_token is None else pad_token SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token if bos_token is None else bos_token else: SCREAMING_SNAKE_CASE_ : int = "<pad>" if pad_token is None else pad_token SCREAMING_SNAKE_CASE_ : Any = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=lowercase__ , remove_space=lowercase__ , keep_accents=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE_ : Optional[int] = remove_space SCREAMING_SNAKE_CASE_ : int = keep_accents SCREAMING_SNAKE_CASE_ : List[Any] = vocab_file SCREAMING_SNAKE_CASE_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # Used for whitespace normalization in input texts # fmt : off SCREAMING_SNAKE_CASE_ : int = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing SCREAMING_SNAKE_CASE_ : List[str] = re.compile( F"[{''.join(map(lowercase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]" ) def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Dict = None return state def __setstate__( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.non_printing_characters_re.sub("" , lowercase__ ) # Normalize whitespaces SCREAMING_SNAKE_CASE_ : List[str] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization SCREAMING_SNAKE_CASE_ : List[Any] = unicodedata.normalize("NFC" , lowercase__ ) return text def __lowerCamelCase ( self , lowercase__ , **lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.preprocess_text(lowercase__ ) return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self.sp_model.PieceToId(lowercase__ ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self.sp_model.IdToPiece(lowercase__ ) @staticmethod def __lowerCamelCase ( lowercase__ ): """simple docstring""" return out_string def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Any = "" SCREAMING_SNAKE_CASE_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : int = [] else: current_sub_tokens.append(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = False out_string += self.sp_model.decode(lowercase__ ) return out_string def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , lowercase__ , lowercase__ = None ): """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Any = os.path.join( lowercase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , "wb" ) as fi: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def __lowerCamelCase ( self , lowercase__ , lowercase__ = False ): """simple docstring""" if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.preprocess_text(lowercase__ ) SCREAMING_SNAKE_CASE_ : Any = self.sp_model.encode(lowercase__ ) else: SCREAMING_SNAKE_CASE_ : str = [self.preprocess_text(lowercase__ ) for t in text] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sp_model.encode(lowercase__ ) if return_tensors is True or return_tensors == "pt": SCREAMING_SNAKE_CASE_ : str = torch.tensor(lowercase__ ) return token_ids def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self.sp_model.decode(lowercase__ ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()] SCREAMING_SNAKE_CASE_ : List[str] = ( F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(lowercase__ ) + F"{self.bos_token}Bot:" ) return self.encode(text=lowercase__ )
68
0
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(lowerCamelCase ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Any =(graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =[float("""inf""" )] * vertex_count __magic_name__ : Optional[int] =0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : List[str] =(graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: __magic_name__ : Optional[Any] =distance[u] + w __magic_name__ : Optional[Any] =check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Dict = int(input("Enter number of vertices: ").strip()) UpperCAmelCase_ : Any = int(input("Enter number of edges: ").strip()) UpperCAmelCase_ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCAmelCase_ : str = {"src": src, "dst": dest, "weight": weight} UpperCAmelCase_ : List[Any] = int(input("\nEnter shortest path source:").strip()) UpperCAmelCase_ : str = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Any = 'yolos' def __init__( self : Dict , lowerCamelCase__ : str=768 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : str=3_072 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : List[str]=0.0 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Dict=0.0_2 , lowerCamelCase__ : Optional[int]=1e-1_2 , lowerCamelCase__ : Any=[512, 864] , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : Any=True , lowerCamelCase__ : str=100 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Dict=1 , lowerCamelCase__ : List[Any]=5 , lowerCamelCase__ : int=2 , lowerCamelCase__ : int=5 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Optional[Any]=0.1 , **lowerCamelCase__ : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Dict = version.parse('1.11' ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> float: """simple docstring""" return 1e-4 @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" return 12
362
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) __lowercase = BlipaProcessor(lowerCamelCase__ , lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Optional[int] , **lowerCamelCase__ : Any ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).tokenizer def UpperCAmelCase_ ( self : Dict , **lowerCamelCase__ : List[str] ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).image_processor def UpperCAmelCase_ ( self : List[str] ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" __lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __lowercase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCamelCase__ , return_tensors='''np''' ) __lowercase = processor(images=lowerCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = '''lower newer''' __lowercase = processor(text=lowerCamelCase__ ) __lowercase = tokenizer(lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowerCamelCase__ ) __lowercase = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
362
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } SCREAMING_SNAKE_CASE__ : Optional[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } SCREAMING_SNAKE_CASE__ : int = { 'facebook/blenderbot_small-90M': 5_12, } class lowerCamelCase_ ( __snake_case ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = BlenderbotSmallTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=__lowerCAmelCase , merges=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , ) , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Tuple = add_prefix_space def A ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" __magic_name__ :Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Optional[Any] = [self.sep_token_id] __magic_name__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase : List[str] = logging.get_logger('transformers.models.encodec') lowercase : str = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } lowercase : Optional[int] = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } lowercase : int = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } lowercase : int = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } lowercase : List[Any] = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } lowercase : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase : Union[str, Any] = [] lowercase : int = [] def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' for attribute in key.split('''.''' ): A : int = getattr(snake_case__ , snake_case__ ) if weight_type is not None: A : int = getattr(snake_case__ , snake_case__ ).shape else: A : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A : str = value elif weight_type == "weight_g": A : Union[str, Any] = value elif weight_type == "weight_v": A : List[Any] = value elif weight_type == "bias": A : Union[str, Any] = value elif weight_type == "running_mean": A : Union[str, Any] = value elif weight_type == "running_var": A : List[str] = value elif weight_type == "num_batches_tracked": A : List[Any] = value elif weight_type == "weight_ih_l0": A : Optional[int] = value elif weight_type == "weight_hh_l0": A : List[Any] = value elif weight_type == "bias_ih_l0": A : List[Any] = value elif weight_type == "bias_hh_l0": A : int = value elif weight_type == "weight_ih_l1": A : Tuple = value elif weight_type == "weight_hh_l1": A : List[str] = value elif weight_type == "bias_ih_l1": A : Any = value elif weight_type == "bias_hh_l1": A : Tuple = value else: A : str = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A, A : List[str] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": A : str = MAPPING_24K elif model_name == "encodec_48khz": A : List[Any] = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(snake_case__ , snake_case__ ): logger.info(F'{name} was ignored' ) continue A : int = False for key, mapped_key in MAPPING.items(): if "*" in key: A, A : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A : Dict = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A : Union[str, Any] = True if "*" in mapped_key: A : List[str] = name.split(snake_case__ )[0].split('''.''' )[-2] A : Optional[Any] = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: A : Dict = '''weight_g''' elif "weight_v" in name: A : List[str] = '''weight_v''' elif "weight_ih_l0" in name: A : int = '''weight_ih_l0''' elif "weight_hh_l0" in name: A : Any = '''weight_hh_l0''' elif "bias_ih_l0" in name: A : Dict = '''bias_ih_l0''' elif "bias_hh_l0" in name: A : List[Any] = '''bias_hh_l0''' elif "weight_ih_l1" in name: A : Any = '''weight_ih_l1''' elif "weight_hh_l1" in name: A : Tuple = '''weight_hh_l1''' elif "bias_ih_l1" in name: A : Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A : List[str] = '''bias_hh_l1''' elif "bias" in name: A : int = '''bias''' elif "weight" in name: A : Optional[Any] = '''weight''' elif "running_mean" in name: A : Optional[Any] = '''running_mean''' elif "running_var" in name: A : Dict = '''running_var''' elif "num_batches_tracked" in name: A : List[str] = '''num_batches_tracked''' else: A : int = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): '''simple docstring''' if config_path is not None: A : Dict = EncodecConfig.from_pretrained(snake_case__ ) else: A : Dict = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A : Optional[Any] = [8, 5, 4, 4] A : List[Any] = [2.2] A : Tuple = 64 A : str = 3_2000 A : Optional[Any] = 2048 A : Optional[int] = False A : Optional[int] = False A : List[Any] = False elif model_name == "encodec_48khz": A : List[str] = [8, 5, 4, 2] A : Any = [3.0, 6.0, 12.0, 24.0] A : Tuple = 4_8000 A : Optional[int] = 2 A : Dict = False A : Union[str, Any] = '''time_group_norm''' A : List[Any] = True A : Union[str, Any] = 1.0 A : Union[str, Any] = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) A : Optional[Any] = EncodecModel(snake_case__ ) A : Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(snake_case__ ) A : Optional[int] = torch.load(snake_case__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A : Union[str, Any] = original_checkpoint['''best_state'''] recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) model.save_pretrained(snake_case__ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(snake_case__ ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowercase : Union[str, Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
634
0
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _lowerCAmelCase = TypeVar('''KEY''') _lowerCAmelCase = TypeVar('''VAL''') @dataclass(frozen=SCREAMING_SNAKE_CASE__ , slots=SCREAMING_SNAKE_CASE__ ) class A ( Generic[KEY, VAL] ): '''simple docstring''' A = 42 A = 42 class A ( _Item ): '''simple docstring''' def __init__(self ) -> None: super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__(self ) -> bool: return False _lowerCAmelCase = _DeletedItem() class A ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self , _UpperCAmelCase = 8 , _UpperCAmelCase = 0.75 ) -> None: __UpperCamelCase : List[Any] = initial_block_size __UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase : Dict = capacity_factor __UpperCamelCase : List[str] = 0 def a_ (self , _UpperCAmelCase ) -> int: return hash(_UpperCAmelCase ) % len(self._buckets ) def a_ (self , _UpperCAmelCase ) -> int: return (ind + 1) % len(self._buckets ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: __UpperCamelCase : Any = self._buckets[ind] if not stored: __UpperCamelCase : Any = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase : int = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def a_ (self ) -> bool: __UpperCamelCase : Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def a_ (self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase : int = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a_ (self , _UpperCAmelCase ) -> None: __UpperCamelCase : str = self._buckets __UpperCamelCase : List[str] = [None] * new_size __UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def a_ (self ) -> None: self._resize(len(self._buckets ) * 2 ) def a_ (self ) -> None: self._resize(len(self._buckets ) // 2 ) def a_ (self , _UpperCAmelCase ) -> Iterator[int]: __UpperCamelCase : Union[str, Any] = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase : Union[str, Any] = self._get_next_ind(_UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> None: for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__(self , _UpperCAmelCase , _UpperCAmelCase ) -> None: if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__(self , _UpperCAmelCase ) -> None: for ind in self._iterate_buckets(_UpperCAmelCase ): __UpperCamelCase : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase : Any = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , _UpperCAmelCase ) -> VAL: for ind in self._iterate_buckets(_UpperCAmelCase ): __UpperCamelCase : Dict = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__(self ) -> int: return self._len def __iter__(self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__(self ) -> str: __UpperCamelCase : Union[str, Any] = " ,".join( f"{item.key}: {item.val}" for item in self._buckets if item ) return f"HashMap({val_string})"
399
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
399
1
'''simple docstring''' import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowercase_ ( __A : str ) -> str: """simple docstring""" re.sub('''<n>''' , '''''' , __A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__A ) )
94
def snake_case (__lowercase ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _snake_case : Union[str, Any] = grid[0] for row_n in range(1 , len(__lowercase ) ): _snake_case : Union[str, Any] = grid[row_n] _snake_case : List[Any] = fill_row(__lowercase , __lowercase ) _snake_case : List[Any] = grid[row_n] return grid[-1][-1] def snake_case (__lowercase , __lowercase ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
670
0
from collections.abc import Callable def a ( SCREAMING_SNAKE_CASE_ : Callable[[float], float] , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" UpperCamelCase : Optional[int] = a UpperCamelCase : Dict = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: UpperCamelCase : int = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: UpperCamelCase : Dict = mid else: UpperCamelCase : List[str] = mid UpperCamelCase : Optional[int] = start + (end - start) / 2.0 return mid def a ( SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp A_ = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } A_ = { "RUCAIBox/mvp": 1024, } class lowercase_ ( lowerCAmelCase_ ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["input_ids", "attention_mask"] A_ = MvpTokenizer def __init__( self : Optional[int] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]="replace" , __lowerCamelCase : int="<s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : int="<mask>" , __lowerCamelCase : int=False , __lowerCamelCase : List[str]=True , **__lowerCamelCase : Dict , ): super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) snake_case__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __lowerCamelCase ) != add_prefix_space: snake_case__ : str = getattr(__lowerCamelCase , pre_tok_state.pop('type' ) ) snake_case__ : int = add_prefix_space snake_case__ : List[str] = pre_tok_class(**__lowerCamelCase ) snake_case__ : Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : Dict = 'post_processor' snake_case__ : Optional[int] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: snake_case__ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : int = tuple(state['sep'] ) if "cls" in state: snake_case__ : Union[str, Any] = tuple(state['cls'] ) snake_case__ : Dict = False if state.get('add_prefix_space' , __lowerCamelCase ) != add_prefix_space: snake_case__ : List[Any] = add_prefix_space snake_case__ : List[str] = True if state.get('trim_offsets' , __lowerCamelCase ) != trim_offsets: snake_case__ : str = trim_offsets snake_case__ : List[Any] = True if changes_to_apply: snake_case__ : Optional[int] = getattr(__lowerCamelCase , state.pop('type' ) ) snake_case__ : str = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property def _lowerCAmelCase ( self : str ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] ): snake_case__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value snake_case__ : Optional[int] = value def _lowerCAmelCase ( self : List[str] , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ): snake_case__ : Optional[int] = kwargs.get('is_split_into_words' , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ): snake_case__ : Tuple = kwargs.get('is_split_into_words' , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): snake_case__ : List[str] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=None ): snake_case__ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): snake_case__ : Dict = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
270
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Dict: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> int: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Dict: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> int: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Dict: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Any: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[int]: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Any: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> int: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> int: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> List[Any]: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> int: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Tuple: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Any: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Tuple: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['flax'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> Any: requires_backends(self , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(cls , ['''flax'''] ) @classmethod def snake_case_( cls , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(cls , ['''flax'''] )
702
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowerCAmelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : str , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : int ) ->str: """simple docstring""" for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ = '''lm_head''' lowercase__ = getattr(lowercase , lowercase ) if weight_type is not None: lowercase__ = getattr(lowercase , lowercase ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCAmelCase ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Any ) ->Tuple: """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(lowercase )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , lowercase ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = '''weight''' else: lowercase__ = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowerCAmelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] , lowercase : List[str] ) ->Optional[Any]: """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase : Dict , lowercase : Optional[int] , lowercase : Tuple=None , lowercase : Tuple=None , lowercase : Any=True ) ->Tuple: """simple docstring""" if config_path is not None: lowercase__ = UniSpeechConfig.from_pretrained(lowercase ) else: lowercase__ = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ = Dictionary.load_from_json(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(lowercase , '''vocab.json''' ) if not os.path.isdir(lowercase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 4_2 lowercase__ = 4_3 with open(lowercase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowercase , lowercase ) lowercase__ = WavaVecaPhonemeCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase , ) lowercase__ = True if config.feat_extract_norm == '''layer''' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) lowercase__ = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) lowercase__ = UniSpeechForCTC(lowercase ) else: lowercase__ = UniSpeechForPreTraining(lowercase ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ = model[0].eval() recursively_load_weights(lowercase , lowercase , lowercase ) hf_unispeech.save_pretrained(lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
318
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = 1.5 UpperCAmelCase_ : Tuple = int(factor * num_class_images ) UpperCAmelCase_ : str = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase_ : Tuple = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase_ : Dict = int(factor * num_images ) UpperCAmelCase_ : int = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : str = tqdm(desc="downloading real regularization images" , total=_SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , "w" ) as fa, open(F'''{class_data_dir}/urls.txt''' , "w" ) as fa, open( F'''{class_data_dir}/images.txt''' , "w" ) as fa: while total < num_class_images: UpperCAmelCase_ : Optional[Any] = class_images[count] count += 1 try: UpperCAmelCase_ : Tuple = requests.get(images["url"] ) if img.status_code == 2_00: UpperCAmelCase_ : Optional[int] = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a__ ( ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser("" , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--class_data_dir" , help="path to save images" , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--num_class_images" , help="number of images to download" , default=2_00 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": _lowerCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
71
'''simple docstring''' from statistics import mean, stdev def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Dict = min(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , _SCREAMING_SNAKE_CASE ) for x in data] def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Tuple = mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = stdev(_SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , _SCREAMING_SNAKE_CASE ) for x in data]
71
1
'''simple docstring''' def _A ( A ) -> Optional[Any]: lowercase : Union[str, Any] = abs(UpperCamelCase__ ) lowercase : int = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def _A ( A ) -> Tuple: lowercase : int = abs(UpperCamelCase__ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def _A ( A ) -> Dict: return sum(int(UpperCamelCase__ ) for c in str(abs(UpperCamelCase__ ) ) ) def _A ( ) -> int: from collections.abc import Callable from timeit import timeit def benchmark_a_function(A ,A ) -> None: lowercase : List[str] = F'''{func.__name__}({value})''' lowercase : List[str] = timeit(F'''__main__.{call}''' ,setup="import __main__" ) print(F'''{call:56} = {func(UpperCamelCase__ )} -- {timing:.4f} seconds''' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase__ ,UpperCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
720
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Any: lowercase : List[str] = parent lowercase : str = batch_size lowercase : int = seq_length lowercase : Any = is_training lowercase : List[Any] = use_input_mask lowercase : str = use_token_type_ids lowercase : List[str] = use_labels lowercase : Optional[Any] = vocab_size lowercase : List[Any] = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : str = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Dict = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : int = num_labels lowercase : int = num_choices lowercase : Tuple = scope def a__ ( self ) -> Dict: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None lowercase : str = None lowercase : Optional[int] = None if self.use_labels: lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[Any]: lowercase : Tuple = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , a_ ) lowercase : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: lowercase : List[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> int: lowercase : Optional[Any] = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowercase : List[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : Union[str, Any] = self.num_labels lowercase : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : List[Any] = self.num_labels lowercase : Optional[Any] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: lowercase : Optional[int] = self.num_choices lowercase : Tuple = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() lowercase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Tuple = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self ) -> Tuple: lowercase : Any = self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : int = config_and_inputs lowercase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def a__ ( self ) -> int: lowercase : str = DistilBertModelTester(self ) lowercase : Optional[Any] = ConfigTester(self , config_class=a_ , dim=3_7 ) def a__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def a__ ( self ) -> Tuple: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def a__ ( self ) -> Union[str, Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def a__ ( self ) -> List[str]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def a__ ( self ) -> List[Any]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def a__ ( self ) -> Tuple: lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase : Any = True lowercase : List[str] = model_class(config=a_ ) lowercase : Optional[int] = self._prepare_for_class(a_ , a_ ) lowercase : Union[str, Any] = torch.jit.trace( a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) ) lowercase : str = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ ) loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) ) @require_torch class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' @slow def a__ ( self ) -> List[str]: lowercase : Dict = DistilBertModel.from_pretrained("distilbert-base-uncased" ) lowercase : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Union[str, Any] = model(a_ , attention_mask=a_ )[0] lowercase : List[str] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) lowercase : Optional[int] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) )
425
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : int ) -> Dict: _lowercase : List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] _lowercase : Optional[int] = [tuple(__A ) if isinstance(__A ,__A ) else key for key in keys] _lowercase : List[str] = Counter(__A ) _lowercase : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def _lowerCamelCase ( self : int ,UpperCamelCase : List[Any] ,UpperCamelCase : Tuple=False ) -> Optional[int]: _lowercase : List[str] = super().construct_mapping(__A ,deep=__A ) self._check_no_duplicates_on_constructed_node(__A ) return mapping def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : str) -> Optional[int]: '''simple docstring''' _lowercase : Any = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _lowercase : List[Any] = full_content[1:].index('---') + 1 _lowercase : Dict = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(_lowerCAmelCase) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def _lowerCamelCase ( cls : List[str] ,UpperCamelCase : Path ) -> Any: with open(__A ,encoding='utf-8' ) as readme_file: _lowercase : Optional[int] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__A ) else: return cls() def _lowerCamelCase ( self : str ,UpperCamelCase : Path ) -> int: if path.exists(): with open(__A ,encoding='utf-8' ) as readme_file: _lowercase : Tuple = readme_file.read() else: _lowercase : Optional[Any] = None _lowercase : Union[str, Any] = self._to_readme(__A ) with open(__A ,'w' ,encoding='utf-8' ) as readme_file: readme_file.write(__A ) def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : Optional[str] = None ) -> Optional[Any]: if readme_content is not None: _lowercase : Union[str, Any] = _split_yaml_from_readme(__A ) _lowercase : List[str] = "---\n" + self.to_yaml_string() + "---\n" + content else: _lowercase : List[str] = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def _lowerCamelCase ( cls : List[Any] ,UpperCamelCase : str ) -> str: _lowercase : Any = yaml.load(__A ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _lowercase : Optional[Any] = { (key.replace('-' ,'_' ) if key.replace('-' ,'_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__A ) def _lowerCamelCase ( self : str ) -> Union[str, Any]: return yaml.safe_dump( { (key.replace('_' ,'-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=__A ,allow_unicode=__A ,encoding='utf-8' ,).decode('utf-8' ) A = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser A = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') A = ap.parse_args() A = Path(args.readme_filepath) A = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
125
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> list[list[str]]: """simple docstring""" __UpperCAmelCase : str = word_bank or [] # create a table __UpperCAmelCase : int = len(lowerCamelCase__ ) + 1 __UpperCAmelCase : list[list[list[str]]] = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value __UpperCAmelCase : Optional[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: __UpperCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = ScoreSdeVeScheduler() lowerCAmelCase = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_snake_case ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_snake_case , return_dict=_snake_case )[ 0 ] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'google/ncsnpp-church-256' lowerCAmelCase = UNetaDModel.from_pretrained(_snake_case ) lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(_snake_case ) lowerCAmelCase = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> float: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__A , __A ) or not isinstance(__A , __A ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case = float(factorial(__A ) ) coefficient /= factorial(__A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
495
0
def lowerCamelCase__ ( snake_case_ : int ) -> bool: if not isinstance(snake_case_ , snake_case_ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __snake_case = str(snake_case_ ) __snake_case = ''''''.join(sorted(snake_case_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase__ ( snake_case_ : float = 99 ) -> int: if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) __snake_case = 0 __snake_case = 1 while True: if check_bouncy(snake_case_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
388
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case_ = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase__ ( snake_case_ : Optional[int] ) -> int: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Union[str, Any]: from transformers.testing_utils import pytest_terminal_summary_main __snake_case = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
388
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[8, 16, 32, 64] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=1 , )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(A_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = BitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BitBackbone(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase_ = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, module in model.named_modules(): if isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = (BitBackbone,) if is_torch_available() else () lowerCAmelCase_ = BitConfig lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BitModelTester(self )
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a( _a ): """simple docstring""" lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' lowerCAmelCase = '''image_segmenter''' lowerCAmelCase = CLIPSegForImageSegmentation lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''image'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self ,['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.pre_processor(text=[label] ,images=[image] ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: with torch.no_grad(): UpperCAmelCase_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Dict = outputs.cpu().detach().numpy() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
30
0
"""simple docstring""" def lowercase (_snake_case = 1000 ) -> int: '''simple docstring''' __UpperCamelCase = 2**power __UpperCamelCase = str(_snake_case ) __UpperCamelCase = list(_snake_case ) __UpperCamelCase = 0 for i in list_num: sum_of_num += int(_snake_case ) return sum_of_num if __name__ == "__main__": _A = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) _A = solution(power) print("Sum of the digits is: ", result)
228
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _A = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _A = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase (_snake_case ,_snake_case ,_snake_case ) -> Any: '''simple docstring''' __UpperCamelCase = SavedModel() __UpperCamelCase = [] with open(os.path.join(_snake_case ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: __UpperCamelCase = json.load(_snake_case )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case ,"rb" ) as f: saved_model.ParseFromString(f.read() ) __UpperCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __UpperCamelCase = sorted(_snake_case ) __UpperCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_snake_case ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*_snake_case ,sep="\n" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) _A = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
228
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" _a = DPTConfig(embedding_type='''hybrid''') if "large" in checkpoint_url: _a = 1_024 _a = 4_096 _a = 24 _a = 16 _a = [5, 11, 17, 23] _a = [256, 512, 1_024, 1_024] _a = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _a = 768 _a = [1, 1, 1, 0.5] _a = [256, 512, 768, 768] _a = 150 _a = 16 _a = (1, 384, 384) _a = False _a = '''project''' if "ade" in checkpoint_url: _a = True _a = 768 _a = [1, 1, 1, 0.5] _a = 150 _a = 16 _a = '''huggingface/label-files''' _a = '''ade20k-id2label.json''' _a = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''')) , '''r''')) _a = {int(__A): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase (__A): """simple docstring""" _a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__A , __A) def lowerCAmelCase (__A): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _a = name.replace('''pretrained.model''' , '''dpt.encoder''') if "pretrained.model" in name: _a = name.replace('''pretrained.model''' , '''dpt.embeddings''') if "patch_embed" in name: _a = name.replace('''patch_embed''' , '''''') if "pos_embed" in name: _a = name.replace('''pos_embed''' , '''position_embeddings''') if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''') if "proj" in name and "project" not in name: _a = name.replace('''proj''' , '''projection''') if "blocks" in name: _a = name.replace('''blocks''' , '''layer''') if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''') if "norm1" in name and "backbone" not in name: _a = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name and "backbone" not in name: _a = name.replace('''norm2''' , '''layernorm_after''') if "scratch.output_conv" in name: _a = name.replace('''scratch.output_conv''' , '''head''') if "scratch" in name: _a = name.replace('''scratch''' , '''neck''') if "layer1_rn" in name: _a = name.replace('''layer1_rn''' , '''convs.0''') if "layer2_rn" in name: _a = name.replace('''layer2_rn''' , '''convs.1''') if "layer3_rn" in name: _a = name.replace('''layer3_rn''' , '''convs.2''') if "layer4_rn" in name: _a = name.replace('''layer4_rn''' , '''convs.3''') if "refinenet" in name: _a = int(name[len('''neck.refinenet''') : len('''neck.refinenet''') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _a = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: _a = name.replace('''out_conv''' , '''projection''') if "resConfUnit1" in name: _a = name.replace('''resConfUnit1''' , '''residual_layer1''') if "resConfUnit2" in name: _a = name.replace('''resConfUnit2''' , '''residual_layer2''') if "conv1" in name: _a = name.replace('''conv1''' , '''convolution1''') if "conv2" in name: _a = name.replace('''conv2''' , '''convolution2''') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''') if "pretrained.act_postprocess2.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''') if "pretrained.act_postprocess3.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''') if "pretrained.act_postprocess4.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''') # resize blocks if "pretrained.act_postprocess1.3" in name: _a = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''') if "pretrained.act_postprocess1.4" in name: _a = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''') if "pretrained.act_postprocess2.3" in name: _a = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''') if "pretrained.act_postprocess2.4" in name: _a = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''') if "pretrained.act_postprocess3.3" in name: _a = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''') if "pretrained.act_postprocess4.3" in name: _a = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''') if "pretrained.act_postprocess4.4" in name: _a = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''') if "pretrained" in name: _a = name.replace('''pretrained''' , '''dpt''') if "bn" in name: _a = name.replace('''bn''' , '''batch_norm''') if "head" in name: _a = name.replace('''head''' , '''head.head''') if "encoder.norm" in name: _a = name.replace('''encoder.norm''' , '''layernorm''') if "auxlayer" in name: _a = name.replace('''auxlayer''' , '''auxiliary_head.head''') if "backbone" in name: _a = name.replace('''backbone''' , '''backbone.bit.encoder''') if ".." in name: _a = name.replace('''..''' , '''.''') if "stem.conv" in name: _a = name.replace('''stem.conv''' , '''bit.embedder.convolution''') if "blocks" in name: _a = name.replace('''blocks''' , '''layers''') if "convolution" in name and "backbone" in name: _a = name.replace('''convolution''' , '''conv''') if "layer" in name and "backbone" in name: _a = name.replace('''layer''' , '''layers''') if "backbone.bit.encoder.bit" in name: _a = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''') if "embedder.conv" in name: _a = name.replace('''embedder.conv''' , '''embedder.convolution''') if "backbone.bit.encoder.stem.norm" in name: _a = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''') return name def lowerCAmelCase (__A , __A): """simple docstring""" for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''') _a = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[: config.hidden_size, :] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def lowerCAmelCase (): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(__A , stream=__A).raw) return im @torch.no_grad() def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a , _a = get_dpt_config(__A) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _a = torch.load(__A , map_location='''cpu''') # remove certain keys remove_ignore_keys_(__A) # rename keys for key in state_dict.copy().keys(): _a = state_dict.pop(__A) _a = val # read in qkv matrices read_in_q_k_v(__A , __A) # load HuggingFace model _a = DPTForSemanticSegmentation(__A) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__A) model.load_state_dict(__A) model.eval() # Check outputs on an image _a = 480 if '''ade''' in checkpoint_url else 384 _a = DPTImageProcessor(size=__A) _a = prepare_img() _a = image_processor(__A , return_tensors='''pt''') # forward pass _a = model(**__A).logits if '''ade''' in checkpoint_url else model(**__A).predicted_depth if show_prediction: _a = ( torch.nn.functional.interpolate( outputs.unsqueeze(1) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255).show() if pytorch_dump_folder_path is not None: Path(__A).mkdir(exist_ok=__A) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(__A) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(__A) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''') image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowercase_ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
11
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert('RGB' ) return image def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = val def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE__ = torch.cat((q_bias, torch.zeros_like(UpperCamelCase_ , requires_grad=UpperCamelCase_ ), v_bias) ) SCREAMING_SNAKE_CASE__ = qkv_bias def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 364 if 'coco' in model_name else 224 SCREAMING_SNAKE_CASE__ = InstructBlipVisionConfig(image_size=UpperCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE__ = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE__ = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE__ = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() SCREAMING_SNAKE_CASE__ = InstructBlipConfig(vision_config=UpperCamelCase_ , text_config=UpperCamelCase_ , qformer_config=UpperCamelCase_ ) return config, image_size @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=False ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: SCREAMING_SNAKE_CASE__ = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE__ = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_blipa_config(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = InstructBlipForConditionalGeneration(UpperCamelCase_ ).eval() SCREAMING_SNAKE_CASE__ = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) SCREAMING_SNAKE_CASE__ = 'cuda:1' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE__ = 'cuda:2' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = load_model_and_preprocess( name=UpperCamelCase_ , model_type=UpperCamelCase_ , is_eval=UpperCamelCase_ , device=UpperCamelCase_ ) original_model.eval() print('Done!' ) # update state dict keys SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE__ = state_dict.pop(UpperCamelCase_ ) if key.startswith('Qformer.bert' ): SCREAMING_SNAKE_CASE__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: SCREAMING_SNAKE_CASE__ = key.replace('self' , 'attention' ) if "llm_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): SCREAMING_SNAKE_CASE__ = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): SCREAMING_SNAKE_CASE__ = key.replace('t5' , 'language' ) SCREAMING_SNAKE_CASE__ = val # read in qv biases read_in_q_v_bias(UpperCamelCase_ , UpperCamelCase_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = load_demo_image() SCREAMING_SNAKE_CASE__ = 'What is unusual about this image?' # create processor SCREAMING_SNAKE_CASE__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = InstructBlipProcessor( image_processor=UpperCamelCase_ , tokenizer=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = processor(images=UpperCamelCase_ , text=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ ) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE__ = vis_processors['eval'](UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) hf_model.to(UpperCamelCase_ ) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE__ = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits SCREAMING_SNAKE_CASE__ = hf_model(**UpperCamelCase_ ).logits else: SCREAMING_SNAKE_CASE__ = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits SCREAMING_SNAKE_CASE__ = tokenizer('\n' , return_tensors='pt' ).input_ids.to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) SCREAMING_SNAKE_CASE__ = hf_model(**UpperCamelCase_ , labels=UpperCamelCase_ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE__ = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , UpperCamelCase_ , atol=UpperCamelCase_ ) print('Looks ok!' ) print('Generating with original model...' ) SCREAMING_SNAKE_CASE__ = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) SCREAMING_SNAKE_CASE__ = hf_model.generate( **UpperCamelCase_ , do_sample=UpperCamelCase_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE__ = 2 print('Original generation:' , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = processor.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = [text.strip() for text in output_text] print('HF generation:' , UpperCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase_ ) hf_model.save_pretrained(UpperCamelCase_ ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
472
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ :int = logging.get_logger(__name__) a_ :List[Any] = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class lowercase ( _a ): lowerCamelCase : Union[str, Any] = """deta""" lowerCamelCase : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Dict , _lowercase : int=None , _lowercase : Optional[int]=9_00 , _lowercase : Optional[int]=20_48 , _lowercase : Optional[Any]=6 , _lowercase : Any=20_48 , _lowercase : str=8 , _lowercase : List[Any]=6 , _lowercase : Any=10_24 , _lowercase : Optional[int]=8 , _lowercase : int=0.0 , _lowercase : Any=True , _lowercase : Any="relu" , _lowercase : List[str]=2_56 , _lowercase : Any=0.1 , _lowercase : str=0.0 , _lowercase : List[Any]=0.0 , _lowercase : Tuple=0.02 , _lowercase : List[Any]=1.0 , _lowercase : List[Any]=True , _lowercase : Dict=False , _lowercase : Optional[Any]="sine" , _lowercase : Dict=5 , _lowercase : Optional[Any]=4 , _lowercase : List[str]=4 , _lowercase : str=True , _lowercase : List[str]=3_00 , _lowercase : Dict=True , _lowercase : List[Any]=True , _lowercase : Dict=1 , _lowercase : str=5 , _lowercase : List[Any]=2 , _lowercase : Dict=1 , _lowercase : Any=1 , _lowercase : Any=5 , _lowercase : List[str]=2 , _lowercase : int=0.1 , _lowercase : str=0.25 , **_lowercase : Optional[Any] , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE__ : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__ : List[Any] = backbone_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE__ : List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : Optional[int] = config_class.from_dict(snake_case_ ) SCREAMING_SNAKE_CASE__ : List[Any] = backbone_config SCREAMING_SNAKE_CASE__ : Dict = num_queries SCREAMING_SNAKE_CASE__ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = d_model SCREAMING_SNAKE_CASE__ : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE__ : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE__ : int = activation_function SCREAMING_SNAKE_CASE__ : List[str] = init_std SCREAMING_SNAKE_CASE__ : List[str] = init_xavier_std SCREAMING_SNAKE_CASE__ : List[str] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE__ : str = position_embedding_type # deformable attributes SCREAMING_SNAKE_CASE__ : Optional[int] = num_feature_levels SCREAMING_SNAKE_CASE__ : Dict = encoder_n_points SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_n_points SCREAMING_SNAKE_CASE__ : List[str] = two_stage SCREAMING_SNAKE_CASE__ : Union[str, Any] = two_stage_num_proposals SCREAMING_SNAKE_CASE__ : str = with_box_refine SCREAMING_SNAKE_CASE__ : int = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE__ : Tuple = class_cost SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost SCREAMING_SNAKE_CASE__ : int = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE__ : int = dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Union[str, Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : Any = eos_coefficient SCREAMING_SNAKE_CASE__ : List[Any] = focal_alpha super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowercase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def lowercase__ ( self : Optional[int] ): return self.d_model def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : List[Any] = self.__class__.model_type return output
720
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline a_ :str = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ) -> Optional[Any]: '''simple docstring''' output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def a ( A__ , A__ , A__ , A__ = False ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : List[str] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionPipeline.from_pretrained(A__ , torch_dtype=A__ ).to(A__ ) SCREAMING_SNAKE_CASE__ : int = Path(A__ ) # TEXT ENCODER SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=A__ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=A__ , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=A__ , ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE__ : Tuple = pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE__ : Dict = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), torch.randn(2 ).to(device=A__ , dtype=A__ ), torch.randn(2 , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=A__ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=A__ , use_external_data_format=A__ , ) SCREAMING_SNAKE_CASE__ : List[str] = str(unet_path.absolute().as_posix() ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.dirname(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = onnx.load(A__ ) # clean up existing tensor files shutil.rmtree(A__ ) os.mkdir(A__ ) # collate external tensor files into one onnx.save_model( A__ , A__ , save_as_external_data=A__ , all_tensors_to_one_file=A__ , location='''weights.pb''' , convert_attribute=A__ , ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE__ : Optional[int] = pipeline.vae SCREAMING_SNAKE_CASE__ : str = vae_encoder.config.in_channels SCREAMING_SNAKE_CASE__ : str = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE__ : Dict = lambda A__ , A__ : vae_encoder.encode(A__ , A__ )[0].sample() onnx_export( A__ , model_args=( torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) # VAE DECODER SCREAMING_SNAKE_CASE__ : Tuple = pipeline.vae SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE__ : Dict = vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae_encoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE__ : int = pipeline.safety_checker SCREAMING_SNAKE_CASE__ : int = safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE__ : Dict = safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , A__ , A__ , A__ , ).to(device=A__ , dtype=A__ ), torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=A__ , ) del pipeline.safety_checker SCREAMING_SNAKE_CASE__ : Optional[int] = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) SCREAMING_SNAKE_CASE__ : str = pipeline.feature_extractor else: SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=A__ , feature_extractor=A__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(A__ ) print('''ONNX pipeline saved to''' , A__ ) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(A__ , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": a_ :List[str] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') a_ :Optional[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
250
0
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[list[str]] , _lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : Any = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : list[list[str]] = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print("" ) print(len(lowerCAmelCase__ ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
44
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __UpperCAmelCase ( _UpperCamelCase ): def __init__( self : str , a_ : Dict , a_ : List[str]=False , a_ : Any=True , a_ : int=False , a_ : Union[str, Any]="<s>" , a_ : Optional[int]="</s>" , a_ : int="<unk>" , a_ : List[Any]="<sep>" , a_ : Dict="<pad>" , a_ : Any="<cls>" , a_ : Optional[Any]="<mask>" , a_ : int=["<eop>", "<eod>"] , a_ : Optional[Dict[str, Any]] = None , **a_ : int , ) -> None: '''simple docstring''' a__ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ : Union[str, Any] = 3 a__ : Dict = do_lower_case a__ : Union[str, Any] = remove_space a__ : int = keep_accents a__ : str = vocab_file a__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) a__ : Optional[int] = jieba a__ : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Tuple = self.__dict__.copy() a__ : Union[str, Any] = None return state def __setstate__( self : Tuple , a_ : int ) -> List[str]: '''simple docstring''' a__ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : str = {} a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : List[Any] , a_ : Optional[Any] ) -> List[str]: '''simple docstring''' if self.remove_space: a__ : Union[str, Any] = " ".join(inputs.strip().split() ) else: a__ : Optional[Any] = inputs a__ : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__ : Union[str, Any] = unicodedata.normalize("NFKD" , a_ ) a__ : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: a__ : List[Any] = outputs.lower() return outputs def UpperCAmelCase ( self : Any , a_ : str ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = self.preprocess_text(a_ ) a__ : Dict = self.sp_model.encode(a_ , out_type=a_ ) a__ : Optional[Any] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__ : List[str] = cur_pieces[1:] else: a__ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def UpperCAmelCase ( self : int , a_ : Dict ) -> int: '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCAmelCase ( self : Dict , a_ : Tuple ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(a_ ) def UpperCAmelCase ( self : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' a__ : Optional[Any] = "".join(a_ ).replace(a_ , " " ).strip() return out_string def UpperCAmelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[Any] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def UpperCAmelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self : Dict , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__ : Optional[int] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a__ : int = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCAmelCase ( self : str , *a_ : Union[str, Any] , **a_ : Any ) -> int: '''simple docstring''' a__ : Optional[int] = super()._decode(*a_ , **a_ ) a__ : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
642
0
import random def UpperCAmelCase__ ( lowercase__ , lowercase__ ) -> tuple: __lowercase , __lowercase , __lowercase = [], [], [] for element in data: if element < pivot: less.append(lowercase__ ) elif element > pivot: greater.append(lowercase__ ) else: equal.append(lowercase__ ) return less, equal, greater def UpperCAmelCase__ ( lowercase__ , lowercase__ ) -> Dict: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(lowercase__ ) or index < 0: return None __lowercase = items[random.randint(0 , len(lowercase__ ) - 1 )] __lowercase = 0 __lowercase , __lowercase , __lowercase = _partition(lowercase__ , lowercase__ ) __lowercase = len(lowercase__ ) __lowercase = len(lowercase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowercase__ , lowercase__ ) # must be in larger else: return quick_select(lowercase__ , index - (m + count) )
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
634
0
'''simple docstring''' from collections import deque from .hash_table import HashTable class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" def __init__( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Dict ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(UpperCamelCase__ ) UpperCamelCase = self.values[key] def A ( self : str ): """simple docstring""" return ( sum(self.charge_factor - len(UpperCamelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def A ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(UpperCamelCase__ ) == 0 ): return key return super()._collision_resolution(UpperCamelCase__ , UpperCamelCase__ )
430
'''simple docstring''' def lowercase_ ( __A : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__A , __A ): return 0 elif n == 2: return 1 else: lowercase : Tuple =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase_ ( __A : int ) -> int: """simple docstring""" lowercase : List[str] =0 lowercase : str =2 while digits < n: index += 1 lowercase : int =len(str(fibonacci(__A ) ) ) return index def lowercase_ ( __A : int = 1_0_0_0 ) -> int: """simple docstring""" return fibonacci_digits_index(__A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int=13 , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Any=99 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Tuple=5 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Tuple=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=5_12 , lowerCamelCase_ : List[str]=16 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : str=0.02 , lowerCamelCase_ : Any=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : str="None" , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[str]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : str = num_choices SCREAMING_SNAKE_CASE : Tuple = relative_attention SCREAMING_SNAKE_CASE : Dict = position_biased_input SCREAMING_SNAKE_CASE : Optional[Any] = pos_att_type SCREAMING_SNAKE_CASE : Union[str, Any] = scope def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_config() SCREAMING_SNAKE_CASE : Any = 3_00 return config def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Tuple ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = DebertaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = DebertaForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = DebertaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = DebertaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = DebertaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = DebertaModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = DebertaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @slow def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
79
'''simple docstring''' def __A ( lowerCamelCase_ ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = number while duplicate > 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = divmod(lowerCamelCase_ , 10 ) fact_sum += factorial(lowerCamelCase_ ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") __UpperCAmelCase = int(input("""Enter number: """).strip()) print( f'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
79
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase = "owlvit_text_model" def __init__(self , _lowercase=49408 , _lowercase=512 , _lowercase=2048 , _lowercase=12 , _lowercase=8 , _lowercase=16 , _lowercase="quick_gelu" , _lowercase=1e-5 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , _lowercase=0 , _lowercase=49406 , _lowercase=49407 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __a : int = vocab_size __a : Tuple = hidden_size __a : Any = intermediate_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : Dict = max_position_embeddings __a : Union[str, Any] = hidden_act __a : Any = layer_norm_eps __a : Union[str, Any] = attention_dropout __a : Any = initializer_range __a : int = initializer_factor @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a : Union[str, Any] = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": __a : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase = "owlvit_vision_model" def __init__(self , _lowercase=768 , _lowercase=3072 , _lowercase=12 , _lowercase=12 , _lowercase=3 , _lowercase=768 , _lowercase=32 , _lowercase="quick_gelu" , _lowercase=1e-5 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) __a : Optional[int] = hidden_size __a : Optional[int] = intermediate_size __a : Union[str, Any] = num_hidden_layers __a : str = num_attention_heads __a : Union[str, Any] = num_channels __a : int = image_size __a : Dict = patch_size __a : Tuple = hidden_act __a : Tuple = layer_norm_eps __a : Optional[int] = attention_dropout __a : str = initializer_range __a : Union[str, Any] = initializer_factor @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a : int = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": __a : Any = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase = "owlvit" _lowerCAmelCase = True def __init__(self , _lowercase=None , _lowercase=None , _lowercase=512 , _lowercase=2.6592 , _lowercase=True , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) if text_config is None: __a : Optional[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: __a : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) __a : Optional[int] = OwlViTTextConfig(**_lowercase ) __a : Optional[int] = OwlViTVisionConfig(**_lowercase ) __a : Union[str, Any] = projection_dim __a : str = logit_scale_init_value __a : int = return_dict __a : List[str] = 1.0 @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a : List[str] = cls.get_config_dict(_lowercase , **_lowercase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' __a : List[str] = {} __a : List[str] = text_config __a : Any = vision_config return cls.from_dict(_lowercase , **_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = copy.deepcopy(self.__dict__ ) __a : Dict = self.text_config.to_dict() __a : Optional[int] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return 1e-4 def lowerCAmelCase__(self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = None , ): '''simple docstring''' __a : Any = super().generate_dummy_inputs( processor.tokenizer , batch_size=_lowercase , seq_length=_lowercase , framework=_lowercase ) __a : Any = super().generate_dummy_inputs( processor.image_processor , batch_size=_lowercase , framework=_lowercase ) return {**text_input_dict, **image_input_dict} @property def lowerCAmelCase__(self ): '''simple docstring''' return 14
581
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Dict = checkpoints.load_tax_checkpoint(__UpperCamelCase ) snake_case_ : Tuple = flatten_dict(__UpperCamelCase ) return flax_params def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : List[Any] = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } snake_case_ : Optional[Any] = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key snake_case_ : List[Any] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): snake_case_ : List[str] = new_key.replace(__UpperCamelCase , __UpperCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): snake_case_ : Optional[int] = new_key.replace(__UpperCamelCase , __UpperCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number snake_case_ : Optional[Any] = re.sub(r"""layers_(\d+)""" , r"""layer.\1""" , __UpperCamelCase ) snake_case_ : Union[str, Any] = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number snake_case_ : int = re.sub(r"""layers_(\d+)""" , r"""layer.\1""" , __UpperCamelCase ) snake_case_ : Dict = flax_dict[key] snake_case_ : Tuple = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): snake_case_ : Optional[int] = torch.from_numpy(converted_dict[key].T ) else: snake_case_ : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[str]=False ): '''simple docstring''' snake_case_ : Optional[int] = get_flax_param(__UpperCamelCase ) if not use_large: snake_case_ : Optional[int] = PixaStructVisionConfig() snake_case_ : Optional[Any] = PixaStructTextConfig() else: snake_case_ : Tuple = PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) snake_case_ : List[str] = PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) snake_case_ : str = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__UpperCamelCase ) snake_case_ : Optional[int] = PixaStructForConditionalGeneration(__UpperCamelCase ) snake_case_ : str = rename_and_convert_flax_params(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) snake_case_ : Optional[int] = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) snake_case_ : int = PixaStructImageProcessor() snake_case_ : str = PixaStructProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) if use_large: snake_case_ : Optional[Any] = 4_0_9_6 snake_case_ : int = True # mkdir if needed os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) print("""Model saved in {}""".format(__UpperCamelCase ) ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __lowerCAmelCase : List[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
58
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( A , A , A , A , A = None , A = None , A = None , ) -> Any: if config_name_or_path is None: lowerCAmelCase__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: lowerCAmelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCAmelCase__ = question_encoder_name_or_path lowerCAmelCase__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. lowerCAmelCase__ = RagConfig.from_pretrained(A ) lowerCAmelCase__ = AutoConfig.from_pretrained(A ) lowerCAmelCase__ = AutoConfig.from_pretrained(A ) lowerCAmelCase__ = gen_config lowerCAmelCase__ = question_encoder_config lowerCAmelCase__ = model_class.from_pretrained_question_encoder_generator( A , A , config=A ) rag_model.save_pretrained(A ) # Sanity check. model_class.from_pretrained(A ) # Save tokenizers. lowerCAmelCase__ = AutoTokenizer.from_pretrained(A ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(A ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
700
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def _snake_case ( A , A , A = 16000 ) -> Any: lowerCAmelCase__ = int(round(sample_rate * max_length ) ) if len(A ) <= sample_length: return wav lowerCAmelCase__ = randint(0 , len(A ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a__ : '''simple docstring''' lowercase__ : Optional[str] = field(default=a__ , metadata={"help": "Name of a dataset from the datasets package"} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "A file containing the training audio paths and labels."} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "A file containing the validation audio paths and labels."} ) lowercase__ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowercase__ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowercase__ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) lowercase__ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) lowercase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase__ : float = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class a__ : '''simple docstring''' lowercase__ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) lowercase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "Name or path of preprocessor config."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) lowercase__ : bool = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase__ : Optional[bool] = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , lowerCamelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def _snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , A , A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowerCAmelCase__ = DatasetDict() lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCAmelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCAmelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCAmelCase__ = feature_extractor.model_input_names[0] def train_transforms(A ): lowerCAmelCase__ = [] for audio in batch[data_args.audio_column_name]: lowerCAmelCase__ = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(A ) lowerCAmelCase__ = feature_extractor(A , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase__ = {model_input_name: inputs.get(A )} lowerCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(A ): lowerCAmelCase__ = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowerCAmelCase__ = feature_extractor(A , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase__ = {model_input_name: inputs.get(A )} lowerCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase__ = raw_datasets['''train'''].features[data_args.label_column_name].names lowerCAmelCase__ , lowerCAmelCase__ = {}, {} for i, label in enumerate(A ): lowerCAmelCase__ = str(A ) lowerCAmelCase__ = label # Load the accuracy metric from the datasets package lowerCAmelCase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(A ): lowerCAmelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=A , references=eval_pred.label_ids ) lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A ) , labelaid=A , idalabel=A , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(A , output_all_columns=A ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(A , output_all_columns=A ) # Initialize our trainer lowerCAmelCase__ = Trainer( model=A , args=A , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=A , tokenizer=A , ) # Training if training_args.do_train: lowerCAmelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint lowerCAmelCase__ = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase__ = trainer.evaluate() trainer.log_metrics('''eval''' , A ) trainer.save_metrics('''eval''' , A ) # Write model card and (optionally) push to hub lowerCAmelCase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) if __name__ == "__main__": main()
98
0
'''simple docstring''' def a_ ( _UpperCAmelCase : str ) -> List[Any]: __snake_case : Dict = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 ,len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming __snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __snake_case : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __snake_case : Union[str, Any] = j return prefix_result def a_ ( _UpperCAmelCase : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
286
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _A : float _A : TreeNode | None = None _A : TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode | None ): """simple docstring""" def is_valid_tree(SCREAMING_SNAKE_CASE__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE__ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE__ : TreeNode | None , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE__ ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE__ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
480
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ (__a , __a , __a , __a , ): '''simple docstring''' A_ = coefficient_matrix.shape A_ = constant_matrix.shape if rowsa != colsa: A_ = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( '''Number of initial values must be equal to number of rows in coefficient ''' f'matrix but received {len(__UpperCamelCase )} and {rowsa}' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def A_ (__a ): '''simple docstring''' A_ = table.shape A_ = True for i in range(0 , __UpperCamelCase ): A_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase_ : Optional[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase_ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase_ : str = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') UpperCamelCase_ : Dict = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def A_ (__a ): '''simple docstring''' A_ = None # source code of `config_class` A_ = inspect.getsource(__a ) A_ = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): A_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link A_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: A_ = ckpt_name break return checkpoint def A_ (): '''simple docstring''' A_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue A_ = get_checkpoint_from_config_class(__a ) A_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: A_ = "\n".join(sorted(__a ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
482
0
"""simple docstring""" from copy import deepcopy class __a : def __init__( self : str , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : Optional[Any] = None )-> Any: """simple docstring""" if arr is None and size is not None: UpperCamelCase = size UpperCamelCase = [0] * size elif arr is not None: self.init(lowerCAmelCase_ ) else: raise ValueError("Either arr or size must be specified" ) def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Union[str, Any] )-> int: """simple docstring""" UpperCamelCase = len(lowerCAmelCase_ ) UpperCamelCase = deepcopy(lowerCAmelCase_ ) for i in range(1 , self.size ): UpperCamelCase = self.next_(lowerCAmelCase_ ) if j < self.size: self.tree[j] += self.tree[i] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Any: """simple docstring""" UpperCamelCase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase = self.next_(lowerCAmelCase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ : Any )-> Optional[int]: """simple docstring""" return index + (index & (-index)) @staticmethod def _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ : List[str] )-> Tuple: """simple docstring""" return index - (index & (-index)) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any )-> Optional[Any]: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase = self.next_(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] )-> List[str]: """simple docstring""" self.add(lowerCAmelCase_ , value - self.get(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : Optional[int] )-> Optional[int]: """simple docstring""" if right == 0: return 0 UpperCamelCase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase = self.prev(lowerCAmelCase_ ) return result def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] )-> int: """simple docstring""" return self.prefix(lowerCAmelCase_ ) - self.prefix(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] )-> Union[str, Any]: """simple docstring""" return self.query(lowerCAmelCase_ , index + 1 ) def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Dict )-> Optional[Any]: """simple docstring""" value -= self.tree[0] if value < 0: return -1 UpperCamelCase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
554
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=True , snake_case__="pt" ): A_ : Dict = {"""add_prefix_space""": True} if isinstance(snake_case__ , snake_case__ ) and not line.startswith(""" """ ) else {} A_ : int = padding_side return tokenizer( [line] , max_length=snake_case__ , padding="""max_length""" if pad_to_max_length else None , truncation=snake_case__ , return_tensors=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , ): A_ : int = input_ids.ne(snake_case__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="train" , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="" , ): super().__init__() A_ : str = Path(lowerCAmelCase_ ).joinpath(type_path + """.source""" ) A_ : Tuple = Path(lowerCAmelCase_ ).joinpath(type_path + """.target""" ) A_ : Optional[Any] = self.get_char_lens(self.src_file ) A_ : Optional[Any] = max_source_length A_ : Tuple = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" A_ : Tuple = tokenizer A_ : Optional[int] = prefix if n_obs is not None: A_ : Union[str, Any] = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Union[str, Any] = tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , lowerCAmelCase_ ): A_ : Optional[Any] = index + 1 # linecache starts at 1 A_ : int = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase_ ).rstrip("""\n""" ) A_ : Any = linecache.getline(str(self.tgt_file ) , lowerCAmelCase_ ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer ) A_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer A_ : str = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_source_length , """right""" ) A_ : Optional[Any] = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_target_length , """right""" ) A_ : int = source_inputs["""input_ids"""].squeeze() A_ : int = target_inputs["""input_ids"""].squeeze() A_ : Tuple = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase(lowerCAmelCase_ ): return [len(lowerCAmelCase_ ) for x in Path(lowerCAmelCase_ ).open().readlines()] def lowerCamelCase(self , lowerCAmelCase_ ): A_ : List[str] = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[int] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : Any = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer.pad_token_id ) A_ : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ ) A_ , A_ : Dict = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) A_ : Optional[Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch _lowerCAmelCase = getLogger(__name__) def __UpperCamelCase ( snake_case__ ): return list(itertools.chain.from_iterable(snake_case__ ) ) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = get_git_info() save_json(snake_case__ , os.path.join(snake_case__ , """git_log.json""" ) ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=4 , **snake_case__ ): with open(snake_case__ , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=snake_case__ , **snake_case__ ) def __UpperCamelCase ( snake_case__ ): with open(snake_case__ ) as f: return json.load(snake_case__ ) def __UpperCamelCase ( ): A_ : Optional[int] = git.Repo(search_parent_directories=snake_case__ ) A_ : Union[str, Any] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( snake_case__ , snake_case__ ): return list(map(snake_case__ , snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): with open(snake_case__ , """wb""" ) as f: return pickle.dump(snake_case__ , snake_case__ ) def __UpperCamelCase ( snake_case__ ): def remove_articles(snake_case__ ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , snake_case__ ) def white_space_fix(snake_case__ ): return " ".join(text.split() ) def remove_punc(snake_case__ ): A_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Tuple = normalize_answer(snake_case__ ).split() A_ : Dict = normalize_answer(snake_case__ ).split() A_ : int = Counter(snake_case__ ) & Counter(snake_case__ ) A_ : Dict = sum(common.values() ) if num_same == 0: return 0 A_ : str = 1.0 * num_same / len(snake_case__ ) A_ : Any = 1.0 * num_same / len(snake_case__ ) A_ : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( snake_case__ , snake_case__ ): return normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) def __UpperCamelCase ( snake_case__ , snake_case__ ): assert len(snake_case__ ) == len(snake_case__ ) A_ : Optional[Any] = 0 for hypo, pred in zip(snake_case__ , snake_case__ ): em += exact_match_score(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: em /= len(snake_case__ ) return {"em": em} def __UpperCamelCase ( snake_case__ ): return model_prefix.startswith("""rag""" ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : List[Any] = """dropout_rate""" for p in extra_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): if not hasattr(snake_case__ , snake_case__ ) and not hasattr(snake_case__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(snake_case__ ) ) delattr(snake_case__ , snake_case__ ) continue A_ : Dict = p if hasattr(snake_case__ , snake_case__ ) else equivalent_param[p] setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) delattr(snake_case__ , snake_case__ ) return hparams, config
180
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase: int ={'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Optional[int] =['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _UpperCamelCase: int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" _lowerCAmelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = emb.weight.data return lin_layer def _a ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=None ): """simple docstring""" _lowerCAmelCase = {} for old_key in state_dict.keys(): _lowerCAmelCase = old_key if "moe_layer.experts." in key: if expert_idx is not None: _lowerCAmelCase = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _lowerCAmelCase = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _lowerCAmelCase = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _lowerCAmelCase = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _lowerCAmelCase = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _lowerCAmelCase = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _lowerCAmelCase = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _lowerCAmelCase = key.replace('final_layer_norm' , 'ff_layer_norm' ) _lowerCAmelCase = state_dict[old_key] return new_dict def _a ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str = WEIGHTS_NAME ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 0 os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) for expert in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )['model'] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = rename_fairseq_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , f'''-{len(__SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block _lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , f'''-{len(__SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) _lowerCAmelCase = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = rename_fairseq_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__SCREAMING_SNAKE_CASE ) == 1: _lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index _lowerCAmelCase = {} for idx, shard in enumerate(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__SCREAMING_SNAKE_CASE ):05d}.bin''' ) _lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) for key in shard: _lowerCAmelCase = shard_file # Add the metadata _lowerCAmelCase = {'total_size': total_size} _lowerCAmelCase = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase = json.dumps(__SCREAMING_SNAKE_CASE , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE ) + '\n' f.write(__SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": _UpperCamelCase: Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) _UpperCamelCase: Tuple =parser.parse_args() _UpperCamelCase , _UpperCamelCase: str =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _UpperCamelCase: str =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _UpperCamelCase: List[Any] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
585
1
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case ( _a: Dict , _a: Any , _a: Union[str, Any] , _a: str )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = FunnelConfig.from_json_file(_a ) print(F'Building PyTorch model from configuration: {config}' ) lowerCamelCase__ = FunnelBaseModel(_a ) if base_model else FunnelModel(_a ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_a , _a , _a ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _a ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
510
"""simple docstring""" def snake_case ( _a: list )-> bool: '''simple docstring''' if not isinstance(_a , _a ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_a ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_a ) == 1: return True lowerCamelCase__ = series[1] - series[0] for index in range(len(_a ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def snake_case ( _a: list )-> float: '''simple docstring''' if not isinstance(_a , _a ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_a ) == 0: raise ValueError('Input list must be a non empty list' ) lowerCamelCase__ = 0 for val in series: answer += val return answer / len(_a ) if __name__ == "__main__": import doctest doctest.testmod()
510
1
"""simple docstring""" class snake_case : def __init__( self : int , a__ : int ) -> Optional[int]: '''simple docstring''' _A = n _A = [None] * self.n _A = 0 # index of the first element _A = 0 _A = 0 def __len__( self : str ) -> int: '''simple docstring''' return self.size def a_ ( self : List[str] ) -> bool: '''simple docstring''' return self.size == 0 def a_ ( self : List[Any] ) -> Tuple: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def a_ ( self : List[str] , a__ : int ) -> Tuple: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) _A = data _A = (self.rear + 1) % self.n self.size += 1 return self def a_ ( self : str ) -> str: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) _A = self.array[self.front] _A = None _A = (self.front + 1) % self.n self.size -= 1 return temp
621
"""simple docstring""" def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: # Return True if there is node that has not iterated. _A = [False] * len(__lowercase ) _A = [] queue.append(__lowercase ) _A = True while queue: _A = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowercase ) _A = True _A = u return visited[t] def a__ ( __lowercase , __lowercase , __lowercase ) -> int: # This array is filled by BFS and to store path _A = [-1] * (len(__lowercase )) _A = 0 while bfs(__lowercase , __lowercase , __lowercase , __lowercase ): _A = float("Inf" ) _A = sink while s != source: # Find the minimum value in select path _A = min(__lowercase , graph[parent[s]][s] ) _A = parent[s] max_flow += path_flow _A = sink while v != source: _A = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _A = parent[v] return max_flow a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_ , a_ = 0, 5 print(ford_fulkerson(graph, source, sink))
621
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : int = logging.get_logger(__name__) __lowercase : Union[str, Any] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "convbert" def __init__( self , __a=3_0522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a=768 , __a=2 , __a=9 , __a=1 , __a=None , **__a , ): '''simple docstring''' super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a , ) __a : Any = vocab_size __a : List[str] = hidden_size __a : Dict = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : str = intermediate_size __a : Union[str, Any] = hidden_act __a : List[Any] = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : Dict = type_vocab_size __a : Optional[Any] = initializer_range __a : List[Any] = layer_norm_eps __a : Dict = embedding_size __a : Union[str, Any] = head_ratio __a : int = conv_kernel_size __a : Optional[Any] = num_groups __a : Any = classifier_dropout class __UpperCamelCase ( lowerCAmelCase_ ): @property def __UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __a : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
476
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : List[str] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = ['ConvNextFeatureExtractor'] __lowercase : int = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
476
1
import datasets from .evaluate import evaluate lowerCAmelCase__ = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ lowerCAmelCase__ = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ lowerCAmelCase__ = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase_ , predictions=lowercase_ ) return score
716
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = DanceDiffusionPipeline __lowerCamelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __lowerCamelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase , use_timestep_embedding=lowercase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) A__ = IPNDMScheduler() A__ = { "unet": unet, "scheduler": scheduler, } return components def UpperCamelCase ( self , lowercase , lowercase=0 ) -> Union[str, Any]: '''simple docstring''' if str(lowercase ).startswith("mps" ): A__ = torch.manual_seed(lowercase ) else: A__ = torch.Generator(device=lowercase ).manual_seed(lowercase ) A__ = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = DanceDiffusionPipeline(**lowercase ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs(lowercase ) A__ = pipe(**lowercase ) A__ = output.audios A__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) A__ = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase ( self ) -> Dict: '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCamelCase ( self ) -> int: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCamelCase ( self ) -> int: '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCamelCase ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = torch_device A__ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A__ = torch.manual_seed(0 ) A__ = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.096 ) A__ = output.audios A__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A__ = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = torch_device A__ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) A__ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A__ = torch.manual_seed(0 ) A__ = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.096 ) A__ = output.audios A__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A__ = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
626
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase_ ( a_ ): @require_torch def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task="""fill-mask""" , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = """1""" UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task="""fill-mask""" , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer """ UpperCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ UpperCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCAmelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = """1""" UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = """ from transformers import pipeline """ UpperCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ UpperCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ UpperCAmelCase = self.get_env() UpperCAmelCase = """1""" UpperCAmelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """ from transformers import AutoModel """ UpperCAmelCase = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = """1""" UpperCAmelCase = subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
673
"""simple docstring""" import math def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return math.sqrt(lowerCAmelCase ) * math.sqrt(lowerCAmelCase ) == num def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = n while left <= right: UpperCAmelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase = mid - 1 else: UpperCAmelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
673
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[int] = 'bert-generation' def __init__(self , __lowercase=5_03_58 , __lowercase=10_24 , __lowercase=24 , __lowercase=16 , __lowercase=40_96 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase=2 , __lowercase=1 , __lowercase="absolute" , __lowercase=True , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache
474
'''simple docstring''' from manim import * class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''CPU''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) __lowerCAmelCase = [mem.copy() for i in range(1 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''GPU''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) gpu.align_to(__lowercase , __lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowercase ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''Model''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) , ) __lowerCAmelCase = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) __lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCAmelCase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase , run_time=2.5 ) , Write(__lowercase ) , Write(__lowercase ) ) self.add(__lowercase ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for i, rect in enumerate(__lowercase ): __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__lowercase , opacity=0.7 ) cpu_target.move_to(__lowercase ) cpu_target.generate_target() __lowerCAmelCase = 0.4_6 / 4 __lowerCAmelCase = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__lowercase , buff=0.0 ) cpu_targs.append(__lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowercase ) ) second_animations.append(MoveToTarget(__lowercase , run_time=1.5 ) ) self.play(*__lowercase ) self.play(*__lowercase ) self.wait()
474
1
"""simple docstring""" import os def __magic_name__ ( __snake_case : str = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as in_file: lowercase : Optional[Any] = in_file.read() lowercase : Optional[int] = [[int(__snake_case ) for cell in row.split("," )] for row in data.strip().splitlines()] lowercase : List[Any] = [[0 for cell in row] for row in grid] lowercase : Optional[Any] = len(grid[0] ) lowercase : Any = [[0 for i in range(__snake_case )] for j in range(__snake_case )] lowercase : str = grid[0][0] for i in range(1 , __snake_case ): lowercase : str = grid[0][i] + dp[0][i - 1] for i in range(1 , __snake_case ): lowercase : List[Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): lowercase : int = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
361
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''wavlm''' def __init__( self : Tuple , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Tuple=1_2 , UpperCamelCase__ : str=3_0_7_2 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Optional[int]=1E-5 , UpperCamelCase__ : Any="group" , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCamelCase__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : Dict=(1_0, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=1_2_8 , UpperCamelCase__ : Optional[int]=1_6 , UpperCamelCase__ : Optional[Any]=3_2_0 , UpperCamelCase__ : Any=8_0_0 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=0.05 , UpperCamelCase__ : Optional[Any]=1_0 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Tuple=1_0 , UpperCamelCase__ : Optional[int]=3_2_0 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1_0_0 , UpperCamelCase__ : Dict=2_5_6 , UpperCamelCase__ : Optional[int]=2_5_6 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple="mean" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Union[str, Any]=2_5_6 , UpperCamelCase__ : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCamelCase__ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCamelCase__ : Any=(1, 2, 3, 1, 1) , UpperCamelCase__ : Dict=5_1_2 , UpperCamelCase__ : str=8_0 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : str=False , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__) snake_case__ = hidden_size snake_case__ = feat_extract_norm snake_case__ = feat_extract_activation snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = conv_bias snake_case__ = num_buckets snake_case__ = max_bucket_distance snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = len(self.conv_dim) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = num_ctc_classes snake_case__ = vocab_size snake_case__ = do_stable_layer_norm snake_case__ = use_weighted_layer_sum snake_case__ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = apply_spec_augment snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case__ = num_codevectors_per_group snake_case__ = num_codevector_groups snake_case__ = contrastive_logits_temperature snake_case__ = num_negatives snake_case__ = codevector_dim snake_case__ = proj_codevector_dim snake_case__ = diversity_loss_weight # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # adapter snake_case__ = add_adapter snake_case__ = adapter_kernel_size snake_case__ = adapter_stride snake_case__ = num_adapter_layers snake_case__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = xvector_output_dim @property def __magic_name__ ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
654
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__ ( unittest.TestCase ): @property def a__ ( self ): torch.manual_seed(0 ) __a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def a__ ( self ): __a = self.dummy_uncond_unet __a = KarrasVeScheduler() __a = KarrasVePipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __a = torch.manual_seed(0 ) __a = pipe(num_inference_steps=2 , generator=lowerCamelCase , output_type="numpy" ).images __a = torch.manual_seed(0 ) __a = pipe(num_inference_steps=2 , generator=lowerCamelCase , output_type="numpy" , return_dict=lowerCamelCase )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = "google/ncsnpp-celebahq-256" __a = UNetaDModel.from_pretrained(lowerCamelCase ) __a = KarrasVeScheduler() __a = KarrasVePipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __a = torch.manual_seed(0 ) __a = pipe(num_inference_steps=20 , generator=lowerCamelCase , output_type="numpy" ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __a = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
710
"""simple docstring""" import heapq import sys import numpy as np SCREAMING_SNAKE_CASE__:Optional[int] = tuple[int, int] class snake_case__ : def __init__( self ): __a = [] __a = set() def a__ ( self ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def a__ ( self ): return len(self.elements ) == 0 def a__ ( self , lowerCamelCase , lowerCamelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowerCamelCase ) else: # update # print("update", item) __a = [] ((__a) , (__a)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__a) , (__a)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def a__ ( self , lowerCamelCase ): if item in self.set: self.set.remove(lowerCamelCase ) __a = [] ((__a) , (__a)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__a) , (__a)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def a__ ( self ): return self.elements[0][1] def a__ ( self ): ((__a) , (__a)) = heapq.heappop(self.elements ) self.set.remove(lowerCamelCase ) return (priority, item) def _lowerCamelCase( a , a ): # euclidean distance __a = np.array(a ) __a = np.array(a ) return np.linalg.norm(a - b ) def _lowerCamelCase( a , a ): # integer division by time variable return consistent_heuristic(a , a ) // t def _lowerCamelCase( a , a ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCamelCase( a , a , a , a ): __a = g_function[start] + Wa * heuristics[i](a , a ) return ans def _lowerCamelCase( a , a , a ): __a = np.chararray((n, n) ) for i in range(a ): for j in range(a ): __a = "*" for i in range(a ): for j in range(a ): if (j, (n - 1) - i) in blocks: __a = "#" __a = "-" __a = back_pointer[goal] while x != start: ((__a) , (__a)) = x # print(x) __a = "-" __a = back_pointer[x] __a = "-" for i in range(a ): for j in range(a ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) __a = back_pointer[goal] while x != start: print(a , end=" " ) __a = back_pointer[x] print(a ) sys.exit() def _lowerCamelCase( a ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCamelCase( a , a , a , a , a , a , a , a , ): for itera in range(a ): open_list[itera].remove_element(a ) # print("s", s) # print("j", j) ((__a) , (__a)) = s __a = (x - 1, y) __a = (x + 1, y) __a = (x, y + 1) __a = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(a ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(a ) __a = -1 __a = float("inf" ) if valid(a ) and g_function[neighbours] > g_function[s] + 1: __a = g_function[s] + 1 __a = s if neighbours not in close_list_anchor: open_list[0].put(a , key(a , 0 , a , a ) ) if neighbours not in close_list_inad: for var in range(1 , a ): if key(a , a , a , a ) <= Wa * key( a , 0 , a , a ): open_list[j].put( a , key(a , a , a , a ) ) def _lowerCamelCase( ): __a = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list SCREAMING_SNAKE_CASE__:Any = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} SCREAMING_SNAKE_CASE__:str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] SCREAMING_SNAKE_CASE__:int = make_common_ground() SCREAMING_SNAKE_CASE__:List[str] = blocks_blk # hyper parameters SCREAMING_SNAKE_CASE__:str = 1 SCREAMING_SNAKE_CASE__:Union[str, Any] = 1 SCREAMING_SNAKE_CASE__:Union[str, Any] = 20 SCREAMING_SNAKE_CASE__:Dict = 3 # one consistent and two other inconsistent # start and end destination SCREAMING_SNAKE_CASE__:Dict = (0, 0) SCREAMING_SNAKE_CASE__:Optional[Any] = (n - 1, n - 1) SCREAMING_SNAKE_CASE__:List[str] = 1 def _lowerCamelCase( a , a , a ): __a = {start: 0, goal: float("inf" )} __a = {start: -1, goal: -1} __a = [] __a = set() for i in range(a ): open_list.append(PriorityQueue() ) open_list[i].put(a , key(a , a , a , a ) ) __a = [] __a = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , a ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(a , a , a ) else: __a , __a = open_list[i].top_show() visited.add(a ) expand_state( a , a , a , a , a , a , a , a , ) close_list_inad.append(a ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(a , a , a ) else: __a = open_list[0].top_show() visited.add(a ) expand_state( a , 0 , a , a , a , a , a , a , ) close_list_anchor.append(a ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(a ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
67
0
'''simple docstring''' import operator as op def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] _UpperCamelCase =lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int(x / y ) # noqa: E731 integer division operation _UpperCamelCase ={ '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(__SCREAMING_SNAKE_CASE )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__SCREAMING_SNAKE_CASE ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(__SCREAMING_SNAKE_CASE ) , sep=''' | ''' ) else: _UpperCamelCase =stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(__SCREAMING_SNAKE_CASE ) , sep=''' | ''' ) _UpperCamelCase =stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(__SCREAMING_SNAKE_CASE ) , sep=''' | ''' ) stack.append( str(opr[x](int(__SCREAMING_SNAKE_CASE ) , int(__SCREAMING_SNAKE_CASE ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(__SCREAMING_SNAKE_CASE ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
404
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = (UnCLIPScheduler,) def UpperCamelCase__ ( self : Union[str, Any] , **UpperCamelCase__ : Dict ) -> Optional[Any]: _UpperCamelCase ={ '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase__ ) return config def UpperCamelCase__ ( self : str ) -> Tuple: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> int: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> Dict: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config(variance_type='''fixed_small_log''' ) _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def UpperCamelCase__ ( self : Any ) -> Tuple: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config(variance_type='''learned_range''' ) _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) _UpperCamelCase =0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0010011 < 1E-5 def UpperCamelCase__ ( self : str ) -> Optional[int]: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config() _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) _UpperCamelCase =scheduler.timesteps _UpperCamelCase =self.dummy_model() _UpperCamelCase =self.dummy_sample_deter _UpperCamelCase =torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual _UpperCamelCase =model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase =scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample _UpperCamelCase =pred_prev_sample _UpperCamelCase =torch.sum(torch.abs(UpperCamelCase__ ) ) _UpperCamelCase =torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def UpperCamelCase__ ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config() _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) _UpperCamelCase =scheduler.timesteps _UpperCamelCase =self.dummy_model() _UpperCamelCase =self.dummy_sample_deter _UpperCamelCase =torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual _UpperCamelCase =model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: _UpperCamelCase =None else: _UpperCamelCase =timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _UpperCamelCase =scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample _UpperCamelCase =pred_prev_sample _UpperCamelCase =torch.sum(torch.abs(UpperCamelCase__ ) ) _UpperCamelCase =torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def UpperCamelCase__ ( self : str ) -> Any: pass def UpperCamelCase__ ( self : List[str] ) -> str: pass
404
1
UpperCamelCase = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : List[str] = from_type.lower().strip('s' ) _lowercase : Optional[Any] = to_type.lower().strip('s' ) _lowercase : int = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if from_sanitized not in METRIC_CONVERSION: _lowercase : Any = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if to_sanitized not in METRIC_CONVERSION: _lowercase : Dict = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = METRIC_CONVERSION[from_sanitized] _lowercase : Any = METRIC_CONVERSION[to_sanitized] _lowercase : str = 1 if from_exponent > to_exponent: _lowercase : str = from_exponent - to_exponent else: _lowercase : str = -(to_exponent - from_exponent) return value * pow(10 , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from math import isqrt def UpperCAmelCase ( a_ ) -> list[int]: """simple docstring""" __A = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a_ , a_ ): __A = False return [i for i in range(2 , a_ ) if is_prime[i]] def UpperCAmelCase ( a_ = 1_0**8 ) -> int: """simple docstring""" __A = calculate_prime_numbers(max_number // 2 ) __A = 0 __A = 0 __A = len(a_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
55
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } A__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } A__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = ConvBertTokenizer def __init__( self :Any ,__lowercase :Optional[int]=None ,__lowercase :str=None ,__lowercase :Union[str, Any]=True ,__lowercase :Dict="[UNK]" ,__lowercase :List[Any]="[SEP]" ,__lowercase :int="[PAD]" ,__lowercase :Union[str, Any]="[CLS]" ,__lowercase :List[str]="[MASK]" ,__lowercase :List[Any]=True ,__lowercase :List[str]=None ,**__lowercase :List[str] ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : Union[str, Any] = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : int = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : List[str] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__lowercase ) snake_case__ : Any = do_lower_case def __lowerCamelCase ( self :int ,__lowercase :Union[str, Any] ,__lowercase :List[Any]=None ): snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
252
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase: Dict = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowerCamelCase__ ( _A , _A , _A=None , _A=None , _A=None , _A=None , _A=None , _A=None , ): if attention_mask is None: a : Tuple = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: a : Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: a : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a__: def __init__( self : List[str] , __snake_case : Optional[Any] , __snake_case : Optional[int]=13 , __snake_case : Dict=7 , __snake_case : Union[str, Any]=True , __snake_case : Optional[int]=False , __snake_case : int=99 , __snake_case : Optional[Any]=16 , __snake_case : List[str]=2 , __snake_case : Union[str, Any]=4 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="gelu" , __snake_case : int=0.1 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=32 , __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=1 , __snake_case : int=0 , __snake_case : Optional[int]=0.02 , ): a : List[Any] = parent a : Union[str, Any] = batch_size a : Optional[int] = seq_length a : Dict = is_training a : Union[str, Any] = use_labels a : Optional[Any] = vocab_size a : List[str] = hidden_size a : Union[str, Any] = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Any = intermediate_size a : Dict = hidden_act a : Any = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[Any] = max_position_embeddings a : Optional[int] = eos_token_id a : Any = pad_token_id a : Optional[int] = bos_token_id a : List[Any] = initializer_range def lowercase_ ( self : Union[str, Any] ): a : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) a : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) a : Any = shift_tokens_right(__snake_case , 1 , 2 ) a : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__snake_case , ) a : str = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def lowercase_ ( self : Any ): a : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : Tuple , __snake_case : int , __snake_case : Optional[Any] , __snake_case : int ): a : Optional[int] = 20 a : str = model_class_name(__snake_case ) a : Tuple = model.encode(inputs_dict['input_ids'] ) a : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a : str = model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) a : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) a : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : Any = model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) a : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a : int = model.decode( decoder_input_ids[:, -1:] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__snake_case , ) a : str = model.decode(__snake_case , __snake_case ) a : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def lowercase_ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : List[str] ): a : Dict = 20 a : Any = model_class_name(__snake_case ) a : Any = model.encode(inputs_dict['input_ids'] ) a : Any = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a : List[str] = model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) a : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : str = model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) a : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , __snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__snake_case , decoder_position_ids=__snake_case , ) a : Dict = model.decode(__snake_case , __snake_case , decoder_attention_mask=__snake_case ) a : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class a__( unittest.TestCase ): lowercase__ = 99 def lowercase_ ( self : int ): a : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) a : List[Any] = input_ids.shape[0] a : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self : Optional[Any] ): a : List[str] = self._get_config_and_data() a : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) a : int = lm_model(input_ids=__snake_case ) a : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , __snake_case ) def lowercase_ ( self : List[str] ): a : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) a : int = FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) a : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) a : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) a : Union[str, Any] = lm_model(input_ids=__snake_case , decoder_input_ids=__snake_case ) a : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , __snake_case ) def lowercase_ ( self : List[str] ): a : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) a : str = shift_tokens_right(__snake_case , 1 , 2 ) a : Tuple = np.equal(__snake_case , 1 ).astype(np.floataa ).sum() a : Optional[Any] = np.equal(__snake_case , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__snake_case , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class a__( lowerCamelCase__ , unittest.TestCase , lowerCamelCase__ ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self : Union[str, Any] ): a : List[Any] = FlaxBlenderbotSmallModelTester(self ) def lowercase_ ( self : Tuple ): a : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case ) def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__snake_case , __snake_case , __snake_case ) def lowercase_ ( self : Dict ): a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : List[str] = self._prepare_for_class(__snake_case , __snake_case ) a : Optional[int] = model_class(__snake_case ) @jax.jit def encode_jitted(__snake_case : Dict , __snake_case : Tuple=None , **__snake_case : Optional[Any] ): return model.encode(input_ids=__snake_case , attention_mask=__snake_case ) with self.subTest('JIT Enabled' ): a : int = encode_jitted(**__snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : List[str] = encode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : List[Any] ): a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : Union[str, Any] = model_class(__snake_case ) a : Union[str, Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) a : str = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(__snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): return model.decode( decoder_input_ids=__snake_case , decoder_attention_mask=__snake_case , encoder_outputs=__snake_case , ) with self.subTest('JIT Enabled' ): a : str = decode_jitted(**__snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : List[str] = decode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self : Tuple ): for model_class_name in self.all_model_classes: a : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids a : int = np.ones((1, 1) ) * model.config.eos_token_id a : List[str] = model(__snake_case ) self.assertIsNotNone(__snake_case )
719
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase: Any = False @skip_mps class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableDiffusionAttendAndExcitePipeline lowercase__ = False lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowercase_ ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowercase_ ( cls : Optional[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowercase_ ( self : List[Any] ): torch.manual_seed(0 ) a : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) a : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) a : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) a : Any = CLIPTextModel(__snake_case ) a : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : str , __snake_case : Tuple , __snake_case : Optional[int]=0 ): if str(__snake_case ).startswith('mps' ): a : Any = torch.manual_seed(__snake_case ) else: a : Any = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : int = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowercase_ ( self : List[Any] ): a : Union[str, Any] = 'cpu' a : Any = self.get_dummy_components() a : List[str] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Any = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ).images a : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) a : str = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) a : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def lowercase_ ( self : Dict ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def lowercase_ ( self : Tuple ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : Union[str, Any] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def lowercase_ ( self : Tuple ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self : str ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def lowercase_ ( self : Any ): super().test_save_load_local(expected_max_difference=5e-4 ) def lowercase_ ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a__( unittest.TestCase ): @classmethod def lowercase_ ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowercase_ ( cls : Union[str, Any] ): super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowercase_ ( self : Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : List[Any] = torch.manual_seed(51 ) a : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) a : Optional[Any] = 'a painting of an elephant with glasses' a : Any = [5, 7] a : Tuple = pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
195
0
def _SCREAMING_SNAKE_CASE ( __lowercase : Any , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : int ) -> int: """simple docstring""" __A = len(snake_case__ ), len(grid[0] ) if ( min(snake_case__ , snake_case__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __A = 0 count += depth_first_search(snake_case__ , row + 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , row - 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col + 1 , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col - 1 , snake_case__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
637
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any=13 , __lowerCamelCase: Dict=7 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: int=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[int]=99 , __lowerCamelCase: int=16 , __lowerCamelCase: Optional[int]=36 , __lowerCamelCase: str=6 , __lowerCamelCase: Optional[Any]=6 , __lowerCamelCase: str=6 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Any="gelu" , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Dict=5_12 , __lowerCamelCase: List[str]=16 , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: List[str]=None , ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[int] = seq_length __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Any = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : List[str] = embedding_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Any = num_hidden_groups __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Optional[int] = num_choices __UpperCAmelCase : Dict = scope def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[Any] = None if self.use_token_type_ids: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Any ) -> List[str]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any ) -> Dict: __UpperCAmelCase : List[Any] = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Any: __UpperCAmelCase : str = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowerCamelCase ( self: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : str = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Tuple: __UpperCAmelCase : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: str ) -> str: __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : Optional[Any] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Any ) -> Any: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__: Union[str, Any] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__: List[str] = True def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Optional[Any] = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) __UpperCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Any = AlbertModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Any ) -> Optional[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : str = AlbertModel.from_pretrained("albert-base-v2" ) __UpperCAmelCase : List[str] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : Union[str, Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : List[str] = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
382
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A__ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Optional[Any]="resnet50" , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Tuple=32 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Optional[Any]=True , ): a__ : int = parent a__ : int = out_indices if out_indices is not None else [4] a__ : str = stage_names a__ : List[str] = out_features a__ : Optional[int] = backbone a__ : Optional[Any] = batch_size a__ : Tuple = image_size a__ : int = num_channels a__ : Tuple = use_pretrained_backbone a__ : int = is_training def _UpperCamelCase( self : Tuple ): a__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : List[Any] = self.get_config() return config, pixel_values def _UpperCamelCase( self : List[str] ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] ): a__ : List[Any] = TimmBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): a__ : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _UpperCamelCase( self : str ): a__ : str = self.prepare_config_and_inputs() a__, a__ : Optional[Any] = config_and_inputs a__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class A__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowercase = (TimmBackbone,) if is_torch_available() else () _lowercase = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : List[str] = TimmBackboneModelTester(self ) a__ : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase( self : Dict ): a__ : Optional[int] = "resnet18" a__ : Optional[int] = "microsoft/resnet-18" a__ : List[Any] = AutoBackbone.from_pretrained(lowerCamelCase__ , use_timm_backbone=lowerCamelCase__ ) a__ : Tuple = AutoBackbone.from_pretrained(lowerCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a__ : int = AutoBackbone.from_pretrained(lowerCamelCase__ , use_timm_backbone=lowerCamelCase__ , out_indices=[1, 2, 3] ) a__ : Optional[int] = AutoBackbone.from_pretrained(lowerCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def _UpperCamelCase( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def _UpperCamelCase( self : int ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def _UpperCamelCase( self : int ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _UpperCamelCase( self : Optional[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _UpperCamelCase( self : int ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def _UpperCamelCase( self : str ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _UpperCamelCase( self : Optional[Any] ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _UpperCamelCase( self : List[str] ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _UpperCamelCase( self : str ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _UpperCamelCase( self : Union[str, Any] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _UpperCamelCase( self : Optional[Any] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def _UpperCamelCase( self : List[str] ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def _UpperCamelCase( self : Tuple ): pass @unittest.skip("Safetensors is not supported by timm." ) def _UpperCamelCase( self : str ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCamelCase( self : str ): pass def _UpperCamelCase( self : Any ): a__, a__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) a__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : int = [*signature.parameters.keys()] a__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Tuple ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() a__ : List[Any] = True a__ : int = self.has_attentions # no need to test all models as different heads yield the same functionality a__ : List[str] = self.all_model_classes[0] a__ : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) a__ : int = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = model(**lowerCamelCase__ ) a__ : int = outputs[0][-1] # Encoder-/Decoder-only models a__ : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ : Dict = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _UpperCamelCase( self : int ): a__, a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(**lowerCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a__ : int = copy.deepcopy(lowerCamelCase__ ) a__ : List[Any] = None a__ : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : int = model(**lowerCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a__ : List[str] = copy.deepcopy(lowerCamelCase__ ) a__ : List[Any] = False a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(**lowerCamelCase__ )
701
def UpperCamelCase_ ( __a ) -> int: if not isinstance(__a , __a ): raise TypeError("only integers accepted as input" ) else: a__ : Union[str, Any] = str(abs(__a ) ) a__ : Dict = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int("".join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
151
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: if not is_accelerate_available(): return method snake_case__ = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCAmelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *__lowerCAmelCase , **__lowerCAmelCase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCAmelCase , **__lowerCAmelCase ) return wrapper
33
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
0
from __future__ import annotations def _lowerCamelCase ( a_ : list[int]): # This function is recursive lowerCamelCase :Union[str, Any] = len(a_) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase :Optional[Any] = array[0] lowerCamelCase :Any = False lowerCamelCase :Tuple = 1 lowerCamelCase :list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase :Any = True lowerCamelCase :Optional[int] = [element for element in array[i:] if element >= array[i]] lowerCamelCase :List[Any] = longest_subsequence(a_) if len(a_) > len(a_): lowerCamelCase :int = temp_array else: i += 1 lowerCamelCase :Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase :Union[str, Any] = [pivot, *longest_subsequence(a_)] if len(a_) > len(a_): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
49
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = KandinskyInpaintPipeline _lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase = False @property def snake_case_ ( self: int ): '''simple docstring''' return 32 @property def snake_case_ ( self: str ): '''simple docstring''' return 32 @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return 100 @property def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def snake_case_ ( self: str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self: str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0,2,3,1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64),dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ),return_dict=A_,)[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def snake_case_ ( self: Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768),dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase, __UpperCamelCase = pipe_prior( A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple() __UpperCamelCase = pipeline( A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_,A_ )
1
import numpy as np def __lowerCAmelCase ( _A ,_A ,_A = 1E-12 ,_A = 100 ,): """simple docstring""" assert np.shape(_A )[0] == np.shape(_A )[1] # Ensure proper dimensionality. assert np.shape(_A )[0] == np.shape(_A )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_A ) == np.iscomplexobj(_A ) _lowercase = np.iscomplexobj(_A ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_A ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowercase = False _lowercase = 0 _lowercase = 0 _lowercase = 1E12 while not convergence: # Multiple matrix by the vector. _lowercase = np.dot(_A ,_A ) # Normalize the resulting output vector. _lowercase = w / np.linalg.norm(_A ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowercase = vector.conj().T if is_complex else vector.T _lowercase = np.dot(_A ,np.dot(_A ,_A ) ) # Check convergence. _lowercase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowercase = True _lowercase = lambda_ if is_complex: _lowercase = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ): """simple docstring""" _lowercase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowercase = np.array([41, 4, 20] ) _lowercase = real_input_matrix.astype(np.complexaaa ) _lowercase = np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowercase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowercase = real_input_matrix _lowercase = real_vector elif problem_type == "complex": _lowercase = complex_input_matrix _lowercase = complex_vector # Our implementation. _lowercase , _lowercase = power_iteration(_A ,_A ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowercase , _lowercase = np.linalg.eigh(_A ) # Last eigenvalue is the maximum one. _lowercase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowercase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_A ) - np.abs(_A ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
398
0
from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Any = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowercase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": lowerCamelCase : List[Any] = input('''Enter Video/IGTV url: ''').strip() lowerCamelCase : Any = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ) -> int: """simple docstring""" with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" UpperCAmelCase_ : List[str] = [1, 2, 3] with pytest.raises(_SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(_SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def a__ ( _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[int] = [1, 2] UpperCAmelCase_ : str = {"a": 1, "b": 2} UpperCAmelCase_ : List[Any] = {"a": [1, 2], "b": [3, 4]} UpperCAmelCase_ : Optional[Any] = {"a": {"1": 1}, "b": 2} UpperCAmelCase_ : Optional[int] = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCAmelCase_ : str = [2, 3] UpperCAmelCase_ : Union[str, Any] = {"a": 2, "b": 3} UpperCAmelCase_ : int = {"a": [2, 3], "b": [4, 5]} UpperCAmelCase_ : Dict = {"a": {"1": 2}, "b": 3} UpperCAmelCase_ : Any = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
71
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Any =["speech"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["speech"] ) class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Dict =["speech"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["speech"] )
71
1
def _UpperCamelCase (a__ :Optional[int] , a__ :int ): """simple docstring""" return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
706
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCamelCase__ = CLIPImageProcessor() UpperCamelCase__ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCamelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
548
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = str(id_ ) snake_case__ : Dict = None snake_case__ : List[Any] = None snake_case__ : Optional[int] = [] snake_case__ : Tuple = {} # {vertex:distance} def __lt__( self , __SCREAMING_SNAKE_CASE ): return self.key < other.key def __repr__( self ): return self.id def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): self.neighbors.append(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = weight def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict ) -> Union[str, Any]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __magic_name__ ) graph[b - 1].add_edge(graph[a - 1] , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> list: '''simple docstring''' snake_case__ : Optional[int] = [] for u in graph: snake_case__ : str = math.inf snake_case__ : List[Any] = None snake_case__ : Dict = 0 snake_case__ : Tuple = graph[:] while q: snake_case__ : Any = min(__magic_name__ ) q.remove(__magic_name__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case__ : Optional[int] = u snake_case__ : Dict = u.edges[v.id] for i in range(1 , len(__magic_name__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> Iterator[tuple]: '''simple docstring''' for u in graph: snake_case__ : Tuple = math.inf snake_case__ : Tuple = None snake_case__ : Optional[int] = 0 snake_case__ : str = list(__magic_name__ ) hq.heapify(__magic_name__ ) while h: snake_case__ : str = hq.heappop(__magic_name__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case__ : Union[str, Any] = u snake_case__ : Dict = u.edges[v.id] hq.heapify(__magic_name__ ) for i in range(1 , len(__magic_name__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
38
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( lowercase__): UpperCamelCase__ : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER UpperCamelCase__ : Tuple =True UpperCamelCase__ : int ="""ml.p3.2xlarge""" UpperCamelCase__ : Any ="""accelerate_sagemaker_execution_role""" UpperCamelCase__ : Dict ="""hf-sm""" UpperCamelCase__ : Optional[int] ="""us-east-1""" UpperCamelCase__ : Optional[Any] =1 UpperCamelCase__ : int ="""accelerate-sagemaker-1""" UpperCamelCase__ : Union[str, Any] ="""1.6""" UpperCamelCase__ : str ="""4.4""" UpperCamelCase__ : str ="""train.py""" UpperCamelCase__ : Union[str, Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] UpperCamelCase__ : str =[ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class _snake_case ( unittest.TestCase): def A__ ( self : Optional[int] ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowercase__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"], __lowercase ) assert isinstance(converted_args["do_train"], __lowercase ) assert isinstance(converted_args["epochs"], __lowercase ) assert isinstance(converted_args["learning_rate"], __lowercase ) assert isinstance(converted_args["max_steps"], __lowercase ) with pytest.raises(__lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
413
0
import string from math import logaa def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) snake_case_ = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case_ = corpus_without_punctuation.split('\n' ) snake_case_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase__ )) def a(lowercase__ , lowercase__ , lowercase__=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def a(lowercase__ , lowercase__ ): '''simple docstring''' return round(tf * idf , 3 )
46
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(__UpperCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('inf' )] snake_case_ = tf.cast( tf.where(tf.not_equal(__UpperCamelCase , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-12 ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase , __snake_case ): """simple docstring""" if is_tf_available(): __A = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 2 snake_case_ = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" super(__UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.model.generate( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , max_new_tokens=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_02, 1_03]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(__UpperCamelCase ).signatures['serving_default'] for batch_size in range(1 , len(__UpperCamelCase ) + 1 ): snake_case_ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**__UpperCamelCase )['sequences'] snake_case_ = test_model.generate(**__UpperCamelCase , max_new_tokens=__UpperCamelCase ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 1 snake_case_ = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" super(__UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.model.generate( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , max_new_tokens=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_02, 1_03]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(__UpperCamelCase ).signatures['serving_default'] for input_row in range(len(__UpperCamelCase ) ): snake_case_ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**__UpperCamelCase )['sequences'] snake_case_ = test_model.generate(**__UpperCamelCase , max_new_tokens=__UpperCamelCase ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @slow @require_tensorflow_text def __lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=__UpperCamelCase ) class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__UpperCamelCase , 'spiece.model' ) , 'rb' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __lowerCAmelCase ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ = self.tokenizer.tokenize(__UpperCamelCase ) snake_case_ , snake_case_ = text.pad_model_inputs( __UpperCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) return self.tokenizer.detokenize(__UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) snake_case_ = complete_model(__UpperCamelCase ) snake_case_ = tf.keras.Model(__UpperCamelCase , __UpperCamelCase ) keras_model.save(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } snake_case_ = 14 snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 'Hello, my dog is cute and' snake_case_ = tokenizer(__UpperCamelCase , return_tensors='tf' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = 'Hugging Face is a technology company based in New York and Paris.' snake_case_ = bart_tokenizer(__UpperCamelCase , return_tensors='tf' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(__UpperCamelCase ).numpy() class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" return super().call(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(__UpperCamelCase , foo='bar' ).numpy() self.assertTrue(np.array_equal(__UpperCamelCase , __UpperCamelCase ) ) class SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return super().call(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(__UpperCamelCase ).numpy() with self.assertRaises(__UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__UpperCamelCase , foo='bar' )
46
1
import math def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> float: if ( not isinstance(lowerCamelCase_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> float: if ( not isinstance(lowerCamelCase_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
323
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCamelCase : Tuple = "\nHuman: <<task>>\n\nAssistant: " __lowerCamelCase : Tuple = "huggingface-tools/default-prompts" __lowerCamelCase : List[str] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , lowerCamelCase_ ) is not None: return prompt_or_repo_id UpperCAmelCase = cached_file( lowerCamelCase_ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(lowerCamelCase_ , "r" , encoding="utf-8" ) as f: return f.read()
323
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCamelCase_ : Dict = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls : str ): UpperCamelCase_: Any = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowerCAmelCase__ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase_: Dict = FlaxBertModel(snake_case_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCamelCase_: Dict = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ , repo_id="""test-model-flax""" , push_to_hub=snake_case_ , use_auth_token=self._token ) UpperCamelCase_: Tuple = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCamelCase_: int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase_: Dict = FlaxBertModel(snake_case_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCamelCase_: Any = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase_: List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=snake_case_ , use_auth_token=self._token ) UpperCamelCase_: str = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase_: List[str] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase_: Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase_: Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1e-3 , msg=f'''{key} not identical''' ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = True UpperCamelCase_: Optional[Any] = flatten_dict(modela.params ) UpperCamelCase_: int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase_: Union[str, Any] = False return models_are_equal @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase_: int = FlaxBertModel(snake_case_ ) UpperCamelCase_: Any = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) ) with self.assertRaises(snake_case_ ): UpperCamelCase_: List[Any] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: Any = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase_: Tuple = FlaxBertModel(snake_case_ ) UpperCamelCase_: Tuple = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) , max_shard_size="""10KB""" ) with self.assertRaises(snake_case_ ): UpperCamelCase_: Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: List[str] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: List[str] = """bert""" UpperCamelCase_: Optional[int] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(snake_case_ ): UpperCamelCase_: int = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: List[str] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = """bert""" UpperCamelCase_: str = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(snake_case_ ): UpperCamelCase_: Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) UpperCamelCase_: int = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ )
670
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None ): UpperCamelCase_: List[Any] = data UpperCamelCase_: List[Any] = previous UpperCamelCase_: Tuple = next_node def __str__( self : Dict ): return f'''{self.data}''' def lowerCAmelCase__ ( self : List[str] ): return self.data def lowerCAmelCase__ ( self : Any ): return self.next def lowerCAmelCase__ ( self : List[str] ): return self.previous class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = head def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase__ ( self : Union[str, Any] ): if not self.current: raise StopIteration else: UpperCamelCase_: Dict = self.current.get_data() UpperCamelCase_: Tuple = self.current.get_next() return value class _UpperCamelCase : '''simple docstring''' def __init__( self : int ): UpperCamelCase_: Optional[int] = None # First node in list UpperCamelCase_: Dict = None # Last node in list def __str__( self : Tuple ): UpperCamelCase_: int = self.head UpperCamelCase_: Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase_: List[str] = current.get_next() return " ".join(str(snake_case_ ) for node in nodes ) def __contains__( self : int , snake_case_ : int ): UpperCamelCase_: Optional[Any] = self.head while current: if current.get_data() == value: return True UpperCamelCase_: Any = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def lowerCAmelCase__ ( self : Tuple ): if self.head: return self.head.get_data() return None def lowerCAmelCase__ ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Node ): if self.head is None: UpperCamelCase_: Tuple = node UpperCamelCase_: Optional[int] = node else: self.insert_before_node(self.head , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node ): if self.head is None: self.set_head(snake_case_ ) else: self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : int ): UpperCamelCase_: Any = Node(snake_case_ ) if self.head is None: self.set_head(snake_case_ ) else: self.set_tail(snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: str = node UpperCamelCase_: int = node.previous if node.get_previous() is None: UpperCamelCase_: int = node_to_insert else: UpperCamelCase_: Dict = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Dict , snake_case_ : Node , snake_case_ : Node ): UpperCamelCase_: Tuple = node UpperCamelCase_: Dict = node.next if node.get_next() is None: UpperCamelCase_: Union[str, Any] = node_to_insert else: UpperCamelCase_: str = node_to_insert UpperCamelCase_: int = node_to_insert def lowerCAmelCase__ ( self : Tuple , snake_case_ : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = Node(snake_case_ ) UpperCamelCase_: Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(snake_case_ , snake_case_ ) return current_position += 1 UpperCamelCase_: Dict = node.next self.insert_after_node(self.tail , snake_case_ ) def lowerCAmelCase__ ( self : int , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase_: List[Any] = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] ): if (node := self.get_node(snake_case_ )) is not None: if node == self.head: UpperCamelCase_: Optional[int] = self.head.get_next() if node == self.tail: UpperCamelCase_: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(snake_case_ ) @staticmethod def lowerCAmelCase__ ( snake_case_ : Node ): if node.get_next(): UpperCamelCase_: str = node.previous if node.get_previous(): UpperCamelCase_: int = node.next UpperCamelCase_: List[str] = None UpperCamelCase_: int = None def lowerCAmelCase__ ( self : str ): return self.head is None def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
670
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
635
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] ): UpperCamelCase_ : Optional[Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) UpperCamelCase_ : Optional[Any] = DetaConfig( backbone_config=_SCREAMING_SNAKE_CASE , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_SCREAMING_SNAKE_CASE , with_box_refine=_SCREAMING_SNAKE_CASE , two_stage=_SCREAMING_SNAKE_CASE , ) # set labels UpperCamelCase_ : Dict = """huggingface/label-files""" if "o365" in model_name: UpperCamelCase_ : List[Any] = 366 UpperCamelCase_ : str = """object365-id2label.json""" else: UpperCamelCase_ : Any = 91 UpperCamelCase_ : Optional[int] = """coco-detection-id2label.json""" UpperCamelCase_ : Union[str, Any] = num_labels UpperCamelCase_ : int = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) ) , """r""" ) ) UpperCamelCase_ : Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase_ : List[str] = idalabel UpperCamelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCamelCase_ : List[str] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ): UpperCamelCase_ : Dict = dct.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : str = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple ): UpperCamelCase_ : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase_ : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase_ : List[Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCamelCase_ : Tuple = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ : Dict = in_proj_weight[:dim, :] UpperCamelCase_ : Dict = in_proj_bias[: dim] UpperCamelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCamelCase_ : List[str] = in_proj_weight[ -dim :, : ] UpperCamelCase_ : Optional[int] = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] ): # transformer decoder self-attention layers UpperCamelCase_ : List[Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase_ : str = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase_ : Optional[Any] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ : Optional[Any] = in_proj_weight[:hidden_size, :] UpperCamelCase_ : int = in_proj_bias[:hidden_size] UpperCamelCase_ : Dict = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase_ : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase_ : Dict = in_proj_weight[-hidden_size:, :] UpperCamelCase_ : Dict = in_proj_bias[-hidden_size:] def lowerCAmelCase_ ( ): UpperCamelCase_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_ : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] ): UpperCamelCase_ : Tuple = get_deta_config(_SCREAMING_SNAKE_CASE ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase_ : int = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": UpperCamelCase_ : int = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f'''Model name {model_name} not supported''' ) UpperCamelCase_ : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(_SCREAMING_SNAKE_CASE , param.shape ) # rename keys UpperCamelCase_ : List[str] = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(_SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase_ : Dict = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[Any] = val if "input_proj" in key: UpperCamelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase_ : int = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : str = val # finally, create HuggingFace model and load state dict UpperCamelCase_ : List[Any] = DetaForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(_SCREAMING_SNAKE_CASE ) # load image processor UpperCamelCase_ : Optional[Any] = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image UpperCamelCase_ : Optional[int] = prepare_img() UpperCamelCase_ : Any = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) UpperCamelCase_ : int = encoding["""pixel_values"""] UpperCamelCase_ : Tuple = model(pixel_values.to(_SCREAMING_SNAKE_CASE ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase_ : Optional[Any] = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) UpperCamelCase_ : Optional[Any] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase_ : str = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) UpperCamelCase_ : Union[str, Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
635
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } lowerCamelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } lowerCamelCase = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } lowerCamelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Optional[int] = VOCAB_FILES_NAMES A :Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A :Dict = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A :Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :int = VOCAB_FILES_NAMES A :List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A :int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A :int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowerCamelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowerCamelCase = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(SCREAMING_SNAKE_CASE ) class _a : '''simple docstring''' def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" if titles is None and texts is None: return super().__call__( __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) elif titles is None or texts is None: a__ : List[Any] = titles if texts is None else texts return super().__call__( __UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) a__ : Tuple = titles if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [titles] a__ : Optional[int] = texts if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [texts] a__ : List[str] = len(__UpperCAmelCase ) a__ : str = questions if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [questions] * n_passages if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( f'There should be as many titles than texts but got {len(__UpperCAmelCase )} titles and {len(__UpperCAmelCase )} texts.' ) a__ : str = super().__call__(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["input_ids"] a__ : Optional[int] = super().__call__(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["input_ids"] a__ : List[str] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCAmelCase , __UpperCAmelCase ) ] } if return_attention_mask is not False: a__ : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a__ : Dict = attention_mask return self.pad(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = 4 , ): """simple docstring""" a__ : str = reader_input["input_ids"] a__ , a__ , a__ : List[Any] = reader_output[:3] a__ : List[str] = len(__UpperCAmelCase ) a__ : List[Any] = sorted(range(__UpperCAmelCase ) , reverse=__UpperCAmelCase , key=relevance_logits.__getitem__ ) a__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: a__ : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a__ : Tuple = sequence_ids.index(self.pad_token_id ) else: a__ : List[str] = len(__UpperCAmelCase ) a__ : int = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCAmelCase , top_spans=__UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCAmelCase , start_index=__UpperCAmelCase , end_index=__UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): """simple docstring""" a__ : List[str] = [] for start_index, start_score in enumerate(__UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a__ : Any = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) a__ : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'Wrong span indices: [{start_index}:{end_index}]' ) a__ : str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Optional[int] = VOCAB_FILES_NAMES A :Any = READER_PRETRAINED_VOCAB_FILES_MAP A :str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A :Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION A :Optional[int] = ["input_ids", "attention_mask"]
207
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
207
1
from __future__ import annotations from PIL import Image # Define glider example UpperCamelCase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCamelCase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def A ( lowercase__ : list[list[int]] ) -> list[list[int]]: UpperCamelCase__ :List[str] = [] for i in range(len(lowercase__ ) ): UpperCamelCase__ :Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase__ :Union[str, Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase__ :List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def A ( lowercase__ : list[list[int]] , lowercase__ : int ) -> list[Image.Image]: UpperCamelCase__ :Tuple = [] for _ in range(lowercase__ ): # Create output image UpperCamelCase__ :str = Image.new("""RGB""" , (len(cells[0] ), len(lowercase__ )) ) UpperCamelCase__ :Any = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): UpperCamelCase__ :Dict = 255 - cells[y][x] * 255 UpperCamelCase__ :Union[str, Any] = (colour, colour, colour) # Save image images.append(lowercase__ ) UpperCamelCase__ :Union[str, Any] = new_generation(lowercase__ ) return images if __name__ == "__main__": UpperCamelCase = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
45
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _A : Optional[int] = object() # For specifying empty leaf dict `{}` _A : Tuple = object() def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: SCREAMING_SNAKE_CASE__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) + 1 ): SCREAMING_SNAKE_CASE__ = [x.match(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , ks[i:] )] if matches and all(lowerCAmelCase_ ): return True return False def __snake_case ( lowerCAmelCase_ ) -> int: def replace(lowerCAmelCase_ , lowerCAmelCase_ ): for rule, replacement in rules: if _match(lowerCAmelCase_ , lowerCAmelCase_ ): return replacement return val return replace def __snake_case ( ) -> Optional[int]: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , lowerCAmelCase_ )), (("transformer", "wte", "embedding"), P('''mp''' , lowerCAmelCase_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase_ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , lowerCAmelCase_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase_ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , lowerCAmelCase_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __snake_case ( lowerCAmelCase_ ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = _get_partition_rules() SCREAMING_SNAKE_CASE__ = _replacement_rules(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {k: _unmatched for k in flatten_dict(lowerCAmelCase_ )} SCREAMING_SNAKE_CASE__ = {k: replace(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase_ ) )
100
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
489
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase_ : def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: pass def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_lowerCAmelCase ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_a(**_lowerCAmelCase ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = TFViTModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> List[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = TFDeiTModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFRobertaModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> List[str]: _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> Any: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = TFCLIPVisionModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ) _lowerCAmelCase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1E-3 ) )
489
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = KandinskyInpaintPipeline A__ : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] A__ : Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] A__ : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ : Dict = False @property def _a ( self : Optional[Any] ): """simple docstring""" return 32 @property def _a ( self : int ): """simple docstring""" return 32 @property def _a ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def _a ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : List[str] ): """simple docstring""" return 1_00 @property def _a ( self : Any ): """simple docstring""" A__ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _a ( self : str ): """simple docstring""" torch.manual_seed(0 ) A__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) A__ = MultilingualCLIP(_snake_case ) A__ = text_encoder.eval() return text_encoder @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A__ = UNetaDConditionModel(**_snake_case ) return model @property def _a ( self : int ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _a ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[Any] ): """simple docstring""" A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=_snake_case , ) A__ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _a ( self : str , _snake_case : int , _snake_case : List[str]=0 ): """simple docstring""" A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_snake_case ) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask A__ = np.ones((64, 64) , dtype=np.floataa ) A__ = 0 if str(_snake_case ).startswith('mps' ): A__ = torch.manual_seed(_snake_case ) else: A__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) A__ = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _a ( self : List[str] ): """simple docstring""" A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**_snake_case ) A__ = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) A__ = pipe(**self.get_dummy_inputs(_snake_case ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _a ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A__ = np.ones((7_68, 7_68) , dtype=np.floataa ) A__ = 0 A__ = 'a hat' A__ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) A__ = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) A__ = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ , A__ = pipe_prior( _snake_case , generator=_snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A__ = pipeline( _snake_case , image=_snake_case , mask_image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , generator=_snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
9
'''simple docstring''' from functools import lru_cache @lru_cache def _UpperCamelCase ( UpperCamelCase__ ): if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
407
0
def _lowercase ( ) -> Tuple: lowerCamelCase =0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
269
from abc import ABC, abstractmethod from argparse import ArgumentParser class __A ( a ): @staticmethod @abstractmethod def _snake_case ( UpperCAmelCase_ ): raise NotImplementedError() @abstractmethod def _snake_case ( self ): raise NotImplementedError()
269
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : Tuple = TextaTextGenerationPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE) return generator, ["Something to write", "Something else"] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : str = generator("""Something there""") self.assertEqual(SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""")) _lowerCamelCase : Dict = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], ] , ) _lowerCamelCase : int = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE): generator(4) @require_torch def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Union[str, Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""") # do_sample=False necessary for reproducibility _lowerCamelCase : Union[str, Any] = generator("""Something there""" , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual(SCREAMING_SNAKE_CASE , [{"""generated_text""": """"""}]) _lowerCamelCase : Dict = 3 _lowerCamelCase : List[str] = generator( """Something there""" , num_return_sequences=SCREAMING_SNAKE_CASE , num_beams=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Tuple = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = generator("""This is a test""" , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ] , ) _lowerCamelCase : Union[str, Any] = generator.model.config.eos_token_id _lowerCamelCase : List[Any] = """<pad>""" _lowerCamelCase : str = generator( ["""This is a test""", """This is a second test"""] , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ], [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ], ] , ) @require_tf def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""") # do_sample=False necessary for reproducibility _lowerCamelCase : List[Any] = generator("""Something there""" , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual(SCREAMING_SNAKE_CASE , [{"""generated_text""": """"""}])
88
import os from datetime import datetime as dt from github import Github lowercase__ =[ 'good first issue', 'feature request', 'wip', ] def __UpperCamelCase ( ): __a : int = Github(os.environ['''GITHUB_TOKEN'''] ) __a : Dict = g.get_repo('''huggingface/accelerate''' ) __a : Dict = repo.get_issues(state='''open''' ) for issue in open_issues: __a : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) __a : str = comments[0] if len(lowerCAmelCase__ ) > 0 else None __a : List[str] = dt.utcnow() __a : Dict = (current_time - issue.updated_at).days __a : Any = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
521
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' if not is_accelerate_available(): return method _UpperCamelCase : str = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCAmelCase_ ) < version.parse('0.17.0' ): return method def wrapper(self : Tuple , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCAmelCase_ , **UpperCAmelCase_ ) return wrapper
706
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["""bert-base-uncased""", """bert-base-cased"""] lowerCAmelCase__ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowercase ( tf.keras.Model ): """simple docstring""" def __init__( self , __snake_case): super().__init__() _UpperCamelCase : List[Any] = tokenizer _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__snake_case) _UpperCamelCase : Dict = TFAutoModel.from_config(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Any = self.tokenizer(__snake_case) _UpperCamelCase : Dict = self.bert(**__snake_case) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self): super().setUp() _UpperCamelCase : Optional[Any] = [ BertTokenizer.from_pretrained(__snake_case) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _UpperCamelCase : Optional[Any] = [TFBertTokenizer.from_pretrained(__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1])) def A__ ( self): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : List[str] = tokenizer(__snake_case , return_tensors='tf' , padding='longest') _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf_tokenizer(self.paired_sentences) _UpperCamelCase : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Tuple = tf.function(__snake_case) for test_inputs in (self.test_sentences, self.paired_sentences): _UpperCamelCase : Optional[int] = tf.constant(__snake_case) _UpperCamelCase : Union[str, Any] = compiled_tokenizer(__snake_case) _UpperCamelCase : Tuple = tf_tokenizer(__snake_case) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def A__ ( self): for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase : Any = ModelToSave(tokenizer=__snake_case) _UpperCamelCase : Any = tf.convert_to_tensor(self.test_sentences) _UpperCamelCase : Union[str, Any] = model(__snake_case) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase : int = Path(__snake_case) / 'saved.model' model.save(__snake_case) _UpperCamelCase : Optional[int] = tf.keras.models.load_model(__snake_case) _UpperCamelCase : int = loaded_model(__snake_case) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
648
0
def lowerCamelCase__ ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if number < 1: __UpperCAmelCase : List[str] = f"""Input value of [number={number}] must be > 0""" raise ValueError(__lowerCamelCase ) __UpperCAmelCase : int = 1 for i in range(1 , __lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
63
from math import loga def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
290
0
"""simple docstring""" class __magic_name__ : def __init__( self ): """simple docstring""" _lowerCAmelCase = """""" _lowerCAmelCase = """""" _lowerCAmelCase = [] def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowerCAmelCase = self.__min_dist_top_down_dp(A__ , n - 1 ) _lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , A__ ) _lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowerCAmelCase = 1 + min(A__ , A__ , A__ ) return self.dp[m][n] def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = worda _lowerCAmelCase = worda _lowerCAmelCase = [[-1 for _ in range(len(A__ ) )] for _ in range(len(A__ ) )] return self.__min_dist_top_down_dp(len(A__ ) - 1 , len(A__ ) - 1 ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = worda _lowerCAmelCase = worda _lowerCAmelCase = len(A__ ) _lowerCAmelCase = len(A__ ) _lowerCAmelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCAmelCase = j elif j == 0: # second string is empty _lowerCAmelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCAmelCase = self.dp[i - 1][j - 1] else: _lowerCAmelCase = self.dp[i][j - 1] _lowerCAmelCase = self.dp[i - 1][j] _lowerCAmelCase = self.dp[i - 1][j - 1] _lowerCAmelCase = 1 + min(A__ , A__ , A__ ) return self.dp[m][n] if __name__ == "__main__": a__ : Union[str, Any] = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() a__ : int = input("""Enter the first string: """).strip() a__ : List[str] = input("""Enter the second string: """).strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
720
"""simple docstring""" import qiskit def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowerCAmelCase = qiskit.QuantumCircuit(__lowerCamelCase, __lowerCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1] ) # Execute the circuit on the qasm simulator _lowerCAmelCase = qiskit.execute(__lowerCamelCase, __lowerCamelCase, shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": a__ : Optional[Any] = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
309
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' _snake_case = 'xlm-roberta-xl' def __init__( self , a_=2_5_0_8_8_0 , a_=2_5_6_0 , a_=3_6 , a_=3_2 , a_=1_0_2_4_0 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_4 , a_=1 , a_=0.02 , a_=1e-0_5 , a_=1 , a_=0 , a_=2 , a_="absolute" , a_=True , a_=None , **a_ , ) -> Dict: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowercase : str = vocab_size lowercase : str = hidden_size lowercase : Any = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads lowercase : Union[str, Any] = hidden_act lowercase : str = intermediate_size lowercase : List[str] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Any = type_vocab_size lowercase : Optional[Any] = initializer_range lowercase : Dict = layer_norm_eps lowercase : Optional[Any] = position_embedding_type lowercase : List[str] = use_cache lowercase : Optional[Any] = classifier_dropout class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
372
def lowerCamelCase_ ( ): _a : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _a : Dict = 6 _a : Any = 1 _a : Union[str, Any] = 1901 _a : Tuple = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _a : Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _a : Union[str, Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 _a : str = day - days_per_month[month - 2] if month > 12: year += 1 _a : Optional[int] = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
471
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [x.strip() for x in open(_lowerCamelCase ).readlines()] UpperCAmelCase = [x.strip() for x in open(_lowerCamelCase ).readlines()][: len(_lowerCamelCase )] UpperCAmelCase = calculate_rouge(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) if save_path is not None: save_json(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
717
from collections import Counter from timeit import timeit def __UpperCamelCase ( _lowerCAmelCase = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def __UpperCamelCase ( _lowerCAmelCase = "" ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return True UpperCAmelCase = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCAmelCase = {} for character in lower_case_input_str: UpperCAmelCase = character_freq_dict.get(_lowerCAmelCase , 0 ) + 1 UpperCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __UpperCamelCase ( _lowerCAmelCase = "" ): """simple docstring""" print("\nFor string = " , _lowerCAmelCase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_lowerCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_lowerCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": __lowerCAmelCase =input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) __lowerCAmelCase =can_string_be_rearranged_as_palindrome_counter(check_str) print(f"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
405
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> str: _UpperCAmelCase : int = tmp_path / "file.csv" _UpperCAmelCase : Union[str, Any] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(lowerCAmelCase , "w" ) as f: f.write(lowerCAmelCase ) return str(lowerCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> str: _UpperCAmelCase : str = tmp_path / "malformed_file.csv" _UpperCAmelCase : Optional[Any] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(lowerCAmelCase , "w" ) as f: f.write(lowerCAmelCase ) return str(lowerCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Any ) -> List[Any]: _UpperCAmelCase : Optional[int] = tmp_path / "csv_with_image.csv" _UpperCAmelCase : Any = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(lowerCAmelCase , "w" ) as f: f.write(lowerCAmelCase ) return str(lowerCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> str: _UpperCAmelCase : int = tmp_path / "csv_with_label.csv" _UpperCAmelCase : Any = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(lowerCAmelCase , "w" ) as f: f.write(lowerCAmelCase ) return str(lowerCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Any: _UpperCAmelCase : List[Any] = tmp_path / "csv_with_int_list.csv" _UpperCAmelCase : Optional[Any] = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(lowerCAmelCase , "w" ) as f: f.write(lowerCAmelCase ) return str(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = Csv() _UpperCAmelCase : Dict = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: with open(lowerCAmelCase , encoding="utf-8" ) as f: _UpperCAmelCase : Dict = f.read().splitlines()[1] _UpperCAmelCase : List[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _UpperCAmelCase : int = csv._generate_tables([[csv_file_with_image]] ) _UpperCAmelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _UpperCAmelCase : List[str] = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> List[Any]: with open(lowerCAmelCase , encoding="utf-8" ) as f: _UpperCAmelCase : Union[str, Any] = f.read().splitlines()[1:] _UpperCAmelCase : List[Any] = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _UpperCAmelCase : int = csv._generate_tables([[csv_file_with_label]] ) _UpperCAmelCase : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _UpperCAmelCase : Optional[Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(lowerCAmelCase ) for label in labels] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> str: _UpperCAmelCase : Any = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda lowerCAmelCase : [int(lowerCAmelCase ) for i in x.split()]} ) _UpperCAmelCase : Tuple = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCAmelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _UpperCAmelCase : Dict = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
300
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Any , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any ) -> int: _UpperCAmelCase : Optional[int] = s.rsplit(lowerCAmelCase , lowerCAmelCase ) return new.join(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> List[str]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> List[str]: _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Dict = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _UpperCAmelCase : List[Any] = key.replace(F'{group_key}.' , F'{group_key}.group.' ) if "res_path" in key: _UpperCAmelCase : List[Any] = key.replace("res_path." , "res_path.path." ) if key.endswith(".w" ): _UpperCAmelCase : Union[str, Any] = rreplace(lowerCAmelCase , ".w" , ".weight" , 1 ) if key.endswith(".b" ): _UpperCAmelCase : str = rreplace(lowerCAmelCase , ".b" , ".bias" , 1 ) _UpperCAmelCase : int = value.float() return upgrade @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: List[Any] , lowerCAmelCase: List[str]=None , lowerCAmelCase: Tuple=True ) -> List[str]: from dall_e import Encoder _UpperCAmelCase : Optional[int] = Encoder() if os.path.exists(lowerCAmelCase ): _UpperCAmelCase : Dict = torch.load(lowerCAmelCase ) else: _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCAmelCase : List[str] = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase ) if config_path is not None: _UpperCAmelCase : str = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase ) else: _UpperCAmelCase : Optional[int] = FlavaImageCodebookConfig() _UpperCAmelCase : List[Any] = FlavaImageCodebook(lowerCAmelCase ).eval() _UpperCAmelCase : List[Any] = encoder.state_dict() _UpperCAmelCase : Optional[int] = upgrade_state_dict(lowerCAmelCase ) hf_model.load_state_dict(lowerCAmelCase ) _UpperCAmelCase : Tuple = hf_model.state_dict() _UpperCAmelCase : Optional[int] = count_parameters(lowerCAmelCase ) _UpperCAmelCase : List[Any] = count_parameters(lowerCAmelCase ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase ) else: return hf_state_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
300
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Tuple= {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str]= [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any]= [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _a : int= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _a : List[str]= yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) _a : Dict= { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } _a : str= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : Tuple= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : Dict= { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } _a : str= "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : Tuple= ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) _a : Optional[int]= "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : List[str]= ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) _a : str= "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : Optional[int]= "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." _a : int= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : str= "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." _a : int= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" _a : Optional[Any]= "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." _a : Dict= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" _a : Optional[Any]= "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." _a : int= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" _a : Optional[Any]= "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." _a : Optional[int]= "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : Any= "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." _a : Tuple= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" _a : List[str]= "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." _a : List[Any]= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : Tuple= "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." _a : Optional[Any]= "" _a : Tuple= "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." _a : Union[str, Any]= "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" _a : List[Any]= "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' assert ReadMe.from_string(UpperCAmelCase_ , UpperCAmelCase_ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(UpperCAmelCase_ , match=re.escape(expected_error.format(path='root' ) ) ): __snake_case : Tuple = ReadMe.from_string(UpperCAmelCase_ , UpperCAmelCase_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' with pytest.raises(UpperCAmelCase_ , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' ReadMe.from_string(UpperCAmelCase_ , UpperCAmelCase_ , suppress_parsing_errors=UpperCAmelCase_ ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Union[str, Any] = Path(UpperCAmelCase_ ) / 'README.md' with open(UpperCAmelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase_ ) __snake_case : Optional[Any] = ReadMe.from_readme(UpperCAmelCase_ , UpperCAmelCase_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[int] = Path(UpperCAmelCase_ ) / 'README.md' with open(UpperCAmelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase_ ) __snake_case : List[Any] = expected_error.format(path=UpperCAmelCase_ ) with pytest.raises(UpperCAmelCase_ , match=re.escape(UpperCAmelCase_ ) ): __snake_case : Any = ReadMe.from_readme(UpperCAmelCase_ , UpperCAmelCase_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = Path(UpperCAmelCase_ ) / 'README.md' with open(UpperCAmelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase_ ) __snake_case : List[str] = expected_error.format(path=UpperCAmelCase_ ) with pytest.raises(UpperCAmelCase_ , match=re.escape(UpperCAmelCase_ ) ): ReadMe.from_readme(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[int] = Path(UpperCAmelCase_ ) / 'README.md' with open(UpperCAmelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase_ ) ReadMe.from_readme(UpperCAmelCase_ , UpperCAmelCase_ , suppress_parsing_errors=UpperCAmelCase_ )
192
0
import functools def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] , UpperCamelCase__: list[int] ): # Validation if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(UpperCamelCase__ ) == 0: return 0 if min(UpperCamelCase__ ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(UpperCamelCase__ ) >= 366: raise ValueError("""All days elements should be less than 366""" ) SCREAMING_SNAKE_CASE__ = set(UpperCamelCase__ ) @functools.cache def dynamic_programming(UpperCamelCase__: int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
6
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Optional[int] = list(snake_case__ ) A_ : List[Any] = list(snake_case__ ) A_ : List[str] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 A_ : Optional[int] = """_""" if count > 1: return False else: return "".join(snake_case__ ) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = [] while True: A_ : Any = ["""$"""] * len(snake_case__ ) A_ : int = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): A_ : int = compare_string(binary[i] , binary[j] ) if k is False: A_ : Optional[int] = """*""" A_ : str = """*""" temp.append("""X""" ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi A_ : Tuple = list(set(snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : str = [] for minterm in minterms: A_ : Any = """""" for _ in range(snake_case__ ): A_ : int = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : str = list(snake_case__ ) A_ : List[Any] = list(snake_case__ ) A_ : Optional[Any] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : str = [] A_ : Tuple = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): A_ : Optional[int] = 0 A_ : List[str] = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 A_ : Union[str, Any] = j if count == 1: A_ : str = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): A_ : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A_ : List[str] = 0 A_ : List[str] = -1 A_ : Union[str, Any] = 0 for i in range(len(snake_case__ ) ): A_ : List[str] = chart[i].count(1 ) if count_n > max_n: A_ : Union[str, Any] = count_n A_ : Optional[int] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): A_ : Optional[Any] = 0 def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Optional[int] = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): A_ : List[str] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): A_ : Union[str, Any] = 1 return chart def __UpperCamelCase ( ): A_ : Union[str, Any] = int(input("""Enter the no. of variables\n""" ) ) A_ : List[Any] = [ float(snake_case__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] A_ : List[str] = decimal_to_binary(snake_case__ , snake_case__ ) A_ : str = check(snake_case__ ) print("""Prime Implicants are:""" ) print(snake_case__ ) A_ : List[str] = prime_implicant_chart(snake_case__ , snake_case__ ) A_ : int = selection(snake_case__ , snake_case__ ) print("""Essential Prime Implicants are:""" ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
180
0
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowerCAmelCase_ : Union[str, Any] = 'A painting of a squirrel eating a burger' lowerCAmelCase_ : Tuple = jax.device_count() lowerCAmelCase_ : Tuple = num_samples * [prompt] lowerCAmelCase_ : List[Any] = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Tuple = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) lowerCAmelCase_ : Dict = sd_pipe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_inference_steps=2_5 , jit=SCREAMING_SNAKE_CASE_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase_ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ : Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase_ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ : Tuple = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Optional[Any] = 'stabilityai/stable-diffusion-2' lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder='scheduler' ) lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , revision='bf16' , dtype=jnp.bfloataa , ) lowerCAmelCase_ : Tuple = scheduler_params lowerCAmelCase_ : Tuple = 'A painting of a squirrel eating a burger' lowerCAmelCase_ : Union[str, Any] = jax.device_count() lowerCAmelCase_ : Union[str, Any] = num_samples * [prompt] lowerCAmelCase_ : List[str] = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = replicate(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = shard(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[str] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) lowerCAmelCase_ : Optional[int] = sd_pipe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_inference_steps=2_5 , jit=SCREAMING_SNAKE_CASE_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase_ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ : Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase_ : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ : Optional[int] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
317
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ : List[str] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : Any = do_resize lowerCAmelCase_ : Dict = do_rescale lowerCAmelCase_ : int = do_normalize lowerCAmelCase_ : int = do_center_crop lowerCAmelCase_ : Any = crop_size lowerCAmelCase_ : Any = size lowerCAmelCase_ : str = resample lowerCAmelCase_ : Any = rescale_factor lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: lowerCAmelCase_ : List[str] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowerCAmelCase_ : List[str] = (size['height'], size['width']) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase_ : str = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : int = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : List[str] , ): lowerCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Any = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = resample if resample is not None else self.resample lowerCAmelCase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Any = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Dict = size if size is not None else self.size lowerCAmelCase_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : str = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowerCAmelCase_ : int = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowerCAmelCase_ : List[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase_ : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: lowerCAmelCase_ : Tuple = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
317
1
from math import pow def a__ ( A__, A__, A__, A__, A__, ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE_ : List[Any] = int(pow(A__, A__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = backtrack( A__, A__, current_number + 1, A__, A__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = backtrack( A__, A__, current_number + 1, A__, A__ ) return current_sum, solutions_count def a__ ( A__, A__ ): if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(A__, A__, 1, 0, 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
101
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
141
0
from collections import Counter from timeit import timeit def A_ ( snake_case : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def A_ ( snake_case : str = "" ) -> bool: '''simple docstring''' if len(snake_case ) == 0: return True __UpperCamelCase = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase = {} for character in lower_case_input_str: __UpperCamelCase = character_freq_dict.get(snake_case , 0 ) + 1 __UpperCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( snake_case : str = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , snake_case , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowercase__ : Tuple = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase__ : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
451
from collections import Counter from timeit import timeit def A_ ( snake_case : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def A_ ( snake_case : str = "" ) -> bool: '''simple docstring''' if len(snake_case ) == 0: return True __UpperCamelCase = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase = {} for character in lower_case_input_str: __UpperCamelCase = character_freq_dict.get(snake_case , 0 ) + 1 __UpperCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( snake_case : str = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , snake_case , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowercase__ : Tuple = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase__ : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
451
1
"""simple docstring""" import os def _lowerCamelCase ( __a = "matrix.txt" ): with open(os.path.join(os.path.dirname(__a ), __a ) ) as in_file: SCREAMING_SNAKE_CASE_ = in_file.read() SCREAMING_SNAKE_CASE_ = [[int(__a ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ = len(grid[0] ) SCREAMING_SNAKE_CASE_ = [[0 for i in range(__a )] for j in range(__a )] SCREAMING_SNAKE_CASE_ = grid[0][0] for i in range(1, __a ): SCREAMING_SNAKE_CASE_ = grid[0][i] + dp[0][i - 1] for i in range(1, __a ): SCREAMING_SNAKE_CASE_ = grid[i][0] + dp[i - 1][0] for i in range(1, __a ): for j in range(1, __a ): SCREAMING_SNAKE_CASE_ = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
626
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = None UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = '''tokenizer_file''' UpperCAmelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _lowercase (self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] SCREAMING_SNAKE_CASE_ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] SCREAMING_SNAKE_CASE_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ )['''input_ids'''] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE_ = '''This is a simple input''' SCREAMING_SNAKE_CASE_ = ['''This is a simple input 1''', '''This is a simple input 2'''] SCREAMING_SNAKE_CASE_ = ('''This is a simple input''', '''This is a pair''') SCREAMING_SNAKE_CASE_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) SCREAMING_SNAKE_CASE_ = None # Hotfixing padding = None self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = next(iter(SCREAMING_SNAKE_CASE_ ) )['''premise'''] # pick up one data SCREAMING_SNAKE_CASE_ = list(sample_data.values() ) SCREAMING_SNAKE_CASE_ = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for x in output_tokens] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
626
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = AltDiffusionPipeline _UpperCamelCase = TEXT_TO_IMAGE_PARAMS _UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCAmelCase : str = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) __lowerCAmelCase : int = CLIPTextModel(A_ ) __lowerCAmelCase : List[str] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __lowerCAmelCase : List[Any] = 77 __lowerCAmelCase : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , A_ , A_=0 ) ->Any: '''simple docstring''' if str(A_ ).startswith('''mps''' ): __lowerCAmelCase : Optional[Any] = torch.manual_seed(A_ ) else: __lowerCAmelCase : Any = torch.Generator(device=A_ ).manual_seed(A_ ) __lowerCAmelCase : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Optional[Any] = self.get_dummy_components() torch.manual_seed(0 ) __lowerCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase : Any = RobertaSeriesModelWithTransformation(A_ ) __lowerCAmelCase : Union[str, Any] = text_encoder __lowerCAmelCase : Union[str, Any] = AltDiffusionPipeline(**A_ ) __lowerCAmelCase : Union[str, Any] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Dict = self.get_dummy_inputs(A_ ) __lowerCAmelCase : Any = '''A photo of an astronaut''' __lowerCAmelCase : str = alt_pipe(**A_ ) __lowerCAmelCase : Any = output.images __lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : List[str] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : str = self.get_dummy_components() __lowerCAmelCase : Any = PNDMScheduler(skip_prk_steps=A_ ) torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase : int = RobertaSeriesModelWithTransformation(A_ ) __lowerCAmelCase : int = text_encoder __lowerCAmelCase : List[str] = AltDiffusionPipeline(**A_ ) __lowerCAmelCase : List[str] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Dict = self.get_dummy_inputs(A_ ) __lowerCAmelCase : Union[str, Any] = alt_pipe(**A_ ) __lowerCAmelCase : Any = output.images __lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : int = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=A_ ) __lowerCAmelCase : Dict = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : int = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) __lowerCAmelCase : str = alt_pipe([prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) __lowerCAmelCase : Dict = output.images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase : List[str] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) __lowerCAmelCase : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=A_ , safety_checker=A_ ) __lowerCAmelCase : Optional[int] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Dict = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) __lowerCAmelCase : Union[str, Any] = alt_pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type='''numpy''' ) __lowerCAmelCase : List[str] = output.images __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase : Optional[int] = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
583
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """time_series_transformer""" _UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 64 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_=True , **A_ , ) ->Any: '''simple docstring''' __lowerCAmelCase : Tuple = prediction_length __lowerCAmelCase : Tuple = context_length or prediction_length __lowerCAmelCase : str = distribution_output __lowerCAmelCase : Any = loss __lowerCAmelCase : List[str] = input_size __lowerCAmelCase : Any = num_time_features __lowerCAmelCase : Optional[int] = lags_sequence __lowerCAmelCase : Any = scaling __lowerCAmelCase : Dict = num_dynamic_real_features __lowerCAmelCase : Any = num_static_real_features __lowerCAmelCase : Optional[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __lowerCAmelCase : Any = cardinality else: __lowerCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __lowerCAmelCase : List[Any] = embedding_dimension else: __lowerCAmelCase : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCAmelCase : Optional[Any] = num_parallel_samples # Transformer architecture configuration __lowerCAmelCase : List[Any] = input_size * len(A_ ) + self._number_of_features __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_attention_heads __lowerCAmelCase : int = decoder_attention_heads __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : int = decoder_ffn_dim __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : List[Any] = decoder_layers __lowerCAmelCase : Dict = dropout __lowerCAmelCase : int = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : Optional[Any] = encoder_layerdrop __lowerCAmelCase : str = decoder_layerdrop __lowerCAmelCase : Optional[Any] = activation_function __lowerCAmelCase : Optional[Any] = init_std __lowerCAmelCase : int = use_cache super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
583
1
def A ( _SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError("check_bouncy() accepts only integer arguments" ) lowerCamelCase : Optional[int] = str(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = "".join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def A ( _SCREAMING_SNAKE_CASE = 99 ) -> int: if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) lowerCamelCase : int = 0 lowerCamelCase : Optional[Any] = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
311
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """vit""" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=224 , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=16 , **UpperCamelCase__ , ) -> Union[str, Any]: super().__init__(**UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : int = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[str] = initializer_range lowerCamelCase : Optional[int] = layer_norm_eps lowerCamelCase : List[Any] = image_size lowerCamelCase : Union[str, Any] = patch_size lowerCamelCase : Tuple = num_channels lowerCamelCase : Union[str, Any] = qkv_bias lowerCamelCase : Union[str, Any] = encoder_stride class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Any = version.parse("""1.11""" ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self ) -> float: return 1e-4
311
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class SCREAMING_SNAKE_CASE_ ( __lowercase ): '''simple docstring''' __magic_name__: Union[str, Any] = "markuplm" def __init__( self : Optional[int] , _A : Union[str, Any]=30522 , _A : Optional[Any]=768 , _A : Tuple=12 , _A : List[Any]=12 , _A : Tuple=3072 , _A : Union[str, Any]="gelu" , _A : str=0.1 , _A : List[str]=0.1 , _A : Optional[int]=512 , _A : List[Any]=2 , _A : List[Any]=0.0_2 , _A : List[str]=1E-12 , _A : Any=0 , _A : str=0 , _A : Dict=2 , _A : List[Any]=256 , _A : str=1024 , _A : Any=216 , _A : List[str]=1001 , _A : Optional[Any]=32 , _A : int=50 , _A : str="absolute" , _A : int=True , _A : Any=None , **_A : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) snake_case_ : List[str] = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : List[str] = position_embedding_type snake_case_ : int = use_cache snake_case_ : List[str] = classifier_dropout # additional properties snake_case_ : int = max_depth snake_case_ : Tuple = max_xpath_tag_unit_embeddings snake_case_ : Dict = max_xpath_subs_unit_embeddings snake_case_ : Tuple = tag_pad_id snake_case_ : List[str] = subs_pad_id snake_case_ : str = xpath_unit_hidden_size
706
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a ): if "xprophetnet" in prophetnet_checkpoint_path: snake_case_ : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(__a ) snake_case_ ,snake_case_ : List[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __a , output_loading_info=__a ) else: snake_case_ : List[str] = ProphetNetForConditionalGenerationOld.from_pretrained(__a ) snake_case_ ,snake_case_ : Dict = ProphetNetForConditionalGeneration.from_pretrained( __a , output_loading_info=__a ) snake_case_ : str = ['key_proj', 'value_proj', 'query_proj'] snake_case_ : List[str] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: snake_case_ : Union[str, Any] = key.split('.' ) if attributes[0] == "lm_head": snake_case_ : Optional[Any] = prophet snake_case_ : Any = prophet_old else: snake_case_ : Optional[int] = prophet.prophetnet snake_case_ : str = prophet_old.model snake_case_ : Union[str, Any] = False for attribute in attributes: if attribute in mapping: snake_case_ : Optional[Any] = mapping[attribute] if not hasattr(__a , __a ) and len(__a ) > 0: snake_case_ : List[Any] = attribute elif hasattr(__a , __a ): snake_case_ : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" snake_case_ : int = old_model.weight logger.info(f"""{attribute} is initialized.""" ) snake_case_ : Optional[int] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" snake_case_ : List[str] = old_model.bias logger.info(f"""{attribute} is initialized""" ) snake_case_ : int = True break elif attribute in special_keys and hasattr(__a , 'in_proj_weight' ): snake_case_ : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 snake_case_ : List[Any] = getattr(__a , __a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": snake_case_ : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) snake_case_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": snake_case_ : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) snake_case_ : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": snake_case_ : List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) snake_case_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) snake_case_ : Any = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." snake_case_ : Any = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) snake_case_ : List[Any] = True break if attribute.isdigit(): snake_case_ : Any = model[int(__a )] snake_case_ : Any = old_model[int(__a )] else: snake_case_ : str = getattr(__a , __a ) if old_attribute == "": snake_case_ : Tuple = old_model else: if not hasattr(__a , __a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) snake_case_ : List[str] = getattr(__a , __a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
534
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a ( lowerCamelCase_ ): snake_case__ = '''unispeech-sat''' def __init__( self , _snake_case=32 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=1E-5 , _snake_case="group" , _snake_case="gelu" , _snake_case=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _snake_case=(5, 2, 2, 2, 2, 2, 2) , _snake_case=(10, 3, 3, 3, 3, 2, 2) , _snake_case=False , _snake_case=1_28 , _snake_case=16 , _snake_case=False , _snake_case=True , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case=3_20 , _snake_case=2 , _snake_case=0.1 , _snake_case=1_00 , _snake_case=2_56 , _snake_case=2_56 , _snake_case=0.1 , _snake_case="mean" , _snake_case=False , _snake_case=False , _snake_case=2_56 , _snake_case=(5_12, 5_12, 5_12, 5_12, 15_00) , _snake_case=(5, 3, 3, 1, 1) , _snake_case=(1, 2, 3, 1, 1) , _snake_case=5_12 , _snake_case=0 , _snake_case=1 , _snake_case=2 , _snake_case=5_04 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = feat_extract_norm lowerCAmelCase = feat_extract_activation lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = conv_bias lowerCAmelCase = num_conv_pos_embeddings lowerCAmelCase = num_conv_pos_embedding_groups lowerCAmelCase = len(self.conv_dim ) lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = feat_proj_dropout lowerCAmelCase = final_dropout lowerCAmelCase = layerdrop lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = vocab_size lowerCAmelCase = num_clusters lowerCAmelCase = do_stable_layer_norm lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase = apply_spec_augment lowerCAmelCase = mask_time_prob lowerCAmelCase = mask_time_length lowerCAmelCase = mask_time_min_masks lowerCAmelCase = mask_feature_prob lowerCAmelCase = mask_feature_length lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase = num_codevectors_per_group lowerCAmelCase = num_codevector_groups lowerCAmelCase = contrastive_logits_temperature lowerCAmelCase = feat_quantizer_dropout lowerCAmelCase = num_negatives lowerCAmelCase = codevector_dim lowerCAmelCase = proj_codevector_dim lowerCAmelCase = diversity_loss_weight # ctc loss lowerCAmelCase = ctc_loss_reduction lowerCAmelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = xvector_output_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
173
0
"""simple docstring""" import math def a__ ( __lowercase , __lowercase ) -> int: _A = len(__lowercase ) _A = int(math.floor(math.sqrt(__lowercase ) ) ) _A = 0 while arr[min(__lowercase , __lowercase ) - 1] < x: _A = step step += int(math.floor(math.sqrt(__lowercase ) ) ) if prev >= n: return -1 while arr[prev] < x: _A = prev + 1 if prev == min(__lowercase , __lowercase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": a_ = input("Enter numbers separated by a comma:\n").strip() a_ = [int(item) for item in user_input.split(",")] a_ = int(input("Enter the number to be searched:\n")) a_ = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
621
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = "roberta" elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = "transformer" a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = f'''{prefix}.embeddings.{w}.weight''' a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = f'''{prefix}.embeddings.LayerNorm.{w}''' a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] a_ = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[f'''lm_head.dense.{w}'''] a_ = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[f'''{prefix}.ln_f.{w}'''] a_ = state_dict["lm_head.weight"] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
621
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: _a = old_name if "patch_embed" in old_name: _a , _a , _a = old_name.split('.' ) if layer == "0": _a = old_name.replace('0' , 'convolution1' ) elif layer == "1": _a = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": _a = old_name.replace('3' , 'convolution2' ) else: _a = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , _UpperCAmelCase ): _a = R'\b\d{2}\b' if bool(re.search(_UpperCAmelCase , _UpperCAmelCase ) ): _a = re.search(R'\d\.\d\d.' , _UpperCAmelCase ).group() else: _a = re.search(R'\d\.\d.' , _UpperCAmelCase ).group() if int(match[0] ) < 6: _a = old_name.replace(_UpperCAmelCase , '' ) _a = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) _a = 'intermediate_stages.' + trimmed_name else: _a = old_name.replace(_UpperCAmelCase , '' ) if int(match[2] ) < num_meta4D_last_stage: _a = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: _a = str(int(match[2] ) - num_meta4D_last_stage ) _a = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: _a = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: _a = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: _a = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: _a = trimmed_name.replace('fc2' , 'linear_out' ) _a = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(R'.\d.' , _UpperCAmelCase ): _a = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: _a = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _a = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _a = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: _a = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: _a = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: _a = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: _a = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _a = new_name.replace('norm' , 'layernorm' ) _a = 'efficientformer.' + new_name else: _a = 'efficientformer.encoder.' + new_name return new_name def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: for key in checkpoint.copy().keys(): _a = checkpoint.pop(_UpperCAmelCase ) _a = val return checkpoint def SCREAMING_SNAKE_CASE ( ) -> int: _a = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: _a = torch.load(_UpperCAmelCase , map_location='cpu' )['model'] _a = EfficientFormerConfig.from_json_file(_UpperCAmelCase ) _a = EfficientFormerForImageClassificationWithTeacher(_UpperCAmelCase ) _a = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) _a = config.depths[-1] - config.num_metaad_blocks + 1 _a = convert_torch_checkpoint(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() _a = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image _a = prepare_img() _a = 256 _a = 224 _a = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) _a = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values # original processing pipeline _a = Compose( [ Resize(_UpperCAmelCase , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_UpperCAmelCase ), ToTensor(), Normalize(_UpperCAmelCase , _UpperCAmelCase ), ] ) _a = image_transforms(_UpperCAmelCase ).unsqueeze(0 ) assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) _a = model(_UpperCAmelCase ) _a = outputs.logits _a = (1, 1000) if "l1" in model_name: _a = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _UpperCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _a = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _UpperCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _a = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(_UpperCAmelCase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowercase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
562
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: _a = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _a = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _UpperCAmelCase , ) is not None ): _a = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _a = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _a = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _a = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _a = True if not attribute_used: _a = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _a = True elif attribute in ["tie_word_embeddings"] and default_value is False: _a = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _a = True elif attribute.endswith('_token_id' ): _a = True # configuration class specific cases if not case_allowed: _a = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _a = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: _a = dict(inspect.signature(config_class.__init__ ).parameters ) _a = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _a = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _a = {} if len(config_class.attribute_map ) > 0: _a = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _a = inspect.getsourcefile(_UpperCAmelCase ) _a = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _a = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _a = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) _a = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` _a = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> str: _a = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _a = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _a = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _a = unused_attributes if len(_UpperCAmelCase ) > 0: _a = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
562
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict=13 , __UpperCamelCase : Union[str, Any]=10 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=2 , __UpperCamelCase : str=2 , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Tuple=32 , __UpperCamelCase : str=5 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : List[Any]=37 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=0.02 , __UpperCamelCase : Any="divided_space_time" , __UpperCamelCase : Optional[int]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = attention_type _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCAmelCase = self.num_labels return config def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Any ): _UpperCAmelCase = TimesformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] ): _UpperCAmelCase = TimesformerForVideoClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify the logits shape _UpperCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCamelCase ) def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : List[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : int = False def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = TimesformerModelTester(self ) _UpperCAmelCase = ConfigTester( self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict=False ): _UpperCAmelCase = copy.deepcopy(__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def UpperCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCAmelCase__ ( self : Union[str, Any] ): pass def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCamelCase ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TimesformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length _UpperCAmelCase = self.model_tester.num_frames _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCAmelCase = len(__UpperCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase__ ( self : Union[str, Any] ): def check_hidden_states_output(__UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) _UpperCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( ) -> Union[str, Any]: _UpperCAmelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _UpperCAmelCase = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(video[:8] , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
129
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = filter(lambda _lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase = logging.getLogger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: if metric == "rouge2": _UpperCAmelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) _UpperCAmelCase = ModelCheckpoint( dirpath=_lowerCAmelCase , filename=_lowerCAmelCase , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_lowerCAmelCase , verbose=_lowerCAmelCase , ) class __SCREAMING_SNAKE_CASE ( pl.Callback): def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): _UpperCAmelCase = {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule , __UpperCamelCase : str , __UpperCamelCase : Optional[int]=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase = od / "test_results.txt" _UpperCAmelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _UpperCAmelCase = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , "a+" ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor ): _UpperCAmelCase = val.item() _UpperCAmelCase = F'''{key}: {val:.6f}\n''' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__UpperCamelCase ) @rank_zero_only def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : str ): try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase , __UpperCamelCase , "test" ) @rank_zero_only def UpperCAmelCase__ ( self : str , __UpperCamelCase : pl.Trainer , __UpperCamelCase : List[str] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
129
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : Tuple = 16 _SCREAMING_SNAKE_CASE : List[Any] = 32 def __lowerCAmelCase ( __magic_name__ , __magic_name__ = 1_6 ): _lowercase: Optional[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowercase: List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(__magic_name__ ): # max_length=None => use the model max length (it's actually the default) _lowercase: Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase: Optional[Any] = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase: Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__magic_name__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase: Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase: str = 1_6 elif accelerator.mixed_precision != "no": _lowercase: Union[str, Any] = 8 else: _lowercase: Union[str, Any] = None return tokenizer.pad( __magic_name__ , padding="longest" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="pt" , ) # Instantiate dataloaders. _lowercase: str = DataLoader( tokenized_datasets["train"] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) _lowercase: Optional[int] = DataLoader( tokenized_datasets["validation"] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : List[Any] = mocked_dataloaders # noqa: F811 def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , __magic_name__ ) == "1": _lowercase: Union[str, Any] = 2 # New Code # _lowercase: Union[str, Any] = int(args.gradient_accumulation_steps ) _lowercase: Union[str, Any] = int(args.local_sgd_steps ) # Initialize accelerator _lowercase: Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase: Optional[int] = config["lr"] _lowercase: Dict = int(config["num_epochs"] ) _lowercase: Any = int(config["seed"] ) _lowercase: Optional[Any] = int(config["batch_size"] ) _lowercase: Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(__magic_name__ ) _lowercase , _lowercase: int = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase: Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase: Dict = model.to(accelerator.device ) # Instantiate optimizer _lowercase: Tuple = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler _lowercase: str = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=1_0_0 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase: Optional[int] = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() with LocalSGD( accelerator=__magic_name__ , model=__magic_name__ , local_sgd_steps=__magic_name__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): _lowercase: Union[str, Any] = model(**__magic_name__ ) _lowercase: Tuple = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase: List[str] = model(**__magic_name__ ) _lowercase: Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase: List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) _lowercase: str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __magic_name__ ) def __lowerCAmelCase ( ): _lowercase: List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__magic_name__ , default=__magic_name__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__magic_name__ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__magic_name__ , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowercase: Dict = parser.parse_args() _lowercase: List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
226
def __lowerCAmelCase ( __magic_name__ = 5_0 ): _lowercase: Union[str, Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
226
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ : Tuple ={ '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ : Union[str, Any] =logging.get_logger(__name__) class a__ ( lowerCAmelCase__ ): UpperCAmelCase_ : List[str] = 'maskformer' UpperCAmelCase_ : str = {'hidden_size': 'mask_feature_size'} UpperCAmelCase_ : Any = ['resnet', 'swin'] UpperCAmelCase_ : Dict = ['detr'] def __init__( self , lowercase__ = 256 , lowercase__ = 256 , lowercase__ = 0.1 , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0.02 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 20.0 , lowercase__ = None , **lowercase__ , ) -> Dict: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __A = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowercase__ , lowercase__ ): __A = backbone_config.pop("model_type" ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(lowercase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __A = DetrConfig() else: # verify that the decoder is supported __A = ( decoder_config.pop("model_type" ) if isinstance(lowercase__ , lowercase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {','.join(self.decoders_supported )}""" ) if isinstance(lowercase__ , lowercase__ ): __A = CONFIG_MAPPING[decoder_type] __A = config_class.from_dict(lowercase__ ) __A = backbone_config __A = decoder_config # main feature dimension for the model __A = fpn_feature_size __A = mask_feature_size # initializer __A = init_std __A = init_xavier_std # Hungarian matcher && loss __A = cross_entropy_weight __A = dice_weight __A = mask_weight __A = use_auxiliary_loss __A = no_object_weight __A = output_auxiliary_logits __A = self.decoder_config.encoder_attention_heads __A = self.decoder_config.num_hidden_layers super().__init__(**lowercase__ ) @classmethod def _lowerCamelCase ( cls , lowercase__ , lowercase__ , **lowercase__ ) -> Optional[int]: return cls( backbone_config=lowercase__ , decoder_config=lowercase__ , **lowercase__ , ) def _lowerCamelCase ( self ) -> Dict[str, any]: __A = copy.deepcopy(self.__dict__ ) __A = self.backbone_config.to_dict() __A = self.decoder_config.to_dict() __A = self.__class__.model_type return output
205
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case_ : Optional[Any] =Lock() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __A = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __A = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] __A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __A = temp_rs __A = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __A = temp_rs __A = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): __A = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase ( ): '''simple docstring''' __A = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*lowerCAmelCase__ ) __A = odd_even_transposition(lowerCAmelCase__ ) print("Sorted List\n" ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
205
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Union[str, Any] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
from typing import Any class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Any ) -> str: """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = None def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=""" """ ) _UpperCAmelCase = temp.next print() def lowerCamelCase ( self : Tuple , lowerCamelCase : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase = Node(lowerCamelCase ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def lowerCamelCase ( self : str , lowerCamelCase : str , lowerCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": __a: List[str] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
402
from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Any = logging.get_logger(__name__) __a: int = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''transfo-xl''' _lowerCamelCase = ['''mems'''] _lowerCamelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , lowerCamelCase : int=26_7735 , lowerCamelCase : Union[str, Any]=[2_0000, 4_0000, 20_0000] , lowerCamelCase : Any=1024 , lowerCamelCase : List[str]=1024 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Any=64 , lowerCamelCase : Optional[Any]=4096 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Dict=18 , lowerCamelCase : List[Any]=1600 , lowerCamelCase : List[str]=1000 , lowerCamelCase : Any=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[str]=-1 , lowerCamelCase : str=True , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : int=True , lowerCamelCase : str="normal" , lowerCamelCase : int=0.01 , lowerCamelCase : int=0.01 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1E-5 , lowerCamelCase : Union[str, Any]=0 , **lowerCamelCase : Dict , ) -> int: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _UpperCAmelCase = [False] + [True] * len(self.cutoffs ) else: _UpperCAmelCase = [False] + [False] * len(self.cutoffs ) _UpperCAmelCase = d_model _UpperCAmelCase = d_embed _UpperCAmelCase = d_head _UpperCAmelCase = d_inner _UpperCAmelCase = div_val _UpperCAmelCase = pre_lnorm _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = mem_len _UpperCAmelCase = same_length _UpperCAmelCase = attn_type _UpperCAmelCase = clamp_len _UpperCAmelCase = sample_softmax _UpperCAmelCase = adaptive _UpperCAmelCase = dropout _UpperCAmelCase = dropatt _UpperCAmelCase = untie_r _UpperCAmelCase = init _UpperCAmelCase = init_range _UpperCAmelCase = proj_init_std _UpperCAmelCase = init_std _UpperCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCamelCase ( self : Dict , lowerCamelCase : Any ) -> Union[str, Any]: """simple docstring""" # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
402
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=1_3 , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : Union[str, Any]=3_2 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : int=3_7 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : int=5_1_2 , UpperCamelCase__ : Optional[int]=1_6 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=None , UpperCamelCase__ : List[Any]=0 , ): '''simple docstring''' snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope snake_case__ = projection_dim def __magic_name__ ( self : Tuple): '''simple docstring''' snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) snake_case__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py snake_case__ = random_attention_mask([self.batch_size, self.seq_length]) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) snake_case__ = ids_tensor([self.batch_size] , self.num_choices) snake_case__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) snake_case__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = TFDPRContextEncoder(config=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def __magic_name__ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = TFDPRQuestionEncoder(config=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = TFDPRReader(config=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" _lowercase : Union[str, Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowercase : str = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} _lowercase : Any = False _lowercase : List[Any] = False _lowercase : Dict = False _lowercase : int = False _lowercase : int = False def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = TFDPRModelTester(self) snake_case__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase__) def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase__) def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCamelCase__) @slow def __magic_name__ ( self : Any): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFDPRContextEncoder.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFDPRContextEncoder.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFDPRReader.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""") snake_case__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]]) # [CLS] hello, is my dog cute? [SEP] snake_case__ = model(UpperCamelCase__)[0] # embedding shape = (1, 768) # compare the actual values for a slice. snake_case__ = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ]) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4))
654
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase : """simple docstring""" _lowercase : List[str] = PegasusConfig _lowercase : Union[str, Any] = {} _lowercase : Tuple = '''gelu''' def __init__( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=1_3 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : int=9_9 , UpperCamelCase__ : Dict=3_2 , UpperCamelCase__ : str=2 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Tuple=3_7 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : str=4_0 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Dict=0 , ): '''simple docstring''' snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def __magic_name__ ( self : Optional[Any]): '''simple docstring''' snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_pegasus_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) return config, inputs_dict def __magic_name__ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]): '''simple docstring''' snake_case__ = TFPegasusModel(config=UpperCamelCase__).get_decoder() snake_case__ = inputs_dict["""input_ids"""] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict["""attention_mask"""][:1, :] snake_case__ = inputs_dict["""head_mask"""] snake_case__ = 1 # first forward pass snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1) snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__)[0] snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1])) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3) def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : List[str] , a : str=None , a : int=None , a : int=None , a : int=None , a : Optional[int]=None , ): if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" _lowercase : int = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _lowercase : List[Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _lowercase : List[Any] = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : Optional[int] = True _lowercase : Dict = False _lowercase : Any = False def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = TFPegasusModelTester(self) snake_case__ = ConfigTester(self , config_class=UpperCamelCase__) def __magic_name__ ( self : List[Any]): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowercase : List[str] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _lowercase : str = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers _lowercase : int = '''google/pegasus-xsum''' @cached_property def __magic_name__ ( self : Dict): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name) @cached_property def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model def __magic_name__ ( self : Dict , **UpperCamelCase__ : List[Any]): '''simple docstring''' snake_case__ = self.translate_src_text(**UpperCamelCase__) assert self.expected_text == generated_words def __magic_name__ ( self : str , **UpperCamelCase__ : List[Any]): '''simple docstring''' snake_case__ = self.tokenizer(self.src_text , **UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""tf""") snake_case__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase__ , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__) return generated_words @slow def __magic_name__ ( self : List[str]): '''simple docstring''' self._assert_generated_batch_equal_expected()
654
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''PerceiverFeatureExtractor'''] snake_case = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
"""simple docstring""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
404
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'CLIPImageProcessor' __lowerCAmelCase : Optional[int] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = kwargs.pop("""feature_extractor""") lowercase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : int = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Tuple = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.tokenizer.model_input_names lowercase__ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def lowercase__ ( self): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def lowercase__ ( self): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
12
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_ ( __snake_case : Any ) -> List[Any]: '''simple docstring''' if "model" in orig_key: snake_case__ :Any = orig_key.replace("model." , "" ) if "norm1" in orig_key: snake_case__ :Tuple = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: snake_case__ :List[Any] = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: snake_case__ :Optional[int] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: snake_case__ :Optional[int] = orig_key.split("." )[0].split("_" )[-1] snake_case__ :Tuple = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: snake_case__ :int = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: snake_case__ :Tuple = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: snake_case__ :Dict = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: snake_case__ :Tuple = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: snake_case__ :Dict = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: snake_case__ :Tuple = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: snake_case__ :Optional[int] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: snake_case__ :Dict = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: snake_case__ :Union[str, Any] = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: snake_case__ :Union[str, Any] = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: snake_case__ :Any = "yoso." + orig_key return orig_key def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[str] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case__ :Optional[Any] = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: snake_case__ :Union[str, Any] = val snake_case__ :Any = orig_state_dict["cls.predictions.decoder.bias"] snake_case__ :Optional[Any] = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_ ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Dict = torch.load(__snake_case , map_location="cpu" )["model_state_dict"] snake_case__ :List[str] = YosoConfig.from_json_file(__snake_case ) snake_case__ :Optional[int] = YosoForMaskedLM(__snake_case ) snake_case__ :int = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
241
0
"""simple docstring""" __magic_name__ = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } __magic_name__ = {value: key for key, value in encode_dict.items()} def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def _A ( __lowercase ): """simple docstring""" if set(__lowercase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) lowerCamelCase__ = """""" for word in coded.split(): while len(__lowercase ) != 0: decoded += decode_dict[word[:5]] lowerCamelCase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
258
"""simple docstring""" from itertools import count def _A ( __lowercase = 50 ): """simple docstring""" lowerCamelCase__ = [1] * min_block_length for n in count(__lowercase ): fill_count_functions.append(1 ) for block_length in range(__lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F'{solution() = }')
258
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _SCREAMING_SNAKE_CASE = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = {} state_dict.pop("""pixel_mean""" , _lowerCamelCase ) state_dict.pop("""pixel_std""" , _lowerCamelCase ) UpperCamelCase = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(2 ) ) if layer_nb == 0: UpperCamelCase = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: UpperCamelCase = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: UpperCamelCase = key.replace("""layers.2""" , """proj_out""" ) UpperCamelCase = value UpperCamelCase = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="ybelkada/segment-anything" ) -> int: '''simple docstring''' UpperCamelCase = hf_hub_download(_lowerCamelCase , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: UpperCamelCase = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCamelCase = SamConfig( vision_config=_lowerCamelCase , ) elif "sam_vit_h" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCamelCase = SamConfig( vision_config=_lowerCamelCase , ) UpperCamelCase = torch.load(_lowerCamelCase , map_location="""cpu""" ) UpperCamelCase = replace_keys(_lowerCamelCase ) UpperCamelCase = SamImageProcessor() UpperCamelCase = SamProcessor(image_processor=_lowerCamelCase ) UpperCamelCase = SamModel(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) UpperCamelCase = hf_model.to("""cuda""" ) UpperCamelCase = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" UpperCamelCase = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("""RGB""" ) UpperCamelCase = [[[400, 650]]] UpperCamelCase = [[1]] UpperCamelCase = processor(images=np.array(_lowerCamelCase ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase = hf_model(**_lowerCamelCase ) UpperCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 UpperCamelCase = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase = hf_model(**_lowerCamelCase ) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 UpperCamelCase = ((75, 275, 1725, 850),) UpperCamelCase = processor(images=np.array(_lowerCamelCase ) , input_boxes=_lowerCamelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase = hf_model(**_lowerCamelCase ) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. UpperCamelCase = [[[400, 650], [800, 650]]] UpperCamelCase = [[1, 1]] UpperCamelCase = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): UpperCamelCase = hf_model(**_lowerCamelCase ) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
537
"""simple docstring""" __lowercase : Union[str, Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) __lowercase : Any = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : str ): lowerCamelCase_ = from_type.lower().strip('''s''' ) lowerCamelCase_ = to_type.lower().strip('''s''' ) lowerCamelCase_ = UNIT_SYMBOL.get(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = UNIT_SYMBOL.get(_lowerCamelCase , _lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: lowerCamelCase_ = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: lowerCamelCase_ = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) lowerCamelCase_ = METRIC_CONVERSION[from_sanitized] lowerCamelCase_ = METRIC_CONVERSION[to_sanitized] lowerCamelCase_ = 1 if from_exponent > to_exponent: lowerCamelCase_ = from_exponent - to_exponent else: lowerCamelCase_ = -(to_exponent - from_exponent) return value * pow(1_0 , _lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
142
0
'''simple docstring''' from collections.abc import Generator from math import sin def __snake_case ( UpperCAmelCase_ : bytes ): if len(a_ ) != 32: raise ValueError("Input must be of length 32" ) lowerCamelCase_ = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( UpperCAmelCase_ : int ): if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ = format(a_ , "08x" )[-8:] lowerCamelCase_ = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __snake_case ( UpperCAmelCase_ : bytes ): lowerCamelCase_ = B'''''' for char in message: bit_string += format(a_ , "08b" ).encode("utf-8" ) lowerCamelCase_ = format(len(a_ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(a_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( UpperCAmelCase_ : bytes ): if len(a_ ) % 512 != 0: raise ValueError("Input must have length that\'s a multiple of 512" ) for pos in range(0 , len(a_ ) , 512 ): lowerCamelCase_ = bit_string[pos : pos + 512] lowerCamelCase_ = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( UpperCAmelCase_ : int ): if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ = format(a_ , "032b" ) lowerCamelCase_ = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(a_ , 2 ) def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return (a + b) % 2**32 def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( UpperCAmelCase_ : bytes ): lowerCamelCase_ = preprocess(a_ ) lowerCamelCase_ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase_ = 0X6_7_4_5_2_3_0_1 lowerCamelCase_ = 0Xe_f_c_d_a_b_8_9 lowerCamelCase_ = 0X9_8_b_a_d_c_f_e lowerCamelCase_ = 0X1_0_3_2_5_4_7_6 lowerCamelCase_ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(a_ ): lowerCamelCase_ = aa lowerCamelCase_ = ba lowerCamelCase_ = ca lowerCamelCase_ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase_ = d ^ (b & (c ^ d)) lowerCamelCase_ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase_ = c ^ (d & (b ^ c)) lowerCamelCase_ = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase_ = b ^ c ^ d lowerCamelCase_ = (3 * i + 5) % 16 else: lowerCamelCase_ = c ^ (b | not_aa(a_ )) lowerCamelCase_ = (7 * i) % 16 lowerCamelCase_ = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase_ = d lowerCamelCase_ = c lowerCamelCase_ = b lowerCamelCase_ = sum_aa(a_ , left_rotate_aa(a_ , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase_ = sum_aa(a_ , a_ ) lowerCamelCase_ = sum_aa(a_ , a_ ) lowerCamelCase_ = sum_aa(a_ , a_ ) lowerCamelCase_ = sum_aa(a_ , a_ ) lowerCamelCase_ = reformat_hex(a_ ) + reformat_hex(a_ ) + reformat_hex(a_ ) + reformat_hex(a_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ : Dict = logging.get_logger(__name__) a_ : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Optional[Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } a_ : str = { """gpt-neox-20b""": 2048, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCamelCase ) lowerCamelCase_ = add_prefix_space def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids
445
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'up_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.conv.' lowerCAmelCase__ = f'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'mid_block.resnets.{j}.' lowerCAmelCase__ = f'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( A__ ): """simple docstring""" __lowercase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __lowercase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __lowercase = v.replace(A__ , A__ ) __lowercase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __lowercase = v.replace(A__ , A__ ) __lowercase = v __lowercase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'encoder.down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.' lowerCAmelCase__ = f'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'decoder.up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'mid_block.resnets.{i}.' lowerCAmelCase__ = f'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _A ( A__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _A ( A__ ): """simple docstring""" __lowercase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __lowercase = v.replace(A__ , A__ ) __lowercase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __lowercase = v.replace(A__ , A__ ) __lowercase = v __lowercase = {v: vae_state_dict[k] for k, v in mapping.items()} __lowercase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"mid.attn_1.{weight_name}.weight" in k: print(F"Reshaping {k} for SD format" ) __lowercase = reshape_weight_for_sd(A__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = {} __lowercase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): __lowercase = k[: -len('''.q_proj.weight''' )] __lowercase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: __lowercase = [None, None, None] __lowercase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): __lowercase = k[: -len('''.q_proj.bias''' )] __lowercase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: __lowercase = [None, None, None] __lowercase = v continue __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = torch.cat(A__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = torch.cat(A__ ) return new_state_dict def _A ( A__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Optional[Any] = ReformerTokenizer _A : str = ReformerTokenizerFast _A : List[str] = True _A : Tuple = False _A : str = True def A_ ( self ): super().setUp() snake_case__ = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): snake_case__ = "<s>" snake_case__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def A_ ( self ): snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase ) , 10_00 ) def A_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A_ ( self ): if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = "I was born in 92000, and this is falsé." snake_case__ = tokenizer.tokenize(lowerCamelCase ) snake_case__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) snake_case__ = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(lowerCamelCase ) snake_case__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A_ ( self , lowerCamelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) # Simple input snake_case__ = "This is a simple input" snake_case__ = ["This is a simple input 1", "This is a simple input 2"] snake_case__ = ("This is a simple input", "This is a pair") snake_case__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) def A_ ( self ): pass def A_ ( self ): snake_case__ = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) snake_case__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) snake_case__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case__ = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def A_ ( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def A_ ( self ): snake_case__ = "Hello World!" snake_case__ = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def A_ ( self ): snake_case__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) snake_case__ = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def A_ ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence snake_case__ = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ = " ".join(lowerCamelCase ) snake_case__ = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" ) snake_case__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) snake_case__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) snake_case__ = encoded_sequence["input_ids"].shape snake_case__ = ReformerModel(lowerCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def A_ ( self ): # fmt: off snake_case__ = {"input_ids": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 snake_case__ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCamelCase , sequences=lowerCamelCase , )
530
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=_snake_case , speech_processor=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , feature_extractor=_snake_case , ) def snake_case_ ( self , _snake_case = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_snake_case ) def snake_case_ ( self ) -> Any: """simple docstring""" self.enable_attention_slicing(_snake_case ) @torch.no_grad() def __call__( self , _snake_case , _snake_case=1_6000 , _snake_case = 512 , _snake_case = 512 , _snake_case = 50 , _snake_case = 7.5 , _snake_case = None , _snake_case = 1 , _snake_case = 0.0 , _snake_case = None , _snake_case = None , _snake_case = "pil" , _snake_case = True , _snake_case = None , _snake_case = 1 , **_snake_case , ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.speech_processor.feature_extractor( _snake_case , return_tensors='''pt''' , sampling_rate=_snake_case ).input_features.to(self.device ) UpperCAmelCase = self.speech_model.generate(_snake_case , max_length=48_0000 ) UpperCAmelCase = self.speech_processor.tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , normalize=_snake_case )[ 0 ] if isinstance(_snake_case , _snake_case ): UpperCAmelCase = 1 elif isinstance(_snake_case , _snake_case ): UpperCAmelCase = len(_snake_case ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_snake_case )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_snake_case , _snake_case ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_snake_case )}.""" ) # get prompt text embeddings UpperCAmelCase = self.tokenizer( _snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = text_embeddings.shape UpperCAmelCase = text_embeddings.repeat(1 , _snake_case , 1 ) UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , _snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase = 42 if negative_prompt is None: UpperCAmelCase = [''''''] * batch_size elif type(_snake_case ) is not type(_snake_case ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_snake_case )} !=""" f""" {type(_snake_case )}.""" ) elif isinstance(_snake_case , _snake_case ): UpperCAmelCase = [negative_prompt] elif batch_size != len(_snake_case ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_snake_case )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: UpperCAmelCase = negative_prompt UpperCAmelCase = text_input_ids.shape[-1] UpperCAmelCase = self.tokenizer( _snake_case , padding='''max_length''' , max_length=_snake_case , truncation=_snake_case , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase = uncond_embeddings.shape[1] UpperCAmelCase = uncond_embeddings.repeat(1 , _snake_case , 1 ) UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , _snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase = torch.randn(_snake_case , generator=_snake_case , device='''cpu''' , dtype=_snake_case ).to( self.device ) else: UpperCAmelCase = torch.randn(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = self.scheduler.scale_model_input(_snake_case , _snake_case ) # predict the noise residual UpperCAmelCase = self.unet(_snake_case , _snake_case , encoder_hidden_states=_snake_case ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_snake_case , _snake_case , _snake_case ) UpperCAmelCase = 1 / 0.1_8215 * latents UpperCAmelCase = self.vae.decode(_snake_case ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(_snake_case ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_snake_case , nsfw_content_detected=_snake_case )
254
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__ = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "bert-base-uncased": 512, "bert-large-uncased": 512, "bert-base-cased": 512, "bert-large-cased": 512, "bert-base-multilingual-uncased": 512, "bert-base-multilingual-cased": 512, "bert-base-chinese": 512, "bert-base-german-cased": 512, "bert-large-uncased-whole-word-masking": 512, "bert-large-cased-whole-word-masking": 512, "bert-large-uncased-whole-word-masking-finetuned-squad": 512, "bert-large-cased-whole-word-masking-finetuned-squad": 512, "bert-base-cased-finetuned-mrpc": 512, "bert-base-german-dbmdz-cased": 512, "bert-base-german-dbmdz-uncased": 512, "TurkuNLP/bert-base-finnish-cased-v1": 512, "TurkuNLP/bert-base-finnish-uncased-v1": 512, "wietsedv/bert-base-dutch-cased": 512, } __magic_name__ = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ) -> List[Any]: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , _snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _snake_case ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_snake_case , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_snake_case ) UpperCAmelCase = do_lower_case def snake_case_ ( self , _snake_case , _snake_case=None ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _snake_case , _snake_case = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
254
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Union[str, Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } __UpperCAmelCase : List[Any] = { "allenai/led-base-16384": 16384, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = LEDTokenizer __UpperCamelCase : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="replace" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase : Union[str, Any] = '''post_processor''' UpperCamelCase : int = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : int = tuple(state['''sep'''] ) if "cls" in state: UpperCamelCase : int = tuple(state['''cls'''] ) UpperCamelCase : Union[str, Any] = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase : List[Any] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Any = True if changes_to_apply: UpperCamelCase : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) UpperCamelCase : Any = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowercase ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value UpperCamelCase : Dict = value def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Tuple = [self.sep_token_id] UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : str = super()._pad( encoded_inputs=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding_strategy=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase : Any = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase : Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(__SCREAMING_SNAKE_CASE ) if needs_to_be_padded: UpperCamelCase : Dict = len(__SCREAMING_SNAKE_CASE ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase : str = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
643
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
1
import math def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
429
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __snake_case : lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="Translation" , init=_a , repr=_a ) def __call__( self : Tuple ) -> Optional[int]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __snake_case : lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="TranslationVariableLanguages" , init=_a , repr=_a ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase : Optional[int] = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(_UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase : int = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
429
1
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( _a , _a ): """simple docstring""" _lowerCamelCase = get_failure_array(_a ) # 2) Step through text searching for pattern _lowerCamelCase , _lowerCamelCase = 0, 0 # index into text, pattern while i < len(_a ): if pattern[j] == text[i]: if j == (len(_a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _lowerCamelCase = failure[j - 1] continue i += 1 return False def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = [0] _lowerCamelCase = 0 _lowerCamelCase = 1 while j < len(_a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _lowerCamelCase = failure[i - 1] continue j += 1 failure.append(_a ) return failure if __name__ == "__main__": # Test 1) _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert kmp(pattern, text) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) _UpperCAmelCase = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
712
import heapq def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_a , [-1 * len(_a ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCamelCase = heapq.heappop(_a )[1][0] chosen_vertices.add(_a ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCamelCase = elem[1][1].index(_a ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_a ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
297
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( _a , _a ): @register_to_config def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ): super().__init__() UpperCamelCase__ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase__ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ) else: UpperCamelCase__ = None UpperCamelCase__ = torch.nn.Parameter(__lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : VQModel snake_case : CLIPTextModel snake_case : CLIPTokenizer snake_case : TransformeraDModel snake_case : LearnedClassifierFreeSamplingEmbeddings snake_case : VQDiffusionScheduler def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): super().__init__() self.register_modules( vqvae=__lowerCAmelCase , transformer=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = len(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else 1 # get prompt text embeddings UpperCamelCase__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase__ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__lowerCAmelCase ) # duplicate text embeddings for each generation per prompt UpperCamelCase__ = prompt_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase__ = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase__ = negative_prompt_embeds.unsqueeze(0 ).repeat(__lowerCAmelCase , 1 , 1 ) else: UpperCamelCase__ = [""""""] * batch_size UpperCamelCase__ = text_input_ids.shape[-1] UpperCamelCase__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) UpperCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase__ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__lowerCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ = negative_prompt_embeds.shape[1] UpperCamelCase__ = negative_prompt_embeds.repeat(1 , __lowerCAmelCase , 1 ) UpperCamelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = 100 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 1 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 , ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = len(__lowerCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}""" ) UpperCamelCase__ = batch_size * num_images_per_prompt UpperCamelCase__ = guidance_scale > 1.0 UpperCamelCase__ = self._encode_prompt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowerCAmelCase )}.""" ) # get the initial completely masked latents unless the user supplied it UpperCamelCase__ = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase__ = self.transformer.num_vector_embeds - 1 UpperCamelCase__ = torch.full(__lowerCAmelCase , __lowerCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) UpperCamelCase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase , device=self.device ) UpperCamelCase__ = self.scheduler.timesteps.to(self.device ) UpperCamelCase__ = latents for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase__ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase__ = self.transformer(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase ).sample if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = model_output.chunk(2 ) UpperCamelCase__ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__lowerCAmelCase , dim=1 , keepdim=__lowerCAmelCase ) UpperCamelCase__ = self.truncate(__lowerCAmelCase , __lowerCAmelCase ) # remove `log(0)`'s (`-inf`s) UpperCamelCase__ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(__lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = self.vqvae.config.vq_embed_dim UpperCamelCase__ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase__ = self.vqvae.quantize.get_codebook_entry(__lowerCAmelCase , shape=__lowerCAmelCase ) UpperCamelCase__ = self.vqvae.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ , UpperCamelCase__ = torch.sort(__lowerCAmelCase , 1 , descending=__lowerCAmelCase ) UpperCamelCase__ = torch.exp(__lowerCAmelCase ) UpperCamelCase__ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase__ = torch.full_like(keep_mask[:, 0:1, :] , __lowerCAmelCase ) UpperCamelCase__ = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase__ = keep_mask[:, :-1, :] UpperCamelCase__ = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase__ = log_p_x_0.clone() UpperCamelCase__ = -torch.inf # -inf = log(0) return rv
619
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _UpperCamelCase (a__ :Tuple , a__ :List[str]=False ): """simple docstring""" UpperCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _UpperCamelCase (a__ :int , a__ :Tuple , a__ :Union[str, Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = """""" else: UpperCamelCase__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" ) UpperCamelCase__ = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def _UpperCamelCase (a__ :int ): """simple docstring""" UpperCamelCase__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(a__ , a__ ) def _UpperCamelCase (a__ :Optional[int] ): """simple docstring""" UpperCamelCase__ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def _UpperCamelCase (a__ :List[str] , a__ :Any , a__ :str ): """simple docstring""" UpperCamelCase__ = dct.pop(a__ ) UpperCamelCase__ = val def _UpperCamelCase (a__ :Dict , a__ :Dict ): """simple docstring""" UpperCamelCase__ = ViTMSNConfig() UpperCamelCase__ = 1000 UpperCamelCase__ = """datasets/huggingface/label-files""" UpperCamelCase__ = """imagenet-1k-id2label.json""" UpperCamelCase__ = json.load(open(hf_hub_download(a__ , a__ ) , """r""" ) ) UpperCamelCase__ = {int(a__ ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase__ = 384 UpperCamelCase__ = 1536 UpperCamelCase__ = 6 elif "l16" in checkpoint_url: UpperCamelCase__ = 1024 UpperCamelCase__ = 4096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 elif "b4" in checkpoint_url: UpperCamelCase__ = 4 elif "l7" in checkpoint_url: UpperCamelCase__ = 7 UpperCamelCase__ = 1024 UpperCamelCase__ = 4096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 UpperCamelCase__ = ViTMSNModel(a__ ) UpperCamelCase__ = torch.hub.load_state_dict_from_url(a__ , map_location="""cpu""" )["""target_encoder"""] UpperCamelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) UpperCamelCase__ = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() UpperCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ = Image.open(requests.get(a__ , stream=a__ ).raw ) UpperCamelCase__ = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) UpperCamelCase__ = image_processor(images=a__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ = model(**a__ ) UpperCamelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: UpperCamelCase__ = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase__ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
619
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a__ : str ={ '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] =[ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] =[ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class snake_case ( __lowerCamelCase ): """simple docstring""" def __get__( self : Optional[int] , __A : List[Any] , __A : Union[str, Any]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) __UpperCamelCase = '__cached_' + self.fget.__name__ __UpperCamelCase = getattr(__A , __A , __A ) if cached is None: __UpperCamelCase = self.fget(__A ) setattr(__A , __A , __A ) return cached def lowercase__ ( __lowercase : List[str] ) -> Any: """simple docstring""" __UpperCamelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def lowercase__ ( __lowercase : str ) -> Optional[int]: """simple docstring""" if is_torch_fx_proxy(__lowercase ): return True if is_torch_available(): import torch if isinstance(__lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowercase , np.ndarray ) def lowercase__ ( __lowercase : Optional[Any] ) -> int: """simple docstring""" return isinstance(__lowercase , np.ndarray ) def lowercase__ ( __lowercase : str ) -> Tuple: """simple docstring""" return _is_numpy(__lowercase ) def lowercase__ ( __lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" import torch return isinstance(__lowercase , torch.Tensor ) def lowercase__ ( __lowercase : Optional[int] ) -> Optional[int]: """simple docstring""" return False if not is_torch_available() else _is_torch(__lowercase ) def lowercase__ ( __lowercase : List[str] ) -> Tuple: """simple docstring""" import torch return isinstance(__lowercase , torch.device ) def lowercase__ ( __lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" return False if not is_torch_available() else _is_torch_device(__lowercase ) def lowercase__ ( __lowercase : int ) -> Any: """simple docstring""" import torch if isinstance(__lowercase , __lowercase ): if hasattr(__lowercase , __lowercase ): __UpperCamelCase = getattr(__lowercase , __lowercase ) else: return False return isinstance(__lowercase , torch.dtype ) def lowercase__ ( __lowercase : Dict ) -> str: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__lowercase ) def lowercase__ ( __lowercase : List[Any] ) -> Tuple: """simple docstring""" import tensorflow as tf return isinstance(__lowercase , tf.Tensor ) def lowercase__ ( __lowercase : Dict ) -> Optional[Any]: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__lowercase ) def lowercase__ ( __lowercase : Optional[int] ) -> List[Any]: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowercase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__lowercase ) return type(__lowercase ) == tf.Tensor def lowercase__ ( __lowercase : Optional[int] ) -> List[Any]: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowercase ) def lowercase__ ( __lowercase : Dict ) -> List[Any]: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__lowercase , jnp.ndarray ) def lowercase__ ( __lowercase : List[Any] ) -> Dict: """simple docstring""" return False if not is_flax_available() else _is_jax(__lowercase ) def lowercase__ ( __lowercase : List[str] ) -> Any: """simple docstring""" if isinstance(__lowercase , (dict, UserDict) ): return {k: to_py_obj(__lowercase ) for k, v in obj.items()} elif isinstance(__lowercase , (list, tuple) ): return [to_py_obj(__lowercase ) for o in obj] elif is_tf_tensor(__lowercase ): return obj.numpy().tolist() elif is_torch_tensor(__lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowercase ): return np.asarray(__lowercase ).tolist() elif isinstance(__lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase__ ( __lowercase : List[str] ) -> Tuple: """simple docstring""" if isinstance(__lowercase , (dict, UserDict) ): return {k: to_numpy(__lowercase ) for k, v in obj.items()} elif isinstance(__lowercase , (list, tuple) ): return np.array(__lowercase ) elif is_tf_tensor(__lowercase ): return obj.numpy() elif is_torch_tensor(__lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowercase ): return np.asarray(__lowercase ) else: return obj class snake_case ( __lowerCamelCase ): """simple docstring""" def _lowerCamelCase ( self : str ): __UpperCamelCase = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) __UpperCamelCase = getattr(self , class_fields[0].name ) __UpperCamelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A , __A ): __UpperCamelCase = first_field.items() __UpperCamelCase = True else: try: __UpperCamelCase = iter(__A ) __UpperCamelCase = True except TypeError: __UpperCamelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A , (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0] , __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __UpperCamelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __UpperCamelCase = element[1] elif first_field is not None: __UpperCamelCase = first_field else: for field in class_fields: __UpperCamelCase = getattr(self , field.name ) if v is not None: __UpperCamelCase = v def __delitem__( self : List[str] , *__A : Dict , **__A : Any ): raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _lowerCamelCase ( self : Union[str, Any] , *__A : str , **__A : Union[str, Any] ): raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _lowerCamelCase ( self : Tuple , *__A : List[str] , **__A : Optional[Any] ): raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _lowerCamelCase ( self : Union[str, Any] , *__A : Tuple , **__A : Union[str, Any] ): raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Any , __A : Tuple ): if isinstance(__A , __A ): __UpperCamelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Any , __A : Any , __A : Tuple ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A , __A ) super().__setattr__(__A , __A ) def __setitem__( self : Union[str, Any] , __A : int , __A : List[Any] ): # Will raise a KeyException if needed super().__setitem__(__A , __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A , __A ) def _lowerCamelCase ( self : List[Any] ): return tuple(self[k] for k in self.keys() ) class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @classmethod def _lowerCamelCase ( cls : List[str] , __A : Optional[int] ): raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="longest" SCREAMING_SNAKE_CASE_ : Dict ="max_length" SCREAMING_SNAKE_CASE_ : str ="do_not_pad" class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="pt" SCREAMING_SNAKE_CASE_ : str ="tf" SCREAMING_SNAKE_CASE_ : str ="np" SCREAMING_SNAKE_CASE_ : Optional[int] ="jax" class snake_case : """simple docstring""" def __init__( self : Any , __A : List[ContextManager] ): __UpperCamelCase = context_managers __UpperCamelCase = ExitStack() def __enter__( self : Tuple ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : str , *__A : Dict , **__A : Optional[int] ): self.stack.__exit__(*__A , **__A ) def lowercase__ ( __lowercase : str ) -> Any: """simple docstring""" __UpperCamelCase = infer_framework(__lowercase ) if framework == "tf": __UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: __UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase__ ( __lowercase : str ) -> Tuple: """simple docstring""" __UpperCamelCase = model_class.__name__ __UpperCamelCase = infer_framework(__lowercase ) if framework == "tf": __UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: __UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase__ ( __lowercase : MutableMapping , __lowercase : str = "" , __lowercase : str = "." ) -> Union[str, Any]: """simple docstring""" def _flatten_dict(__lowercase : Tuple , __lowercase : List[Any]="" , __lowercase : Optional[Any]="." ): for k, v in d.items(): __UpperCamelCase = str(__lowercase ) + delimiter + str(__lowercase ) if parent_key else k if v and isinstance(__lowercase , __lowercase ): yield from flatten_dict(__lowercase , __lowercase , delimiter=__lowercase ).items() else: yield key, v return dict(_flatten_dict(__lowercase , __lowercase , __lowercase ) ) @contextmanager def lowercase__ ( __lowercase : List[str] , __lowercase : bool = False ) -> Dict: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase__ ( __lowercase : Optional[int] , __lowercase : str=None ) -> Union[str, Any]: """simple docstring""" if is_numpy_array(__lowercase ): return np.transpose(__lowercase , axes=__lowercase ) elif is_torch_tensor(__lowercase ): return array.T if axes is None else array.permute(*__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.transpose(__lowercase , perm=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.transpose(__lowercase , axes=__lowercase ) else: raise ValueError(F'''Type not supported for transpose: {type(__lowercase )}.''' ) def lowercase__ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> List[Any]: """simple docstring""" if is_numpy_array(__lowercase ): return np.reshape(__lowercase , __lowercase ) elif is_torch_tensor(__lowercase ): return array.reshape(*__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.reshape(__lowercase , __lowercase ) elif is_jax_tensor(__lowercase ): return jnp.reshape(__lowercase , __lowercase ) else: raise ValueError(F'''Type not supported for reshape: {type(__lowercase )}.''' ) def lowercase__ ( __lowercase : Dict , __lowercase : Union[str, Any]=None ) -> Dict: """simple docstring""" if is_numpy_array(__lowercase ): return np.squeeze(__lowercase , axis=__lowercase ) elif is_torch_tensor(__lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.squeeze(__lowercase , axis=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.squeeze(__lowercase , axis=__lowercase ) else: raise ValueError(F'''Type not supported for squeeze: {type(__lowercase )}.''' ) def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Optional[Any] ) -> Optional[int]: """simple docstring""" if is_numpy_array(__lowercase ): return np.expand_dims(__lowercase , __lowercase ) elif is_torch_tensor(__lowercase ): return array.unsqueeze(dim=__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.expand_dims(__lowercase , axis=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.expand_dims(__lowercase , axis=__lowercase ) else: raise ValueError(F'''Type not supported for expand_dims: {type(__lowercase )}.''' ) def lowercase__ ( __lowercase : Optional[int] ) -> List[Any]: """simple docstring""" if is_numpy_array(__lowercase ): return np.size(__lowercase ) elif is_torch_tensor(__lowercase ): return array.numel() elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.size(__lowercase ) elif is_jax_tensor(__lowercase ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(__lowercase )}.''' ) def lowercase__ ( __lowercase : Tuple , __lowercase : Optional[int] ) -> Optional[int]: """simple docstring""" for key, value in auto_map.items(): if isinstance(__lowercase , (tuple, list) ): __UpperCamelCase = [F'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: __UpperCamelCase = F'''{repo_id}--{value}''' return auto_map def lowercase__ ( __lowercase : str ) -> List[Any]: """simple docstring""" for base_class in inspect.getmro(__lowercase ): __UpperCamelCase = base_class.__module__ __UpperCamelCase = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
434
0