code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def _lowerCAmelCase ( lowercase : int = 5_0 ) ->int: """simple docstring""" lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
161
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _lowerCAmelCase ( lowercase : Optional[int] , lowercase : tuple , lowercase : Path , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : int=False , ) ->Tuple: """simple docstring""" output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def _lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : int , lowercase : bool = False ) ->Union[str, Any]: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase__ = '''cpu''' lowercase__ = Path(lowercase ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , 2_5 , 2_5 ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=lowercase , ) del vae_decoder if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
161
1
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [1] for i in range(2 , _UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __a = [] __a = list(range(_UpperCAmelCase ) ) # Find permutation while factorials: __a = factorials.pop() __a , __a = divmod(_UpperCAmelCase , _UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
718
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case :int = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _A ( tr.AbstractTransform ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = " "): '''simple docstring''' __a = sentence_delimiter def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return list(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = [] for sent_idx, sentence in enumerate(__SCREAMING_SNAKE_CASE): chars.extend(self.process_string(__SCREAMING_SNAKE_CASE)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__SCREAMING_SNAKE_CASE) - 1: chars.append(self.sentence_delimiter) return chars __snake_case :Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case :Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case :Optional[int] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case :Tuple = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case :Tuple = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )["wer"] __a = 0 __a = 0 for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
0
'''simple docstring''' import os import sys import unittest a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a = os.path.join(git_repo_path, 'src', 'transformers') a = '\n{0} = None\n' a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class a_ ( unittest.TestCase ): def UpperCamelCase ( self : Dict ) -> Dict: snake_case: Union[str, Any] =find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(a_ ) snake_case: Optional[Any] =find_backend(' if not is_tokenizers_available():' ) self.assertEqual(a_ , 'tokenizers' ) snake_case: Tuple =find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(a_ , 'tensorflow_text' ) snake_case: Union[str, Any] =find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(a_ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] =find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(a_ , 'sentencepiece_and_tensorflow_text' ) snake_case: Optional[int] =find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(a_ , 'sentencepiece_and_tokenizers_and_vision' ) def UpperCamelCase ( self : Union[str, Any] ) -> Any: snake_case: int =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , a_ ) self.assertIn('tensorflow_text' , a_ ) self.assertIn('sentencepiece_and_tokenizers' , a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: snake_case: List[Any] =create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(a_ , '\nCONSTANT = None\n' ) snake_case: Tuple =create_dummy_object('function' , '\'torch\'' ) self.assertEqual( a_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: List[Any] ='\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple =create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(a_ , a_ ) def UpperCamelCase ( self : Dict ) -> Any: snake_case: Union[str, Any] ='# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Union[str, Any] =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , a_ )
350
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a_ ( snake_case ): UpperCAmelCase : str = (CMStochasticIterativeScheduler,) UpperCAmelCase : int = 10 def UpperCamelCase ( self : Dict , **a_ : List[str] ) -> Any: snake_case: Any ={ 'num_train_timesteps': 2_0_1, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**a_ ) return config def UpperCamelCase ( self : List[Any] ) -> List[Any]: snake_case: Any =1_0 snake_case: List[str] =self.get_scheduler_config() snake_case: List[Any] =self.scheduler_classes[0](**a_ ) scheduler.set_timesteps(a_ ) snake_case: Dict =scheduler.timesteps[0] snake_case: Union[str, Any] =scheduler.timesteps[1] snake_case: List[str] =self.dummy_sample snake_case: List[str] =0.1 * sample snake_case: int =scheduler.step(a_ , a_ , a_ ).prev_sample snake_case: Optional[Any] =scheduler.step(a_ , a_ , a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self : int ) -> int: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a_ ) def UpperCamelCase ( self : Tuple ) -> List[str]: snake_case: List[Any] =self.scheduler_classes[0] snake_case: List[Any] =self.get_scheduler_config() snake_case: Any =scheduler_class(**a_ ) snake_case: Dict =1 scheduler.set_timesteps(a_ ) snake_case: List[Any] =scheduler.timesteps snake_case: Optional[Any] =torch.manual_seed(0 ) snake_case: Optional[Any] =self.dummy_model() snake_case: List[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a_ ): # 1. scale model input snake_case: Any =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: List[str] =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: Dict =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: List[Any] =pred_prev_sample snake_case: Optional[Any] =torch.sum(torch.abs(a_ ) ) snake_case: Optional[Any] =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def UpperCamelCase ( self : Dict ) -> Union[str, Any]: snake_case: Dict =self.scheduler_classes[0] snake_case: Tuple =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: List[Any] =[1_0_6, 0] scheduler.set_timesteps(timesteps=a_ ) snake_case: Optional[Any] =scheduler.timesteps snake_case: Dict =torch.manual_seed(0 ) snake_case: Optional[int] =self.dummy_model() snake_case: Any =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case: List[Any] =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: Any =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: List[str] =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: Optional[Any] =pred_prev_sample snake_case: Union[str, Any] =torch.sum(torch.abs(a_ ) ) snake_case: Tuple =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def UpperCamelCase ( self : int ) -> Tuple: snake_case: List[Any] =self.scheduler_classes[0] snake_case: Union[str, Any] =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: str =[3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(a_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a_ ) def UpperCamelCase ( self : Dict ) -> Optional[int]: snake_case: Optional[Any] =self.scheduler_classes[0] snake_case: Dict =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: Any =[3_9, 3_0, 1_2, 1, 0] snake_case: List[Any] =len(a_ ) with self.assertRaises(a_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a_ , timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Tuple: snake_case: Any =self.scheduler_classes[0] snake_case: int =self.get_scheduler_config() snake_case: Optional[Any] =scheduler_class(**a_ ) snake_case: List[Any] =[scheduler.config.num_train_timesteps] with self.assertRaises( a_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a_ )
350
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase__ : Optional[int] = getLogger(__name__) def UpperCAmelCase ( a_ , a_ , a_ , a_ = 8 , a_ = 1_0_2_4 , a_="val" , a_=None , a_=False , a_="summarization" , a_=None , a_=1 , a_ = None , a_="" , **a_ , ) -> Optional[Any]: """simple docstring""" A_ : Dict = str(SCREAMING_SNAKE_CASE_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=SCREAMING_SNAKE_CASE_ ) A_ : List[Any] = Path(SCREAMING_SNAKE_CASE_ ) A_ : Union[str, Any] = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(SCREAMING_SNAKE_CASE_ ) A_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).cuda() if fpaa: A_ : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update config with task specific params A_ : Dict = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: A_ : List[Any] = num_return_sequences A_ : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: A_ : Union[str, Any] = tokenizer.model_max_length if prefix is None: A_ : Dict = prefix or getattr(model.config , """prefix""" , """""" ) or """""" A_ : Optional[int] = SeqaSeqDataset( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_target_length=1_0_2_4 , type_path=SCREAMING_SNAKE_CASE_ , n_obs=SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. A_ : str = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , add_extra_examples=SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ ) A_ : List[Any] = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , collate_fn=ds.collate_fn ) A_ : str = [] for batch in tqdm(SCREAMING_SNAKE_CASE_ ): A_ : Any = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=SCREAMING_SNAKE_CASE_ , num_beams=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A_ : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) A_ : Dict = batch["""ids"""] if num_return_sequences > 1: A_ : Union[str, Any] = chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(SCREAMING_SNAKE_CASE_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return results, sampler.num_replicas def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=SCREAMING_SNAKE_CASE_ , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=SCREAMING_SNAKE_CASE_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=SCREAMING_SNAKE_CASE_ , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--type_path""" , type=SCREAMING_SNAKE_CASE_ , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=SCREAMING_SNAKE_CASE_ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=SCREAMING_SNAKE_CASE_ , default=8 , required=SCREAMING_SNAKE_CASE_ , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=SCREAMING_SNAKE_CASE_ , default=1 , required=SCREAMING_SNAKE_CASE_ , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=SCREAMING_SNAKE_CASE_ , default=6_0_0 , required=SCREAMING_SNAKE_CASE_ , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--tgt_lang""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--prefix""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) A_ : Optional[int] = time.time() A_ , A_ : Any = parser.parse_known_args() A_ : Dict = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE_ ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) A_ : List[Any] = Path(args.save_dir + """_tmp""" ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) # this handles locking. A_ : Optional[Any] = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. A_ : List[Any] = {} if args.src_lang is not None: A_ : Optional[int] = args.src_lang if args.tgt_lang is not None: A_ : int = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) A_ , A_ : List[str] = eval_data_dir( args.data_dir , SCREAMING_SNAKE_CASE_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if args.local_rank <= 0: A_ : Optional[int] = Path(args.save_dir ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) A_ : Dict = gather_results_from_each_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , args.sync_timeout ) A_ : Optional[int] = combine_partial_results(SCREAMING_SNAKE_CASE_ ) if args.num_return_sequences > 1: A_ : List[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return A_ : Union[str, Any] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(SCREAMING_SNAKE_CASE_ ) as f: A_ : Any = [x.rstrip() for x in f.readlines()][: len(SCREAMING_SNAKE_CASE_ )] # Calculate metrics, save metrics, and save _generations.txt A_ : Optional[int] = """translation""" in args.task A_ : int = calculate_bleu if calc_bleu else calculate_rouge A_ : Union[str, Any] = """bleu""" if calc_bleu else """rouge""" A_ : List[str] = score_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : str = len(SCREAMING_SNAKE_CASE_ ) A_ : Tuple = time.time() - start_time A_ : Optional[int] = round(runtime / metrics["""n_obs"""] , 4 ) A_ : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics A_ : List[str] = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) write_txt_file(SCREAMING_SNAKE_CASE_ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(SCREAMING_SNAKE_CASE_ , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Union[str, Any] = [] for partial_result in partial_results: records.extend(SCREAMING_SNAKE_CASE_ ) A_ : Union[str, Any] = sorted(SCREAMING_SNAKE_CASE_ , key=lambda a_ : x["id"] ) A_ : Optional[Any] = [x["""pred"""] for x in records] return preds def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" A_ : Dict = time.time() logger.info("""waiting for all nodes to finish""" ) A_ : Union[str, Any] = None while (time.time() - start_wait) < timeout: A_ : Union[str, Any] = list(save_dir.glob("""rank_*.json""" ) ) if len(SCREAMING_SNAKE_CASE_ ) < num_replicas: continue try: # make sure all json files are fully saved A_ : List[Any] = lmap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
715
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''marian''' lowerCamelCase = ['''past_key_values'''] lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCamelCase=5_8101 , _lowerCamelCase=None , _lowerCamelCase=1024 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=1024 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=5_8100 , _lowerCamelCase=False , _lowerCamelCase=5_8100 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=True , **_lowerCamelCase , ) -> Any: A_ : Any = vocab_size A_ : int = decoder_vocab_size or vocab_size A_ : Union[str, Any] = max_position_embeddings A_ : Optional[Any] = d_model A_ : List[str] = encoder_ffn_dim A_ : List[Any] = encoder_layers A_ : Any = encoder_attention_heads A_ : List[Any] = decoder_ffn_dim A_ : Tuple = decoder_layers A_ : Optional[int] = decoder_attention_heads A_ : Any = dropout A_ : Optional[Any] = attention_dropout A_ : Tuple = activation_dropout A_ : List[str] = activation_function A_ : int = init_std A_ : Tuple = encoder_layerdrop A_ : Optional[int] = decoder_layerdrop A_ : List[Any] = use_cache A_ : Any = encoder_layers A_ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Dict = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class _lowerCAmelCase ( __A ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: A_ : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ : Union[str, Any] = {0: """batch"""} A_ : List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A_ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} A_ : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : Tuple = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ , A_ : Optional[Any] = self.num_layers for i in range(_lowerCamelCase ): A_ : str = {0: """batch""", 2: """past_sequence + sequence"""} A_ : str = {0: """batch""", 2: """past_sequence + sequence"""} else: A_ : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: A_ : str = super().outputs else: A_ : Optional[int] = super(_lowerCamelCase , self ).outputs if self.use_past: A_ , A_ : List[str] = self.num_layers for i in range(_lowerCamelCase ): A_ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: A_ : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs A_ : int = seq_length if not self.use_past else 1 A_ : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : int = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} A_ : Tuple = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ : List[str] = common_inputs["""input_ids"""].shape A_ : Union[str, Any] = common_inputs["""decoder_input_ids"""].shape[1] A_ , A_ : List[str] = self.num_attention_heads A_ : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Union[str, Any] = decoder_seq_length + 3 A_ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) A_ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ , A_ : Optional[Any] = self.num_layers A_ : Optional[int] = min(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers A_ : Any = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. A_ : Optional[int] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: A_ : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : Dict = seqlen + 2 A_ , A_ : Any = self.num_layers A_ , A_ : Optional[int] = self.num_attention_heads A_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Tuple = common_inputs["""attention_mask"""].dtype A_ : Optional[int] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) A_ : List[Any] = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : List[str] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Optional[int] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) A_ : Optional[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence A_ : str = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : int = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: A_ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: A_ : Dict = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: A_ : List[str] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4
385
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,['''c'''] ) self.assertEqual(lowercase__ ,[2] ) # Out indices set to match out features __lowercase , __lowercase = get_aligned_output_features_output_indices(['''a''', '''c'''] ,lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[0, 2] ) # Out features set to match out indices __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,[0, 2] ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[0, 2] ) # Out features selected from negative indices __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,[-3, -1] ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[-3, -1] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Stage names must be set with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,lowercase__ ) # Out features must be a list with self.assertRaises(lowercase__ ): verify_out_features_out_indices(('''a''', '''b''') ,(0, 1) ,['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ ,0 ,['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ ,(0, 1) ,['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0,) ,['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 2) ,['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''b''', '''a'''] ,(0, 1) ,['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] ,(0, 1, -1) ,['''a''', '''b''', '''c''', '''d'''] ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = BackboneMixin() __lowercase = ['''a''', '''b''', '''c'''] __lowercase = ['''a''', '''c'''] __lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly __lowercase = ['''a''', '''b'''] self.assertEqual(backbone.out_features ,['''a''', '''b'''] ) self.assertEqual(backbone.out_indices ,[0, 1] ) __lowercase = [-3, -1] self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
41
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "weight" in name: UpperCAmelCase = """weight""" elif "bias" in name: UpperCAmelCase = """bias""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=True ): """simple docstring""" if config_path is not None: UpperCAmelCase = HubertConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(_snake_case , """vocab.json""" ) if not os.path.isdir(_snake_case ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) UpperCAmelCase = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_snake_case , ) UpperCAmelCase = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) UpperCAmelCase = HubertForCTC(_snake_case ) else: UpperCAmelCase = HubertModel(_snake_case ) if is_finetuned: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase = model[0].eval() recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
341
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCamelCase ( ) -> str: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class lowerCAmelCase ( nn.Module ): def __init__( self ): super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def __A ( self , a__ ): return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class lowerCAmelCase ( unittest.TestCase ): def __A ( self ): _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a__ ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a__ , [1_28, 64, 32, 16, 8] ) def __A ( self ): _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a__ , a__ ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(a__ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def __A ( self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(a__ ): pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __A ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __A ( self ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a__ , a__ , a__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a__ ) as cm: mock_training_loop_function(1_28 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def __A ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def __A ( self ): _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a__ ) _UpperCAmelCase = release_memory(a__ ) self.assertEqual(torch.cuda.memory_allocated() , a__ )
494
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCAmelCase ( snake_case , unittest.TestCase ): lowerCAmelCase__ = RoFormerTokenizer lowerCAmelCase__ = RoFormerTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def __A ( self ): super().setUp() def __A ( self , **a__ ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a__ ) def __A ( self , **a__ ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a__ ) def __A ( self ): _UpperCAmelCase = '永和服装饰品有限公司,今天天气非常好' _UpperCAmelCase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def __A ( self ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase , _UpperCAmelCase = self.get_chinese_input_output_texts() _UpperCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , output_text.split() ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase , _UpperCAmelCase = self.get_chinese_input_output_texts() _UpperCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , output_text.split() ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): pass def __A ( self ): pass def __A ( self ): pass
494
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class _lowerCAmelCase ( __lowerCAmelCase ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type(_UpperCAmelCase ) def __call__(self , UpperCAmelCase , **UpperCAmelCase ) -> str: return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase (self , **UpperCAmelCase ) -> Any: return {}, {}, {} def lowercase (self , UpperCAmelCase ) -> str: _snake_case = load_image(_UpperCAmelCase ) _snake_case = image.size _snake_case = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowercase (self , UpperCAmelCase ) -> int: _snake_case = self.model(**_UpperCAmelCase ) return model_outputs def lowercase (self , UpperCAmelCase ) -> str: _snake_case = model_outputs.predicted_depth _snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=_UpperCAmelCase ) _snake_case = prediction.squeeze().cpu().numpy() _snake_case = (output * 255 / np.max(_UpperCAmelCase )).astype("""uint8""" ) _snake_case = Image.fromarray(_UpperCAmelCase ) _snake_case = {} _snake_case = predicted_depth _snake_case = depth return output_dict
585
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
"""simple docstring""" # Lint as: python3 import itertools import os import re __SCREAMING_SNAKE_CASE = re.compile(r'([A-Z]+)([A-Z][a-z])') __SCREAMING_SNAKE_CASE = re.compile(r'([a-z\d])([A-Z])') __SCREAMING_SNAKE_CASE = re.compile(r'(?<!_)_(?!_)') __SCREAMING_SNAKE_CASE = re.compile(r'(_{2,})') __SCREAMING_SNAKE_CASE = r'^\w+(\.\w+)*$' __SCREAMING_SNAKE_CASE = r'<>:/\|?*' def A_ ( __lowercase ): UpperCamelCase_ : Union[str, Any] =_uppercase_uppercase_re.sub(r'\1_\2' , __lowercase ) UpperCamelCase_ : Union[str, Any] =_lowercase_uppercase_re.sub(r'\1_\2' , __lowercase ) return name.lower() def A_ ( __lowercase ): UpperCamelCase_ : str =_single_underscore_re.split(__lowercase ) UpperCamelCase_ : List[Any] =[_multiple_underscores_re.split(__lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowercase ) if n != '' ) def A_ ( __lowercase ): if os.path.basename(__lowercase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__lowercase ) def A_ ( __lowercase , __lowercase ): if os.path.basename(__lowercase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __lowercase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(__lowercase )}-{split}''' def A_ ( __lowercase , __lowercase , __lowercase , __lowercase=None ): UpperCamelCase_ : Tuple =filename_prefix_for_split(__lowercase , __lowercase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' UpperCamelCase_ : Dict =os.path.join(__lowercase , __lowercase ) return F'''{filepath}*''' def A_ ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None ): UpperCamelCase_ : int =filename_prefix_for_split(__lowercase , __lowercase ) UpperCamelCase_ : Union[str, Any] =os.path.join(__lowercase , __lowercase ) if shard_lengths: UpperCamelCase_ : str =len(__lowercase ) UpperCamelCase_ : List[str] =[F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__lowercase )] if filetype_suffix: UpperCamelCase_ : Optional[int] =[filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: UpperCamelCase_ : Tuple =prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
395
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def A_ ( __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , ): UpperCamelCase_ : Dict =bnb_quantization_config.load_in_abit UpperCamelCase_ : List[str] =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) UpperCamelCase_ : Tuple =[] # custom device map if isinstance(__lowercase , __lowercase ) and len(device_map.keys() ) > 1: UpperCamelCase_ : str =[key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase_ : Any =get_keys_to_not_convert(__lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowercase ) UpperCamelCase_ : str =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase_ : Optional[Any] =[] UpperCamelCase_ : Any =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowercase ) # compatibility with peft UpperCamelCase_ : str =load_in_abit UpperCamelCase_ : Optional[int] =load_in_abit UpperCamelCase_ : Any =get_parameter_device(__lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) UpperCamelCase_ : int =replace_with_bnb_layers(__lowercase , __lowercase , modules_to_not_convert=__lowercase ) # convert param to the right dtype UpperCamelCase_ : Dict =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase_ : int =name.replace('.weight' , '' ).replace('.bias' , '' ) UpperCamelCase_ : Any =getattr(__lowercase , __lowercase , __lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowercase ): param.to(__lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCamelCase_ : List[Any] =replace_with_bnb_layers( __lowercase , __lowercase , modules_to_not_convert=__lowercase ) UpperCamelCase_ : int =get_quantized_model_device_map( __lowercase , __lowercase , __lowercase , max_memory=__lowercase , no_split_module_classes=__lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : List[Any] =any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __lowercase , __lowercase , __lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowercase , offload_state_dict=__lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowercase , device_map=__lowercase , offload_dir=__lowercase ) def A_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ): if device_map is None: if torch.cuda.is_available(): UpperCamelCase_ : int ={'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__lowercase , __lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) UpperCamelCase_ : Optional[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase_ : List[str] ={} UpperCamelCase_ : Optional[int] =special_dtypes UpperCamelCase_ : Any =no_split_module_classes UpperCamelCase_ : str =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase_ : Dict =get_balanced_memory( __lowercase , low_zero=(device_map == 'balanced_low_0') , max_memory=__lowercase , **__lowercase , ) UpperCamelCase_ : Any =max_memory UpperCamelCase_ : Optional[int] =infer_auto_device_map(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ): # check if don't have any quantized module on the cpu UpperCamelCase_ : Dict =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase_ : Union[str, Any] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def A_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None ): if modules_to_not_convert is None: UpperCamelCase_ : int =[] UpperCamelCase_ , UpperCamelCase_ : List[Any] =_replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def A_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , ): UpperCamelCase_ : Optional[Any] =False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase_ : Any =[] current_key_name.append(__lowercase ) if isinstance(__lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase_ : Union[str, Any] ='.'.join(__lowercase ) UpperCamelCase_ : Any =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase_ : Dict =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase_ : str =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase_ : Union[str, Any] =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) UpperCamelCase_ : Union[str, Any] =module.weight.data if module.bias is not None: UpperCamelCase_ : str =module.bias.data bnb_module.requires_grad_(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) UpperCamelCase_ : Optional[int] =True if len(list(module.children() ) ) > 0: UpperCamelCase_ , UpperCamelCase_ : Any =_replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) UpperCamelCase_ : str =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A_ ( __lowercase ): # Create a copy of the model with init_empty_weights(): UpperCamelCase_ : int =deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase_ : Optional[int] =find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): UpperCamelCase_ : List[Any] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase_ : List[Any] =sum(__lowercase , [] ) UpperCamelCase_ : Any =len(__lowercase ) > 0 # Check if it is a base model UpperCamelCase_ : Optional[Any] =False if hasattr(__lowercase , 'base_model_prefix' ): UpperCamelCase_ : List[Any] =not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase_ : Optional[int] =list(model.named_children() ) UpperCamelCase_ : Union[str, Any] =[list_modules[-1][0]] # add last module together with tied weights UpperCamelCase_ : Optional[int] =set(__lowercase ) - set(__lowercase ) UpperCamelCase_ : List[str] =list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys UpperCamelCase_ : Dict =['.weight', '.bias'] UpperCamelCase_ : Optional[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase_ : Dict =name.replace(__lowercase , '' ) filtered_module_names.append(__lowercase ) return filtered_module_names def A_ ( __lowercase ): for m in model.modules(): if isinstance(__lowercase , bnb.nn.Linearabit ): return True return False def A_ ( __lowercase ): return next(parameter.parameters() ).device def A_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowercase , __lowercase , 0 , dtype=__lowercase , value=__lowercase ) UpperCamelCase_ : Any =param_name UpperCamelCase_ : Optional[int] =model if "." in tensor_name: UpperCamelCase_ : Union[str, Any] =tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase_ : Optional[Any] =getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) UpperCamelCase_ : int =new_module UpperCamelCase_ : int =splits[-1] # offload weights UpperCamelCase_ : str =False offload_weight(module._parameters[tensor_name] , __lowercase , __lowercase , index=__lowercase ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __lowercase , index=__lowercase , ) else: offload_weight(__lowercase , __lowercase , __lowercase , index=__lowercase ) offload_weight(__lowercase , param_name.replace('weight' , 'SCB' ) , __lowercase , index=__lowercase ) set_module_tensor_to_device(__lowercase , __lowercase , 'meta' , dtype=__lowercase , value=torch.empty(*param.size() ) )
395
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCamelCase__ : """simple docstring""" _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def UpperCamelCase_( )-> Node | None: UpperCamelCase__ = Node(1 ) UpperCamelCase__ = Node(2 ) UpperCamelCase__ = Node(3 ) UpperCamelCase__ = Node(4 ) UpperCamelCase__ = Node(5 ) return tree def UpperCamelCase_( _A :Node | None )-> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase_( _A :Node | None )-> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase_( _A :Node | None )-> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase_( _A :Node | None )-> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase_( _A :Node | None )-> Sequence[Node | None]: UpperCamelCase__ = [] if root is None: return output UpperCamelCase__ = deque([root] ) while process_queue: UpperCamelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase_( _A :Node | None , _A :int )-> Sequence[Node | None]: UpperCamelCase__ = [] def populate_output(_A :Node | None , _A :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_A , _A ) return output def UpperCamelCase_( _A :Node | None , _A :int )-> Sequence[Node | None]: UpperCamelCase__ = [] def populate_output(_A :Node | None , _A :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_A , _A ) return output def UpperCamelCase_( _A :Node | None )-> Sequence[Node | None] | list[Any]: if root is None: return [] UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = height(_A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A , _A ) ) UpperCamelCase__ = 1 else: output.append(get_nodes_from_right_to_left(_A , _A ) ) UpperCamelCase__ = 0 return output def UpperCamelCase_( )-> None: # Main function for testing. UpperCamelCase__ = make_tree() print(F'''In-order Traversal: {inorder(_A )}''' ) print(F'''Pre-order Traversal: {preorder(_A )}''' ) print(F'''Post-order Traversal: {postorder(_A )}''' , "\n" ) print(F'''Height of Tree: {height(_A )}''' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(_A ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(_A ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(_A , level=_A ) ) print("\nZigZag order Traversal: " ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
551
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def __init__( self , snake_case , snake_case ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self , snake_case = 1 , snake_case = None , snake_case = 50 , snake_case = "pil" , snake_case = True , **snake_case , ): '''simple docstring''' UpperCamelCase__ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case , ) UpperCamelCase__ = image.to(self.device ) # set step values self.scheduler.set_timesteps(snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase__ = self.unet(snake_case , snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(snake_case ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=snake_case ), "This is a local test"
551
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class a__( __A ): '''simple docstring''' UpperCAmelCase_ : Any = ["""pixel_values"""] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**UpperCamelCase__) lowerCAmelCase = size if size is not None else {'shortest_edge': 224} lowerCAmelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) lowerCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCAmelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ , param_name="""crop_size""") lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase = do_convert_rgb def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") lowerCAmelCase = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = get_size_dict(UpperCamelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(UpperCamelCase__ , param_name="""size""" , default_to_square=UpperCamelCase__) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" , default_to_square=UpperCamelCase__) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase = make_list_of_images(UpperCamelCase__) if not valid_images(UpperCamelCase__): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase = [convert_to_rgb(UpperCamelCase__) for image in images] # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(UpperCamelCase__) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images] lowerCAmelCase = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__)
709
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets __lowercase = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' __lowercase = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' __lowercase = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def snake_case__ ( _A: Optional[Any] , _A: int , _A: int , _A: bool , _A: Optional[Dict[int, int]] = None , _A: bool = False , ) -> List[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase = new_id # turn into Numpy arrays lowerCAmelCase = np.array(_A ) lowerCAmelCase = np.array(_A ) if reduce_labels: lowerCAmelCase = 255 lowerCAmelCase = label - 1 lowerCAmelCase = 255 lowerCAmelCase = label != ignore_index lowerCAmelCase = np.not_equal(_A , _A ) lowerCAmelCase = pred_label[mask] lowerCAmelCase = np.array(_A )[mask] lowerCAmelCase = pred_label[pred_label == label] lowerCAmelCase = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def snake_case__ ( _A: Union[str, Any] , _A: Any , _A: Union[str, Any] , _A: bool , _A: Optional[Dict[int, int]] = None , _A: bool = False , ) -> int: '''simple docstring''' lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def snake_case__ ( _A: Union[str, Any] , _A: int , _A: Dict , _A: bool , _A: Optional[int] = None , _A: Optional[Dict[int, int]] = None , _A: bool = False , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics lowerCAmelCase = {} lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase = total_area_intersect / total_area_union lowerCAmelCase = total_area_intersect / total_area_label lowerCAmelCase = np.nanmean(_A ) lowerCAmelCase = np.nanmean(_A ) lowerCAmelCase = all_acc lowerCAmelCase = iou lowerCAmelCase = acc if nan_to_num is not None: lowerCAmelCase = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): '''simple docstring''' def a_ ( self): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), }) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ): """simple docstring""" lowerCAmelCase = mean_iou( results=__lowerCAmelCase , gt_seg_maps=__lowerCAmelCase , num_labels=__lowerCAmelCase , ignore_index=__lowerCAmelCase , nan_to_num=__lowerCAmelCase , label_map=__lowerCAmelCase , reduce_labels=__lowerCAmelCase , ) return iou_result
605
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowercase : str =logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowercase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowercase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase : bool = field( default=lowerCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: A : Tuple =self.task_name.lower() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "train" lowercase : int = "dev" lowercase : Union[str, Any] = "test" class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : GlueDataTrainingArguments lowercase : str lowercase : List[InputFeatures] def __init__( self : str , SCREAMING_SNAKE_CASE__ : GlueDataTrainingArguments , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizerBase , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Union[str, Split] = Split.train , SCREAMING_SNAKE_CASE__ : Optional[str] = None , ) -> List[Any]: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , SCREAMING_SNAKE_CASE__ , ) A : Any =args A : Union[str, Any] =glue_processors[args.task_name]() A : Union[str, Any] =glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: A : Any =Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file A : Tuple =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) A : Optional[Any] =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A , A : str =label_list[2], label_list[1] A : Tuple =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A : int =cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE__ ): if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache: A : Optional[Any] =time.time() A : str =torch.load(SCREAMING_SNAKE_CASE__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: A : int =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A : Dict =self.processor.get_test_examples(args.data_dir ) else: A : Optional[Any] =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A : Optional[int] =examples[:limit_length] A : int =glue_convert_examples_to_features( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_length=args.max_seq_length , label_list=SCREAMING_SNAKE_CASE__ , output_mode=self.output_mode , ) A : List[Any] =time.time() torch.save(self.features , SCREAMING_SNAKE_CASE__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> InputFeatures: return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: return self.label_list
305
0
import random class __lowercase : '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [ord(_lowercase ) for i in text] __lowercase = [] __lowercase = [] for i in plain: __lowercase = random.randint(1 ,300 ) __lowercase = (i + k) * k cipher.append(_lowercase ) key.append(_lowercase ) return cipher, key @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [] for i in range(len(_lowercase ) ): __lowercase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_lowercase ) ) return "".join(_lowercase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = ['image_processor', 'tokenizer'] __magic_name__ = 'LayoutLMv3ImageProcessor' __magic_name__ = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , __snake_case=None , __snake_case=None , **__snake_case ): snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) snake_case = kwargs.pop('''feature_extractor''' ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = True , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = True , __snake_case = None , **__snake_case , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor snake_case = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case = features['''words'''] snake_case = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values snake_case = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: snake_case = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) snake_case = images return encoded_inputs def a_ ( self , __snake_case , __snake_case ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def a_ ( self , *__snake_case , **__snake_case ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def a_ ( self , *__snake_case , **__snake_case ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def a_ ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a_ ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def a_ ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
550
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=3_0 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1_0 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case = (image_size // patch_size) ** 2 snake_case = num_patches + 1 def a_ ( self ): snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def a_ ( self , __snake_case , __snake_case ): snake_case = FlaxViTModel(config=__snake_case ) snake_case = model(__snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case = (self.image_size, self.image_size) snake_case = (self.patch_size, self.patch_size) snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case ): snake_case = self.type_sequence_label_size snake_case = FlaxViTForImageClassification(config=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case = 1 snake_case = FlaxViTForImageClassification(__snake_case ) snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case = model(__snake_case ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def a_ ( self ): snake_case = FlaxViTModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case = self._prepare_for_class(__snake_case , __snake_case ) snake_case = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case , **__snake_case ): return model(pixel_values=__snake_case , **__snake_case ) with self.subTest('''JIT Enabled''' ): snake_case = model_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a_ ( self ): for model_class_name in self.all_model_classes: snake_case = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) snake_case = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__snake_case )
550
1
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class lowercase ( lowercase__ ): def __init__( self , *_snake_case , **_snake_case) -> Union[str, Any]: super().__init__(*__lowercase , **__lowercase) UpperCAmelCase_ : List[Any] = {} def _snake_case ( self , _snake_case , *_snake_case , **_snake_case) -> List[str]: UpperCAmelCase_ : Optional[Any] = super().add_tokens(__lowercase , *__lowercase , **__lowercase) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def _snake_case ( self , _snake_case , *_snake_case , _snake_case=1 , **_snake_case) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase) output.append(__lowercase) else: UpperCAmelCase_ : Optional[int] = [] for i in range(__lowercase): UpperCAmelCase_ : Any = placeholder_token + F"""_{i}""" self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase) output.append(__lowercase) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""") UpperCAmelCase_ : int = output def _snake_case ( self , _snake_case , _snake_case=False , _snake_case=1.0) -> List[Any]: if isinstance(__lowercase , __lowercase): UpperCAmelCase_ : Any = [] for i in range(len(__lowercase)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowercase)) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase_ : str = self.token_map[placeholder_token] UpperCAmelCase_ : Dict = tokens[: 1 + int(len(__lowercase) * prop_tokens_to_load)] if vector_shuffle: UpperCAmelCase_ : Any = copy.copy(__lowercase) random.shuffle(__lowercase) UpperCAmelCase_ : List[str] = text.replace(__lowercase , ' '.join(__lowercase)) return text def __call__( self , _snake_case , *_snake_case , _snake_case=False , _snake_case=1.0 , **_snake_case) -> List[Any]: return super().__call__( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase) , *__lowercase , **__lowercase , ) def _snake_case ( self , _snake_case , *_snake_case , _snake_case=False , _snake_case=1.0 , **_snake_case) -> Any: return super().encode( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase) , *__lowercase , **__lowercase , )
715
'''simple docstring''' import math class lowercase : def __init__( self , _snake_case=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : Optional[Any] = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # adjacency matrix for weight UpperCAmelCase_ : Tuple = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = w def _snake_case ( self) -> str: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def _snake_case ( self , _snake_case , _snake_case) -> str: return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
471
0
'''simple docstring''' import os import numpy import onnx def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Any ): lowercase = a.name lowercase = b.name lowercase = "" lowercase = "" lowercase = a == b lowercase = name_a lowercase = name_b return res def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase__ , lowerCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase__ , lowerCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase__ , lowerCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): for n in graph_proto.node: _node_replace_input_with(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Dict ): lowercase = list(model.graph.initializer ) lowercase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase = inits[i].name lowercase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = os.path.dirname(lowerCamelCase__ ) lowercase = os.path.basename(lowerCamelCase__ ) lowercase = onnx.load(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase = list(model.graph.initializer ) lowercase = set() lowercase = {} lowercase = [] lowercase = 0 for i in range(len(lowerCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase__ ) dup_set.add(lowerCamelCase__ ) lowercase = inits[j].data_type lowercase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , lowerCamelCase__ ) total_reduced_size += mem_size lowercase = inits[i].name lowercase = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase__ ) else: lowercase = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase = sorted(lowerCamelCase__ ) _remove_dup_initializers_from_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase = "optimized_" + model_file_name lowercase = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) onnx.save(lowerCamelCase__ , lowerCamelCase__ ) return new_model
588
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( snake_case__ ): _UpperCAmelCase :Union[str, Any] = (PNDMScheduler,) _UpperCAmelCase :Tuple = (("num_inference_steps", 50),) def UpperCAmelCase__ ( self : Any , **snake_case__ : Optional[int] ): lowerCamelCase_ : Optional[int] ={ "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self : Any , snake_case__ : List[Any]=0 , **snake_case__ : Union[str, Any] ): lowerCamelCase_ : List[Any] =dict(self.forward_default_kwargs ) lowerCamelCase_ : int =kwargs.pop("num_inference_steps" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.dummy_sample lowerCamelCase_ : Optional[int] =0.1 * sample lowerCamelCase_ : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase_ : Tuple =self.get_scheduler_config(**snake_case__ ) lowerCamelCase_ : Dict =scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCamelCase_ : List[str] =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCamelCase_ : Tuple =scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCamelCase_ : Optional[int] =dummy_past_residuals[:] lowerCamelCase_ : Dict =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCamelCase_ : List[str] =new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCamelCase_ : str =scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCamelCase_ : List[str] =new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] ): pass def UpperCAmelCase__ ( self : int , snake_case__ : int=0 , **snake_case__ : int ): lowerCamelCase_ : int =dict(self.forward_default_kwargs ) lowerCamelCase_ : int =kwargs.pop("num_inference_steps" , snake_case__ ) lowerCamelCase_ : List[Any] =self.dummy_sample lowerCamelCase_ : str =0.1 * sample lowerCamelCase_ : Union[str, Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase_ : Any =self.get_scheduler_config() lowerCamelCase_ : str =scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase_ : Dict =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCamelCase_ : Union[str, Any] =scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase_ : Optional[Any] =dummy_past_residuals[:] lowerCamelCase_ : Optional[Any] =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCamelCase_ : Optional[Any] =new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCamelCase_ : str =scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCamelCase_ : Union[str, Any] =new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : str , **snake_case__ : Optional[Any] ): lowerCamelCase_ : Optional[int] =self.scheduler_classes[0] lowerCamelCase_ : int =self.get_scheduler_config(**snake_case__ ) lowerCamelCase_ : Dict =scheduler_class(**snake_case__ ) lowerCamelCase_ : List[str] =10 lowerCamelCase_ : str =self.dummy_model() lowerCamelCase_ : List[str] =self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCamelCase_ : Any =model(snake_case__ , snake_case__ ) lowerCamelCase_ : int =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCamelCase_ : Tuple =model(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] =scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Optional[Any] =dict(self.forward_default_kwargs ) lowerCamelCase_ : List[str] =kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCamelCase_ : Union[str, Any] =self.get_scheduler_config() lowerCamelCase_ : int =scheduler_class(**snake_case__ ) lowerCamelCase_ : Dict =self.dummy_sample lowerCamelCase_ : Dict =0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowerCamelCase_ : Dict =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase_ : int =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCamelCase_ : int =dummy_past_residuals[:] lowerCamelCase_ : int =scheduler.step_prk(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample lowerCamelCase_ : str =scheduler.step_prk(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCamelCase_ : List[Any] =scheduler.step_plms(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample lowerCamelCase_ : Optional[Any] =scheduler.step_plms(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Tuple ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self : str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case__ ) lowerCamelCase_ : List[Any] =self.scheduler_classes[0] lowerCamelCase_ : Union[str, Any] =self.get_scheduler_config(steps_offset=1 ) lowerCamelCase_ : Union[str, Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCAmelCase__ ( self : str ): for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self : str ): for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case__ ) def UpperCAmelCase__ ( self : Any ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ ) def UpperCAmelCase__ ( self : int ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCamelCase_ : Any =27 for scheduler_class in self.scheduler_classes: lowerCamelCase_ : Any =self.dummy_sample lowerCamelCase_ : Dict =0.1 * sample lowerCamelCase_ : Optional[Any] =self.get_scheduler_config() lowerCamelCase_ : Any =scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCamelCase_ : str =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample def UpperCAmelCase__ ( self : List[str] ): with self.assertRaises(snake_case__ ): lowerCamelCase_ : Tuple =self.scheduler_classes[0] lowerCamelCase_ : Union[str, Any] =self.get_scheduler_config() lowerCamelCase_ : List[Any] =scheduler_class(**snake_case__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : List[Any] =self.full_loop() lowerCamelCase_ : List[Any] =torch.sum(torch.abs(snake_case__ ) ) lowerCamelCase_ : List[str] =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : List[Any] =self.full_loop(prediction_type="v_prediction" ) lowerCamelCase_ : Tuple =torch.sum(torch.abs(snake_case__ ) ) lowerCamelCase_ : Dict =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def UpperCAmelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 lowerCamelCase_ : Tuple =self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) lowerCamelCase_ : List[str] =torch.sum(torch.abs(snake_case__ ) ) lowerCamelCase_ : Optional[int] =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def UpperCAmelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 lowerCamelCase_ : int =self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) lowerCamelCase_ : Optional[Any] =torch.sum(torch.abs(snake_case__ ) ) lowerCamelCase_ : str =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
153
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( lowerCamelCase_): a__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:]) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE =StableDiffusionLatentUpscalePipeline _SCREAMING_SNAKE_CASE =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } _SCREAMING_SNAKE_CASE =PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} _SCREAMING_SNAKE_CASE =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE =frozenset([] ) _SCREAMING_SNAKE_CASE =True @property def lowercase ( self: Tuple ): '''simple docstring''' a__ = 1 a__ = 4 a__ = (16, 16) a__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__A ) return image def lowercase ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) a__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=__A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=__A , only_cross_attention=__A , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) a__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) a__ = EulerDiscreteScheduler(prediction_type='''sample''' ) a__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) a__ = CLIPTextModel(__A ) a__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase ( self: Tuple , __A: Dict , __A: List[str]=0 ): '''simple docstring''' if str(__A ).startswith('''mps''' ): a__ = torch.manual_seed(__A ) else: a__ = torch.Generator(device=__A ).manual_seed(__A ) a__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase ( self: List[str] ): '''simple docstring''' a__ = '''cpu''' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a__ = self.get_dummy_inputs(__A ) a__ = pipe(**__A ).images a__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) a__ = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1e-3 ) def lowercase ( self: Tuple ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def lowercase ( self: Union[str, Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def lowercase ( self: Any ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase ( self: str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def lowercase ( self: List[Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def lowercase ( self: Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase ( self: int ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] a__ = self.get_dummy_components() a__ = self.pipeline_class(**__A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) a__ = self.get_dummy_inputs(__A ) a__ = 2 a__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue a__ = getattr(__A , scheduler_enum.name ) a__ = scheduler_cls.from_config(pipe.scheduler.config ) a__ = pipe(**__A )[0] outputs.append(__A ) assert check_same_shape(__A ) @require_torch_gpu @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def lowercase ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = torch.manual_seed(33 ) a__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) a__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) a__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' a__ = pipe(__A , generator=__A , output_type='''latent''' ).images a__ = upscaler( prompt=__A , image=__A , num_inference_steps=20 , guidance_scale=0 , generator=__A , output_type='''np''' , ).images[0] a__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def lowercase ( self: Optional[Any] ): '''simple docstring''' a__ = torch.manual_seed(33 ) a__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) a__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' a__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) a__ = upscaler( prompt=__A , image=__A , num_inference_steps=20 , guidance_scale=0 , generator=__A , output_type='''np''' , ).images[0] a__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
200
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowerCamelCase_): assert column_title.isupper() a__ = 0 a__ = len(lowerCamelCase_) - 1 a__ = 0 while index >= 0: a__ = (ord(column_title[index]) - 64) * pow(26 , lowerCamelCase_) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
200
1
'''simple docstring''' UpperCamelCase : Optional[int] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCamelCase : Tuple = ['a', 'b', 'c', 'd', 'e'] def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): lowerCamelCase__ = start # add current to visited visited.append(__lowerCAmelCase ) lowerCamelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase__ = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase__ = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": UpperCamelCase : int = topological_sort('a', [], []) print(sort)
50
import math import sys def __snake_case ( _UpperCamelCase ) -> int: if number != int(_UpperCamelCase ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 _a = [-1] * (number + 1) _a = 0 for i in range(1 , number + 1 ): _a = sys.maxsize _a = int(math.sqrt(_UpperCamelCase ) ) for j in range(1 , root + 1 ): _a = 1 + answers[i - (j**2)] _a = min(_UpperCamelCase , _UpperCamelCase ) _a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
487
0
'''simple docstring''' import torch from torch import nn class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 , lowerCamelCase__=False ): '''simple docstring''' super().__init__() UpperCamelCase = n_token UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [n_token] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase__ , lowerCamelCase__ ) ) ) else: self.out_projs.append(lowerCamelCase__ ) self.out_layers.append(nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase__ , lowerCamelCase__ ) ) ) self.out_layers.append(nn.Linear(lowerCamelCase__ , r_idx - l_idx ) ) UpperCamelCase = keep_order def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if proj is None: UpperCamelCase = nn.functional.linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase = nn.functional.linear(lowerCamelCase__ , proj.t().contiguous() ) UpperCamelCase = nn.functional.linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCamelCase = hidden[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase = self._compute_logit(lowerCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase = labels != -1_0_0 UpperCamelCase = torch.zeros_like(lowerCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = ( -nn.functional.log_softmax(lowerCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCamelCase__ ) biases.append(lowerCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) if labels is None: UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase = torch.zeros_like(lowerCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = 0 UpperCamelCase = [0] + self.cutoffs for i in range(len(lowerCamelCase__ ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase = (labels >= l_idx) & (labels < r_idx) UpperCamelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase = labels.index_select(0 , lowerCamelCase__ ) - l_idx UpperCamelCase = head_logprob.index_select(0 , lowerCamelCase__ ) UpperCamelCase = hidden.index_select(0 , lowerCamelCase__ ) else: UpperCamelCase = hidden if i == 0: if labels is not None: UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCamelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if self.n_clusters == 0: UpperCamelCase = self._compute_logit(lowerCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCamelCase__ ) biases.append(lowerCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) UpperCamelCase = [0] + self.cutoffs for i in range(len(lowerCamelCase__ ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) UpperCamelCase = head_logprob[:, -i] + tail_logprob_i UpperCamelCase = logprob_i return out
350
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Tuple = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] snake_case_ : Union[str, Any] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : List[str]): UpperCamelCase = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCamelCase = int(re.match(R'''.*layer_(\d*).*''', _UpperCAmelCase)[1]) layer_number -= 3 return f'h.{layer_number}.' + key def __snake_case ( _UpperCAmelCase : str): if dtype == torch.bool: return 1 / 8 UpperCamelCase = re.search(R'''[^\d](\d+)$''', str(_UpperCAmelCase)) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.') UpperCamelCase = int(bit_search.groups()[0]) return bit_size // 8 def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int]): # Construct model if bloom_config_file == "": UpperCamelCase = BloomConfig() else: UpperCamelCase = BloomConfig.from_json_file(_UpperCAmelCase) if shard_model: UpperCamelCase = os.listdir(_UpperCAmelCase) UpperCamelCase = sorted(filter(lambda _UpperCAmelCase: s.startswith('''layer''') and "model_00" in s, _UpperCAmelCase)) UpperCamelCase = {'''weight_map''': {}, '''metadata''': {}} UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = BloomConfig() for j, file in enumerate(_UpperCAmelCase): print('''Processing file: {}'''.format(_UpperCAmelCase)) UpperCamelCase = None for i in range(_UpperCAmelCase): # load all TP files UpperCamelCase = file.replace('''model_00''', f'model_0{i}') UpperCamelCase = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase), map_location='''cpu''') # Rename keys in the transformers names UpperCamelCase = list(temp.keys()) for key in keys: UpperCamelCase = temp.pop(_UpperCAmelCase) if tensors is None: UpperCamelCase = temp else: for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks UpperCamelCase = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): UpperCamelCase = tensors[key] / pretraining_tp torch.save( _UpperCAmelCase, os.path.join( _UpperCAmelCase, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1).zfill(5), str(len(_UpperCAmelCase)).zfill(5)), ), ) for key in tensors.keys(): UpperCamelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype) if key not in index_dict["weight_map"]: UpperCamelCase = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1).zfill(5), str(len(_UpperCAmelCase)).zfill(5)) UpperCamelCase = BloomConfig() UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCamelCase = total_size with open(_UpperCAmelCase, '''w''', encoding='''utf-8''') as f: f.write(config.to_json_string()) with open(os.path.join(_UpperCAmelCase, WEIGHTS_NAME + '''.index.json'''), '''w''', encoding='''utf-8''') as f: UpperCamelCase = json.dumps(_UpperCAmelCase, indent=2, sort_keys=_UpperCAmelCase) + '''\n''' f.write(_UpperCAmelCase) else: UpperCamelCase = BloomModel(_UpperCAmelCase) UpperCamelCase = os.listdir(_UpperCAmelCase) UpperCamelCase = sorted(filter(lambda _UpperCAmelCase: s.startswith('''layer''') and "model_00" in s, _UpperCAmelCase)) UpperCamelCase = None for i, file in enumerate(_UpperCAmelCase): UpperCamelCase = None for i in range(_UpperCAmelCase): # load all TP files UpperCamelCase = file.replace('''model_00''', f'model_0{i}') UpperCamelCase = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase), map_location='''cpu''') # Rename keys in the transformers names UpperCamelCase = list(temp.keys()) for key in keys: UpperCamelCase = temp.pop(_UpperCAmelCase) if tensors is None: UpperCamelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks UpperCamelCase = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): UpperCamelCase = tensors[key] / pretraining_tp UpperCamelCase = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: UpperCamelCase = set(other_keys.missing_keys) else: UpperCamelCase = missing_keys.intersection(set(other_keys.missing_keys)) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase) UpperCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}') if config.torch_dtype is not None: UpperCamelCase = model.to(config.torch_dtype) torch.save(model.state_dict(), _UpperCAmelCase) print(f'Save configuration file to {pytorch_config_dump_path}') with open(_UpperCAmelCase, '''w''', encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": snake_case_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) snake_case_ : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
350
1
import numpy as np def __UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_00 , ): assert np.shape(a_)[0] == np.shape(a_)[1] # Ensure proper dimensionality. assert np.shape(a_)[0] == np.shape(a_)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_) == np.iscomplexobj(a_) snake_case_ = np.iscomplexobj(a_) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case_ = False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1E12 while not convergence: # Multiple matrix by the vector. snake_case_ = np.dot(a_ , a_) # Normalize the resulting output vector. snake_case_ = w / np.linalg.norm(a_) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case_ = vector.conj().T if is_complex else vector.T snake_case_ = np.dot(a_ , np.dot(a_ , a_)) # Check convergence. snake_case_ = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case_ = True snake_case_ = lambda_ if is_complex: snake_case_ = np.real(lambda_) return lambda_, vector def __UpperCAmelCase ( ): snake_case_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]) snake_case_ = np.array([41, 4, 20]) snake_case_ = real_input_matrix.astype(np.complexaaa) snake_case_ = np.triu(1J * complex_input_matrix , 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case_ = np.array([41, 4, 20]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case_ = real_input_matrix snake_case_ = real_vector elif problem_type == "complex": snake_case_ = complex_input_matrix snake_case_ = complex_vector # Our implementation. snake_case_ , snake_case_ = power_iteration(a_ , a_) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case_ , snake_case_ = np.linalg.eigh(a_) # Last eigenvalue is the maximum one. snake_case_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_) - np.abs(a_)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
198
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( a_ , a_ , a_ , a_="attention"): snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __UpperCAmelCase ( a_ , a_ , a_ , a_=False): if split_mlp_wi: snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] snake_case_ = (wi_a, wi_a) else: snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wi/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __UpperCAmelCase ( a_ , a_ , a_ , a_): return params[f'''{prefix}/layers_{i}/{layer_name}/scale'''] def __UpperCAmelCase ( a_ , *, a_ , a_): snake_case_ = traverse_util.flatten_dict(variables['target']) snake_case_ = {'/'.join(a_): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case_ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , a_) snake_case_ = collections.OrderedDict() # Shared embeddings. snake_case_ = old['token_embedder/embedding'] # Encoder. for i in range(a_): # Block i, layer 0 (Self Attention). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'encoder' , 'pre_attention_layer_norm') snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(a_ , a_ , 'encoder' , 'attention') snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 1 (MLP). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'encoder' , 'pre_mlp_layer_norm') snake_case_ , snake_case_ = tax_mlp_lookup(a_ , a_ , 'encoder' , a_) snake_case_ = layer_norm if split_mlp_wi: snake_case_ = wi[0].T snake_case_ = wi[1].T else: snake_case_ = wi.T snake_case_ = wo.T snake_case_ = old[ 'encoder/relpos_bias/rel_embedding' ].T snake_case_ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(a_): # Block i, layer 0 (Self Attention). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_self_attention_layer_norm') snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(a_ , a_ , 'decoder' , 'self_attention') snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 1 (Cross Attention). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_cross_attention_layer_norm') snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(a_ , a_ , 'decoder' , 'encoder_decoder_attention') snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 2 (MLP). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_mlp_layer_norm') snake_case_ , snake_case_ = tax_mlp_lookup(a_ , a_ , 'decoder' , a_) snake_case_ = layer_norm if split_mlp_wi: snake_case_ = wi[0].T snake_case_ = wi[1].T else: snake_case_ = wi.T snake_case_ = wo.T snake_case_ = old['decoder/decoder_norm/scale'] snake_case_ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case_ = old['decoder/logits_dense/kernel'].T return new def __UpperCAmelCase ( a_ , a_): snake_case_ = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case_ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case_ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.') snake_case_ = state_dict['shared.weight'] return state_dict def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = checkpoints.load_tax_checkpoint(a_) snake_case_ = convert_tax_to_pytorch(a_ , num_layers=config.num_layers , is_encoder_only=a_) snake_case_ = make_state_dict(a_ , a_) model.load_state_dict(a_ , strict=a_) def __UpperCAmelCase ( a_ , a_ , a_ , a_ = False): snake_case_ = TaConfig.from_json_file(a_) print(f'''Building PyTorch model from configuration: {config}''') # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case_ = TaEncoderModel(a_) else: snake_case_ = TaForConditionalGeneration(a_) # Load weights from tf checkpoint load_tax_weights_in_ta(a_ , a_ , a_ , a_) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(a_) # Verify that we can load the checkpoint. model.from_pretrained(a_) print('Done') if __name__ == "__main__": lowercase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
198
1
import string import numpy def lowerCamelCase( a__ ,a__): return b if a == 0 else greatest_common_divisor(b % a ,a__) class A__ : UpperCAmelCase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase = numpy.vectorize(lambda UpperCamelCase__ : x % 36 ) UpperCAmelCase = numpy.vectorize(UpperCamelCase__ ) def __init__( self : int , _a : numpy.ndarray ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =self.modulus(_a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _SCREAMING_SNAKE_CASE =encrypt_key.shape[0] def __UpperCamelCase ( self : Dict , _a : str ) -> int: """simple docstring""" return self.key_string.index(_a ) def __UpperCamelCase ( self : List[str] , _a : int ) -> str: """simple docstring""" return self.key_string[round(_a )] def __UpperCamelCase ( self : int ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _SCREAMING_SNAKE_CASE =det % len(self.key_string ) _SCREAMING_SNAKE_CASE =len(self.key_string ) if greatest_common_divisor(_a , len(self.key_string ) ) != 1: _SCREAMING_SNAKE_CASE =( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(_a ) def __UpperCamelCase ( self : List[str] , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[char for char in text.upper() if char in self.key_string] _SCREAMING_SNAKE_CASE =chars[-1] while len(_a ) % self.break_key != 0: chars.append(_a ) return "".join(_a ) def __UpperCamelCase ( self : List[str] , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.process_text(text.upper() ) _SCREAMING_SNAKE_CASE ='''''' for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _SCREAMING_SNAKE_CASE =text[i : i + self.break_key] _SCREAMING_SNAKE_CASE =[self.replace_letters(_a ) for char in batch] _SCREAMING_SNAKE_CASE =numpy.array([vec] ).T _SCREAMING_SNAKE_CASE =self.modulus(self.encrypt_key.dot(_a ) ).T.tolist()[ 0 ] _SCREAMING_SNAKE_CASE =''''''.join( self.replace_digits(_a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __UpperCamelCase ( self : Union[str, Any] ) -> numpy.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _SCREAMING_SNAKE_CASE =det % len(self.key_string ) _SCREAMING_SNAKE_CASE =None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _SCREAMING_SNAKE_CASE =i break _SCREAMING_SNAKE_CASE =( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_a ) ) def __UpperCamelCase ( self : str , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.make_decrypt_key() _SCREAMING_SNAKE_CASE =self.process_text(text.upper() ) _SCREAMING_SNAKE_CASE ='''''' for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _SCREAMING_SNAKE_CASE =text[i : i + self.break_key] _SCREAMING_SNAKE_CASE =[self.replace_letters(_a ) for char in batch] _SCREAMING_SNAKE_CASE =numpy.array([vec] ).T _SCREAMING_SNAKE_CASE =self.modulus(decrypt_key.dot(_a ) ).T.tolist()[0] _SCREAMING_SNAKE_CASE =''''''.join( self.replace_digits(_a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =int(input('''Enter the order of the encryption key: ''')) _SCREAMING_SNAKE_CASE =[] print('''Enter each row of the encryption key with space separated integers''') for _ in range(a__): _SCREAMING_SNAKE_CASE =[int(a__) for x in input().split()] hill_matrix.append(a__) _SCREAMING_SNAKE_CASE =HillCipher(numpy.array(a__)) print('''Would you like to encrypt or decrypt some text? (1 or 2)''') _SCREAMING_SNAKE_CASE =input('''\n1. Encrypt\n2. Decrypt\n''') if option == "1": _SCREAMING_SNAKE_CASE =input('''What text would you like to encrypt?: ''') print('''Your encrypted text is:''') print(hc.encrypt(a__)) elif option == "2": _SCREAMING_SNAKE_CASE =input('''What text would you like to decrypt?: ''') print('''Your decrypted text is:''') print(hc.decrypt(a__)) if __name__ == "__main__": import doctest doctest.testmod() main()
716
from collections.abc import Generator def lowerCamelCase( ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =0, 1 while True: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =b, a + b yield b def lowerCamelCase( a__ = 1000): _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =fibonacci_generator() while len(str(next(a__))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
191
0
# Function to print upper half of diamond (pyramid) def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Dict: for i in range(0 , snake_case_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowerCamelCase__ ( snake_case_ : Union[str, Any] ) -> Optional[Any]: for i in range(snake_case_ , 0 , -1 ): for _ in range(snake_case_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowerCamelCase__ ( snake_case_ : str ) -> List[Any]: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(snake_case_ ) # upper half reverse_floyd(snake_case_ ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') snake_case_ = 1 while K: snake_case_ = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) snake_case_ = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
592
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
592
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCamelCase__ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Dict =TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Optional[int] =generator("""Something there""" ) self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": ANY(lowerCAmelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _UpperCamelCase :int =generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{"""generated_text""": ANY(lowerCAmelCase__ )}, {"""generated_text""": ANY(lowerCAmelCase__ )}], [{"""generated_text""": ANY(lowerCAmelCase__ )}, {"""generated_text""": ANY(lowerCAmelCase__ )}], ] , ) _UpperCamelCase :Any =generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{"""generated_text""": ANY(lowerCAmelCase__ )}, {"""generated_text""": ANY(lowerCAmelCase__ )}], [{"""generated_text""": ANY(lowerCAmelCase__ )}, {"""generated_text""": ANY(lowerCAmelCase__ )}], ] , ) with self.assertRaises(lowerCAmelCase__ ): generator(4 ) @require_torch def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Dict =pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _UpperCamelCase :Any =generator("""Something there""" , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": """"""}] ) _UpperCamelCase :int =3 _UpperCamelCase :Union[str, Any] =generator( """Something there""" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) _UpperCamelCase :Tuple =[ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :str =generator("""This is a test""" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _UpperCamelCase :Dict =generator.model.config.eos_token_id _UpperCamelCase :Any ="""<pad>""" _UpperCamelCase :Union[str, Any] =generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self ) -> int: """simple docstring""" _UpperCamelCase :int =pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _UpperCamelCase :List[Any] =generator("""Something there""" , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{"""generated_text""": """"""}] )
512
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class lowerCamelCase__ ( __snake_case ): def __init__( self , **lowerCAmelCase__ ) -> List[Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: """simple docstring""" return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , **lowerCAmelCase__ ) -> Tuple: """simple docstring""" _UpperCamelCase :str ={} if "candidate_labels" in kwargs: _UpperCamelCase :str =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _UpperCamelCase :Dict =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="This is a sound of {}." ) -> Tuple: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCamelCase :List[Any] =requests.get(lowerCAmelCase__ ).content else: with open(lowerCAmelCase__ , """rb""" ) as f: _UpperCamelCase :Optional[int] =f.read() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase :Dict =ffmpeg_read(lowerCAmelCase__ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase__ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _UpperCamelCase :List[str] =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _UpperCamelCase :Optional[Any] =candidate_labels _UpperCamelCase :Union[str, Any] =[hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] _UpperCamelCase :Tuple =self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) _UpperCamelCase :Tuple =[text_inputs] return inputs def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Dict: """simple docstring""" _UpperCamelCase :Optional[int] =model_inputs.pop("""candidate_labels""" ) _UpperCamelCase :Any =model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): _UpperCamelCase :Union[str, Any] =text_inputs[0] else: # Batching case. _UpperCamelCase :List[Any] =text_inputs[0][0] _UpperCamelCase :Any =self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _UpperCamelCase ( self , lowerCAmelCase__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Optional[int] =model_outputs.pop("""candidate_labels""" ) _UpperCamelCase :Tuple =model_outputs["""logits"""][0] if self.framework == "pt": _UpperCamelCase :Optional[int] =logits.softmax(dim=0 ) _UpperCamelCase :int =probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _UpperCamelCase :int =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
512
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = "RegNetConfig" # Base docstring _lowerCAmelCase = "facebook/regnet-y-040" _lowerCAmelCase = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowerCAmelCase = "facebook/regnet-y-040" _lowerCAmelCase = "tabby, tabby cat" _lowerCAmelCase = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = 3 , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = "relu" , **_lowerCamelCase , )-> List[Any]: super().__init__(**_lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase__ = tf.keras.layers.ConvaD( filters=_lowerCamelCase , kernel_size=_lowerCamelCase , strides=_lowerCamelCase , padding='''VALID''' , groups=_lowerCamelCase , use_bias=_lowerCamelCase , name='''convolution''' , ) lowercase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) lowercase__ = ACTaFN[activation] if activation is not None else tf.identity def snake_case_( self , _lowerCamelCase )-> Dict: lowercase__ = self.convolution(self.padding(_lowerCamelCase ) ) lowercase__ = self.normalization(_lowerCamelCase ) lowercase__ = self.activation(_lowerCamelCase ) return hidden_state class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , **_lowerCamelCase )-> Optional[int]: super().__init__(**_lowerCamelCase ) lowercase__ = config.num_channels lowercase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def snake_case_( self , _lowerCamelCase )-> Tuple: lowercase__ = shape_list(_lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase__ = tf.transpose(_lowerCamelCase , perm=(0, 2, 3, 1) ) lowercase__ = self.embedder(_lowerCamelCase ) return hidden_state class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = 2 , **_lowerCamelCase )-> List[str]: super().__init__(**_lowerCamelCase ) lowercase__ = tf.keras.layers.ConvaD( filters=_lowerCamelCase , kernel_size=1 , strides=_lowerCamelCase , use_bias=_lowerCamelCase , name='''convolution''' ) lowercase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = False )-> tf.Tensor: return self.normalization(self.convolution(_lowerCamelCase ) , training=_lowerCamelCase ) class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )-> Optional[int]: super().__init__(**_lowerCamelCase ) lowercase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCamelCase , name='''pooler''' ) lowercase__ = [ tf.keras.layers.ConvaD(filters=_lowerCamelCase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=_lowerCamelCase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def snake_case_( self , _lowerCamelCase )-> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase__ = self.pooler(_lowerCamelCase ) for layer_module in self.attention: lowercase__ = layer_module(_lowerCamelCase ) lowercase__ = hidden_state * pooled return hidden_state class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , **_lowerCamelCase )-> Tuple: super().__init__(**_lowerCamelCase ) lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( TFRegNetShortCut(_lowerCamelCase , stride=_lowerCamelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase__ = [ TFRegNetConvLayer(_lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(_lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase , name='''layer.2''' ), ] lowercase__ = ACTaFN[config.hidden_act] def snake_case_( self , _lowerCamelCase )-> List[Any]: lowercase__ = hidden_state for layer_module in self.layers: lowercase__ = layer_module(_lowerCamelCase ) lowercase__ = self.shortcut(_lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(_lowerCamelCase ) return hidden_state class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , **_lowerCamelCase )-> List[str]: super().__init__(**_lowerCamelCase ) lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( TFRegNetShortCut(_lowerCamelCase , stride=_lowerCamelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) lowercase__ = [ TFRegNetConvLayer(_lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(_lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(_lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase , name='''layer.3''' ), ] lowercase__ = ACTaFN[config.hidden_act] def snake_case_( self , _lowerCamelCase )-> Dict: lowercase__ = hidden_state for layer_module in self.layers: lowercase__ = layer_module(_lowerCamelCase ) lowercase__ = self.shortcut(_lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(_lowerCamelCase ) return hidden_state class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 , _lowerCamelCase = 2 , **_lowerCamelCase )-> Union[str, Any]: super().__init__(**_lowerCamelCase ) lowercase__ = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer lowercase__ = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , name='''layers.0''' ), *[layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def snake_case_( self , _lowerCamelCase )-> Any: for layer_module in self.layers: lowercase__ = layer_module(_lowerCamelCase ) return hidden_state class __A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , **_lowerCamelCase )-> List[Any]: super().__init__(**_lowerCamelCase ) lowercase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) lowercase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase , name=f'''stages.{i+1}''' ) ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True )-> TFBaseModelOutputWithNoAttention: lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(_lowerCamelCase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase ) @keras_serializable class __A ( tf.keras.layers.Layer ): """simple docstring""" A_ = RegNetConfig def __init__( self , _lowerCamelCase , **_lowerCamelCase )-> List[str]: super().__init__(**_lowerCamelCase ) lowercase__ = config lowercase__ = TFRegNetEmbeddings(_lowerCamelCase , name='''embedder''' ) lowercase__ = TFRegNetEncoder(_lowerCamelCase , name='''encoder''' ) lowercase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCamelCase , name='''pooler''' ) @unpack_inputs def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(_lowerCamelCase , training=_lowerCamelCase ) lowercase__ = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase , training=_lowerCamelCase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(_lowerCamelCase ) # Change to NCHW output format have uniformity in the modules lowercase__ = tf.transpose(_lowerCamelCase , perm=(0, 3, 1, 2) ) lowercase__ = tf.transpose(_lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase__ = tuple([tf.transpose(_lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __A ( a ): """simple docstring""" A_ = RegNetConfig A_ = 'regnet' A_ = 'pixel_values' @property def snake_case_( self )-> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _lowerCAmelCase = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a , ) class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: super().__init__(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) lowercase__ = TFRegNetMainLayer(_lowerCamelCase , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet( pixel_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase , training=_lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a , ) class __A ( a , a ): """simple docstring""" def __init__( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )-> Optional[Any]: super().__init__(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) lowercase__ = config.num_labels lowercase__ = TFRegNetMainLayer(_lowerCamelCase , name='''regnet''' ) # classification head lowercase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase , training=_lowerCamelCase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier[0](_lowerCamelCase ) lowercase__ = self.classifier[1](_lowerCamelCase ) lowercase__ = None if labels is None else self.hf_compute_loss(labels=_lowerCamelCase , logits=_lowerCamelCase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states )
161
'''simple docstring''' def _lowerCAmelCase ( lowercase : float , lowercase : float ) ->float: """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
161
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : str = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __snake_case (_a ): lowerCAmelCase__ = "pix2struct_text_model" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any]=5_0244 , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : int=64 , _UpperCAmelCase : Optional[int]=2048 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Optional[int]=128 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=1E-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : List[Any]="gelu_new" , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : str=False , _UpperCAmelCase : List[Any]=True , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : List[str] = d_kv _lowerCAmelCase : Any = d_ff _lowerCAmelCase : Optional[Any] = num_layers _lowerCAmelCase : List[str] = num_heads _lowerCAmelCase : List[Any] = relative_attention_num_buckets _lowerCAmelCase : List[str] = relative_attention_max_distance _lowerCAmelCase : str = dropout_rate _lowerCAmelCase : List[Any] = layer_norm_epsilon _lowerCAmelCase : str = initializer_factor _lowerCAmelCase : int = use_cache _lowerCAmelCase : str = eos_token_id _lowerCAmelCase : List[str] = decoder_start_token_id # for backwards compatibility _lowerCAmelCase : Union[str, Any] = dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase : int = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = "pix2struct_vision_model" def __init__( self : int , _UpperCAmelCase : Any=768 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2048 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : int="gelu_new" , _UpperCAmelCase : Dict=1E-6 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=1E-10 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Union[str, Any]=4096 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Any=128 , **_UpperCAmelCase : int , ) -> List[str]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : str = patch_embed_hidden_size _lowerCAmelCase : str = d_ff _lowerCAmelCase : int = dropout_rate _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Tuple = initializer_factor _lowerCAmelCase : Optional[Any] = attention_dropout _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Any = dense_act_fn _lowerCAmelCase : str = seq_len _lowerCAmelCase : List[str] = relative_attention_num_buckets _lowerCAmelCase : List[Any] = relative_attention_max_distance _lowerCAmelCase : List[Any] = d_kv @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Dict ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = "pix2struct" lowerCAmelCase__ = True def __init__( self : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : str=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : int , ) -> int: '''simple docstring''' super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) if text_config is None: _lowerCAmelCase : Tuple = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _lowerCAmelCase : int = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _lowerCAmelCase : Union[str, Any] = PixaStructTextConfig(**_UpperCAmelCase ) _lowerCAmelCase : int = PixaStructVisionConfig(**_UpperCAmelCase ) _lowerCAmelCase : int = self.text_config.decoder_start_token_id _lowerCAmelCase : str = self.text_config.pad_token_id _lowerCAmelCase : Tuple = self.text_config.eos_token_id _lowerCAmelCase : Optional[Any] = initializer_factor _lowerCAmelCase : str = initializer_range _lowerCAmelCase : int = self.initializer_range _lowerCAmelCase : int = self.initializer_range _lowerCAmelCase : Union[str, Any] = is_vqa @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCAmelCase : PixaStructTextConfig , _UpperCAmelCase : PixaStructVisionConfig , **_UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : List[str] = self.text_config.to_dict() _lowerCAmelCase : int = self.vision_config.to_dict() _lowerCAmelCase : Dict = self.__class__.model_type return output
196
from __future__ import annotations from decimal import Decimal from numpy import array def _UpperCAmelCase (UpperCamelCase_ : list[list[float]] ): '''simple docstring''' _lowerCAmelCase : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _lowerCAmelCase : Optional[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _lowerCAmelCase : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] _lowerCAmelCase , _lowerCAmelCase : Any = matrix[1][1], matrix[0][0] _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _lowerCAmelCase : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _lowerCAmelCase : Optional[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _lowerCAmelCase : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _lowerCAmelCase : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _lowerCAmelCase : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _lowerCAmelCase : List[str] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _lowerCAmelCase : Tuple = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _lowerCAmelCase : Any = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _lowerCAmelCase : int = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _lowerCAmelCase : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _lowerCAmelCase : Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _lowerCAmelCase : List[str] = array(UpperCamelCase_ ) for i in range(3 ): for j in range(3 ): _lowerCAmelCase : List[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _lowerCAmelCase : Tuple = array(UpperCamelCase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCamelCase_ ) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
196
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) SCREAMING_SNAKE_CASE__ : str = 0.01 with locka.acquire(): with pytest.raises(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[str] = time.time() locka.acquire(__lowerCAmelCase ) assert time.time() - _start > timeout def _lowercase ( __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : List[str] = """a""" * 1000 + """.lock""" SCREAMING_SNAKE_CASE__ : Dict = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 SCREAMING_SNAKE_CASE__ : Union[str, Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCAmelCase ): locka.acquire(0 )
680
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a :str = logging.getLogger(__name__) def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=__lowerCAmelCase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=__lowerCAmelCase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=__lowerCAmelCase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=__lowerCAmelCase , default="""data/dump""" , help="""The dump file prefix.""" ) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE__ : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` SCREAMING_SNAKE_CASE__ : Dict = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE__ : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: SCREAMING_SNAKE_CASE__ : int = fp.readlines() logger.info("""Start encoding""" ) logger.info(F'''{len(__lowerCAmelCase )} examples to process.''' ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1_0000 SCREAMING_SNAKE_CASE__ : Dict = time.time() for text in data: SCREAMING_SNAKE_CASE__ : Dict = F'''{bos} {text.strip()} {sep}''' SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) rslt.append(__lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE__ : str = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) SCREAMING_SNAKE_CASE__ : Tuple = time.time() logger.info("""Finished binarization""" ) logger.info(F'''{len(__lowerCAmelCase )} examples processed.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' SCREAMING_SNAKE_CASE__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE__ : Tuple = [np.uintaa(__lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.intaa(__lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(__lowerCAmelCase , """wb""" ) as handle: pickle.dump(rslt_ , __lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
680
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = "beit" def __init__( self : List[Any] , lowerCAmelCase : str=8192 , lowerCAmelCase : Dict=768 , lowerCAmelCase : int=12 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Optional[Any]=224 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : str=3 , lowerCAmelCase : str=False , lowerCAmelCase : str=False , lowerCAmelCase : int=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : int=True , lowerCAmelCase : Any=[3, 5, 7, 11] , lowerCAmelCase : Union[str, Any]=[1, 2, 3, 6] , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=0.4 , lowerCAmelCase : Optional[Any]=256 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Any=False , lowerCAmelCase : Any=255 , **lowerCAmelCase : Optional[Any] , )-> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = use_mask_token UpperCAmelCase = use_absolute_position_embeddings UpperCAmelCase = use_relative_position_bias UpperCAmelCase = use_shared_relative_position_bias UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase = out_indices UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase = use_auxiliary_head UpperCAmelCase = auxiliary_loss_weight UpperCAmelCase = auxiliary_channels UpperCAmelCase = auxiliary_num_convs UpperCAmelCase = auxiliary_concat_input UpperCAmelCase = semantic_loss_ignore_index class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = version.parse("1.11" ) @property def a__( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__( self : Optional[int] )-> float: """simple docstring""" return 1E-4
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase ( unittest.TestCase ): def __init__( self :Any , lowercase :List[str] , lowercase :List[str]=1_3 , lowercase :List[Any]=7 , lowercase :Tuple=True , lowercase :Optional[Any]=True , lowercase :Dict=True , lowercase :str=True , lowercase :Dict=9_9 , lowercase :Union[str, Any]=3_2 , lowercase :str=5 , lowercase :List[str]=4 , lowercase :Tuple=3_7 , lowercase :int="gelu" , lowercase :Any=0.1 , lowercase :str=0.1 , lowercase :List[str]=5_1_2 , lowercase :List[Any]=1_6 , lowercase :int=2 , lowercase :Optional[int]=0.02 , lowercase :List[str]=4 , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_choices def snake_case__ ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_attention_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase ( __lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : str = True UpperCamelCase_ : Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self :Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def snake_case__ ( self :Any ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=lowercase ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class lowerCamelCase ( unittest.TestCase ): @slow def snake_case__ ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE = model(lowercase )[0] SCREAMING_SNAKE_CASE = 5_0_0_0_0 SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase ) SCREAMING_SNAKE_CASE = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
201
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( __lowerCamelCase ): def __init__( self :int , lowercase :Optional[Any] , lowercase :Optional[int]=1_3 , lowercase :Any=7 , lowercase :Tuple=True , lowercase :Optional[int]=True , lowercase :Any=False , lowercase :Any=True , lowercase :Dict=9_9 , lowercase :Dict=3_2 , lowercase :Any=5 , lowercase :Optional[Any]=4 , lowercase :List[str]=6_4 , lowercase :Optional[int]="gelu" , lowercase :int=0.1 , lowercase :str=0.1 , lowercase :List[str]=5_1_2 , lowercase :int=1_6 , lowercase :Any=2 , lowercase :Union[str, Any]=0.02 , lowercase :Optional[int]=3 , lowercase :Optional[Any]=4 , lowercase :Tuple=None , lowercase :int=2 , lowercase :Tuple=2 , lowercase :List[Any]=2 , lowercase :Optional[int]=2 , lowercase :Tuple=4 , lowercase :int=1 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = q_groups SCREAMING_SNAKE_CASE = k_groups SCREAMING_SNAKE_CASE = v_groups SCREAMING_SNAKE_CASE = post_attention_groups SCREAMING_SNAKE_CASE = intermediate_groups SCREAMING_SNAKE_CASE = output_groups def snake_case__ ( self :str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self :str ) -> Dict: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def snake_case__ ( self :Optional[Any] , lowercase :Optional[Any] , lowercase :int , lowercase :Any , lowercase :List[str] , lowercase :Optional[Any] , lowercase :List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertModel(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , lowercase ) SCREAMING_SNAKE_CASE = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self :Dict , lowercase :Dict , lowercase :List[Any] , lowercase :str , lowercase :Union[str, Any] , lowercase :Dict , lowercase :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self :List[str] , lowercase :Optional[Any] , lowercase :Optional[int] , lowercase :str , lowercase :int , lowercase :Optional[Any] , lowercase :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self :Any , lowercase :Optional[Any] , lowercase :List[str] , lowercase :int , lowercase :Any , lowercase :Optional[int] , lowercase :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self :str , lowercase :List[Any] , lowercase :List[str] , lowercase :Optional[int] , lowercase :Tuple , lowercase :Tuple , lowercase :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self :int , lowercase :List[str] , lowercase :List[Any] , lowercase :Tuple , lowercase :str , lowercase :Optional[Any] , lowercase :Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = SqueezeBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : int = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : int = True UpperCamelCase_ : List[Any] = False def snake_case__ ( self :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowercase , dim=3_7 ) def snake_case__ ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase ) def snake_case__ ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase ) def snake_case__ ( self :List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase ) def snake_case__ ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase ) def snake_case__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase ) def snake_case__ ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase ) @slow def snake_case__ ( self :Dict ) -> str: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SqueezeBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def snake_case__ ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE = model(lowercase )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase ) SCREAMING_SNAKE_CASE = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-4 ) )
201
1
"""simple docstring""" _lowercase : Optional[Any] = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) _lowercase : int = frozenset(['prompt', 'negative_prompt']) _lowercase : Tuple = frozenset([]) _lowercase : Tuple = frozenset(['image']) _lowercase : Optional[int] = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) _lowercase : Tuple = frozenset(['image']) _lowercase : int = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) _lowercase : Optional[Any] = frozenset(['prompt', 'image', 'negative_prompt']) _lowercase : Optional[Any] = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) _lowercase : Optional[Any] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) _lowercase : List[Any] = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) _lowercase : Union[str, Any] = frozenset(['image', 'mask_image']) _lowercase : List[str] = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) _lowercase : List[Any] = frozenset(['example_image', 'image', 'mask_image']) _lowercase : Union[str, Any] = frozenset(['class_labels']) _lowercase : Optional[int] = frozenset(['class_labels']) _lowercase : Optional[int] = frozenset(['batch_size']) _lowercase : Optional[Any] = frozenset([]) _lowercase : Any = frozenset(['batch_size']) _lowercase : int = frozenset([]) _lowercase : Optional[int] = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) _lowercase : str = frozenset(['prompt', 'negative_prompt']) _lowercase : Union[str, Any] = frozenset(['input_tokens']) _lowercase : int = frozenset(['input_tokens'])
397
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int] ): __UpperCAmelCase = len(snake_case_ ) // 2 # choose the middle 3 elements __UpperCAmelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
397
1
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return math.sqrt(sum(pow(a - b, 2) for a, b in zip(snake_case, snake_case))) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): if dataset.ndim != value_array.ndim: __snake_case = ( '''Wrong input data\'s dimensions... ''' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(snake_case) try: if dataset.shape[1] != value_array.shape[1]: __snake_case = ( '''Wrong input data\'s shape... ''' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(snake_case) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''') if dataset.dtype != value_array.dtype: __snake_case = ( '''Input data have different datatype... ''' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(snake_case) __snake_case = [] for value in value_array: __snake_case = euclidean(snake_case, dataset[0]) __snake_case = dataset[0].tolist() for dataset_value in dataset[1:]: __snake_case = euclidean(snake_case, snake_case) if dist > temp_dist: __snake_case = temp_dist __snake_case = dataset_value.tolist() answer.append([vector, dist]) return answer def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return np.dot(snake_case, snake_case) / (norm(snake_case) * norm(snake_case)) if __name__ == "__main__": import doctest doctest.testmod()
564
"""simple docstring""" from math import sqrt def SCREAMING_SNAKE_CASE ( snake_case = 1_00_00_00): __snake_case = 0 __snake_case = 0 __snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2, 2 * max_cuboid_size + 1): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2).is_integer(): num_cuboids += ( min(snake_case, sum_shortest_sides // 2) - max(1, sum_shortest_sides - max_cuboid_size) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
564
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowerCamelCase =logging.get_logger(__name__) class _lowerCamelCase ( __lowerCamelCase ): """simple docstring""" def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
285
from math import factorial, pi def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 30 ): if not isinstance(UpperCAmelCase_ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowercase : Tuple = float(UpperCAmelCase_ ) lowercase : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 30 ): if not isinstance(UpperCAmelCase_ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowercase : Optional[Any] = float(UpperCAmelCase_ ) lowercase : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
583
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A_ ( __UpperCamelCase ): '''simple docstring''' @slow @require_torch def _snake_case ( self: Dict ): __lowerCamelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __lowerCamelCase : Optional[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) __lowerCamelCase : Tuple = bertabert.config.encoder.vocab_size __lowerCamelCase : Optional[int] = tokenizer.sep_token_id __lowerCamelCase : Dict = tokenizer.cls_token_id __lowerCamelCase : Dict = 128 __lowerCamelCase : Any = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __lowerCamelCase : Union[str, Any] = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __lowerCamelCase : Union[str, Any] = train_dataset.select(range(32 ) ) __lowerCamelCase : Optional[int] = val_dataset.select(range(16 ) ) __lowerCamelCase : str = 4 def _map_to_encoder_decoder_inputs(a: int ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase : Optional[int] = tokenizer(batch['article'] , padding='max_length' , truncation=a , max_length=512 ) __lowerCamelCase : Union[str, Any] = tokenizer(batch['highlights'] , padding='max_length' , truncation=a , max_length=128 ) __lowerCamelCase : List[str] = inputs.input_ids __lowerCamelCase : Tuple = inputs.attention_mask __lowerCamelCase : Optional[Any] = outputs.input_ids __lowerCamelCase : int = outputs.input_ids.copy() __lowerCamelCase : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __lowerCamelCase : Optional[int] = outputs.attention_mask assert all(len(a ) == 512 for x in inputs.input_ids ) assert all(len(a ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a: Any ): __lowerCamelCase : List[str] = pred.label_ids __lowerCamelCase : Tuple = pred.predictions # all unnecessary tokens are removed __lowerCamelCase : Optional[int] = tokenizer.batch_decode(a , skip_special_tokens=a ) __lowerCamelCase : Tuple = tokenizer.batch_decode(a , skip_special_tokens=a ) __lowerCamelCase : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a ) )] ) / len(a ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase : Optional[int] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __lowerCamelCase : Dict = val_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __lowerCamelCase : str = self.get_auto_remove_tmp_dir() __lowerCamelCase : Dict = SeqaSeqTrainingArguments( output_dir=a , per_device_train_batch_size=a , per_device_eval_batch_size=a , predict_with_generate=a , evaluation_strategy='steps' , do_train=a , do_eval=a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase : Any = SeqaSeqTrainer( model=a , args=a , compute_metrics=_compute_metrics , train_dataset=a , eval_dataset=a , tokenizer=a , ) # start training trainer.train()
230
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
230
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase : str = 'http://www.mocksite.com/file1.txt' __UpperCamelCase : Dict = '"text": ["foo", "foo"]' __UpperCamelCase : Tuple = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowercase__ : UpperCamelCase_ = 200 UpperCamelCase_ = {'Content-Length': '100'} UpperCamelCase_ = {} def __A ( self : List[str] , **UpperCamelCase__ : Any ): '''simple docstring''' return [bytes(UpperCamelCase__ , '''utf-8''' )] def A ( *_lowercase , **_lowercase ): return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def A ( _lowercase , _lowercase , _lowercase ): import requests monkeypatch.setattr(UpperCAmelCase__ , '''request''' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = URL if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : List[str] = url elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = [url] elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Tuple = {'''train''': url} SCREAMING_SNAKE_CASE : Optional[int] = '''dummy''' SCREAMING_SNAKE_CASE : int = '''downloads''' SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path SCREAMING_SNAKE_CASE : Optional[int] = DownloadConfig( cache_dir=os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , use_etag=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : str = DownloadManager(dataset_name=UpperCAmelCase__ , download_config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = [downloaded_paths] SCREAMING_SNAKE_CASE : int = [urls] elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): assert "train" in downloaded_paths.keys() SCREAMING_SNAKE_CASE : Any = downloaded_paths.values() SCREAMING_SNAKE_CASE : int = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] SCREAMING_SNAKE_CASE : Tuple = Path(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() SCREAMING_SNAKE_CASE : List[str] = downloaded_path.read_text() assert content == CONTENT SCREAMING_SNAKE_CASE : Optional[Any] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() SCREAMING_SNAKE_CASE : List[str] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = str(UpperCAmelCase__ ) if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = filename elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = [filename] elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = {'''train''': filename} SCREAMING_SNAKE_CASE : List[str] = '''dummy''' SCREAMING_SNAKE_CASE : Dict = xz_file.parent SCREAMING_SNAKE_CASE : int = '''extracted''' SCREAMING_SNAKE_CASE : Tuple = DownloadConfig( cache_dir=UpperCAmelCase__ , use_etag=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = DownloadManager(dataset_name=UpperCAmelCase__ , download_config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.extract(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Dict = [extracted_paths] SCREAMING_SNAKE_CASE : int = [paths] elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): assert "train" in extracted_paths.keys() SCREAMING_SNAKE_CASE : Tuple = extracted_paths.values() SCREAMING_SNAKE_CASE : Dict = paths.values() assert extracted_paths for extracted_path, input_path in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] SCREAMING_SNAKE_CASE : Union[str, Any] = Path(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(UpperCAmelCase__ , etag=UpperCAmelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() SCREAMING_SNAKE_CASE : List[str] = extracted_path.read_text() SCREAMING_SNAKE_CASE : Tuple = text_file.read_text() assert extracted_file_content == expected_file_content def A ( _lowercase , _lowercase ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(UpperCAmelCase__ , start=1 ): SCREAMING_SNAKE_CASE : List[str] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = request.getfixturevalue(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(UpperCAmelCase__ ) , start=1 ): _test_jsonl(UpperCAmelCase__ , UpperCAmelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[str] = request.getfixturevalue(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(UpperCAmelCase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(UpperCAmelCase__ ) , start=1 ): _test_jsonl(UpperCAmelCase__ , UpperCAmelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def A ( _lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(UpperCAmelCase__ ) , start=1 ): assert os.path.basename(UpperCAmelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
248
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase_ ( ): lowercase_ = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" lowercase_ = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = dct.pop(UpperCAmelCase__ ) lowercase_ = val def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase_ = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase__ , requires_grad=UpperCAmelCase__ ), v_bias) ) lowercase_ = qkv_bias def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 3_6_4 if """coco""" in model_name else 2_2_4 lowercase_ = InstructBlipVisionConfig(image_size=UpperCAmelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase_ = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase_ = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase_ = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: lowercase_ = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase_ = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() lowercase_ = InstructBlipConfig(vision_config=UpperCAmelCase__ , text_config=UpperCAmelCase__ , qformer_config=UpperCAmelCase__ ) return config, image_size @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=False ): lowercase_ = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: lowercase_ = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase_ = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) lowercase_ , lowercase_ = get_blipa_config(UpperCAmelCase__ ) lowercase_ = InstructBlipForConditionalGeneration(UpperCAmelCase__ ).eval() lowercase_ = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } lowercase_ , lowercase_ = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowercase_ = """cuda:1""" if torch.cuda.is_available() else """cpu""" lowercase_ = """cuda:2""" if torch.cuda.is_available() else """cpu""" lowercase_ , lowercase_ , lowercase_ = load_model_and_preprocess( name=UpperCAmelCase__ , model_type=UpperCAmelCase__ , is_eval=UpperCAmelCase__ , device=UpperCAmelCase__ ) original_model.eval() print("""Done!""" ) # update state dict keys lowercase_ = original_model.state_dict() lowercase_ = create_rename_keys(UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase_ = state_dict.pop(UpperCAmelCase__ ) if key.startswith("""Qformer.bert""" ): lowercase_ = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowercase_ = key.replace("""self""" , """attention""" ) if "llm_proj" in key: lowercase_ = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: lowercase_ = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): lowercase_ = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): lowercase_ = key.replace("""t5""" , """language""" ) lowercase_ = val # read in qv biases read_in_q_v_bias(UpperCAmelCase__ , UpperCAmelCase__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) lowercase_ = load_demo_image() lowercase_ = """What is unusual about this image?""" # create processor lowercase_ = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ ) lowercase_ = InstructBlipProcessor( image_processor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , qformer_tokenizer=UpperCAmelCase__ , ) lowercase_ = processor(images=UpperCAmelCase__ , text=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # make sure processor creates exact same pixel values lowercase_ = vis_processors["""eval"""](UpperCAmelCase__ ).unsqueeze(0 ).to(UpperCAmelCase__ ) lowercase_ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) hf_model.to(UpperCAmelCase__ ) with torch.no_grad(): if "vicuna" in model_name: lowercase_ = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits lowercase_ = hf_model(**UpperCAmelCase__ ).logits else: lowercase_ = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits lowercase_ = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(UpperCAmelCase__ ) lowercase_ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) lowercase_ = hf_model(**UpperCAmelCase__ , labels=UpperCAmelCase__ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase_ = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , UpperCAmelCase__ , atol=UpperCAmelCase__ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) lowercase_ = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) lowercase_ = hf_model.generate( **UpperCAmelCase__ , do_sample=UpperCAmelCase__ , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase_ = 2 print("""Original generation:""" , UpperCAmelCase__ ) lowercase_ = processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) lowercase_ = [text.strip() for text in output_text] print("""HF generation:""" , UpperCAmelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase__ ) hf_model.save_pretrained(UpperCAmelCase__ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() a = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
412
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : str ={ '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict =['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] =[ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] =[ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case_ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
205
class a__ : def __init__( self ) -> str: __A = 0 __A = 0 __A = {} def _lowerCamelCase ( self , lowercase__ ) -> List[Any]: if vertex not in self.adjacency: __A = {} self.num_vertices += 1 def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: self.add_vertex(lowercase__ ) self.add_vertex(lowercase__ ) if head == tail: return __A = weight __A = weight def _lowerCamelCase ( self ) -> List[str]: __A = self.get_edges() for edge in edges: __A , __A , __A = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase__ ) ): __A = list(edges[i] ) edges.sort(key=lambda lowercase__ : e[2] ) for i in range(len(lowercase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __A = edges[i][2] + 1 for edge in edges: __A , __A , __A = edge __A = weight __A = weight def __str__( self ) -> Union[str, Any]: __A = "" for tail in self.adjacency: for head in self.adjacency[tail]: __A = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip("\n" ) def _lowerCamelCase ( self ) -> Union[str, Any]: __A = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _lowerCamelCase ( self ) -> Tuple: return self.adjacency.keys() @staticmethod def _lowerCamelCase ( lowercase__=None , lowercase__=None ) -> Any: __A = Graph() if vertices is None: __A = [] if edges is None: __A = [] for vertex in vertices: g.add_vertex(lowercase__ ) for edge in edges: g.add_edge(*lowercase__ ) return g class a__ : def __init__( self ) -> List[str]: __A = {} __A = {} def __len__( self ) -> Union[str, Any]: return len(self.parent ) def _lowerCamelCase ( self , lowercase__ ) -> Any: if item in self.parent: return self.find(lowercase__ ) __A = item __A = 0 return item def _lowerCamelCase ( self , lowercase__ ) -> str: if item not in self.parent: return self.make_set(lowercase__ ) if item != self.parent[item]: __A = self.find(self.parent[item] ) return self.parent[item] def _lowerCamelCase ( self , lowercase__ , lowercase__ ) -> List[Any]: __A = self.find(lowercase__ ) __A = self.find(lowercase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __A = roota return roota if self.rank[roota] < self.rank[roota]: __A = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __A = roota return roota return None @staticmethod def _lowerCamelCase ( lowercase__ ) -> Any: __A = graph.num_vertices __A = Graph.UnionFind() __A = [] while num_components > 1: __A = {} for vertex in graph.get_vertices(): __A = -1 __A = graph.get_edges() for edge in edges: __A , __A , __A = edge edges.remove((tail, head, weight) ) for edge in edges: __A , __A , __A = edge __A = union_find.find(lowercase__ ) __A = union_find.find(lowercase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __A = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __A = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __A , __A , __A = cheap_edge[vertex] if union_find.find(lowercase__ ) != union_find.find(lowercase__ ): union_find.union(lowercase__ , lowercase__ ) mst_edges.append(cheap_edge[vertex] ) __A = num_components - 1 __A = Graph.build(edges=lowercase__ ) return mst
205
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A__ ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase__ = Features({"""image""": Image()} ) lowerCamelCase__ = Features({"""labels""": ClassLabel} ) lowerCamelCase__ = "image" lowerCamelCase__ = "labels" def A ( self : Optional[Any] , __snake_case : str ) -> Tuple: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase : int = copy.deepcopy(self ) UpperCAmelCase : List[str] = self.label_schema.copy() UpperCAmelCase : Tuple = features[self.label_column] UpperCAmelCase : List[Any] = label_schema return task_template @property def A ( self : Optional[Any] ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
127
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : str ) -> int: if not head: return True # split the list to two parts UpperCAmelCase , UpperCAmelCase : str = head.next, head while fast and fast.next: UpperCAmelCase : Optional[Any] = fast.next.next UpperCAmelCase : Dict = slow.next UpperCAmelCase : List[Any] = slow.next UpperCAmelCase : int = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase : Optional[Any] = None while second: UpperCAmelCase : Any = second.next UpperCAmelCase : Union[str, Any] = node UpperCAmelCase : List[str] = second UpperCAmelCase : List[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase : List[Any] = node.next UpperCAmelCase : Union[str, Any] = head.next return True def snake_case_ ( _lowerCAmelCase : str ) -> Tuple: if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase : Any = head while fast and fast.next: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase : List[str] = [slow.val] while slow.next: UpperCAmelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase : int = cur.next return True def snake_case_ ( _lowerCAmelCase : List[str] ) -> Optional[Any]: if not head or not head.next: return True UpperCAmelCase : List[str] = {} UpperCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(_lowerCAmelCase ) else: UpperCAmelCase : List[str] = [pos] UpperCAmelCase : Dict = head.next pos += 1 UpperCAmelCase : Optional[Any] = pos - 1 UpperCAmelCase : Dict = 0 for v in d.values(): if len(_lowerCAmelCase ) % 2 != 0: middle += 1 else: UpperCAmelCase : int = 0 for i in range(0 , len(_lowerCAmelCase ) ): if v[i] + v[len(_lowerCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
127
1
'''simple docstring''' from __future__ import annotations from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = num_of_nodes SCREAMING_SNAKE_CASE : list[list[int]] = [] SCREAMING_SNAKE_CASE : dict[int, int] = {} def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE : List[Any] = self.find_component(A ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE : int = v_node component_size[v_node] += component_size[u_node] self.set_component(A ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE : Tuple = self.find_component(A ) component_size[u_node] += component_size[v_node] self.set_component(A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = edge SCREAMING_SNAKE_CASE : int = self.m_component[u] SCREAMING_SNAKE_CASE : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE : List[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(A, A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = edge SCREAMING_SNAKE_CASE : List[str] = self.m_component[u] SCREAMING_SNAKE_CASE : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(A, A, A ) print(F"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 SCREAMING_SNAKE_CASE : List[str] = [-1] * self.m_num_of_nodes print(F"The total weight of the minimal spanning tree is: {mst_weight}" ) def lowercase__( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
508
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=64, A=3, A=3, A=2, A=1, A=16, A=[128, 256, 384], A=[4, 6, 8], A=[2, 3, 4], A=[16, 16, 16], A=0, A=[2, 2, 2], A=[2, 2, 2], A=0.02, A=True, A=True, A=2, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Tuple = kernel_size SCREAMING_SNAKE_CASE : Tuple = stride SCREAMING_SNAKE_CASE : Union[str, Any] = padding SCREAMING_SNAKE_CASE : int = hidden_sizes SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = depths SCREAMING_SNAKE_CASE : int = key_dim SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Tuple = attention_ratio SCREAMING_SNAKE_CASE : Tuple = mlp_ratio SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = LevitModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(A ) SCREAMING_SNAKE_CASE : Tuple = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = LevitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Any = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A : Tuple = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A : Any = False A : Union[str, Any] = False A : int = False A : int = False A : int = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(A ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Tuple = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = len(self.model_tester.depths ) + 1 self.assertEqual(len(A ), A ) SCREAMING_SNAKE_CASE : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(A, A, A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = super()._prepare_for_class(A, A, return_labels=A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Any = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : List[str] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : int = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Dict = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE : str = problem_type['title'] SCREAMING_SNAKE_CASE : int = problem_type['num_labels'] SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(A, A, return_labels=A ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : Optional[int] = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: SCREAMING_SNAKE_CASE : str = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = LevitModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
508
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowerCAmelCase__ :List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowerCAmelCase__ :List[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowerCAmelCase__ :str = shift_tokens_right(_lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCAmelCase__ :Optional[Any] = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits lowerCAmelCase__ :Dict = optax.softmax_cross_entropy(_lowerCAmelCase , onehot(_lowerCAmelCase , logits.shape[-1] ) ).mean() lowerCAmelCase__ :List[Any] = -(labels.shape[-1] * loss.item()) lowerCAmelCase__ :List[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
145
from __future__ import annotations import math def snake_case__ ( UpperCAmelCase : int ): if num <= 0: lowerCAmelCase__ :Optional[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(UpperCAmelCase ) lowerCAmelCase__ :int = [True] * (num + 1) lowerCAmelCase__ :int = [] lowerCAmelCase__ :List[Any] = 2 lowerCAmelCase__ :List[Any] = int(math.sqrt(UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , UpperCAmelCase ): if sieve[i] is True: lowerCAmelCase__ :List[str] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
145
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = "trocr" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Union[str, Any] , snake_case_ : Any=5_02_65 , snake_case_ : Dict=10_24 , snake_case_ : int=12 , snake_case_ : str=16 , snake_case_ : List[Any]=40_96 , snake_case_ : List[Any]="gelu" , snake_case_ : Tuple=5_12 , snake_case_ : int=0.1 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Optional[Any]=0.0 , snake_case_ : Optional[int]=2 , snake_case_ : List[str]=0.0_2 , snake_case_ : Optional[int]=0.0 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=False , snake_case_ : Tuple=True , snake_case_ : Any=True , snake_case_ : Any=1 , snake_case_ : Tuple=0 , snake_case_ : Dict=2 , **snake_case_ : int , )-> List[str]: __lowerCAmelCase =vocab_size __lowerCAmelCase =d_model __lowerCAmelCase =decoder_layers __lowerCAmelCase =decoder_attention_heads __lowerCAmelCase =decoder_ffn_dim __lowerCAmelCase =activation_function __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =dropout __lowerCAmelCase =attention_dropout __lowerCAmelCase =activation_dropout __lowerCAmelCase =init_std __lowerCAmelCase =decoder_layerdrop __lowerCAmelCase =use_cache __lowerCAmelCase =scale_embedding __lowerCAmelCase =use_learned_position_embeddings __lowerCAmelCase =layernorm_embedding super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
456
def __lowerCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 ) -> int: __lowerCAmelCase =right or len(__lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__lowerCamelCase , __lowerCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
456
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowercase = False class _UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): A__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') A__ = torch.manual_seed(0) A__ = pipe.dual_guided( prompt='''first prompt''' , image=a__ , text_to_image_strength=0.7_5 , generator=a__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a__) A__ = VersatileDiffusionPipeline.from_pretrained(a__ , torch_dtype=torch.floataa) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) A__ = generator.manual_seed(0) A__ = pipe.dual_guided( prompt='''first prompt''' , image=a__ , text_to_image_strength=0.7_5 , generator=a__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def snake_case_ ( self): A__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) A__ = '''cyberpunk 2077''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') A__ = torch.manual_seed(0) A__ = pipe.dual_guided( prompt=a__ , image=a__ , text_to_image_strength=0.7_5 , generator=a__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images A__ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A__ = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0) A__ = pipe.text_to_image( prompt=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''').images A__ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A__ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 A__ = pipe.image_variation(a__ , generator=a__ , output_type='''numpy''').images A__ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A__ = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
632
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] )-> Union[str, Any]: A__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) A__ = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , UpperCamelCase_ ) if matches: A__ = float(matches[1] ) A__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A__ = 1_0_0_1 A__ = '''imagenet-1k-id2label.json''' A__ = '''huggingface/label-files''' A__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(UpperCamelCase_ ) + 1: v for k, v in idalabel.items()} A__ = '''background''' A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( )-> Tuple: A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=False )-> Tuple: A__ = get_mobilenet_va_config(UpperCamelCase_ ) # Load 🤗 model A__ = MobileNetVaForImageClassification(UpperCamelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A__ = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 3_2} , ) A__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) A__ = model(**UpperCamelCase_ ) A__ = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": A__ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": A__ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: A__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print('''Pushing to the hub...''' ) A__ = '''google/''' + model_name image_processor.push_to_hub(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
632
1
import os lowercase : int = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def lowerCAmelCase__ ( _a : Any ): snake_case_ : int = 0 snake_case_ : int = 0 while index < len(a__ ) - 1: snake_case_ : Dict = SYMBOLS[numerals[index]] snake_case_ : Dict = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCAmelCase__ ( _a : List[Any] ): snake_case_ : List[Any] = "" snake_case_ : Dict = num // 10_00 numerals += m_count * "M" num %= 10_00 snake_case_ : List[str] = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 snake_case_ : Tuple = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCAmelCase__ ( _a : Union[str, Any] = "/p089_roman.txt" ): snake_case_ : int = 0 with open(os.path.dirname(a__ ) + roman_numerals_filename ) as filea: snake_case_ : List[Any] = filea.readlines() for line in lines: snake_case_ : int = line.strip() snake_case_ : int = parse_roman_numerals(a__ ) snake_case_ : List[Any] = generate_roman_numerals(a__ ) savings += len(a__ ) - len(a__ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
714
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase : Tuple = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowercase : Union[str, Any] = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def lowerCAmelCase__ ( _a : Union[str, Any] , _a : Dict , _a : List[str] ): snake_case_ : Optional[int] = SavedModel() snake_case_ : Any = [] with open(os.path.join(_a , "utils" , "tf_ops" , "onnx.json" ) ) as f: snake_case_ : int = json.load(_a )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_a )] ) with open(_a , "rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : str = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : int = sorted(_a ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_a ) if strict and len(_a ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_a ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*_a , sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) lowercase : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
114
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self : List[str] ): return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 1_6, 1_6),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Any = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(),reason="XFormers attention is only available with CUDA and `xformers` installed",) def lowerCamelCase_ ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda",reason="float16 requires CUDA" ) def lowerCamelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase_ ( self : Dict ): self._test_save_load_local() def lowerCamelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2,)
44
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline snake_case_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase ) class lowercase__ ( lowercase ): def __init__( self : Tuple ,**lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Dict ,lowerCamelCase__ : Union[np.ndarray, bytes, str] ,**lowerCamelCase__ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : int ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = {} if "candidate_labels" in kwargs: _UpperCamelCase : Any = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCamelCase : Any = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str=None ,lowerCamelCase__ : List[Any]="This is a sound of {}." ): '''simple docstring''' if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCamelCase : Optional[Any] = requests.get(lowerCamelCase__ ).content else: with open(lowerCamelCase__ ,'rb' ) as f: _UpperCamelCase : List[str] = f.read() if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = ffmpeg_read(lowerCamelCase__ ,self.feature_extractor.sampling_rate ) if not isinstance(lowerCamelCase__ ,np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) _UpperCamelCase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='pt' ) _UpperCamelCase : List[Any] = candidate_labels _UpperCamelCase : Tuple = [hypothesis_template.format(lowerCamelCase__ ) for x in candidate_labels] _UpperCamelCase : Dict = self.tokenizer(lowerCamelCase__ ,return_tensors=self.framework ,padding=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = [text_inputs] return inputs def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : Any = model_inputs.pop('candidate_labels' ) _UpperCamelCase : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = text_inputs[0] else: # Batching case. _UpperCamelCase : int = text_inputs[0][0] _UpperCamelCase : List[str] = self.model(**lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = model_outputs.pop('candidate_labels' ) _UpperCamelCase : int = model_outputs['logits'][0] if self.framework == "pt": _UpperCamelCase : Tuple = logits.softmax(dim=0 ) _UpperCamelCase : str = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) _UpperCamelCase : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase__ ,lowerCamelCase__ ) ,key=lambda lowerCamelCase__ : -x[0] ) ] return result
195
0
import heapq import sys import numpy as np _snake_case : List[Any] = tuple[int, int] class a : """simple docstring""" def __init__( self : str ) -> Union[str, Any]: __snake_case : Tuple = [] __snake_case : Any = set() def __snake_case ( self : int ) -> str: if not self.empty(): return self.elements[0][0] else: return float("inf" ) def __snake_case ( self : str ) -> str: return len(self.elements ) == 0 def __snake_case ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Any ) -> List[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__SCREAMING_SNAKE_CASE ) else: # update # print("update", item) __snake_case : Union[str, Any] = [] ((__snake_case) , (__snake_case)) : int = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__snake_case) , (__snake_case)) : int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __snake_case ( self : List[Any] , lowerCamelCase : int ) -> int: if item in self.set: self.set.remove(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = [] ((__snake_case) , (__snake_case)) : Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__snake_case) , (__snake_case)) : List[Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __snake_case ( self : str ) -> Union[str, Any]: return self.elements[0][1] def __snake_case ( self : Tuple ) -> Optional[Any]: ((__snake_case) , (__snake_case)) : Dict = heapq.heappop(self.elements ) self.set.remove(__SCREAMING_SNAKE_CASE ) return (priority, item) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # euclidean distance __snake_case : int = np.array(_UpperCAmelCase ) __snake_case : str = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # integer division by time variable return consistent_heuristic(_UpperCAmelCase , _UpperCAmelCase ) // t def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Union[str, Any] = g_function[start] + Wa * heuristics[i](_UpperCAmelCase , _UpperCAmelCase ) return ans def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): __snake_case : List[Any] = "*" for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: __snake_case : List[Any] = "#" __snake_case : Any = "-" __snake_case : Dict = back_pointer[goal] while x != start: ((__snake_case) , (__snake_case)) : List[str] = x # print(x) __snake_case : Union[str, Any] = "-" __snake_case : Optional[Any] = back_pointer[x] __snake_case : List[Any] = "-" for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) __snake_case : Tuple = back_pointer[goal] while x != start: print(_UpperCAmelCase , end=" " ) __snake_case : List[Any] = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def lowerCAmelCase_ ( __lowerCamelCase ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) ((__snake_case) , (__snake_case)) : str = s __snake_case : Optional[int] = (x - 1, y) __snake_case : Any = (x + 1, y) __snake_case : List[str] = (x, y + 1) __snake_case : Dict = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) __snake_case : Any = -1 __snake_case : Tuple = float("inf" ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: __snake_case : List[str] = g_function[s] + 1 __snake_case : Optional[int] = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase , key(_UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCAmelCase ): if key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( ): __snake_case : Optional[int] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list _snake_case : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _snake_case : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _snake_case : Union[str, Any] = make_common_ground() _snake_case : Any = blocks_blk # hyper parameters _snake_case : Union[str, Any] = 1 _snake_case : List[Any] = 1 _snake_case : List[Any] = 20 _snake_case : List[Any] = 3 # one consistent and two other inconsistent # start and end destination _snake_case : Union[str, Any] = (0, 0) _snake_case : Tuple = (n - 1, n - 1) _snake_case : Optional[int] = 1 def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = {start: 0, goal: float("inf" )} __snake_case : str = {start: -1, goal: -1} __snake_case : str = [] __snake_case : Union[str, Any] = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Dict = [] __snake_case : str = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __snake_case , __snake_case : Optional[int] = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __snake_case : int = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_anchor.append(_UpperCAmelCase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
716
import unittest import numpy as np def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , ): __snake_case : List[str] = np.shape(__lowerCamelCase ) __snake_case : Optional[Any] = np.shape(__lowerCamelCase ) __snake_case : List[str] = np.shape(__lowerCamelCase ) if shape_a[0] != shape_b[0]: __snake_case : Any = ( "Expected the same number of rows for A and B. " F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__lowerCamelCase ) if shape_b[1] != shape_c[1]: __snake_case : int = ( "Expected the same number of columns for B and C. " F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__lowerCamelCase ) __snake_case : str = pseudo_inv if a_inv is None: try: __snake_case : Optional[Any] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple ) -> None: __snake_case : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case : str = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case : Dict = np.array([[2, 1], [6, 3]] ) __snake_case : Dict = schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : int = np.block([[a, b], [b.T, c]] ) __snake_case : Optional[int] = np.linalg.det(lowerCamelCase ) __snake_case : Any = np.linalg.det(lowerCamelCase ) __snake_case : Tuple = np.linalg.det(lowerCamelCase ) self.assertAlmostEqual(lowerCamelCase , det_a * det_s ) def __snake_case ( self : int ) -> None: __snake_case : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] ) -> None: __snake_case : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
203
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
1
def _lowerCAmelCase ( A__: int = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
391
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=100 , _snake_case=13 , _snake_case=30 , _snake_case=2 , _snake_case=3 , _snake_case=True , _snake_case=True , _snake_case=32 , _snake_case=4 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=10 , _snake_case=0.02 , _snake_case=3 , _snake_case=None , _snake_case=[0, 1, 2, 3] , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = 100 UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = out_indices UpperCAmelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = BeitModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase = BeitForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = BeitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = BeitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = BeitForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = BeitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case_ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" pass def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_snake_case ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) def snake_case_ ( self ) -> str: """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_snake_case ), BeitForMaskedImageModeling]: continue UpperCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.train() UpperCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) UpperCAmelCase = model(**_snake_case ).loss loss.backward() def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase = False UpperCAmelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase = model_class(_snake_case ) model.gradient_checkpointing_enable() model.to(_snake_case ) model.train() UpperCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) UpperCAmelCase = model(**_snake_case ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=_snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = BeitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_ ( self ) -> Tuple: """simple docstring""" return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(_snake_case ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values.to(_snake_case ) # prepare bool_masked_pos UpperCAmelCase = torch.ones((1, 196) , dtype=torch.bool ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase = model(pixel_values=_snake_case , bool_masked_pos=_snake_case ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _snake_case ) UpperCAmelCase = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _snake_case , atol=1e-2 ) ) @slow def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(_snake_case ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_snake_case ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _snake_case ) UpperCAmelCase = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , _snake_case , atol=1e-4 ) ) UpperCAmelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , _snake_case ) @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( _snake_case ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_snake_case ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _snake_case ) UpperCAmelCase = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , _snake_case , atol=1e-4 ) ) UpperCAmelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , _snake_case ) @slow def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCAmelCase = model.to(_snake_case ) UpperCAmelCase = BeitImageProcessor(do_resize=_snake_case , size=640 , do_center_crop=_snake_case ) UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase = Image.open(ds[0]['''file'''] ) UpperCAmelCase = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_snake_case ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _snake_case ) UpperCAmelCase = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: UpperCAmelCase = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_snake_case , ) else: UpperCAmelCase = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1e-4 ) ) @slow def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCAmelCase = model.to(_snake_case ) UpperCAmelCase = BeitImageProcessor(do_resize=_snake_case , size=640 , do_center_crop=_snake_case ) UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase = Image.open(ds[0]['''file'''] ) UpperCAmelCase = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_snake_case ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(500, 300)] ) UpperCAmelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _snake_case ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) UpperCAmelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _snake_case )
391
1
import os import pytest from transformers.dynamic_module_utils import get_imports __a : int = ''' import os ''' __a : Optional[Any] = ''' def foo(): import os return False ''' __a : Optional[int] = ''' def foo(): def bar(): if True: import os return False return bar() ''' __a : List[str] = ''' import os try: import bar except ImportError: raise ValueError() ''' __a : Any = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __a : str = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __a : Optional[int] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __a : Optional[int] = ''' import os try: import bar except: raise ValueError() ''' __a : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __a : Optional[Any] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __a : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" ,__A ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowercase__ : List[Any] = os.path.join(__A ,"test_file.py" ) with open(__A ,"w" ) as _tmp_file: _tmp_file.write(__A ) lowercase__ : Dict = get_imports(__A ) assert parsed_imports == ["os"]
397
import os import pytest from attr import dataclass __lowercase : Optional[int] = '''us-east-1''' # defaults region @dataclass class _A : '''simple docstring''' __lowerCamelCase : str __lowerCamelCase : Dict = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' __lowerCamelCase : Optional[Any] = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 1_6, '''per_device_eval_batch_size''': 1_6, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_0_0, '''save_steps''': 5_5_0_0, } __lowerCamelCase : List[str] = {**hyperparameters, '''max_steps''': 1_0_0_0} @property def snake_case_ ( self ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ): '''simple docstring''' return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ): '''simple docstring''' return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def lowercase ( __A : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
36
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowerCamelCase_ = 'CIDAS/clipseg-rd64-refined' lowerCamelCase_ = 'image_segmenter' lowerCamelCase_ = CLIPSegForImageSegmentation lowerCamelCase_ = ['image', 'text'] lowerCamelCase_ = ['image'] def __init__( self : Optional[int] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Tuple ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*__A , **__A ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : "Image" , UpperCAmelCase__ : str ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors='''pt''' ) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' with torch.no_grad(): lowercase : str =self.model(**__A ).logits return logits def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : Tuple =outputs.cpu().detach().numpy() lowercase : str =0 lowercase : str =1 return Image.fromarray((array * 255).astype(np.uinta ) )
718
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = tf.data.AUTOTUNE def _lowerCAmelCase ( ) -> Any: lowercase : Dict =argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__magic_name__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__magic_name__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__magic_name__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__magic_name__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__magic_name__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__magic_name__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__magic_name__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__magic_name__ , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__magic_name__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__magic_name__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__magic_name__ , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__magic_name__ , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__magic_name__ , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__magic_name__ , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__magic_name__ , required=__magic_name__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__magic_name__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) lowercase : Union[str, Any] =parser.parse_args() return args def _lowerCAmelCase ( __magic_name__ : List[str] ) -> List[Any]: try: if args.tpu_name: lowercase : Dict =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__magic_name__ ) tf.tpu.experimental.initialize_tpu_system(__magic_name__ ) return tpu def _lowerCAmelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: lowercase : str =0 for file in file_list: lowercase : List[str] =file.split('''/''' )[-1] lowercase : Union[str, Any] =re.search(R'''-\d+-(\d+)\.tfrecord''' , __magic_name__ ).group(1 ) lowercase : int =int(__magic_name__ ) num_samples += sample_count return num_samples def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ) -> str: lowercase : int =count_samples(__magic_name__ ) lowercase : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__magic_name__ ) if shuffle: lowercase : Union[str, Any] =dataset.shuffle(len(__magic_name__ ) ) lowercase : Any =tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase : Optional[int] =dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) ) lowercase : str =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) if shuffle: assert shuffle_buffer_size is not None lowercase : int =dataset.shuffle(args.shuffle_buffer_size ) lowercase : Optional[int] =dataset.batch(__magic_name__ , drop_remainder=__magic_name__ ) lowercase : int =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) lowercase : Union[str, Any] =dataset.prefetch(__magic_name__ ) return dataset def _lowerCAmelCase ( __magic_name__ : Any ) -> str: if not args.no_tpu: lowercase : Optional[Any] =initialize_tpu(__magic_name__ ) lowercase : Any =tf.distribute.TPUStrategy(__magic_name__ ) else: lowercase : Optional[Any] =tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) lowercase : Any =AutoTokenizer.from_pretrained(args.tokenizer ) lowercase : Union[str, Any] =AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase : Optional[Any] =tokenizer.vocab_size lowercase : str =tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) lowercase : Optional[int] =tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) lowercase : Any =count_samples(__magic_name__ ) lowercase : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase : Union[str, Any] =steps_per_epoch * args.num_epochs with strategy.scope(): lowercase : List[Any] =TFAutoModelForMaskedLM.from_config(__magic_name__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase : Dict =create_optimizer( num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__magic_name__ , metrics=['''accuracy'''] ) def decode_fn(__magic_name__ : Optional[Any] ): lowercase : Union[str, Any] ={ '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__magic_name__ , __magic_name__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase : str =DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='''tf''' ) def mask_with_collator(__magic_name__ : Dict ): # TF really needs an isin() function lowercase : int =( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) lowercase , lowercase : Union[str, Any] =data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , ) return batch lowercase : List[str] =args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase : Dict =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase : Union[str, Any] =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , ) lowercase : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) ) model.fit( __magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCamelCase_ = parse_args() main(args)
88
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCamelCase__ : Optional[Any] = _symbol_database.Default() UpperCamelCase__ : Any = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) UpperCamelCase__ : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : Any = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCamelCase__ : str = 45 UpperCamelCase__ : Dict = 1_581 UpperCamelCase__ : Optional[Any] = 1_517 UpperCamelCase__ : Tuple = 1_570 UpperCamelCase__ : Tuple = 1_584 UpperCamelCase__ : Optional[Any] = 1_793 UpperCamelCase__ : str = 1_795 UpperCamelCase__ : Dict = 1_916 UpperCamelCase__ : Optional[int] = 1_864 UpperCamelCase__ : List[Any] = 1_905 UpperCamelCase__ : List[Any] = 1_919 UpperCamelCase__ : int = 2_429 UpperCamelCase__ : Dict = 2_208 UpperCamelCase__ : Union[str, Any] = 2_418 UpperCamelCase__ : Dict = 2_323 UpperCamelCase__ : Optional[int] = 2_407 # @@protoc_insertion_point(module_scope)
591
'''simple docstring''' from ....utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__=None , A__=20_48 ) -> Tuple: _SCREAMING_SNAKE_CASE = config.__dict__ _SCREAMING_SNAKE_CASE = modal_hidden_size if num_labels: _SCREAMING_SNAKE_CASE = num_labels
591
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] __SCREAMING_SNAKE_CASE = 'BlipImageProcessor' __SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _lowercase =self.image_processor def __call__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _lowercase =self.tokenizer _lowercase =self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _lowercase =self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _lowercase =self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _lowercase =None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __lowerCAmelCase ( self ): _lowercase =self.tokenizer.model_input_names _lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
594
def __lowerCamelCase ( __a : list ) -> list: if len(__a ) <= 1: return lst _lowercase =1 while i < len(__a ): if lst[i - 1] <= lst[i]: i += 1 else: _lowercase , _lowercase =lst[i], lst[i - 1] i -= 1 if i == 0: _lowercase =1 return lst if __name__ == "__main__": lowerCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
594
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger A = get_logger(__name__) class lowercase__ : def __init__( self : Any , _lowercase : Optional[str] = None ): """simple docstring""" UpperCAmelCase__ = ( os.path.join(_lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCAmelCase__ = Extractor def _UpperCAmelCase ( self : Optional[int] , _lowercase : str ): """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCAmelCase__ = os.path.abspath(_lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(_lowercase ) ) def _UpperCAmelCase ( self : List[Any] , _lowercase : str , _lowercase : bool ): """simple docstring""" return force_extract or ( not os.path.isfile(_lowercase ) and not (os.path.isdir(_lowercase ) and os.listdir(_lowercase )) ) def _UpperCAmelCase ( self : List[str] , _lowercase : str , _lowercase : bool = False ): """simple docstring""" UpperCAmelCase__ = self.extractor.infer_extractor_format(_lowercase ) if not extractor_format: return input_path UpperCAmelCase__ = self._get_output_path(_lowercase ) if self._do_extract(_lowercase , _lowercase ): self.extractor.extract(_lowercase , _lowercase , _lowercase ) return output_path class lowercase__ ( __SCREAMING_SNAKE_CASE ): @classmethod @abstractmethod def _UpperCAmelCase ( cls : Dict , _lowercase : Union[Path, str] , **_lowercase : Tuple ): """simple docstring""" ... @staticmethod @abstractmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" ... class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A__= [] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : int ): """simple docstring""" with open(_lowercase , "rb" ) as f: return f.read(_lowercase ) @classmethod def _UpperCAmelCase ( cls : Tuple , _lowercase : Union[Path, str] , _lowercase : bytes = b"" ): """simple docstring""" if not magic_number: UpperCAmelCase__ = max(len(_lowercase ) for cls_magic_number in cls.magic_numbers ) try: UpperCAmelCase__ = cls.read_magic_number(_lowercase , _lowercase ) except OSError: return False return any(magic_number.startswith(_lowercase ) for cls_magic_number in cls.magic_numbers ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): @classmethod def _UpperCAmelCase ( cls : Optional[int] , _lowercase : Union[Path, str] , **_lowercase : List[Any] ): """simple docstring""" return tarfile.is_tarfile(_lowercase ) @staticmethod def _UpperCAmelCase ( _lowercase : Union[str, Any] , _lowercase : Any ): """simple docstring""" def resolved(_lowercase : str ) -> str: return os.path.realpath(os.path.abspath(_lowercase ) ) def badpath(_lowercase : str , _lowercase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowercase , _lowercase ) ).startswith(_lowercase ) def badlink(_lowercase : Dict , _lowercase : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCAmelCase__ = resolved(os.path.join(_lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_lowercase ) UpperCAmelCase__ = resolved(_lowercase ) for finfo in members: if badpath(finfo.name , _lowercase ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_lowercase , _lowercase ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_lowercase , _lowercase ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase__ = tarfile.open(_lowercase ) tar_file.extractall(_lowercase , members=TarExtractor.safemembers(_lowercase , _lowercase ) ) tar_file.close() class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'\x1F\x8B'] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" with gzip.open(_lowercase , "rb" ) as gzip_file: with open(_lowercase , "wb" ) as extracted_file: shutil.copyfileobj(_lowercase , _lowercase ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def _UpperCAmelCase ( cls : List[Any] , _lowercase : Union[Path, str] , _lowercase : bytes = b"" ): """simple docstring""" if super().is_extractable(_lowercase , magic_number=_lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowercase , "rb" ) as fp: UpperCAmelCase__ = _EndRecData(_lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCAmelCase__ = fp.read(_lowercase ) # CD is where we expect it to be if len(_lowercase ) == sizeCentralDir: UpperCAmelCase__ = struct.unpack(_lowercase , _lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" os.makedirs(_lowercase , exist_ok=_lowercase ) with zipfile.ZipFile(_lowercase , "r" ) as zip_file: zip_file.extractall(_lowercase ) zip_file.close() class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" with lzma.open(_lowercase ) as compressed_file: with open(_lowercase , "wb" ) as extracted_file: shutil.copyfileobj(_lowercase , _lowercase ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase__ = rarfile.RarFile(_lowercase ) rf.extractall(_lowercase ) rf.close() class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'\x28\xb5\x2F\xFD'] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd UpperCAmelCase__ = zstd.ZstdDecompressor() with open(_lowercase , "rb" ) as ifh, open(_lowercase , "wb" ) as ofh: dctx.copy_stream(_lowercase , _lowercase ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'\x42\x5A\x68'] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" with bza.open(_lowercase , "rb" ) as compressed_file: with open(_lowercase , "wb" ) as extracted_file: shutil.copyfileobj(_lowercase , _lowercase ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(_lowercase , exist_ok=_lowercase ) with pyazr.SevenZipFile(_lowercase , "r" ) as archive: archive.extractall(_lowercase ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= [B'\x04\x22\x4D\x18'] @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : Union[Path, str] ): """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(_lowercase , "rb" ) as compressed_file: with open(_lowercase , "wb" ) as extracted_file: shutil.copyfileobj(_lowercase , _lowercase ) class lowercase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) A__= { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _UpperCAmelCase ( cls : Optional[Any] ): """simple docstring""" return max( len(_lowercase ) for extractor in cls.extractors.values() if issubclass(_lowercase , _lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _UpperCAmelCase ( _lowercase : Union[Path, str] , _lowercase : int ): """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_lowercase , magic_number_length=_lowercase ) except OSError: return b"" @classmethod def _UpperCAmelCase ( cls : Dict , _lowercase : Union[Path, str] , _lowercase : bool = False ): """simple docstring""" warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=_lowercase , ) UpperCAmelCase__ = cls.infer_extractor_format(_lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _UpperCAmelCase ( cls : Dict , _lowercase : Union[Path, str] ): # <Added version="2.4.0"/> """simple docstring""" UpperCAmelCase__ = cls._get_magic_number_max_length() UpperCAmelCase__ = cls._read_magic_number(_lowercase , _lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowercase , magic_number=_lowercase ): return extractor_format @classmethod def _UpperCAmelCase ( cls : Dict , _lowercase : Union[Path, str] , _lowercase : Union[Path, str] , _lowercase : Optional[str] = None , _lowercase : Optional[BaseExtractor] = "deprecated" , ): """simple docstring""" os.makedirs(os.path.dirname(_lowercase ) , exist_ok=_lowercase ) # Prevent parallel extractions UpperCAmelCase__ = str(Path(_lowercase ).with_suffix(".lock" ) ) with FileLock(_lowercase ): shutil.rmtree(_lowercase , ignore_errors=_lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowercase , _lowercase ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=_lowercase , ) UpperCAmelCase__ = extractor if extractor != "deprecated" else extractor_format else: UpperCAmelCase__ = cls.extractors[extractor_format] return extractor.extract(_lowercase , _lowercase ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=_lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowercase ): return extractor.extract(_lowercase , _lowercase )
475
from __future__ import annotations def __UpperCAmelCase ( __A , __A , __A , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
475
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = "detr" __snake_case : Tuple = ["past_key_values"] __snake_case : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: Optional[Any] , UpperCAmelCase_: int=True , UpperCAmelCase_: Tuple=None , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: List[str]=100 , UpperCAmelCase_: Union[str, Any]=6 , UpperCAmelCase_: List[str]=2_048 , UpperCAmelCase_: Optional[int]=8 , UpperCAmelCase_: Union[str, Any]=6 , UpperCAmelCase_: List[Any]=2_048 , UpperCAmelCase_: List[Any]=8 , UpperCAmelCase_: Optional[Any]=0.0 , UpperCAmelCase_: str=0.0 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: str="relu" , UpperCAmelCase_: Union[str, Any]=256 , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: Any=0.0 , UpperCAmelCase_: Union[str, Any]=0.0 , UpperCAmelCase_: List[str]=0.02 , UpperCAmelCase_: Optional[int]=1.0 , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Any="sine" , UpperCAmelCase_: Union[str, Any]="resnet50" , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: List[Any]=False , UpperCAmelCase_: int=1 , UpperCAmelCase_: str=5 , UpperCAmelCase_: str=2 , UpperCAmelCase_: List[Any]=1 , UpperCAmelCase_: Tuple=1 , UpperCAmelCase_: Optional[Any]=5 , UpperCAmelCase_: int=2 , UpperCAmelCase_: Dict=0.1 , **UpperCAmelCase_: int , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = backbone_config.get("""model_type""" ) _SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] _SCREAMING_SNAKE_CASE = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None, None, None _SCREAMING_SNAKE_CASE = use_timm_backbone _SCREAMING_SNAKE_CASE = backbone_config _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = num_queries _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = encoder_ffn_dim _SCREAMING_SNAKE_CASE = encoder_layers _SCREAMING_SNAKE_CASE = encoder_attention_heads _SCREAMING_SNAKE_CASE = decoder_ffn_dim _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation_dropout _SCREAMING_SNAKE_CASE = activation_function _SCREAMING_SNAKE_CASE = init_std _SCREAMING_SNAKE_CASE = init_xavier_std _SCREAMING_SNAKE_CASE = encoder_layerdrop _SCREAMING_SNAKE_CASE = decoder_layerdrop _SCREAMING_SNAKE_CASE = encoder_layers _SCREAMING_SNAKE_CASE = auxiliary_loss _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = backbone _SCREAMING_SNAKE_CASE = use_pretrained_backbone _SCREAMING_SNAKE_CASE = dilation # Hungarian matcher _SCREAMING_SNAKE_CASE = class_cost _SCREAMING_SNAKE_CASE = bbox_cost _SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients _SCREAMING_SNAKE_CASE = mask_loss_coefficient _SCREAMING_SNAKE_CASE = dice_loss_coefficient _SCREAMING_SNAKE_CASE = bbox_loss_coefficient _SCREAMING_SNAKE_CASE = giou_loss_coefficient _SCREAMING_SNAKE_CASE = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return self.d_model @classmethod def UpperCamelCase ( cls: Optional[int] , UpperCAmelCase_: PretrainedConfig , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = version.parse("1.11" ) @property def UpperCamelCase ( self: Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return 1E-5 @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return 12
714
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
569
0
'''simple docstring''' def _A ( A ) -> int: lowercase : List[str] = [1] lowercase , lowercase , lowercase : Tuple = 0, 0, 0 lowercase : str = ugly_nums[ia] * 2 lowercase : Optional[int] = ugly_nums[ia] * 3 lowercase : Dict = ugly_nums[ia] * 5 for _ in range(1 ,_lowerCamelCase ): lowercase : int = min(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) ugly_nums.append(_lowerCamelCase ) if next_num == next_a: ia += 1 lowercase : Tuple = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase : Tuple = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_0_0) = }''')
372
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase = logging.get_logger(__name__) class lowercase ( lowercase__ ): def __init__(self : Dict ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,SCREAMING_SNAKE_CASE_ ,) super().__init__(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
535
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar("""KEY""") UpperCAmelCase : List[str] = TypeVar("""VAL""") @dataclass(frozen=_lowercase , slots=_lowercase) class UpperCAmelCase_ ( Generic[KEY, VAL]): snake_case__ = 42 snake_case__ = 42 class UpperCAmelCase_ ( _Item): def __init__( self : Tuple ) -> None: super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__( self : List[Any] ) -> bool: return False UpperCAmelCase : Optional[int] = _DeletedItem() class UpperCAmelCase_ ( MutableMapping[KEY, VAL]): def __init__( self : Tuple , __UpperCamelCase : int = 8 , __UpperCamelCase : float = 0.7_5 ) -> None: _UpperCamelCase = initial_block_size _UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase = capacity_factor _UpperCamelCase = 0 def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : KEY ) -> int: return hash(_UpperCAmelCase ) % len(self._buckets ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : int ) -> int: return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : KEY , __UpperCamelCase : VAL ) -> bool: _UpperCamelCase = self._buckets[ind] if not stored: _UpperCamelCase = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: _UpperCamelCase = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def _UpperCamelCase ( self : Union[str, Any] ) -> bool: _UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : int ) -> None: _UpperCamelCase = self._buckets _UpperCamelCase = [None] * new_size _UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : Optional[int] ) -> None: self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : str ) -> None: self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : KEY ) -> Iterator[int]: _UpperCamelCase = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase = self._get_next_ind(_UpperCAmelCase ) def _UpperCamelCase ( self : int , __UpperCamelCase : KEY , __UpperCamelCase : VAL ) -> None: for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__( self : List[str] , __UpperCamelCase : KEY , __UpperCamelCase : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__( self : Any , __UpperCamelCase : KEY ) -> None: for ind in self._iterate_buckets(_UpperCAmelCase ): _UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: _UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : int , __UpperCamelCase : KEY ) -> VAL: for ind in self._iterate_buckets(_UpperCAmelCase ): _UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__( self : Union[str, Any] ) -> int: return self._len def __iter__( self : Optional[Any] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Tuple ) -> str: _UpperCamelCase = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
714
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCAmelCase = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase ( ) -> Union[str, Any]: _UpperCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _UpperCamelCase = bs[:] _UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(a__ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase = [chr(a__ ) for n in cs] return dict(zip(a__ , a__ ) ) def lowercase ( a__ : Any ) -> Union[str, Any]: _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char return pairs class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str]="replace" , __UpperCamelCase : Any="<s>" , __UpperCamelCase : List[str]="</s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Any="<s>" , __UpperCamelCase : Tuple="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : List[Any]=False , **__UpperCamelCase : Optional[int] , ) -> Optional[Any]: _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(__UpperCamelCase ) _UpperCamelCase = {v: k for k, v in self.encoder.items()} _UpperCamelCase = errors # how to handle errors in decoding _UpperCamelCase = bytes_to_unicode() _UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding='''utf-8''' ) as merges_handle: _UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCamelCase = {} _UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCamelCase ( self : Dict ) -> List[Any]: return len(self.encoder ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCamelCase ( self : int , __UpperCamelCase : int ) -> Optional[Any]: if token in self.cache: return self.cache[token] _UpperCamelCase = tuple(__UpperCamelCase ) _UpperCamelCase = get_pairs(__UpperCamelCase ) if not pairs: return token while True: _UpperCamelCase = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(__UpperCamelCase ): try: _UpperCamelCase = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase = tuple(__UpperCamelCase ) _UpperCamelCase = new_word if len(__UpperCamelCase ) == 1: break else: _UpperCamelCase = get_pairs(__UpperCamelCase ) _UpperCamelCase = ''' '''.join(__UpperCamelCase ) _UpperCamelCase = word return word def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] ) -> Optional[int]: _UpperCamelCase = [] for token in re.findall(self.pat , __UpperCamelCase ): _UpperCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(''' ''' ) ) return bpe_tokens def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[Any] ) -> Optional[Any]: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: return self.decoder.get(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> Any: _UpperCamelCase = ''''''.join(__UpperCamelCase ) _UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + '''\n''' ) _UpperCamelCase = 0 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCamelCase = token_index writer.write(''' '''.join(__UpperCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _UpperCamelCase ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , __UpperCamelCase : Any , __UpperCamelCase : Tuple=False , **__UpperCamelCase : Optional[int] ) -> Any: _UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): _UpperCamelCase = ''' ''' + text return (text, kwargs) def _UpperCamelCase ( self : Any , __UpperCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , ) -> dict: _UpperCamelCase = super()._pad( encoded_inputs=__UpperCamelCase , max_length=__UpperCamelCase , padding_strategy=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: _UpperCamelCase = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCamelCase = len(encoded_inputs['''global_attention_mask'''] ) != len(__UpperCamelCase ) if needs_to_be_padded: _UpperCamelCase = len(__UpperCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCamelCase = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _UpperCamelCase = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
342
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase_ = logging.getLogger() def lowerCAmelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" __magic_name__ : str = {} __magic_name__ : Optional[Any] = os.path.join(UpperCAmelCase, '''all_results.json''' ) if os.path.exists(UpperCAmelCase ): with open(UpperCAmelCase, '''r''' ) as f: __magic_name__ : List[Any] = json.load(UpperCAmelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results lowercase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class A__ ( __SCREAMING_SNAKE_CASE ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" import xla_spawn __magic_name__ : Dict = self.get_auto_remove_tmp_dir() __magic_name__ : Dict = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCamelCase , '''argv''' , lowerCamelCase ): __magic_name__ : Optional[int] = time() xla_spawn.main() __magic_name__ : int = time() __magic_name__ : Any = get_results(lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowercase ( self ) -> Any: """simple docstring""" import xla_spawn __magic_name__ : Optional[int] = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(lowerCamelCase , '''argv''' , lowerCamelCase ): xla_spawn.main()
154
def lowerCAmelCase ( ) ->Dict: """simple docstring""" __magic_name__ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __magic_name__ : Optional[Any] = 6 __magic_name__ : Dict = 1 __magic_name__ : Union[str, Any] = 1901 __magic_name__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __magic_name__ : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __magic_name__ : Optional[int] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __magic_name__ : Any = day - days_per_month[month - 2] if month > 12: year += 1 __magic_name__ : int = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
154
1
from collections import namedtuple _snake_case : Optional[int] = namedtuple('from_to', 'from_ to') _snake_case : str = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_01, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_04_54, 2_64.1_72), 'cubicyard': from_to(0.7_64_55, 1.3_07_95), 'cubicfoot': from_to(0.0_28, 35.31_47), 'cup': from_to(0.0_00_23_65_88, 42_26.75), } def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(lowerCAmelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(lowerCAmelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
421
def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = int(lowerCAmelCase_ ) if n_element < 1: __lowerCAmelCase = ValueError('a should be a positive number' ) raise my_error __lowerCAmelCase = [1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = (0, 0, 0) __lowerCAmelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _snake_case : List[Any] = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _snake_case : str = hamming(int(n)) print('-----------------------------------------------------') print(F"""The list with nth numbers is: {hamming_numbers}""") print('-----------------------------------------------------')
421
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : Tuple=7 , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : List[str]=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Dict=6_4 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : str=1_6 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1 , ) -> Dict: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = q_groups lowercase_ = k_groups lowercase_ = v_groups lowercase_ = post_attention_groups lowercase_ = intermediate_groups lowercase_ = output_groups def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : List[Any] ) -> Optional[int]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: lowercase_ = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Dict: lowercase_ = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: lowercase_ = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: lowercase_ = self.num_labels lowercase_ = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: lowercase_ = self.num_labels lowercase_ = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: lowercase_ = self.num_choices lowercase_ = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase_ = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a :Tuple = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a :Union[str, Any] = False a :Union[str, Any] = True a :Optional[Any] = False def _lowercase ( self : Optional[int] ) -> Tuple: lowercase_ = SqueezeBertModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=3_7 ) def _lowercase ( self : int ) -> Tuple: self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict ) -> Dict: lowercase_ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) lowercase_ = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
97
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ =logging.get_logger(__name__) # General docstring lowercase__ ='ResNetConfig' # Base docstring lowercase__ ='microsoft/resnet-50' lowercase__ =[1, 20_48, 7, 7] # Image classification docstring lowercase__ ='microsoft/resnet-50' lowercase__ ='tiger cat' lowercase__ =[ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ): super().__init__() a_ = nn.Convad( UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=kernel_size // 2 , bias=UpperCAmelCase ) a_ = nn.BatchNormad(UpperCAmelCase ) a_ = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.convolution(UpperCAmelCase ) a_ = self.normalization(UpperCAmelCase ) a_ = self.activation(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) a_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) a_ = config.num_channels def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) a_ = self.embedder(UpperCAmelCase ) a_ = self.pooler(UpperCAmelCase ) return embedding class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 ): super().__init__() a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , stride=UpperCAmelCase , bias=UpperCAmelCase ) a_ = nn.BatchNormad(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.convolution(UpperCAmelCase ) a_ = self.normalization(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ): super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , activation=UpperCAmelCase ) , ) a_ = ACTaFN[activation] def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = hidden_state a_ = self.layer(UpperCAmelCase ) a_ = self.shortcut(UpperCAmelCase ) hidden_state += residual a_ = self.activation(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , UpperCAmelCase = 4 ): super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = out_channels // reduction a_ = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase ) , ) a_ = ACTaFN[activation] def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = hidden_state a_ = self.layer(UpperCAmelCase ) a_ = self.shortcut(UpperCAmelCase ) hidden_state += residual a_ = self.activation(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , ): super().__init__() a_ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer a_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , activation=config.hidden_act ) , *[layer(UpperCAmelCase , UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = input for layer in self.layers: a_ = layer(UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase ) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ): a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(UpperCAmelCase ) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase , ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : List[Any] = ResNetConfig lowerCamelCase__ : Dict = 'resnet' lowerCamelCase__ : Dict = 'pixel_values' lowerCamelCase__ : str = True def lowerCAmelCase__ ( self , UpperCAmelCase ): if isinstance(UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False ): if isinstance(UpperCAmelCase , UpperCAmelCase ): a_ = value lowercase__ =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config a_ = ResNetEmbeddings(UpperCAmelCase ) a_ = ResNetEncoder(UpperCAmelCase ) a_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(UpperCAmelCase ) a_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) a_ = encoder_outputs[0] a_ = self.pooler(UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config.num_labels a_ = ResNetModel(UpperCAmelCase ) # classification head a_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.resnet(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier(UpperCAmelCase ) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = """single_label_classification""" else: a_ = """multi_label_classification""" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: a_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ , UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) super()._init_backbone(UpperCAmelCase ) a_ = [config.embedding_size] + config.hidden_sizes a_ = ResNetEmbeddings(UpperCAmelCase ) a_ = ResNetEncoder(UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = self.embedder(UpperCAmelCase ) a_ = self.encoder(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) a_ = outputs.hidden_states a_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase , )
263
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 1_6 a_ = 3_2 def _a( UpperCamelCase__ : Accelerator, UpperCamelCase__ : int = 1_6 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ : Dict =load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCamelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : str =tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCamelCase__, max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] =datasets.map( UpperCamelCase__, batched=UpperCamelCase__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : int =tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCamelCase__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : str =1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Any =1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Tuple =8 else: SCREAMING_SNAKE_CASE__ : str =None return tokenizer.pad( UpperCamelCase__, padding='''longest''', max_length=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_tensors='''pt''', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : List[Any] =DataLoader( tokenized_datasets['''train'''], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : List[Any] ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''', UpperCamelCase__ ) == "1": SCREAMING_SNAKE_CASE__ : Optional[int] =2 # New Code # SCREAMING_SNAKE_CASE__ : int =int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : Dict =Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=UpperCamelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Optional[int] =config['''lr'''] SCREAMING_SNAKE_CASE__ : Dict =int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ : Optional[int] =evaluate.load('''glue''', '''mrpc''' ) set_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_dataloaders(UpperCamelCase__, UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : List[Any] =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : str =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Dict =AdamW(params=model.parameters(), lr=UpperCamelCase__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Optional[Any] =get_linear_schedule_with_warmup( optimizer=UpperCamelCase__, num_warmup_steps=1_0_0, num_training_steps=(len(UpperCamelCase__ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =accelerator.prepare( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =output.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__, references=UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : List[str] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", UpperCamelCase__ ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCamelCase__, default=UpperCamelCase__, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=UpperCamelCase__, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) SCREAMING_SNAKE_CASE__ : List[Any] =parser.parse_args() SCREAMING_SNAKE_CASE__ : Dict ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
665
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __magic_name__ ( *__lowercase : int , **__lowercase : Optional[Any] ) -> Optional[Any]: pass @is_pipeline_test @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE__ : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowercase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE__ : int =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @require_tf def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowercase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @slow @require_torch def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Any =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : List[str] =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : str =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
665
1
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase = True except (ImportError, ModuleNotFoundError): UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def lowercase ( a__ : str ) -> str: re.sub('''<n>''' , '''''' , UpperCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
420
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _SCREAMING_SNAKE_CASE: def __init__( self : str ) -> None: SCREAMING_SNAKE_CASE__ :list[Any] = [] SCREAMING_SNAKE_CASE__ :int = 0 SCREAMING_SNAKE_CASE__ :int = 0 def __lowerCamelCase ( self : Any ) -> bool: return self.head == self.tail def __lowerCamelCase ( self : Any , UpperCamelCase_ : Any ) -> None: self.data.append(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = self.tail + 1 def __lowerCamelCase ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.data[self.head] SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.head + 1 return ret def __lowerCamelCase ( self : str ) -> int: return self.tail - self.head def __lowerCamelCase ( self : Optional[int] ) -> None: print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class _SCREAMING_SNAKE_CASE: def __init__( self : List[str] , UpperCamelCase_ : Any ) -> None: SCREAMING_SNAKE_CASE__ :Tuple = data SCREAMING_SNAKE_CASE__ :MyNode | None = None SCREAMING_SNAKE_CASE__ :MyNode | None = None SCREAMING_SNAKE_CASE__ :int = 1 def __lowerCamelCase ( self : Union[str, Any] ) -> Any: return self.data def __lowerCamelCase ( self : Optional[int] ) -> MyNode | None: return self.left def __lowerCamelCase ( self : List[str] ) -> MyNode | None: return self.right def __lowerCamelCase ( self : List[Any] ) -> int: return self.height def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> None: SCREAMING_SNAKE_CASE__ :List[str] = data def __lowerCamelCase ( self : Dict , UpperCamelCase_ : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ :Dict = node def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = node def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int ) -> None: SCREAMING_SNAKE_CASE__ :Dict = height def lowerCamelCase ( UpperCAmelCase__ : MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: '''simple docstring''' if a > b: return a return b def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' print('left rotation node:' , node.get_data() ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' print('right rotation node:' , node.get_data() ) SCREAMING_SNAKE_CASE__ :Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = node.get_left() assert left_child is not None node.set_left(left_rotation(UpperCAmelCase__ ) ) return right_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(UpperCAmelCase__ ) ) return left_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode | None , UpperCAmelCase__ : Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(UpperCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , UpperCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE__ :Union[str, Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE__ :Dict = right_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :str = lr_rotation(UpperCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , UpperCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE__ :Optional[int] = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE__ :Optional[Any] = rl_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = left_rotation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) return node def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE__ :str = right_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE__ :List[Any] = left_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode , UpperCAmelCase__ : Any ) -> MyNode | None: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = root.get_left() SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE__ :int = get_left_most(UpperCAmelCase__ ) root.set_data(UpperCAmelCase__ ) root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) elif left_child is not None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = left_child elif right_child is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) if get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE__ :Any = left_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :int = rl_rotation(UpperCAmelCase__ ) elif get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE__ :Any = right_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :str = lr_rotation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(UpperCAmelCase__ ) return root class _SCREAMING_SNAKE_CASE: def __init__( self : List[Any] ) -> None: SCREAMING_SNAKE_CASE__ :MyNode | None = None def __lowerCamelCase ( self : Optional[Any] ) -> int: return get_height(self.root ) def __lowerCamelCase ( self : int , UpperCamelCase_ : Any ) -> None: print('insert:' + str(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ :Dict = insert_node(self.root , UpperCamelCase_ ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Any ) -> None: print('delete:' + str(UpperCamelCase_ ) ) if self.root is None: print('Tree is empty!' ) return SCREAMING_SNAKE_CASE__ :List[Any] = del_node(self.root , UpperCamelCase_ ) def __str__( self : List[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree SCREAMING_SNAKE_CASE__ :List[str] = '' SCREAMING_SNAKE_CASE__ :Optional[Any] = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE__ :int = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE__ :str = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE__ :Optional[int] = q.pop() SCREAMING_SNAKE_CASE__ :List[str] = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE__ :Tuple = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: SCREAMING_SNAKE_CASE__ :Optional[int] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCamelCase_ = AVLtree() UpperCamelCase_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
209
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCAmelCase ( a : int , a : int , a : int , a : int , a : int , a : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case__ = ksize + 1 snake_case__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(a ): for x in range(a ): # distance from center snake_case__ = x - ksize // 2 snake_case__ = y - ksize // 2 # degree to radiant snake_case__ = theta / 180 * np.pi snake_case__ = np.cos(_theta ) snake_case__ = np.sin(_theta ) # get kernel x snake_case__ = cos_theta * px + sin_theta * py # get kernel y snake_case__ = -sin_theta * px + cos_theta * py # fill kernel snake_case__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image a__ = imread("""../image_data/lena.jpg""") # turn image in gray scale value a__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges a__ = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: a__ = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) a__ = out / out.max() * 2_5_5 a__ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
720
import random from typing import Any def _UpperCAmelCase ( a : list ): for _ in range(len(a ) ): snake_case__ = random.randint(0 , len(a ) - 1 ) snake_case__ = random.randint(0 , len(a ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": a__ = [0, 1, 2, 3, 4, 5, 6, 7] a__ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
99
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=16 , A=36 , A=6 , A=6 , A=6 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = embedding_size _a = hidden_size _a = num_hidden_layers _a = num_hidden_groups _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> Optional[int]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Tuple: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ (self , A , A , A , A , A , A , A ) -> int: """simple docstring""" _a = AlbertModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , token_type_ids=A ) _a = model(A , token_type_ids=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A ) -> str: """simple docstring""" _a = AlbertForPreTraining(config=A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ (self , A , A , A , A , A , A , A ) -> Optional[int]: """simple docstring""" _a = AlbertForMaskedLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A ) -> Dict: """simple docstring""" _a = AlbertForQuestionAnswering(config=A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ (self , A , A , A , A , A , A , A ) -> Optional[int]: """simple docstring""" _a = self.num_labels _a = AlbertForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ (self , A , A , A , A , A , A , A ) -> str: """simple docstring""" _a = self.num_labels _a = AlbertForTokenClassification(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = self.num_choices _a = AlbertForMultipleChoice(config=A ) model.to(A ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ (self ) -> str: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase : str = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : str = True def a__ (self , A , A , A=False ) -> Optional[Any]: """simple docstring""" _a = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): _a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a = AlbertModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def a__ (self ) -> Dict: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = AlbertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AlbertModel.from_pretrained('''albert-base-v2''' ) _a = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(A , attention_mask=A )[0] _a = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
"""simple docstring""" from string import ascii_uppercase __lowerCamelCase :Dict = {char: i for i, char in enumerate(ascii_uppercase)} __lowerCamelCase :str = dict(enumerate(ascii_uppercase)) def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: lowerCamelCase : Tuple = len(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = 0 while True: if x == i: lowerCamelCase : Tuple = 0 if len(UpperCamelCase__ ) == len(UpperCamelCase__ ): break key += key[i] i += 1 return key def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: lowerCamelCase : Any = """""" lowerCamelCase : Optional[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCamelCase : Union[str, Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: lowerCamelCase : Dict = """""" lowerCamelCase : int = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCamelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def snake_case ( ) -> None: lowerCamelCase : int = """THE GERMAN ATTACK""" lowerCamelCase : Union[str, Any] = """SECRET""" lowerCamelCase : Union[str, Any] = generate_key(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = cipher_text(UpperCamelCase__ , UpperCamelCase__ ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(UpperCamelCase__ , UpperCamelCase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
222
0
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a = get_logger(__name__) def lowercase (snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : str=0 ) -> Union[str, Any]: '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCAmelCase = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCAmelCase = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCAmelCase = os.path.join(snake_case__ , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(f'''Saving model to {ckpt_dir}''' ) lowerCAmelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def lowercase (snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=0 ) -> Optional[Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return lowerCAmelCase = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Loading model from {input_model_file}''' ) lowerCAmelCase = torch.load(snake_case__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCAmelCase = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Loading model from {input_model_file}''' ) lowerCAmelCase = torch.load(snake_case__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCAmelCase = ( os.path.join(snake_case__ , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) lowerCAmelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) lowerCAmelCase = state_dict["""model"""] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(snake_case__ ) def lowercase (snake_case__ : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[Any]=0 ) -> str: '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCAmelCase = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowerCAmelCase = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: lowerCAmelCase = os.path.join(snake_case__ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def lowercase (snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : int=0 ) -> str: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowerCAmelCase = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) lowerCAmelCase = torch.load(snake_case__ ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowerCAmelCase = ( os.path.join(snake_case__ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) lowerCAmelCase = optim_state["""optimizer"""] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) lowerCAmelCase = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
716
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a = 1_6 a = 3_2 def lowercase (snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Dict: '''simple docstring''' lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase = 8 else: lowerCAmelCase = None return tokenizer.pad( snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a = mocked_dataloaders # noqa: F811 def lowercase (snake_case__ : int , snake_case__ : Tuple ) -> int: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1": lowerCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase = config["""lr"""] lowerCAmelCase = int(config["""num_epochs"""] ) lowerCAmelCase = int(config["""seed"""] ) lowerCAmelCase = int(config["""batch_size"""] ) set_seed(snake_case__ ) lowerCAmelCase , lowerCAmelCase = get_dataloaders(snake_case__ , snake_case__ ) lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase = os.path.split(snake_case__ )[-1].split(""".""" )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , snake_case__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(snake_case__ ), """epoch""": epoch, } , step=snake_case__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase () -> str: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=snake_case__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
529
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __a = list[list[float | int]] def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Any = len(_A ) snake_case__ : Any = [[0 for _ in range(size + 1 )] for _ in range(_A )] snake_case__ : List[str] = 42 snake_case__ : str = 42 snake_case__ : int = 42 snake_case__ : Dict = 42 snake_case__ : Optional[Any] = 42 snake_case__ : str = 42 for row in range(_A ): for col in range(_A ): snake_case__ : Optional[int] = matrix[row][col] snake_case__ : List[Any] = vector[row][0] snake_case__ : Tuple = 0 snake_case__ : List[str] = 0 while row < size and col < size: # pivoting snake_case__ : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_A , _A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case__ , snake_case__ : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _A ): snake_case__ : Optional[Any] = augmented[rowa][col] / augmented[row][col] snake_case__ : Optional[int] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _A ): for row in range(_A ): snake_case__ : Optional[Any] = augmented[row][col] / augmented[col][col] for cola in range(_A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_A ) ] def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : List[str] = len(_A ) snake_case__ : str = [[0 for _ in range(_A )] for _ in range(_A )] snake_case__ : Tuple = [[0] for _ in range(_A )] snake_case__ : Optional[Any] = 42 snake_case__ : str = 42 snake_case__ : Optional[int] = 42 snake_case__ : Optional[int] = 42 for x_val, y_val in enumerate(_A ): for col in range(_A ): snake_case__ : Optional[Any] = (x_val + 1) ** (size - col - 1) snake_case__ : List[str] = y_val snake_case__ : List[Any] = solve(_A , _A ) def interpolated_func(_lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_A ) ) return interpolated_func def __snake_case( _lowerCAmelCase ) -> str: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __snake_case( _lowerCAmelCase = question_function , _lowerCAmelCase = 10 ) -> Optional[Any]: snake_case__ : Any = [func(_A ) for x_val in range(1 , order + 1 )] snake_case__ : Union[str, Any] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] snake_case__ : Union[str, Any] = 0 snake_case__ : List[Any] = 42 snake_case__ : Tuple = 42 for poly in polynomials: snake_case__ : List[str] = 1 while func(_A ) == poly(_A ): x_val += 1 ret += poly(_A ) return ret if __name__ == "__main__": print(F"{solution() = }")
374
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase__ : Optional[Any] = logging.get_logger(__name__) # General docstring lowercase__ : Optional[int] = "PoolFormerConfig" # Base docstring lowercase__ : Optional[Any] = "sail/poolformer_s12" lowercase__ : Union[str, Any] = [1, 512, 7, 7] # Image classification docstring lowercase__ : List[str] = "sail/poolformer_s12" lowercase__ : Dict = "tabby, tabby cat" lowercase__ : Union[str, Any] = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase__ ( _A , _A = 0.0 , _A = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case_ = 1 - drop_prob snake_case_ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case_ = keep_prob + torch.rand(_A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case_ = input.div(_A ) * random_tensor return output class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowercase : Optional[float] = None ): """simple docstring""" super().__init__() snake_case_ = drop_prob def snake_case__ ( self : List[str] , __lowercase : torch.Tensor ): """simple docstring""" return drop_path(__lowercase , self.drop_prob , self.training ) def snake_case__ ( self : Any ): """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowercase : Dict , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Dict=None ): """simple docstring""" super().__init__() snake_case_ = patch_size if isinstance(__lowercase , collections.abc.Iterable ) else (patch_size, patch_size) snake_case_ = stride if isinstance(__lowercase , collections.abc.Iterable ) else (stride, stride) snake_case_ = padding if isinstance(__lowercase , collections.abc.Iterable ) else (padding, padding) snake_case_ = nn.Convad(__lowercase , __lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase ) snake_case_ = norm_layer(__lowercase ) if norm_layer else nn.Identity() def snake_case__ ( self : Any , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = self.projection(__lowercase ) snake_case_ = self.norm(__lowercase ) return embeddings class UpperCAmelCase ( nn.GroupNorm ): '''simple docstring''' def __init__( self : int , __lowercase : List[str] , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(1 , __lowercase , **__lowercase ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowercase : List[str] ): """simple docstring""" super().__init__() snake_case_ = nn.AvgPoolad(__lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowercase ) def snake_case__ ( self : int , __lowercase : Tuple ): """simple docstring""" return self.pool(__lowercase ) - hidden_states class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Optional[Any] ): """simple docstring""" super().__init__() snake_case_ = nn.Convad(__lowercase , __lowercase , 1 ) snake_case_ = nn.Convad(__lowercase , __lowercase , 1 ) snake_case_ = PoolFormerDropPath(__lowercase ) if isinstance(config.hidden_act , __lowercase ): snake_case_ = ACTaFN[config.hidden_act] else: snake_case_ = config.hidden_act def snake_case__ ( self : Union[str, Any] , __lowercase : int ): """simple docstring""" snake_case_ = self.conva(__lowercase ) snake_case_ = self.act_fn(__lowercase ) snake_case_ = self.drop(__lowercase ) snake_case_ = self.conva(__lowercase ) snake_case_ = self.drop(__lowercase ) return hidden_states class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : int ): """simple docstring""" super().__init__() snake_case_ = PoolFormerPooling(__lowercase ) snake_case_ = PoolFormerOutput(__lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = PoolFormerGroupNorm(__lowercase ) snake_case_ = PoolFormerGroupNorm(__lowercase ) # Useful for training neural nets snake_case_ = PoolFormerDropPath(__lowercase ) if drop_path > 0.0 else nn.Identity() snake_case_ = config.use_layer_scale if config.use_layer_scale: snake_case_ = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowercase) ) , requires_grad=__lowercase ) snake_case_ = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowercase) ) , requires_grad=__lowercase ) def snake_case__ ( self : Union[str, Any] , __lowercase : Union[str, Any] ): """simple docstring""" if self.use_layer_scale: snake_case_ = self.pooling(self.before_norm(__lowercase ) ) snake_case_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case_ = hidden_states + self.drop_path(__lowercase ) snake_case_ = () snake_case_ = self.output(self.after_norm(__lowercase ) ) snake_case_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case_ = hidden_states + self.drop_path(__lowercase ) snake_case_ = (output,) + outputs return outputs else: snake_case_ = self.drop_path(self.pooling(self.before_norm(__lowercase ) ) ) # First residual connection snake_case_ = pooling_output + hidden_states snake_case_ = () # Second residual connection inside the PoolFormerOutput block snake_case_ = self.drop_path(self.output(self.after_norm(__lowercase ) ) ) snake_case_ = hidden_states + layer_output snake_case_ = (output,) + outputs return outputs class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowercase : Optional[Any] ): """simple docstring""" super().__init__() snake_case_ = config # stochastic depth decay rule snake_case_ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case_ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case_ = nn.ModuleList(__lowercase ) # Transformer blocks snake_case_ = [] snake_case_ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case_ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowercase ) ) snake_case_ = nn.ModuleList(__lowercase ) def snake_case__ ( self : List[str] , __lowercase : List[Any] , __lowercase : int=False , __lowercase : Tuple=True ): """simple docstring""" snake_case_ = () if output_hidden_states else None snake_case_ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case_ , snake_case_ = layers # Get patch embeddings from hidden_states snake_case_ = embedding_layer(__lowercase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowercase ): snake_case_ = blk(__lowercase ) snake_case_ = layer_outputs[0] if output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = PoolFormerConfig lowerCAmelCase_ = '''poolformer''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def snake_case__ ( self : Dict , __lowercase : Optional[Any] ): """simple docstring""" if isinstance(__lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def snake_case__ ( self : str , __lowercase : Any , __lowercase : Tuple=False ): """simple docstring""" if isinstance(__lowercase , __lowercase ): snake_case_ = value lowercase__ : Optional[int] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase__ : List[str] = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase__ , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , __lowercase : Any ): """simple docstring""" super().__init__(__lowercase ) snake_case_ = config snake_case_ = PoolFormerEncoder(__lowercase ) # Initialize weights and apply final processing self.post_init() def snake_case__ ( self : List[Any] ): """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : Optional[Any] , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[bool] = None , ): """simple docstring""" snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) snake_case_ = self.encoder( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , ) snake_case_ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowercase , hidden_states=encoder_outputs.hidden_states , ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowercase : Tuple ): """simple docstring""" super().__init__() snake_case_ = nn.Linear(config.hidden_size , config.hidden_size ) def snake_case__ ( self : Dict , __lowercase : List[str] ): """simple docstring""" snake_case_ = self.dense(__lowercase ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , UpperCAmelCase__ , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : int ): """simple docstring""" super().__init__(__lowercase ) snake_case_ = config.num_labels snake_case_ = PoolFormerModel(__lowercase ) # Final norm snake_case_ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case_ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : str , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.LongTensor] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[bool] = None , ): """simple docstring""" snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.poolformer( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , ) snake_case_ = outputs[0] snake_case_ = self.classifier(self.norm(__lowercase ).mean([-2, -1] ) ) snake_case_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ = "single_label_classification" else: snake_case_ = "multi_label_classification" if self.config.problem_type == "regression": snake_case_ = MSELoss() if self.num_labels == 1: snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ = loss_fct(__lowercase , __lowercase ) elif self.config.problem_type == "single_label_classification": snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ = BCEWithLogitsLoss() snake_case_ = loss_fct(__lowercase , __lowercase ) if not return_dict: snake_case_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states )
376
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : List[Any] = "codegen" lowerCAmelCase__ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , snake_case : Dict=50400 , snake_case : Union[str, Any]=2048 , snake_case : List[str]=2048 , snake_case : List[Any]=4096 , snake_case : Union[str, Any]=28 , snake_case : Any=16 , snake_case : Optional[int]=64 , snake_case : str=None , snake_case : Union[str, Any]="gelu_new" , snake_case : Union[str, Any]=0.0 , snake_case : Any=0.0 , snake_case : Tuple=0.0 , snake_case : Tuple=1E-5 , snake_case : Dict=0.02 , snake_case : Dict=True , snake_case : Dict=50256 , snake_case : Union[str, Any]=50256 , snake_case : str=False , **snake_case : str , ): __UpperCamelCase = vocab_size __UpperCamelCase = n_ctx __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=snake_case , eos_token_id=snake_case , tie_word_embeddings=snake_case , **snake_case ) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Any , snake_case : PretrainedConfig , snake_case : str = "default" , snake_case : List[PatchingSpec] = None , snake_case : bool = False , ): super().__init__(snake_case , task=snake_case , patching_specs=snake_case , use_past=snake_case ) if not getattr(self._config , '''pad_token_id''' , snake_case ): # TODO: how to do that better? __UpperCamelCase = 0 @property def snake_case ( self : Dict ): __UpperCamelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(snake_case , direction='''inputs''' ) __UpperCamelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def snake_case ( self : Union[str, Any] ): return self._config.n_layer @property def snake_case ( self : Optional[Any] ): return self._config.n_head def snake_case ( self : str , snake_case : PreTrainedTokenizer , snake_case : int = -1 , snake_case : int = -1 , snake_case : bool = False , snake_case : Optional[TensorType] = None , ): __UpperCamelCase = super(snake_case , self ).generate_dummy_inputs( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCamelCase = ordered_inputs['''attention_mask'''].dtype __UpperCamelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 ) return ordered_inputs @property def snake_case ( self : str ): return 13
708
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
375
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
267
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE__ = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE__ = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE__ = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE__ = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] SCREAMING_SNAKE_CASE__ = "3.0.12" SCREAMING_SNAKE_CASE__ = None def lowerCamelCase ( ): '''simple docstring''' global _logger lowercase__ = _logger or logging.getLogger(__name__ ) return _logger class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ ) -> int: lowercase__ = lock_file return None def __str__( self ) -> Union[str, Any]: lowercase__ = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class snake_case : def __init__( self ,UpperCAmelCase_ ) -> List[Any]: lowercase__ = lock return None def __enter__( self ) -> Optional[int]: return self.lock def __exit__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> int: self.lock.release() return None class snake_case : def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=-1 ,UpperCAmelCase_=None ) -> Tuple: lowercase__ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowercase__ = self.hash_filename_if_too_long(UpperCAmelCase_ ,UpperCAmelCase_ ) # The path to the lock file. lowercase__ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase__ = None # The default timeout value. lowercase__ = timeout # We use this lock primarily for the lock counter. lowercase__ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase__ = 0 return None @property def _a ( self ) -> List[str]: return self._lock_file @property def _a ( self ) -> Optional[int]: return self._timeout @timeout.setter def _a ( self ,UpperCAmelCase_ ) -> Optional[Any]: lowercase__ = float(UpperCAmelCase_ ) return None def _a ( self ) -> Optional[Any]: raise NotImplementedError() def _a ( self ) -> Optional[int]: raise NotImplementedError() @property def _a ( self ) -> Dict: return self._lock_file_fd is not None def _a ( self ,UpperCAmelCase_=None ,UpperCAmelCase_=0.05 ) -> Optional[Any]: # Use the default timeout, if no timeout is provided. if timeout is None: lowercase__ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase__ = id(self ) lowercase__ = self._lock_file lowercase__ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(UpperCAmelCase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase__ = max(0 ,self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _a ( self ,UpperCAmelCase_=False ) -> List[Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase__ = id(self ) lowercase__ = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() lowercase__ = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> Dict: self.acquire() return self def __exit__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> int: self.release() return None def __del__( self ) -> Union[str, Any]: self.release(force=UpperCAmelCase_ ) return None def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> str: lowercase__ = os.path.basename(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > max_length and max_length > 0: lowercase__ = os.path.dirname(UpperCAmelCase_ ) lowercase__ = str(hash(UpperCAmelCase_ ) ) lowercase__ = filename[: max_length - len(UpperCAmelCase_ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(UpperCAmelCase_ ,UpperCAmelCase_ ) else: return path class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=-1 ,UpperCAmelCase_=None ) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(UpperCAmelCase_ ,timeout=UpperCAmelCase_ ,max_filename_length=UpperCAmelCase_ ) lowercase__ = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def _a ( self ) -> List[str]: lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase__ = os.open(self._lock_file ,UpperCAmelCase_ ) except OSError: pass else: try: msvcrt.locking(UpperCAmelCase_ ,msvcrt.LK_NBLCK ,1 ) except OSError: os.close(UpperCAmelCase_ ) else: lowercase__ = fd return None def _a ( self ) -> Any: lowercase__ = self._lock_file_fd lowercase__ = None msvcrt.locking(UpperCAmelCase_ ,msvcrt.LK_UNLCK ,1 ) os.close(UpperCAmelCase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=-1 ,UpperCAmelCase_=None ) -> int: lowercase__ = os.statvfs(os.path.dirname(UpperCAmelCase_ ) ).f_namemax super().__init__(UpperCAmelCase_ ,timeout=UpperCAmelCase_ ,max_filename_length=UpperCAmelCase_ ) def _a ( self ) -> List[str]: lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase__ = os.open(self._lock_file ,UpperCAmelCase_ ) try: fcntl.flock(UpperCAmelCase_ ,fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCAmelCase_ ) else: lowercase__ = fd return None def _a ( self ) -> int: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowercase__ = self._lock_file_fd lowercase__ = None fcntl.flock(UpperCAmelCase_ ,fcntl.LOCK_UN ) os.close(UpperCAmelCase_ ) return None class snake_case (UpperCamelCase ): def _a ( self ) -> Optional[Any]: lowercase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase__ = os.open(self._lock_file ,UpperCAmelCase_ ) except OSError: pass else: lowercase__ = fd return None def _a ( self ) -> Tuple: os.close(self._lock_file_fd ) lowercase__ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE__ = None if msvcrt: SCREAMING_SNAKE_CASE__ = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE__ = UnixFileLock else: SCREAMING_SNAKE_CASE__ = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
267
1
'''simple docstring''' from manim import * class __a ( a__ ): '''simple docstring''' def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE_ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_ : Tuple = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : Dict = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE_ : List[str] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = Text('CPU' , font_size=24 ) SCREAMING_SNAKE_CASE_ : str = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE_ : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE_ : Dict = Text('GPU' , font_size=24 ) SCREAMING_SNAKE_CASE_ : int = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : List[str] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = Text('Model' , font_size=24 ) SCREAMING_SNAKE_CASE_ : int = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, rect in enumerate(lowerCamelCase_ ): rect.set_stroke(lowerCamelCase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE_ : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase_ , buff=0.0 ) self.add(lowerCamelCase_ ) cpu_targs.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Text('Loaded Checkpoint' , font_size=24 ) SCREAMING_SNAKE_CASE_ : int = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , aligned_edge=lowerCamelCase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_ : List[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = MarkupText( F'''Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.play(Write(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) ) SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = fill.copy().set_fill(lowerCamelCase_ , opacity=0.7 ) target.move_to(lowerCamelCase_ ) first_animations.append(GrowFromCenter(lowerCamelCase_ , run_time=1 ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
709
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL A = logging.get_logger(__name__) def _lowerCamelCase( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, Iterable[int]] , lowerCAmelCase__ : bool , lowerCAmelCase__ : int ): '''simple docstring''' def constraint_to_multiple_of(lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Any=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE_ : Union[str, Any] = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE_ : Dict = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE_ : str = (output_size, output_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else output_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_image_size(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE_ : Optional[int] = output_height / input_height SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE_ : str = scale_width else: # fit height SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE_ : Any = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase__ ) return (new_height, new_width) class __a ( __A ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ["""pixel_values"""] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = False , UpperCamelCase__ = 1 , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE_ : str = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = do_resize SCREAMING_SNAKE_CASE_ : str = size SCREAMING_SNAKE_CASE_ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE_ : Tuple = ensure_multiple_of SCREAMING_SNAKE_CASE_ : Optional[int] = resample SCREAMING_SNAKE_CASE_ : int = do_rescale SCREAMING_SNAKE_CASE_ : int = rescale_factor SCREAMING_SNAKE_CASE_ : str = do_normalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = 1 , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_resize_output_image_size( UpperCamelCase__ , output_size=(size['height'], size['width']) , keep_aspect_ratio=UpperCamelCase__ , multiple=UpperCamelCase__ , ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : str = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE_ : str = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE_ : Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[Any] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Tuple = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Any = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : Any = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ : str = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ : Dict = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : int = target_sizes.numpy() SCREAMING_SNAKE_CASE_ : Tuple = [] for idx in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_ : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
97
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __magic_name__ ( __lowerCAmelCase : int ) -> bool: __lowerCamelCase = int(number**0.5 ) return number == sq * sq def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> tuple[int, int]: __lowerCamelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __lowerCamelCase = x_den * y_den * z_den __lowerCamelCase = gcd(_lowerCamelCase , _lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __magic_name__ ( __lowerCAmelCase : int = 35 ) -> int: __lowerCamelCase = set() __lowerCamelCase = 42 __lowerCamelCase = Fraction(0 ) __lowerCamelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __lowerCamelCase = x_num * y_den + x_den * y_num __lowerCamelCase = x_den * y_den __lowerCamelCase = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 __lowerCamelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __lowerCamelCase = x_den * x_den * y_den * y_den if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): __lowerCamelCase = int(sqrt(_lowerCamelCase ) ) __lowerCamelCase = int(sqrt(_lowerCamelCase ) ) __lowerCamelCase = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=-1 __lowerCamelCase = x_num * y_num __lowerCamelCase = x_den * y_num + x_num * y_den __lowerCamelCase = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 __lowerCamelCase = x_num * x_num * y_num * y_num __lowerCamelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): __lowerCamelCase = int(sqrt(_lowerCamelCase ) ) __lowerCamelCase = int(sqrt(_lowerCamelCase ) ) __lowerCamelCase = gcd(_lowerCamelCase , _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) unique_s.add(_lowerCamelCase ) for num, den in unique_s: total += Fraction(_lowerCamelCase , _lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
298
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : List[Any] ,*SCREAMING_SNAKE_CASE_ : Union[str, Any] ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : int ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : int ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[str] ,*SCREAMING_SNAKE_CASE_ : List[str] ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : Tuple ,*SCREAMING_SNAKE_CASE_ : Optional[int] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : Tuple ,*SCREAMING_SNAKE_CASE_ : Dict ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : Tuple ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : Optional[Any] ,*SCREAMING_SNAKE_CASE_ : Any ,**SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : Optional[Any] ,**SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] )
535
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') __SCREAMING_SNAKE_CASE : List[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __SCREAMING_SNAKE_CASE : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase_( lowercase_ : str ) -> Dict: with open(lowercase_ , '''rb''' ) as f: _lowerCamelCase = Image.open(lowercase_ ) return im.convert('''RGB''' ) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : Optional[str] = field( default=A__, metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' }, ) lowercase__ : Optional[str] = field( default=A__, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase__ : Optional[str] = field(default=A__, metadata={'help': 'A folder containing the training data.'} ) lowercase__ : Optional[str] = field(default=A__, metadata={'help': 'A folder containing the validation data.'} ) lowercase__ : Optional[float] = field( default=0.15, metadata={'help': 'Percent to split off of train for validation.'} ) lowercase__ : Optional[int] = field( default=A__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) lowercase__ : Optional[int] = field( default=A__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def snake_case__ ( self ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : str = field( default='google/vit-base-patch16-224-in21k', metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}, ) lowercase__ : Optional[str] = field( default=A__, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(A__ )}, ) lowercase__ : Optional[str] = field( default=A__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ : Optional[str] = field( default=A__, metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowercase__ : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) lowercase__ : str = field(default=A__, metadata={'help': 'Name or path of preprocessor config.'} ) lowercase__ : bool = field( default=A__, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) lowercase__ : bool = field( default=A__, metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'}, ) def lowerCAmelCase_( lowercase_ : Optional[Any] ) -> Tuple: _lowerCamelCase = torch.stack([example['''pixel_values'''] for example in examples] ) _lowerCamelCase = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase_( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowerCamelCase = {} if data_args.train_dir is not None: _lowerCamelCase = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: _lowerCamelCase = os.path.join(data_args.validation_dir , '''**''' ) _lowerCamelCase = load_dataset( '''imagefolder''' , data_files=lowercase_ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase_ ) and data_args.train_val_split > 0.0: _lowerCamelCase = dataset['''train'''].train_test_split(data_args.train_val_split ) _lowerCamelCase = split['''train'''] _lowerCamelCase = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCamelCase = dataset['''train'''].features['''labels'''].names _lowerCamelCase , _lowerCamelCase = {}, {} for i, label in enumerate(lowercase_ ): _lowerCamelCase = str(lowercase_ ) _lowerCamelCase = label # Load the accuracy metric from the datasets package _lowerCamelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Union[str, Any] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _lowerCamelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _lowerCamelCase = image_processor.size['''shortest_edge'''] else: _lowerCamelCase = (image_processor.size['''height'''], image_processor.size['''width''']) _lowerCamelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _lowerCamelCase = Compose( [ RandomResizedCrop(lowercase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _lowerCamelCase = Compose( [ Resize(lowercase_ ), CenterCrop(lowercase_ ), ToTensor(), normalize, ] ) def train_transforms(lowercase_ : Optional[Any] ): _lowerCamelCase = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowercase_ : Tuple ): _lowerCamelCase = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _lowerCamelCase = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _lowerCamelCase = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase_ ) # Initalize our trainer _lowerCamelCase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: _lowerCamelCase = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase = last_checkpoint _lowerCamelCase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase = trainer.evaluate() trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) # Write model card and (optionally) push to hub _lowerCamelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
623
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
623
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Tuple = AlbertTokenizer A__ : Any = AlbertTokenizerFast A__ : List[str] = True A__ : Optional[Any] = True A__ : Tuple = True def snake_case__ ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = "this is a test" A__ = "this is a test" return input_text, output_text def snake_case__ ( self ) -> List[str]: A__ = "<pad>" A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Tuple: A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 30000 ) def snake_case__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def snake_case__ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = "I was born in 92000, and this is falsé." A__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> str: A__ = AlbertTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [48, 25, 21, 1289] ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def snake_case__ ( self ) -> Union[str, Any]: A__ = AlbertTokenizer(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.encode("sequence builders" ) A__ = tokenizer.encode("multi-sequence build" ) A__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self ) -> str: # fmt: off A__ = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
104
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Any = logging.get_logger(__name__) snake_case : Union[str, Any] = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def lowercase__ ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(__UpperCamelCase , tokenizer_name + """Fast""" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(__UpperCamelCase , force_download=__UpperCamelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split("""/""" ) __lowercase = os.path.join(__UpperCamelCase , __UpperCamelCase ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(__UpperCamelCase )[-1][0] if next_char == "/": __lowercase = os.path.join(__UpperCamelCase , __UpperCamelCase ) __lowercase = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) __lowercase = tokenizer.save_pretrained( __UpperCamelCase , legacy_format=__UpperCamelCase , filename_prefix=__UpperCamelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__UpperCamelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) snake_case : Tuple = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
566
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase : List[str] ={'UserAgent': UserAgent().random} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = script.contents[0] lowerCAmelCase : int = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _a : def __init__( self , lowercase_ ) -> Tuple: lowerCAmelCase : List[str] = f"""https://www.instagram.com/{username}/""" lowerCAmelCase : str = self.get_json() def _snake_case ( self ) -> dict: lowerCAmelCase : Tuple = requests.get(self.url , headers=lowercase_ ).text lowerCAmelCase : int = BeautifulSoup(lowercase_ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self ) -> str: return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _snake_case ( self ) -> str: return self.user_data["username"] @property def _snake_case ( self ) -> str: return self.user_data["full_name"] @property def _snake_case ( self ) -> str: return self.user_data["biography"] @property def _snake_case ( self ) -> str: return self.user_data["business_email"] @property def _snake_case ( self ) -> str: return self.user_data["external_url"] @property def _snake_case ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def _snake_case ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self ) -> bool: return self.user_data["is_verified"] @property def _snake_case ( self ) -> bool: return self.user_data["is_private"] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = "github" ): '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowerCAmelCase : int = InstagramUser(SCREAMING_SNAKE_CASE__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,SCREAMING_SNAKE_CASE__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : int =InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: super().__init__() self.register_modules(vqvae=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 50 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: A : List[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCAmelCase , ) A : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A : Optional[int] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCAmelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature A : str = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A : List[str] = {} if accepts_eta: A : Optional[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): A : Any = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual A : Dict = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 A : int = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # decode the image latents with the VAE A : str = self.vqvae.decode(__UpperCAmelCase ).sample A : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) A : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : Union[str, Any] = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
542
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def _lowerCAmelCase ( __lowerCamelCase : Optional[int] ): """simple docstring""" class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , UpperCamelCase : Optional[int] )->Any: __SCREAMING_SNAKE_CASE : Any = metric_id class _SCREAMING_SNAKE_CASE : lowerCAmelCase = [MetricMock(UpperCamelCase ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __snake_case ( self : Optional[int] )->Optional[Any]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def _lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" if "tmp_path" in args: __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowerCamelCase , match="https://huggingface.co/docs/evaluate" ): func(*__lowerCamelCase )
713
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _SCREAMING_SNAKE_CASE : pass
447
0
def __UpperCamelCase ( A , A , A , A ): UpperCamelCase__ = len(_UpperCamelCase ), len(grid[0] ) if ( min(_UpperCamelCase , _UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCamelCase__ = 0 count += depth_first_search(_UpperCamelCase , row + 1 , _UpperCamelCase , _UpperCamelCase ) count += depth_first_search(_UpperCamelCase , row - 1 , _UpperCamelCase , _UpperCamelCase ) count += depth_first_search(_UpperCamelCase , _UpperCamelCase , col + 1 , _UpperCamelCase ) count += depth_first_search(_UpperCamelCase , _UpperCamelCase , col - 1 , _UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
415
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = 'Hello world! cécé herlolip' def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: '''simple docstring''' lowerCamelCase__: Any = FairseqRobertaModel.from_pretrained(_UpperCamelCase ) roberta.eval() # disable dropout lowerCamelCase__: Any = roberta.model.encoder.sentence_encoder lowerCamelCase__: Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCamelCase__: Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , _UpperCamelCase ) lowerCamelCase__: str = XLMRobertaXLForSequenceClassification(_UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__: Union[str, Any] = roberta_sent_encoder.embed_tokens.weight lowerCamelCase__: List[str] = roberta_sent_encoder.embed_positions.weight lowerCamelCase__: Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCamelCase__: Any = roberta_sent_encoder.layer_norm.weight lowerCamelCase__: Tuple = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__: BertLayer = model.roberta.encoder.layer[i] lowerCamelCase__: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCamelCase__: RobertaAttention = layer.attention lowerCamelCase__: Union[str, Any] = roberta_layer.self_attn_layer_norm.weight lowerCamelCase__: Any = roberta_layer.self_attn_layer_norm.bias # self attention lowerCamelCase__: BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCamelCase__: Tuple = roberta_layer.self_attn.q_proj.weight lowerCamelCase__: Optional[int] = roberta_layer.self_attn.q_proj.bias lowerCamelCase__: Optional[int] = roberta_layer.self_attn.k_proj.weight lowerCamelCase__: int = roberta_layer.self_attn.k_proj.bias lowerCamelCase__: Union[str, Any] = roberta_layer.self_attn.v_proj.weight lowerCamelCase__: List[str] = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__: BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCamelCase__: int = roberta_layer.self_attn.out_proj.weight lowerCamelCase__: Tuple = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCamelCase__: Any = roberta_layer.final_layer_norm.weight lowerCamelCase__: Optional[int] = roberta_layer.final_layer_norm.bias # intermediate lowerCamelCase__: BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase__: Tuple = roberta_layer.fca.weight lowerCamelCase__: Tuple = roberta_layer.fca.bias # output lowerCamelCase__: BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase__: Any = roberta_layer.fca.weight lowerCamelCase__: Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: lowerCamelCase__: Dict = roberta.model.classification_heads["""mnli"""].dense.weight lowerCamelCase__: Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCamelCase__: str = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCamelCase__: List[str] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.dense.weight lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.dense.bias lowerCamelCase__: Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight lowerCamelCase__: Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.weight lowerCamelCase__: Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__: torch.Tensor = roberta.encode(_UpperCamelCase ).unsqueeze(0 ) # batch of size 1 lowerCamelCase__: Dict = model(_UpperCamelCase )[0] if classification_head: lowerCamelCase__: Optional[int] = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_UpperCamelCase ) ) else: lowerCamelCase__: List[Any] = roberta.model(_UpperCamelCase )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__: Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__: List[Any] = torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_UpperCamelCase ).mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _lowercase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
306
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase : str = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> List[Any]: """simple docstring""" super().__init__() lowerCAmelCase = nn.ModuleList(SCREAMING_SNAKE_CASE ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE : torch.Tensor , SCREAMING_SNAKE_CASE : List[torch.tensor] , SCREAMING_SNAKE_CASE : List[float] , SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , ) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.nets ) ): lowerCAmelCase , lowerCAmelCase = controlnet( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) # merge samples if i == 0: lowerCAmelCase , lowerCAmelCase = down_samples, mid_sample else: lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Callable = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[str] = None , ) -> Any: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE , is_main_process=SCREAMING_SNAKE_CASE , save_function=SCREAMING_SNAKE_CASE , safe_serialization=SCREAMING_SNAKE_CASE , variant=SCREAMING_SNAKE_CASE , ) idx += 1 lowerCAmelCase = model_path_to_save + f"_{idx}" @classmethod def __A ( cls : Any , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] , **SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE ): lowerCAmelCase = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) controlnets.append(SCREAMING_SNAKE_CASE ) idx += 1 lowerCAmelCase = pretrained_model_path + f"_{idx}" logger.info(f"{len(SCREAMING_SNAKE_CASE )} controlnets loaded from {pretrained_model_path}." ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(SCREAMING_SNAKE_CASE )
159
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowercase : Union[str, Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' lowercase : Optional[int] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' lowercase : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __a ( A__ , A__ , A__ , A__ , A__ = None , A__ = False , ) -> List[str]: if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase = new_id # turn into Numpy arrays lowerCAmelCase = np.array(A__ ) lowerCAmelCase = np.array(A__ ) if reduce_labels: lowerCAmelCase = 255 lowerCAmelCase = label - 1 lowerCAmelCase = 255 lowerCAmelCase = label != ignore_index lowerCAmelCase = np.not_equal(A__ , A__ ) lowerCAmelCase = pred_label[mask] lowerCAmelCase = np.array(A__ )[mask] lowerCAmelCase = pred_label[pred_label == label] lowerCAmelCase = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __a ( A__ , A__ , A__ , A__ , A__ = None , A__ = False , ) -> Optional[int]: lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(A__ , A__ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = intersect_and_union( A__ , A__ , A__ , A__ , A__ , A__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __a ( A__ , A__ , A__ , A__ , A__ = None , A__ = None , A__ = False , ) -> Dict: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = total_intersect_and_union( A__ , A__ , A__ , A__ , A__ , A__ ) # compute metrics lowerCAmelCase = {} lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase = total_area_intersect / total_area_union lowerCAmelCase = total_area_intersect / total_area_label lowerCAmelCase = np.nanmean(A__ ) lowerCAmelCase = np.nanmean(A__ ) lowerCAmelCase = all_acc lowerCAmelCase = iou lowerCAmelCase = acc if nan_to_num is not None: lowerCAmelCase = {metric: np.nan_to_num(A__ , nan=A__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def __A ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE : bool = False , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = mean_iou( results=SCREAMING_SNAKE_CASE , gt_seg_maps=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , ignore_index=SCREAMING_SNAKE_CASE , nan_to_num=SCREAMING_SNAKE_CASE , label_map=SCREAMING_SNAKE_CASE , reduce_labels=SCREAMING_SNAKE_CASE , ) return iou_result
159
1
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 100_0000 , __SCREAMING_SNAKE_CASE = 10 ): lowercase = defaultdict(__SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowercase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowercase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
84
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : str = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Tuple = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> str: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
711
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: return math.sqrt(_UpperCamelCase ) * math.sqrt(_UpperCamelCase ) == num def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: A_ = 0 A_ = n while left <= right: A_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ = mid - 1 else: A_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
174
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase ( datasets.BeamBasedBuilder ): def __A ( self ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=__lowercase , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase ) class UpperCamelCase ( datasets.BeamBasedBuilder ): def __A ( self ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=__lowercase , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase ) def UpperCamelCase ( )-> Any: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def UpperCamelCase ( )-> Optional[Any]: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class UpperCamelCase ( snake_case__ ): @require_beam def __A ( self ): A__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ = DummyBeamDataset(cache_dir=__lowercase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) A__ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , __lowercase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , __lowercase ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __A ( self ): import apache_beam as beam A__ = beam.io.parquetio.WriteToParquet A__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ = DummyBeamDataset(cache_dir=__lowercase , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: A__ = partial(__lowercase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( __lowercase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) A__ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , __lowercase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , __lowercase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __A ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ = DummyBeamDataset(cache_dir=__lowercase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __A ( self ): A__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: A__ = NestedBeamDataset(cache_dir=__lowercase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) A__ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , __lowercase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , __lowercase ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowercase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
491
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCamelCase = 'main' # Default branch name _UpperCamelCase = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) _UpperCamelCase = 'aaaaaaa' # This commit does not exist, so we should 404. _UpperCamelCase = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCamelCase = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def lowerCAmelCase_ ( ): '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def lowerCAmelCase_ ( ): '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :str ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowercase ( self :str , __lowercase :str ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowercase ( self :Any , __lowercase :Tuple ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowercase ( self :List[Any] , __lowercase :Optional[Any] ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __lowercase ( self :Tuple ): self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) self.assertEqual(find_labels(__lowercase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__lowercase ) , ['''start_positions''', '''end_positions'''] ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" pass self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) @require_tf def __lowercase ( self :str ): self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) self.assertEqual(find_labels(__lowercase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__lowercase ) , ['''start_positions''', '''end_positions'''] ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" pass self.assertEqual(find_labels(__lowercase ) , ['''labels'''] ) @require_flax def __lowercase ( self :str ): # Flax models don't have labels self.assertEqual(find_labels(__lowercase ) , [] ) self.assertEqual(find_labels(__lowercase ) , [] ) self.assertEqual(find_labels(__lowercase ) , [] ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" pass self.assertEqual(find_labels(__lowercase ) , [] )
179
0
from __future__ import annotations def A ( a_ ,a_ ) -> list[int]: __UpperCamelCase : List[Any] =0 __UpperCamelCase : Dict =len(a_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __UpperCamelCase : Any =i + 1 else: __UpperCamelCase : List[Any] =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
701
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] ="""dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase__ : str =( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase__ : Any ="""image_qa""" UpperCamelCase__ : int =AutoProcessor UpperCamelCase__ : Optional[Any] =AutoModelForVisualQuestionAnswering UpperCamelCase__ : Dict =["""image""", """text"""] UpperCamelCase__ : List[Any] =["""text"""] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return self.pre_processor(lowerCamelCase__ , lowerCamelCase__ , return_tensors='pt' ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCamelCase__ ).logits def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
154
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = "▁" _SCREAMING_SNAKE_CASE : str = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _SCREAMING_SNAKE_CASE : str = { "facebook/s2t-small-librispeech-asr": 1024, } _SCREAMING_SNAKE_CASE : Dict = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _SCREAMING_SNAKE_CASE : Tuple = {"mustc": MUSTC_LANGS} class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Dict = MAX_MODEL_INPUT_SIZES lowerCAmelCase_ : Any = ["input_ids", "attention_mask"] lowerCAmelCase_ : List[int] = [] def __init__( self , a__ , a__ , a__="<s>" , a__="</s>" , a__="<pad>" , a__="<unk>" , a__=False , a__=False , a__=None , a__=None , a__ = None , **a__ , ) -> None: '''simple docstring''' snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , do_upper_case=a__ , do_lower_case=a__ , tgt_lang=a__ , lang_codes=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) snake_case_ = do_upper_case snake_case_ = do_lower_case snake_case_ = load_json(a__ ) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = spm_file snake_case_ = load_spm(a__ , self.sp_model_kwargs ) if lang_codes is not None: snake_case_ = lang_codes snake_case_ = LANGUAGES[lang_codes] snake_case_ = [F'<lang:{lang}>' for lang in self.langs] snake_case_ = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} snake_case_ = self.lang_tokens snake_case_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: snake_case_ = {} @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' snake_case_ = new_tgt_lang self.set_tgt_lang_special_tokens(a__ ) def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' snake_case_ = self.lang_code_to_id[tgt_lang] snake_case_ = [lang_code_id] def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' return self.encoder.get(a__ , self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' return self.decoder.get(a__ , self.unk_token ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = [] snake_case_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: snake_case_ = self.sp_model.decode(a__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " snake_case_ = [] else: current_sub_tokens.append(a__ ) snake_case_ = self.sp_model.decode(a__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase__ ( self , a__ , a__=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) snake_case_ = [1] * len(self.prefix_tokens ) snake_case_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(a__ )) + suffix_ones return prefix_ones + ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a__ ) -> None: '''simple docstring''' snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = Path(a__ ) assert save_dir.is_dir(), F'{save_directory} should be a directory' snake_case_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) snake_case_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a__ ) elif not os.path.isfile(self.spm_file ): with open(a__ , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (str(a__ ), str(a__ )) def UpperCamelCase_( snake_case : str , snake_case : Dict[str, Any] ): '''simple docstring''' snake_case_ = sentencepiece.SentencePieceProcessor(**snake_case ) spm.Load(str(snake_case ) ) return spm def UpperCamelCase_( snake_case : str ): '''simple docstring''' with open(snake_case , "r" ) as f: return json.load(snake_case ) def UpperCamelCase_( snake_case : Tuple , snake_case : str ): '''simple docstring''' with open(snake_case , "w" ) as f: json.dump(snake_case , snake_case , indent=2 )
400
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _snake_case ( lowercase_ ): lowerCAmelCase_ : torch.FloatTensor class _snake_case ( nn.Module ): def __init__( self , a__=3 , a__=3 , a__=("DownEncoderBlock2D",) , a__=(64,) , a__=2 , a__=32 , a__="silu" , a__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ = layers_per_block snake_case_ = torch.nn.Convad( a__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case_ = None snake_case_ = nn.ModuleList([] ) # down snake_case_ = block_out_channels[0] for i, down_block_type in enumerate(a__ ): snake_case_ = output_channel snake_case_ = block_out_channels[i] snake_case_ = i == len(a__ ) - 1 snake_case_ = get_down_block( a__ , num_layers=self.layers_per_block , in_channels=a__ , out_channels=a__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , ) self.down_blocks.append(a__ ) # mid snake_case_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # out snake_case_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a__ , eps=1e-6 ) snake_case_ = nn.SiLU() snake_case_ = 2 * out_channels if double_z else out_channels snake_case_ = nn.Convad(block_out_channels[-1] , a__ , 3 , padding=1 ) snake_case_ = False def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' snake_case_ = x snake_case_ = self.conv_in(a__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(a__ ): def custom_forward(*a__ ): return module(*a__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , use_reentrant=a__ ) # middle snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , use_reentrant=a__ ) else: for down_block in self.down_blocks: snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ ) # middle snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a__ ) else: # down for down_block in self.down_blocks: snake_case_ = down_block(a__ ) # middle snake_case_ = self.mid_block(a__ ) # post-process snake_case_ = self.conv_norm_out(a__ ) snake_case_ = self.conv_act(a__ ) snake_case_ = self.conv_out(a__ ) return sample class _snake_case ( nn.Module ): def __init__( self , a__=3 , a__=3 , a__=("UpDecoderBlock2D",) , a__=(64,) , a__=2 , a__=32 , a__="silu" , a__="group" , ) -> int: '''simple docstring''' super().__init__() snake_case_ = layers_per_block snake_case_ = nn.Convad( a__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case_ = None snake_case_ = nn.ModuleList([] ) snake_case_ = in_channels if norm_type == "spatial" else None # mid snake_case_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # up snake_case_ = list(reversed(a__ ) ) snake_case_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(a__ ): snake_case_ = output_channel snake_case_ = reversed_block_out_channels[i] snake_case_ = i == len(a__ ) - 1 snake_case_ = get_up_block( a__ , num_layers=self.layers_per_block + 1 , in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , resnet_time_scale_shift=a__ , ) self.up_blocks.append(a__ ) snake_case_ = output_channel # out if norm_type == "spatial": snake_case_ = SpatialNorm(block_out_channels[0] , a__ ) else: snake_case_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a__ , eps=1e-6 ) snake_case_ = nn.SiLU() snake_case_ = nn.Convad(block_out_channels[0] , a__ , 3 , padding=1 ) snake_case_ = False def lowerCAmelCase__ ( self , a__ , a__=None ) -> Union[str, Any]: '''simple docstring''' snake_case_ = z snake_case_ = self.conv_in(a__ ) snake_case_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a__ ): def custom_forward(*a__ ): return module(*a__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ , use_reentrant=a__ ) snake_case_ = sample.to(a__ ) # up for up_block in self.up_blocks: snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , a__ , use_reentrant=a__ ) else: # middle snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ ) snake_case_ = sample.to(a__ ) # up for up_block in self.up_blocks: snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ , a__ ) else: # middle snake_case_ = self.mid_block(a__ , a__ ) snake_case_ = sample.to(a__ ) # up for up_block in self.up_blocks: snake_case_ = up_block(a__ , a__ ) # post-process if latent_embeds is None: snake_case_ = self.conv_norm_out(a__ ) else: snake_case_ = self.conv_norm_out(a__ , a__ ) snake_case_ = self.conv_act(a__ ) snake_case_ = self.conv_out(a__ ) return sample class _snake_case ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__=None , a__="random" , a__=False , a__=True ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ = n_e snake_case_ = vq_embed_dim snake_case_ = beta snake_case_ = legacy snake_case_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case_ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) snake_case_ = self.used.shape[0] snake_case_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case_ = self.re_embed snake_case_ = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: snake_case_ = n_e snake_case_ = sane_index_shape def lowerCAmelCase__ ( self , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = inds.shape assert len(a__ ) > 1 snake_case_ = inds.reshape(ishape[0] , -1 ) snake_case_ = self.used.to(a__ ) snake_case_ = (inds[:, :, None] == used[None, None, ...]).long() snake_case_ = match.argmax(-1 ) snake_case_ = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case_ = self.unknown_index return new.reshape(a__ ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = inds.shape assert len(a__ ) > 1 snake_case_ = inds.reshape(ishape[0] , -1 ) snake_case_ = self.used.to(a__ ) if self.re_embed > self.used.shape[0]: # extra token snake_case_ = 0 # simply set to zero snake_case_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a__ ) return back.reshape(a__ ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case_ = torch.argmin(torch.cdist(a__ , self.embedding.weight ) , dim=1 ) snake_case_ = self.embedding(a__ ).view(z.shape ) snake_case_ = None snake_case_ = None # compute loss for embedding if not self.legacy: snake_case_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case_ = z + (z_q - z).detach() # reshape back to match original input shape snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case_ = self.remap_to_used(a__ ) snake_case_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase__ ( self , a__ , a__ ) -> List[str]: '''simple docstring''' if self.remap is not None: snake_case_ = indices.reshape(shape[0] , -1 ) # add batch axis snake_case_ = self.unmap_to_all(a__ ) snake_case_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case_ = self.embedding(a__ ) if shape is not None: snake_case_ = z_q.view(a__ ) # reshape back to match original input shape snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _snake_case ( lowercase_ ): def __init__( self , a__ , a__=False ) -> Optional[int]: '''simple docstring''' snake_case_ = parameters snake_case_ , snake_case_ = torch.chunk(a__ , 2 , dim=1 ) snake_case_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) snake_case_ = deterministic snake_case_ = torch.exp(0.5 * self.logvar ) snake_case_ = torch.exp(self.logvar ) if self.deterministic: snake_case_ = snake_case_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase__ ( self , a__ = None ) -> torch.FloatTensor: '''simple docstring''' snake_case_ = randn_tensor( self.mean.shape , generator=a__ , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case_ = self.mean + self.std * sample return x def lowerCAmelCase__ ( self , a__=None ) -> List[str]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase__ ( self , a__ , a__=[1, 2, 3] ) -> Optional[int]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) snake_case_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.mean
400
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right A : int = 50_003 A : Union[str, Any] = 50_002 @require_sentencepiece @require_tokenizers class lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' A = PLBartTokenizer A = None A = False def lowerCamelCase__ ( self :Any ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = PLBartTokenizer(lowerCamelCase_ , language_codes="base" , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self :str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = PLBartTokenizer(lowerCamelCase_ , language_codes="base" , keep_accents=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) UpperCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCamelCase__ = tokenizer.vocab_size UpperCamelCase__ = [tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) for x in range(end - 4 , lowerCamelCase_ )] self.assertListEqual(lowerCamelCase_ , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCamelCase__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCamelCase__ = tokenizer(lowerCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) , lowerCamelCase_ , ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = PLBartTokenizer(lowerCamelCase_ , language_codes="multi" , keep_accents=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) UpperCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCamelCase__ = tokenizer.vocab_size UpperCamelCase__ = [tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) for x in range(end - 7 , lowerCamelCase_ )] self.assertListEqual( lowerCamelCase_ , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCamelCase__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCamelCase__ = tokenizer(lowerCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) , lowerCamelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' A = 'uclanlp/plbart-python-en_XX' A = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] A = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] A = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase__ ( cls :Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCamelCase__ = 1 return cls def lowerCamelCase__ ( self :Any ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def lowerCamelCase__ ( self :str ) -> List[Any]: """simple docstring""" self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) UpperCamelCase__ = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] UpperCamelCase__ = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def lowerCamelCase__ ( self :int ) -> Dict: """simple docstring""" UpperCamelCase__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , lowerCamelCase_ ) UpperCamelCase__ = 1_0 UpperCamelCase__ = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] ) -> int: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase__ = PLBartTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def lowerCamelCase__ ( self :Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors="pt" ) UpperCamelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCamelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCamelCase__ ( self :Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCamelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase__ ( self :List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors="pt" ) UpperCamelCase__ = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=1_0 , return_tensors="pt" ) UpperCamelCase__ = targets["input_ids"] UpperCamelCase__ = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCamelCase__ ( self :Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
304
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A : List[str] = logging.get_logger(__name__) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = ['pixel_values'] def __init__( self :str , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :PILImageResampling = PIL.Image.BICUBIC , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :Union[int, float] = 1 / 2_5_5 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , **lowerCamelCase_ :int , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase__ = size if size is not None else {"height": 2_5_6, "width": 2_5_6} UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} UpperCamelCase__ = get_size_dict(lowerCamelCase_ , param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :PILImageResampling = PIL.Image.BICUBIC , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Dict , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCamelCase_ , size=(size["height"], size["width"]) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :List[Any] , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ , size=(size["height"], size["width"]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[int, float] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :int , ) -> str: """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Any , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :str , lowerCamelCase_ :ImageInput , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :float = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ :Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(lowerCamelCase_ , param_name="crop_size" ) UpperCamelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
304
1
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : str = generate_pascal_triangle(UpperCamelCase__ ) for row_idx in range(UpperCamelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) lowerCamelCase : Dict = [] for current_row_idx in range(UpperCamelCase__ ): lowerCamelCase : List[str] = populate_current_row(UpperCamelCase__ , UpperCamelCase__ ) triangle.append(UpperCamelCase__ ) return triangle def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Tuple = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase , lowerCamelCase : Optional[Any] = 1, 1 for current_col_idx in range(1 , UpperCamelCase__ ): calculate_current_element( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return current_row def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowerCamelCase : Tuple = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase : Any = above_to_left_elt + above_to_right_elt def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) lowerCamelCase : Any = [[1]] for row_index in range(1 , UpperCamelCase__ ): lowerCamelCase : int = [0] + result[-1] + [0] lowerCamelCase : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase : Tuple = sum(divmod(UpperCamelCase__ , 2 ) ) lowerCamelCase : Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowerCamelCase : List[str] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase : Any = row_first_half + row_second_half result.append(UpperCamelCase__ ) return result def lowercase_( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: lowerCamelCase : Union[str, Any] = f"""{func.__name__}({value})""" lowerCamelCase : int = timeit(f"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase__ , UpperCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
340
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> bool: if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
546
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __A : Optional[int] = '\nHuman: <<task>>\n\nAssistant: ' __A : str = 'huggingface-tools/default-prompts' __A : Dict = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any]="run" ): '''simple docstring''' if prompt_or_repo_id is None: snake_case_ : int = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCamelCase_ ) is not None: return prompt_or_repo_id snake_case_ : Optional[Any] = cached_file( lowerCamelCase_ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" ) as f: return f.read()
267
'''simple docstring''' import random from typing import Any def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' for _ in range(len(lowerCamelCase_ ) ): snake_case_ : Union[str, Any] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) snake_case_ : Any = random.randint(0 , len(lowerCamelCase_ ) - 1 ) snake_case_ , snake_case_ : List[str] = data[b], data[a] return data if __name__ == "__main__": __A : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] __A : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
267
1
import random def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Dict: _UpperCAmelCase = [], [], [] for element in data: if element < pivot: less.append(lowerCamelCase__ ) elif element > pivot: greater.append(lowerCamelCase__ ) else: equal.append(lowerCamelCase__ ) return less, equal, greater def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Any: if index >= len(lowerCamelCase__ ) or index < 0: return None _UpperCAmelCase = items[random.randint(0 , len(lowerCamelCase__ ) - 1 )] _UpperCAmelCase = 0 _UpperCAmelCase = _partition(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = len(lowerCamelCase__ ) _UpperCAmelCase = len(lowerCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCamelCase__ , lowerCamelCase__ ) # must be in larger else: return quick_select(lowerCamelCase__ , index - (m + count) )
108
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase__ = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCAmelCase__ = {'''facebook/blenderbot-3B''': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase__ : Tuple = bs[:] lowercase__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 lowercase__ : Union[str, Any] = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = set() lowercase__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : str = char return pairs class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]="replace" , SCREAMING_SNAKE_CASE : str="<s>" , SCREAMING_SNAKE_CASE : Dict="</s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : str="<s>" , SCREAMING_SNAKE_CASE : List[str]="<unk>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<pad>" , SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE : Union[str, Any]=False , **SCREAMING_SNAKE_CASE : Tuple , ): lowercase__ : List[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else bos_token lowercase__ : List[str] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else eos_token lowercase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else sep_token lowercase__ : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else cls_token lowercase__ : Tuple = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else unk_token lowercase__ : int = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Tuple = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: lowercase__ : List[Any] = json.load(SCREAMING_SNAKE_CASE ) lowercase__ : str = {v: k for k, v in self.encoder.items()} lowercase__ : str = errors # how to handle errors in decoding lowercase__ : List[Any] = bytes_to_unicode() lowercase__ : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: lowercase__ : str = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : List[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : List[Any] = {} lowercase__ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : List[str] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case ( self : int ): return len(self.encoder ) def snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): if token in self.cache: return self.cache[token] lowercase__ : str = tuple(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = get_pairs(SCREAMING_SNAKE_CASE ) if not pairs: return token while True: lowercase__ : Optional[int] = min(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : self.bpe_ranks.get(SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : str = bigram lowercase__ : Optional[Any] = [] lowercase__ : Dict = 0 while i < len(SCREAMING_SNAKE_CASE ): try: lowercase__ : str = word.index(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : List[Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : Any = tuple(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = new_word if len(SCREAMING_SNAKE_CASE ) == 1: break else: lowercase__ : Optional[int] = get_pairs(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = " ".join(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = word return word def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[Any] ): lowercase__ : List[Any] = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE ): lowercase__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE ).split(" " ) ) return bpe_tokens def snake_case ( self : int , SCREAMING_SNAKE_CASE : List[Any] ): return self.encoder.get(SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any ): return self.decoder.get(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : List[Any] = "".join(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : int = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE , ensure_ascii=SCREAMING_SNAKE_CASE ) + "\n" ) lowercase__ : List[str] = 0 with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase__ : int = token_index writer.write(" ".join(SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict=False , **SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): lowercase__ : Any = " " + text return (text, kwargs) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : "Conversation" ): lowercase__ : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = " ".join(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = self.encode(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
496
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , a__ : str=0.0_1 , a__ : Union[str, Any]=1000 ): """simple docstring""" __snake_case = p_stop __snake_case = max_length def __iter__(self : Union[str, Any] ): """simple docstring""" __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[int] , a__ : Tuple , a__ : Dict , a__ : Union[str, Any]=False , a__ : Tuple=True ): """simple docstring""" __snake_case = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] __snake_case = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def a (self : List[str] ): """simple docstring""" __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def a (self : Any ): """simple docstring""" __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def a (self : Tuple ): """simple docstring""" __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def a (self : List[str] ): """simple docstring""" __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a (self : int , a__ : str , a__ : Tuple , a__ : List[Any] , a__ : int=False , a__ : int=2 , a__ : List[Any]=False ): """simple docstring""" random.seed(a__ ) __snake_case = list(a__ ) __snake_case = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def a (self : Any ): """simple docstring""" __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=a__ ) __snake_case = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a (self : Dict ): """simple docstring""" __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a (self : Any ): """simple docstring""" __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a (self : Union[str, Any] ): """simple docstring""" Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
388
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Tuple , *a__ : Optional[Any] , **a__ : Any ): """simple docstring""" warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , a__ , ) super().__init__(*a__ , **a__ )
388
1
import os import sys import unittest lowerCAmelCase : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase : Any = os.path.join(git_repo_path, '''src''', '''diffusers''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> Dict: snake_case__ = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a__ , """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a__ , """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a__ , """torch_and_transformers_and_onnx""" ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: snake_case__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , a__ ) self.assertIn("""torch_and_transformers""" , a__ ) self.assertIn("""flax_and_transformers""" , a__ ) self.assertIn("""torch_and_transformers_and_onnx""" , a__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: snake_case__ = create_dummy_object("""CONSTANT""" , """\'torch\'""" ) self.assertEqual(a__ , """\nCONSTANT = None\n""" ) snake_case__ = create_dummy_object("""function""" , """\'torch\'""" ) self.assertEqual( a__ , """\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n""" ) snake_case__ = """ class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') """ snake_case__ = create_dummy_object("""FakeClass""" , """\'torch\'""" ) self.assertEqual(a__ , a__ ) def UpperCAmelCase_ ( self : int ) -> List[Any]: snake_case__ = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ snake_case__ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , a__ )
214
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' A_ = tempfile.mkdtemp() A_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } A_ = os.path.join(self.tmpdirname , a__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(a__ , a__ ) def lowerCAmelCase_ ( self , **a__ ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase_ ( self , **a__ ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase_ ( self , **a__ ) -> List[str]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = self.get_image_processor() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) processor_slow.save_pretrained(self.tmpdirname ) A_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=a__ ) A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) processor_fast.save_pretrained(self.tmpdirname ) A_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a__ ) self.assertIsInstance(processor_fast.tokenizer , a__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a__ ) self.assertIsInstance(processor_fast.image_processor , a__ ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' A_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) A_ = self.get_image_processor(do_normalize=a__ ) A_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=a__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = self.prepare_image_inputs() A_ = image_processor(a__ , return_tensors='''np''' ) A_ = processor(images=a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = '''Alexandra,T-shirt的价格是15便士。''' A_ = processor(text=a__ ) A_ = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = '''Alexandra,T-shirt的价格是15便士。''' A_ = self.prepare_image_inputs() A_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(a__ ) A_ = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = ChineseCLIPProcessor(tokenizer=a__ , image_processor=a__ ) A_ = '''Alexandra,T-shirt的价格是15便士。''' A_ = self.prepare_image_inputs() A_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
141
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase = "cpu" , _lowercase = "openai/clip-vit-large-patch14" ): '''simple docstring''' __a : Any = device __a : Tuple = CLIPTokenizerFast.from_pretrained(_lowercase ) __a : List[str] = [0.4814_5466, 0.457_8275, 0.4082_1073] __a : Optional[Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] __a : Optional[int] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __a : Tuple = torchvision.transforms.Resize(224 ) __a : str = torchvision.transforms.CenterCrop(224 ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : int = self.resize(_lowercase ) __a : List[str] = self.center_crop(_lowercase ) __a : Union[str, Any] = self.normalize(_lowercase ) return images def __call__(self , _lowercase=None , _lowercase=None , **_lowercase ): '''simple docstring''' __a : Any = self.tokenizer(text=_lowercase , **_lowercase ) __a : Union[str, Any] = self.preprocess_img(_lowercase ) __a : Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase=10 , _lowercase=0.01 , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=True , _lowercase="image" , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , ): '''simple docstring''' super().__init__() __a : Any = None __a : Tuple = device if device else get_device() if vqgan: __a : Optional[Any] = vqgan else: __a : List[Any] = load_vqgan(self.device , conf_path=_lowercase , ckpt_path=_lowercase ) self.vqgan.eval() if clip: __a : str = clip else: __a : Dict = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) __a : Any = ProcessorGradientFlow(device=self.device ) __a : Any = iterations __a : Optional[Any] = lr __a : Optional[Any] = log __a : Dict = make_grid __a : Dict = return_val __a : Tuple = quantize __a : Optional[Any] = self.vqgan.decoder.z_shape def lowerCAmelCase__(self , _lowercase=None , _lowercase=None , _lowercase=5 , _lowercase=True ): '''simple docstring''' __a : str = [] if output_path is None: __a : Optional[int] = """./animation.gif""" if input_path is None: __a : List[str] = self.save_path __a : Tuple = sorted(glob(input_path + """/*""" ) ) if not len(_lowercase ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(_lowercase ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) __a : Union[str, Any] = total_duration / len(_lowercase ) __a : Optional[Any] = [frame_duration] * len(_lowercase ) if extend_frames: __a : Optional[int] = 1.5 __a : str = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(_lowercase ) ) imageio.mimsave(_lowercase , _lowercase , duration=_lowercase ) print(F'''gif saved to {output_path}''' ) def lowerCAmelCase__(self , _lowercase=None , _lowercase=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError __a : Any = preprocess(Image.open(_lowercase ) , target_image_size=256 ).to(self.device ) __a : str = preprocess_vqgan(_lowercase ) __a , *__a : List[str] = self.vqgan.encode(_lowercase ) return z def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[str] = self.latent.detach().requires_grad_() __a : Optional[Any] = base_latent + transform_vector if self.quantize: __a , *__a : str = self.vqgan.quantize(_lowercase ) else: __a : str = trans_latent return self.vqgan.decode(_lowercase ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' __a : Tuple = self.clip_preprocessor(text=_lowercase , images=_lowercase , return_tensors="""pt""" , padding=_lowercase ) __a : Any = self.clip(**_lowercase ) __a : List[str] = clip_outputs.logits_per_image if weights is not None: __a : Optional[int] = similarity_logits * weights return similarity_logits.sum() def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Any = self._get_clip_similarity(pos_prompts["""prompts"""] , _lowercase , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: __a : Tuple = self._get_clip_similarity(neg_prompts["""prompts"""] , _lowercase , weights=neg_prompts["""weights"""] ) else: __a : Any = torch.tensor([1] , device=self.device ) __a : Dict = -torch.log(_lowercase ) + torch.log(_lowercase ) return loss def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[int] = torch.randn_like(self.latent , requires_grad=_lowercase , device=self.device ) __a : List[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __a : int = self._add_vector(_lowercase ) __a : Any = loop_post_process(_lowercase ) __a : Dict = self._get_CLIP_loss(_lowercase , _lowercase , _lowercase ) print("""CLIP loss""" , _lowercase ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=_lowercase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' wandb.init(reinit=_lowercase , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: __a : Optional[int] = Image.open(_lowercase ) __a : Union[str, Any] = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(_lowercase ) ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if not prompts: return [] __a : Optional[Any] = [] __a : Optional[Any] = [] if isinstance(_lowercase , _lowercase ): __a : Dict = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(_lowercase , (tuple, list) ): __a : str = prompt[0] __a : Optional[Any] = float(prompt[1] ) elif ":" in prompt: __a , __a : Optional[int] = prompt.split(""":""" ) __a : Any = float(_lowercase ) else: __a : Dict = prompt __a : List[str] = 1.0 processed_prompts.append(_lowercase ) weights.append(_lowercase ) return { "prompts": processed_prompts, "weights": torch.tensor(_lowercase , device=self.device ), } def lowerCAmelCase__(self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=None , ): '''simple docstring''' if image_path: __a : int = self._get_latent(_lowercase ) else: __a : Optional[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_lowercase , _lowercase , _lowercase ) assert pos_prompts, "You must provide at least one positive prompt." __a : Union[str, Any] = self.process_prompts(_lowercase ) __a : Optional[Any] = self.process_prompts(_lowercase ) if save_final and save_path is None: __a : Dict = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(_lowercase ): os.makedirs(_lowercase ) else: __a : Union[str, Any] = save_path + """_""" + get_timestamp() os.makedirs(_lowercase ) __a : Tuple = save_path __a : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(_lowercase ) ) __a : Optional[int] = loop_post_process(_lowercase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_lowercase , _lowercase , _lowercase ) ): if show_intermediate: show_pil(_lowercase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(_lowercase )} ) if show_final: show_pil(_lowercase ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
63
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowercase__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class snake_case_ ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: int = """bit""" SCREAMING_SNAKE_CASE_: int = ["""preactivation""", """bottleneck"""] SCREAMING_SNAKE_CASE_: Optional[Any] = ["""SAME""", """VALID"""] def __init__( self , __a=3 , __a=64 , __a=[256, 512, 1024, 2048] , __a=[3, 4, 6, 3] , __a="preactivation" , __a="relu" , __a=None , __a=32 , __a=0.0 , __a=False , __a=32 , __a=1 , __a=None , __a=None , **__a , ): """simple docstring""" super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = global_padding A__ = num_groups A__ = drop_path_rate A__ = embedding_dynamic_padding A__ = output_stride A__ = width_factor A__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__a ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
260
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ): A__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack A__ = set() return any( node not in visited and depth_first_search(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for node in graph ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): visited.add(lowerCAmelCase__ ) rec_stk.add(lowerCAmelCase__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCAmelCase__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
260
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: lowerCamelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) sd_pipe.set_scheduler("sample_euler" ) lowerCamelCase__ = "A painting of a squirrel eating a burger" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowerCamelCase__ = output.images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) sd_pipe.set_scheduler("sample_euler" ) lowerCamelCase__ = "A painting of a squirrel eating a burger" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowerCamelCase__ = output.images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) lowerCamelCase__ = "A painting of a squirrel eating a burger" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = output.images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
274
"""simple docstring""" # Algorithm for the pigeonhole sorting def UpperCAmelCase__ ( A__ ) -> Dict: """simple docstring""" lowerCamelCase__ = min(A__ ) # min() finds the minimum value lowerCamelCase__ = max(A__ ) # max() finds the maximum value lowerCamelCase__ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowerCamelCase__ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(A__ , A__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowerCamelCase__ = 0 for count in range(A__ ): while holes[count] > 0: holes[count] -= 1 lowerCamelCase__ = count + min_val i += 1 def UpperCAmelCase__ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(A__ ) print("Sorted order is:" , " ".join(A__ ) ) if __name__ == "__main__": main()
274
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Dict , *_snake_case : Optional[Any] , **_snake_case : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
232
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCamelCase : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _UpperCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=8 ): """simple docstring""" __lowerCamelCase : Union[str, Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowerCamelCase : Any = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCamelCase ( __snake_case ): '''simple docstring''' def __init__( self : Dict , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , movq=A_ , ) __lowerCamelCase : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : List[str] ): '''simple docstring''' if latents is None: __lowerCamelCase : int = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowerCamelCase : Optional[Any] = latents.to(A_ ) __lowerCamelCase : Dict = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]=None , ): '''simple docstring''' __lowerCamelCase : int = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings __lowerCamelCase : Any = self.tokenizer( A_ , padding="""max_length""" , truncation=A_ , max_length=7_7 , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors="""pt""" , ) __lowerCamelCase : List[Any] = text_inputs.input_ids __lowerCamelCase : List[Any] = self.tokenizer(A_ , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A_ , A_ ): __lowerCamelCase : Union[str, Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowerCamelCase : str = text_input_ids.to(A_ ) __lowerCamelCase : int = text_inputs.attention_mask.to(A_ ) __lowerCamelCase : Optional[int] = self.text_encoder( input_ids=A_ , attention_mask=A_ ) __lowerCamelCase : Optional[Any] = prompt_embeds.repeat_interleave(A_ , dim=0 ) __lowerCamelCase : Any = text_encoder_hidden_states.repeat_interleave(A_ , dim=0 ) __lowerCamelCase : int = text_mask.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase : List[str] if negative_prompt is None: __lowerCamelCase : Optional[Any] = [""] * batch_size elif type(A_ ) is not type(A_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=""" F""" {type(A_ )}.""" ) elif isinstance(A_ , A_ ): __lowerCamelCase : Union[str, Any] = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __lowerCamelCase : Optional[int] = negative_prompt __lowerCamelCase : Tuple = self.tokenizer( A_ , padding="""max_length""" , max_length=7_7 , truncation=A_ , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors="""pt""" , ) __lowerCamelCase : Optional[Any] = uncond_input.input_ids.to(A_ ) __lowerCamelCase : Tuple = uncond_input.attention_mask.to(A_ ) __lowerCamelCase : Optional[int] = self.text_encoder( input_ids=A_ , attention_mask=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase : int = negative_prompt_embeds.shape[1] __lowerCamelCase : Any = negative_prompt_embeds.repeat(1 , A_ ) __lowerCamelCase : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ ) __lowerCamelCase : List[Any] = uncond_text_encoder_hidden_states.shape[1] __lowerCamelCase : int = uncond_text_encoder_hidden_states.repeat(1 , A_ , 1 ) __lowerCamelCase : Union[str, Any] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A_ , -1 ) __lowerCamelCase : Optional[int] = uncond_text_mask.repeat_interleave(A_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) __lowerCamelCase : Optional[int] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __lowerCamelCase : Tuple = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _snake_case ( self : Optional[int] , _lowerCamelCase : Tuple=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase : Dict = torch.device(F"""cuda:{gpu_id}""" ) __lowerCamelCase : Optional[int] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def _snake_case ( self : Tuple , _lowerCamelCase : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase : Union[str, Any] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase : Tuple = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowerCamelCase : Optional[int] = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) if self.safety_checker is not None: __lowerCamelCase : Any = cpu_offload_with_hook(self.safety_checker , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. __lowerCamelCase : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : Dict ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : List[str] = None , _lowerCamelCase : Dict = 5_1_2 , _lowerCamelCase : Dict = 5_1_2 , _lowerCamelCase : Dict = 1_0_0 , _lowerCamelCase : Tuple = 4.0 , _lowerCamelCase : Optional[Any] = 1 , _lowerCamelCase : Dict = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[str] = "pil" , _lowerCamelCase : Optional[int] = True , ): '''simple docstring''' if isinstance(A_ , A_ ): __lowerCamelCase : Optional[Any] = 1 elif isinstance(A_ , A_ ): __lowerCamelCase : List[Any] = len(A_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(A_ )}""" ) __lowerCamelCase : str = self._execution_device __lowerCamelCase : Dict = batch_size * num_images_per_prompt __lowerCamelCase : Optional[int] = guidance_scale > 1.0 __lowerCamelCase : Union[str, Any] = self._encode_prompt( A_ , A_ , A_ , A_ , A_ ) if isinstance(A_ , A_ ): __lowerCamelCase : Any = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): __lowerCamelCase : int = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase : int = image_embeds.repeat_interleave(A_ , dim=0 ) __lowerCamelCase : Optional[Any] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) __lowerCamelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) __lowerCamelCase : Any = self.scheduler.timesteps __lowerCamelCase : Tuple = self.unet.config.in_channels __lowerCamelCase : Union[str, Any] = get_new_h_w(A_ , A_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : Dict = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} __lowerCamelCase : int = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: __lowerCamelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : Optional[int] = variance_pred.chunk(2 ) __lowerCamelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Optional[int] = self.scheduler.step( A_ , A_ , A_ , generator=A_ , ).prev_sample # post-processing __lowerCamelCase : Tuple = self.movq.decode(A_ , force_not_quantize=A_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __lowerCamelCase : Tuple = image * 0.5 + 0.5 __lowerCamelCase : Union[str, Any] = image.clamp(0 , 1 ) __lowerCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase : Tuple = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
716
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
458
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase_ ( snake_case_ ): __lowercase : List[Any] = ['input_features', 'is_longer'] def __init__( self , lowerCamelCase_=64 , lowerCamelCase_=4_80_00 , lowerCamelCase_=4_80 , lowerCamelCase_=10 , lowerCamelCase_=10_24 , lowerCamelCase_=0.0 , lowerCamelCase_=False , lowerCamelCase_ = 0 , lowerCamelCase_ = 1_40_00 , lowerCamelCase_ = None , lowerCamelCase_ = "fusion" , lowerCamelCase_ = "repeatpad" , **lowerCamelCase_ , ) -> Optional[int]: """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) _UpperCamelCase = top_db _UpperCamelCase = truncation _UpperCamelCase = padding _UpperCamelCase = fft_window_size _UpperCamelCase = (fft_window_size >> 1) + 1 _UpperCamelCase = hop_length _UpperCamelCase = max_length_s _UpperCamelCase = max_length_s * sampling_rate _UpperCamelCase = sampling_rate _UpperCamelCase = frequency_min _UpperCamelCase = frequency_max _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm=_a , mel_scale="htk" , ) _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm="slaney" , mel_scale="slaney" , ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[str]: """simple docstring""" _UpperCamelCase = spectrogram( _a , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_a , log_mel="dB" , ) return log_mel_spectrogram.T def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: """simple docstring""" _UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] # randomly choose index for each part _UpperCamelCase = np.random.choice(ranges[0] ) _UpperCamelCase = np.random.choice(ranges[1] ) _UpperCamelCase = np.random.choice(ranges[2] ) _UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] _UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] _UpperCamelCase = torch.tensor(mel[None, None, :] ) _UpperCamelCase = torch.nn.functional.interpolate( _a , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_a ) _UpperCamelCase = mel_shrink[0][0].numpy() _UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCamelCase = len(_a ) - max_length _UpperCamelCase = np.random.randint(0 , overflow + 1 ) _UpperCamelCase = waveform[idx : idx + max_length] _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters ) _UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCamelCase = False else: _UpperCamelCase = self._random_mel_fusion(_a , _a , _a ) _UpperCamelCase = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: _UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCamelCase = int(max_length / len(_a ) ) _UpperCamelCase = np.stack(np.tile(_a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCamelCase = int(max_length / len(_a ) ) _UpperCamelCase = np.stack(np.tile(_a , _a ) ) _UpperCamelCase = np.pad(_a , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters ) _UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> int: """simple docstring""" _UpperCamelCase = truncation if truncation is not None else self.truncation _UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _UpperCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase = [np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): _UpperCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. _UpperCamelCase = [ self._get_input_mel(_a , max_length if max_length else self.nb_max_samples , _a , _a ) for waveform in raw_speech ] _UpperCamelCase = [] _UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCamelCase = np.random.randint(0 , len(_a ) ) _UpperCamelCase = True if isinstance(input_mel[0] , _a ): _UpperCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCamelCase = [[longer] for longer in is_longer] _UpperCamelCase = {"input_features": input_mel, "is_longer": is_longer} _UpperCamelCase = BatchFeature(_a ) if return_tensors is not None: _UpperCamelCase = input_features.convert_to_tensors(_a ) return input_features
147
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ ={ "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
from collections import namedtuple import requests from lxml import html # type: ignore snake_case = namedtuple("covid_data", "cases deaths recovered") def UpperCamelCase_ ( lowerCAmelCase__ = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" _lowerCAmelCase : int = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(lowerCAmelCase__ ).content ).xpath(lowerCAmelCase__ ) ) snake_case = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
424
0
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
279
0
'''simple docstring''' def UpperCAmelCase__ ( ) -> int: return 1 def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int = 2_00 ) -> int: return two_pound(UpperCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
13
"""simple docstring""" from math import isqrt, loga def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowerCamelCase : Optional[int] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def _snake_case ( __snake_case : int = 800800 , __snake_case : int = 800800 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = degree * loga(__snake_case ) _lowerCamelCase : Union[str, Any] = int(__snake_case ) _lowerCamelCase : Dict = calculate_prime_numbers(__snake_case ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Any = len(__snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
88
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = MobileBertTokenizer _SCREAMING_SNAKE_CASE = MobileBertTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = filter_non_english _SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def _snake_case ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = """UNwant\u00E9d,running""" lowerCAmelCase = """unwanted, running""" return input_text, output_text def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.tokenizer_class(self.vocab_file ) lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [9, 6, 7, 12, 10, 11] ) def _snake_case ( self ) -> Any: if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = """UNwant\u00E9d,running""" lowerCAmelCase = tokenizer.tokenize(lowercase ) lowerCAmelCase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(lowercase ) lowerCAmelCase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) # With lower casing lowerCAmelCase = self.get_tokenizer(do_lower_case=lowercase ) lowerCAmelCase = self.get_rust_tokenizer(do_lower_case=lowercase ) lowerCAmelCase = """UNwant\u00E9d,running""" lowerCAmelCase = tokenizer.tokenize(lowercase ) lowerCAmelCase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(lowercase ) lowerCAmelCase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def _snake_case ( self ) -> int: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def _snake_case ( self ) -> List[str]: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _snake_case ( self ) -> Any: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _snake_case ( self ) -> str: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = BasicTokenizer(do_lower_case=lowercase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def _snake_case ( self ) -> Dict: lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowerCAmelCase = {} for i, token in enumerate(lowercase ): lowerCAmelCase = i lowerCAmelCase = WordpieceTokenizer(vocab=lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def _snake_case ( self ) -> List[Any]: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def _snake_case ( self ) -> Dict: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def _snake_case ( self ) -> List[Any]: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def _snake_case ( self ) -> int: lowerCAmelCase = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _snake_case ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowerCAmelCase = tokenizer_r.encode_plus( lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase , ) lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(lowercase , """do_lower_case""" ) else False lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = ["""的""", """人""", """有"""] lowerCAmelCase = """""".join(lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = True lowerCAmelCase = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(lowercase ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = False lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCAmelCase = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(lowercase ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(lowercase ) ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase )
393
"""simple docstring""" import pytest SCREAMING_SNAKE_CASE__ = "__dummy_dataset1__" SCREAMING_SNAKE_CASE__ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def UpperCAmelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = dataset_loading_script_name lowerCAmelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE ) lowerCAmelCase = script_dir / F'{script_name}.py' with open(SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE )
393
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = XGLMTokenizer lowerCamelCase__ : int = XGLMTokenizerFast lowerCamelCase__ : str = True lowerCamelCase__ : List[str] = True def lowercase_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = XGLMTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''<pad>''' SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(A_ ) , 10_08 ) def lowercase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = XGLMTokenizer(A_ , keep_accents=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowercase_ ( self ): '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def lowercase_ ( self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A_ , f.name ) SCREAMING_SNAKE_CASE__ = XGLMTokenizer(f.name , keep_accents=A_ ) SCREAMING_SNAKE_CASE__ = pickle.dumps(A_ ) pickle.loads(A_ ) def lowercase_ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''Hello World!''' SCREAMING_SNAKE_CASE__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off SCREAMING_SNAKE_CASE__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = { '''input_ids''': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''facebook/xglm-564M''' , padding=A_ , )
100
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase__ ( __lowerCamelCase ): a__ : List[str] = 'philschmid/bart-large-cnn-samsum' a__ : List[Any] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) a__ : int = 'summarizer' a__ : int = AutoTokenizer a__ : Any = AutoModelForSeqaSeqLM a__ : Optional[int] = ['text'] a__ : Optional[int] = ['text'] def __lowercase( self : int, __lowerCamelCase : List[str] ) -> List[Any]: return self.pre_processor(__lowerCamelCase, return_tensors='''pt''', truncation=__lowerCamelCase ) def __lowercase( self : int, __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: return self.model.generate(**__lowerCamelCase )[0] def __lowercase( self : Optional[Any], __lowerCamelCase : Optional[int] ) -> Any: return self.pre_processor.decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase, clean_up_tokenization_spaces=__lowerCamelCase )
344
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class a_ ( lowerCamelCase ): lowercase = """nllb-moe""" lowercase = ["""past_key_values"""] lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _SCREAMING_SNAKE_CASE=128112 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.0_5 , _SCREAMING_SNAKE_CASE=0.0_5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.0_0_1 , _SCREAMING_SNAKE_CASE=0.0_0_1 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = router_z_loss_coef UpperCamelCase = router_aux_loss_coef UpperCamelCase = decoder_sparse_step UpperCamelCase = encoder_sparse_step UpperCamelCase = num_experts UpperCamelCase = expert_capacity UpperCamelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) UpperCamelCase = router_dtype UpperCamelCase = router_ignore_padding_tokens UpperCamelCase = batch_prioritized_routing UpperCamelCase = second_expert_policy UpperCamelCase = normalize_router_prob_before_dropping UpperCamelCase = moe_eval_capacity_token_fraction UpperCamelCase = moe_token_dropout UpperCamelCase = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
35
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
35
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case ( _lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = VideoToVideoSDPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"""image""", """width""", """height"""} __snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"""image"""} __snake_case = PipelineTesterMixin.required_optional_params - {"""latents"""} __snake_case = False # No `output_type`. __snake_case = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: torch.manual_seed(0 ) __magic_name__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __magic_name__ : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) __magic_name__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __magic_name__ : Optional[Any] = CLIPTextModel(__UpperCamelCase ) __magic_name__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __magic_name__ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowerCAmelCase__ ( self: Optional[int] , __UpperCamelCase: Tuple , __UpperCamelCase: Tuple=0 ) -> List[str]: __magic_name__ : Union[str, Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith("mps" ): __magic_name__ : int = torch.manual_seed(__UpperCamelCase ) else: __magic_name__ : int = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __magic_name__ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: __magic_name__ : int = "cpu" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[Any] = self.get_dummy_components() __magic_name__ : Optional[int] = VideoToVideoSDPipeline(**__UpperCamelCase ) __magic_name__ : Tuple = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __magic_name__ : int = self.get_dummy_inputs(__UpperCamelCase ) __magic_name__ : List[str] = "np" __magic_name__ : Union[str, Any] = sd_pipe(**__UpperCamelCase ).frames __magic_name__ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __magic_name__ : int = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCamelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: pass def lowerCAmelCase__ ( self: List[str] ) -> List[Any]: return super().test_progress_bar() @slow @skip_mps class _snake_case ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self: str ) -> Optional[int]: __magic_name__ : List[Any] = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __magic_name__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) __magic_name__ : str = torch.randn((1, 10, 3, 1024, 576) , generator=__UpperCamelCase ) __magic_name__ : Any = video.to("cuda" ) __magic_name__ : str = "Spiderman is surfing" __magic_name__ : Optional[int] = pipe(__UpperCamelCase , video=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=3 , output_type="pt" ).frames __magic_name__ : int = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
436
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = set({"(", "[", "{"} ) __lowercase = set({")", "]", "}"} ) __lowercase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_SCREAMING_SNAKE_CASE ) == 0 or (len(_SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_SCREAMING_SNAKE_CASE ) == 0 def snake_case_ ( ): __lowercase = input("Enter sequence of brackets: " ) if is_balanced(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE , "is balanced" ) else: print(_SCREAMING_SNAKE_CASE , "is not balanced" ) if __name__ == "__main__": main()
402
0
class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a ): __a = size __a = [0] * size __a = [0] * size @staticmethod def __UpperCAmelCase ( _a ): return index | (index + 1) @staticmethod def __UpperCAmelCase ( _a ): return (index & (index + 1)) - 1 def __UpperCAmelCase ( self , _a , _a ): __a = value while index < self.size: __a = self.get_prev(lowercase__ ) + 1 if current_left_border == index: __a = value else: __a = max(lowercase__ , lowercase__ , lowercase__ ) __a = self.get_next(lowercase__ ) def __UpperCAmelCase ( self , _a , _a ): right -= 1 # Because of right is exclusive __a = 0 while left <= right: __a = self.get_prev(lowercase__ ) if left <= current_left: __a = max(lowercase__ , self.tree[right] ) __a = current_left else: __a = max(lowercase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
65
0
import argparse from collections import defaultdict def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Tuple ,__a : Tuple ,__a : Dict ,__a : Tuple ) -> List[Any]: """simple docstring""" _a : List[str] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__a ,'''r''' ) as f: _a : Dict = f.readlines() _a : str = F"""class {class_name}(""" _a : Tuple = F"""{4 * ' '}def {test_name}(""" _a : List[Any] = F"""{8 * ' '}{correct_line.split()[0]}""" _a : Tuple = F"""{16 * ' '}{correct_line.split()[0]}""" _a : Tuple = False _a : str = False _a : Any = False _a : Dict = False _a : Tuple = 0 _a : List[str] = 0 _a : List[Any] = [] for line in lines: if line.startswith(__a ): _a : Tuple = True elif in_class and line.startswith(__a ): _a : List[str] = True elif in_class and in_func and (line.startswith(__a ) or line.startswith(__a )): _a : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _a : Dict = True if in_class and in_func and in_line: if ")" not in line: continue else: _a : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) _a : Optional[Any] = False else: new_lines.append(__a ) with open(__a ,'''w''' ) as f: for line in new_lines: f.write(__a ) def __UpperCAmelCase ( __a : Dict ,__a : Tuple=None ) -> Union[str, Any]: """simple docstring""" if fail is not None: with open(__a ,'''r''' ) as f: _a : Optional[int] = {l.strip() for l in f.readlines()} else: _a : List[Any] = None with open(__a ,'''r''' ) as f: _a : List[Any] = f.readlines() _a : List[Any] = defaultdict(__a ) for line in correct_lines: _a , _a , _a , _a : Dict = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__a ,__a ,__a ,__a ,__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) a__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
14
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: Dict ) -> List[str]: '''simple docstring''' _UpperCAmelCase = R'\w+[.]\d+' _UpperCAmelCase = re.findall(a__ , a__ ) for pat in pats: _UpperCAmelCase = key.replace(a__ , '_'.join(pat.split('.' ) ) ) return key def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": _UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase__ ( a__: Any , a__: Optional[Any] , a__: int=4_2 ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase = flax_model.init_weights(PRNGKey(a__ ) ) _UpperCAmelCase = flatten_dict(a__ ) _UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor(a__ , a__ , a__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(a__ ) return unflatten_dict(a__ )
618
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowercase = logging.get_logger(__name__) _lowercase = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCAmelCase ( _UpperCamelCase ) -> Any: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__: str = model_type_to_module_name(_UpperCamelCase ) lowerCamelCase__: Dict = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(_UpperCamelCase , _UpperCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_UpperCamelCase , """__name__""" , _UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__: List[Any] = importlib.import_module("""transformers""" ) if hasattr(_UpperCamelCase , _UpperCamelCase ): return getattr(_UpperCamelCase , _UpperCamelCase ) return None def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , **_UpperCamelCase , ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] = get_file_from_repo( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(_UpperCamelCase , encoding="""utf-8""" ) as reader: return json.load(_UpperCamelCase ) class lowerCamelCase__ : def __init__( self : int ): '''simple docstring''' raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__a ) def lowerCamelCase_ ( cls : Dict , __a : Optional[int] , **__a : List[str] ): '''simple docstring''' lowerCamelCase__: int = kwargs.pop("""config""" , __a ) lowerCamelCase__: int = kwargs.pop("""trust_remote_code""" , __a ) lowerCamelCase__: Tuple = True lowerCamelCase__ , lowerCamelCase__: Tuple = ImageProcessingMixin.get_image_processor_dict(__a , **__a ) lowerCamelCase__: List[Any] = config_dict.get("""image_processor_type""" , __a ) lowerCamelCase__: Optional[Any] = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): lowerCamelCase__: Optional[int] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCamelCase__: Any = config_dict.pop("""feature_extractor_type""" , __a ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) lowerCamelCase__: Optional[int] = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): lowerCamelCase__: Dict = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] lowerCamelCase__: str = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__a , __a ): lowerCamelCase__: Optional[Any] = AutoConfig.from_pretrained(__a , **__a ) # It could be in `config.image_processor_type`` lowerCamelCase__: str = getattr(__a , """image_processor_type""" , __a ) if hasattr(__a , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: lowerCamelCase__: Union[str, Any] = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: lowerCamelCase__: int = image_processor_class_from_name(__a ) lowerCamelCase__: Dict = image_processor_auto_map is not None lowerCamelCase__: List[Any] = image_processor_class is not None or type(__a ) in IMAGE_PROCESSOR_MAPPING lowerCamelCase__: List[Any] = resolve_trust_remote_code( __a , __a , __a , __a ) if has_remote_code and trust_remote_code: lowerCamelCase__: Union[str, Any] = get_class_from_dynamic_module( __a , __a , **__a ) lowerCamelCase__: Optional[Any] = kwargs.pop("""code_revision""" , __a ) if os.path.isdir(__a ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__a , **__a ) elif image_processor_class is not None: return image_processor_class.from_dict(__a , **__a ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__a ) in IMAGE_PROCESSOR_MAPPING: lowerCamelCase__: Any = IMAGE_PROCESSOR_MAPPING[type(__a )] return image_processor_class.from_dict(__a , **__a ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCamelCase_ ( __a : str , __a : Optional[int] ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(__a , __a )
242
def __lowerCAmelCase ( _UpperCamelCase ) -> list[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] = [0 for i in range(len(_UpperCamelCase ) )] # initialize interval's left pointer and right pointer lowerCamelCase__ , lowerCamelCase__: int = 0, 0 for i in range(1 , len(_UpperCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: lowerCamelCase__: Tuple = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowerCamelCase__: Dict = min_edge while go_next(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowerCamelCase__ , lowerCamelCase__: str = i, i + z_result[i] - 1 return z_result def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: '''simple docstring''' return i + z_result[i] < len(_UpperCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> int: '''simple docstring''' lowerCamelCase__: List[str] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowerCamelCase__: int = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
242
1