code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a: Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): '''simple docstring''' _lowerCamelCase = None _lowerCamelCase = "utf-8" _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = True # deprecated _lowerCamelCase = None # deprecated _lowerCamelCase = 10 << 20 # 10MB _lowerCamelCase = None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _lowerCamelCase = JsonConfig def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _UpperCAmelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : Optional[int] ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase , (str, list, tuple) ): _UpperCAmelCase = data_files if isinstance(lowerCamelCase , lowerCamelCase ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase , lowerCamelCase ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase ( self : Tuple , lowerCamelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase = self.config.features.arrow_schema.field(lowerCamelCase ).type _UpperCAmelCase = pa_table.append_column(lowerCamelCase , pa.array([None] * len(lowerCamelCase ) , type=lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase = table_cast(lowerCamelCase , self.config.features.arrow_schema ) return pa_table def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Optional[int] ) -> str: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase = json.load(lowerCamelCase ) # We keep only the field we are interested in _UpperCAmelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCamelCase , (list, tuple) ): _UpperCAmelCase = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase = {col: [row.get(lowerCamelCase ) for row in dataset] for col in keys} else: _UpperCAmelCase = dataset _UpperCAmelCase = pa.Table.from_pydict(lowerCamelCase ) yield file_idx, self._cast_table(lowerCamelCase ) # If the file has one json object per line else: with open(lowerCamelCase , """rb""" ) as f: _UpperCAmelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase = max(self.config.chunksize // 32 , 16 << 10 ) _UpperCAmelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _UpperCAmelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase = batch.decode(self.config.encoding , errors=lowerCamelCase ).encode("""utf-8""" ) try: while True: try: _UpperCAmelCase = paj.read_json( io.BytesIO(lowerCamelCase ) , read_options=paj.ReadOptions(block_size=lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(lowerCamelCase ) or block_size > len(lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(lowerCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _UpperCAmelCase = json.load(lowerCamelCase ) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(lowerCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCamelCase , lowerCamelCase ): # list is the only sequence type supported in JSON try: _UpperCAmelCase = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase = {col: [row.get(lowerCamelCase ) for row in dataset] for col in keys} _UpperCAmelCase = pa.Table.from_pydict(lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCamelCase )}: {e}""" ) raise ValueError(f"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowerCamelCase ) break else: logger.error(f"""Failed to read file '{file}' with error {type(lowerCamelCase )}: {e}""" ) raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase ) batch_idx += 1
108
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 16 lowerCamelCase_ = 32 def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase = 16 ): SCREAMING_SNAKE_CASE__ =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ =load_dataset("""glue""", """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ =tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=__UpperCamelCase, max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ =datasets.map( __UpperCamelCase, batched=__UpperCamelCase, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ =tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ =8 else: SCREAMING_SNAKE_CASE__ =None return tokenizer.pad( __UpperCamelCase, padding="""longest""", max_length=__UpperCamelCase, pad_to_multiple_of=__UpperCamelCase, return_tensors="""pt""", ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ =DataLoader( tokenized_datasets["""train"""], shuffle=__UpperCamelCase, collate_fn=__UpperCamelCase, batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =DataLoader( tokenized_datasets["""validation"""], shuffle=__UpperCamelCase, collate_fn=__UpperCamelCase, batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", __UpperCamelCase ) == "1": SCREAMING_SNAKE_CASE__ =2 # New Code # SCREAMING_SNAKE_CASE__ =int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ =Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ =config["""lr"""] SCREAMING_SNAKE_CASE__ =int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ =int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ =int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ =evaluate.load("""glue""", """mrpc""" ) set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =get_dataloaders(__UpperCamelCase, __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ =AdamW(params=model.parameters(), lr=__UpperCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ =get_linear_schedule_with_warmup( optimizer=__UpperCamelCase, num_warmup_steps=100, num_training_steps=(len(__UpperCamelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =accelerator.prepare( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ =model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ =model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase, references=__UpperCamelCase, ) SCREAMING_SNAKE_CASE__ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", __UpperCamelCase ) def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=__UpperCamelCase, default=__UpperCamelCase, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) # New Code # parser.add_argument( """--gradient_accumulation_steps""", type=__UpperCamelCase, default=1, help="""The number of minibatches to be ran before gradients are accumulated.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ =parser.parse_args() SCREAMING_SNAKE_CASE__ ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase, __UpperCamelCase ) if __name__ == "__main__": main()
151
0
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: __a = False if low == high: return swapped __a = low __a = high while left < right: if collection[left] > collection[right]: __a , __a = ( collection[right], collection[left], ) __a = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __a , __a = ( collection[right + 1], collection[left], ) __a = True __a = low + int((high - low) / 2 ) __a = circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = circle_sort_util(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap __a = True while is_not_sorted is True: __a = circle_sort_util(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
201
'''simple docstring''' import numpy # List of input, output pairs SCREAMING_SNAKE_CASE_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) SCREAMING_SNAKE_CASE_ = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) SCREAMING_SNAKE_CASE_ = [2, 4, 1, 5] SCREAMING_SNAKE_CASE_ = len(train_data) SCREAMING_SNAKE_CASE_ = 0.0_0_9 def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="train" ) -> Optional[int]: """simple docstring""" return calculate_hypothesis_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - output( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowercase ( __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __a = 0 for i in range(len(__SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=m ) -> Optional[Any]: """simple docstring""" __a = 0 for i in range(__SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(__SCREAMING_SNAKE_CASE ) else: summation_value += _error(__SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def __lowercase ( __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" __a = summation_of_cost_derivative(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def __lowercase ( ) -> str: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output __a = 0.000_002 __a = 0 __a = 0 while True: j += 1 __a = [0, 0, 0, 0] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) ): __a = get_cost_derivative(i - 1 ) __a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE , rtol=__SCREAMING_SNAKE_CASE , ): break __a = temp_parameter_vector print(("""Number of iterations:""", j) ) def __lowercase ( ) -> List[Any]: """simple docstring""" for i in range(len(__SCREAMING_SNAKE_CASE ) ): print(("""Actual output value:""", output(__SCREAMING_SNAKE_CASE , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__SCREAMING_SNAKE_CASE , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
201
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _lowerCamelCase : Tuple = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8000, '''sample_size''': 6_5536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8000, '''sample_size''': 6_5536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8000, '''sample_size''': 13_1072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6000, '''sample_size''': 6_5536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6000, '''sample_size''': 6_5536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6000, '''sample_size''': 6_5536, }, } def A__ ( __A : int , __A : Dict ) ->List[Any]: return torch.atana(__A , __A ) / math.pi * 2 def A__ ( __A : Tuple ) ->int: __A =torch.sin(t * math.pi / 2 ) ** 2 __A =(1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__A , __A ) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' pass class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase__ ): '''simple docstring''' super().__init__() __A =DiffusionAttnUnetaD(lowercase__ , n_attn_layers=4 ) __A =deepcopy(self.diffusion ) __A =torch.quasirandom.SobolEngine(1 , scramble=lowercase__ ) def A__ ( __A : int ) ->int: __A =MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' _lowerCamelCase : Any = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } _lowerCamelCase : int = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } _lowerCamelCase : Optional[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } _lowerCamelCase : List[str] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } _lowerCamelCase : List[str] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } _lowerCamelCase : Optional[int] = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def A__ ( __A : List[str] ) ->List[Any]: if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A__ ( __A : Tuple ) ->str: for key, value in ATTN_MAP.items(): if name.startswith(__A ) and not isinstance(__A , __A ): return name.replace(__A , __A ) elif name.startswith(__A ): return [name.replace(__A , __A ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A__ ( __A : List[Any] , __A : int=13 ) ->Optional[Any]: __A =input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) __A =0 if string.startswith('''net.3.''' ): depth += 1 __A =string[6:] elif string.startswith('''net.''' ): __A =string[4:] while string.startswith('''main.7.''' ): depth += 1 __A =string[7:] if string.startswith('''main.''' ): __A =string[5:] # mid block if string[:2].isdigit(): __A =string[:2] __A =string[2:] else: __A =string[0] __A =string[1:] if depth == max_depth: __A =MID_NUM_TO_LAYER[layer_num] __A ='''mid_block''' elif depth > 0 and int(__A ) < 7: __A =DOWN_NUM_TO_LAYER[layer_num] __A =F'''down_blocks.{depth}''' elif depth > 0 and int(__A ) > 7: __A =UP_NUM_TO_LAYER[layer_num] __A =F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: __A =DEPTH_0_TO_LAYER[layer_num] __A =F'''up_blocks.{max_depth - 1}''' if int(__A ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) __A =string_left[1:] if "resnets" in new_layer: __A =convert_resconv_naming(__A ) elif "attentions" in new_layer: __A =convert_attn_naming(__A ) __A =new_string_left if not isinstance(__A , __A ): __A =prefix + '''.''' + new_layer + '''.''' + string_left else: __A =[prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def A__ ( __A : Optional[Any] ) ->int: __A ={} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue __A =rename(__A ) # check if we need to transform from Conv => Linear for attention if isinstance(__A , __A ): __A =transform_conv_attns(__A , __A , __A ) else: __A =v return new_state_dict def A__ ( __A : int , __A : Optional[int] , __A : str ) ->str: if len(__A ) == 1: if len(v.shape ) == 3: # weight __A =v[:, :, 0] else: # bias __A =v else: # qkv matrices __A =v.shape[0] __A =trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __A =v[i * single_shape : (i + 1) * single_shape, :, 0] else: __A =v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A__ ( __A : Tuple ) ->List[Any]: __A =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __A =args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' __A =download(__A ) __A =MODELS_MAP[model_name]['''sample_rate'''] __A =MODELS_MAP[model_name]['''sample_size'''] __A =Object() __A =sample_size __A =sample_rate __A =0 __A =UNetaDModel(sample_size=__A , sample_rate=__A ) __A =diffusers_model.state_dict() __A =DiffusionUncond(__A ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__A )['''state_dict'''] ) __A =orig_model.diffusion_ema.eval() __A =orig_model.state_dict() __A =rename_orig_weights(__A ) __A =set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __A =set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__A ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(__A ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": __A =value.squeeze() __A =value diffusers_model.load_state_dict(__A ) __A =1_00 __A =33 __A =IPNDMScheduler(num_train_timesteps=__A ) __A =torch.manual_seed(__A ) __A =torch.randn([1, 2, config.sample_size] , generator=__A ).to(__A ) __A =torch.linspace(1 , 0 , steps + 1 , device=__A )[:-1] __A =get_crash_schedule(__A ) __A =DanceDiffusionPipeline(unet=__A , scheduler=__A ) __A =torch.manual_seed(33 ) __A =pipe(num_inference_steps=__A , generator=__A ).audios __A =sampling.iplms_sample(__A , __A , __A , {} ) __A =generated.clamp(-1 , 1 ) __A =(generated - audio).abs().sum() __A =(generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , __A ) print('''Diff max''' , __A ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCamelCase : List[Any] = parser.parse_args() main(args)
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _lowerCamelCase : int = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
1
'''simple docstring''' import requests def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = {'''Content-Type''': '''application/json'''} lowerCamelCase_ : Optional[int] = requests.post(__UpperCAmelCase , json={'''text''': message_body} , headers=__UpperCAmelCase ) if response.status_code != 200: lowerCamelCase_ : int = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
418
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __lowerCamelCase : Any = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowerCamelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(UpperCamelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ : List[str] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ : List[str] = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) lowerCamelCase_ : Any = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(UpperCamelCase_ , '''w''' , newline='''\n''' ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , '''r''' ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , UpperCamelCase_ ) , ) # Copy consistency with a really long name lowerCamelCase_ : Optional[int] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , UpperCamelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , UpperCamelCase_ ) , )
418
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=1_6 , UpperCAmelCase=3_6 , UpperCAmelCase=6 , UpperCAmelCase=6 , UpperCAmelCase=6 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Dict: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self ) -> Any: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: __a = AlbertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) __a = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) __a = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: __a = AlbertForPreTraining(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , sentence_order_label=UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: __a = AlbertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: __a = AlbertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: __a = self.num_labels __a = AlbertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: __a = self.num_labels __a = AlbertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: __a = self.num_choices __a = AlbertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ : int = True def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[Any]: __a = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class in get_values(UpperCAmelCase ): __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase ) __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = AlbertModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = AlbertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = AlbertModel.from_pretrained('albert-base-v2' ) __a = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __a = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase ) __a = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) )
559
from math import pow, sqrt def lowerCAmelCase( *__lowerCamelCase ): __a = len(__lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
559
1
'''simple docstring''' def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = len(snake_case ) SCREAMING_SNAKE_CASE:Any = [] for i in range(len(snake_case ) - pat_len + 1 ): SCREAMING_SNAKE_CASE:Optional[int] = True for j in range(snake_case ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE:Tuple = False break if match_found: position.append(snake_case ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
465
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ = logging.get_logger(__name__) if is_vision_available(): import PIL class _snake_case ( _a ): _A : int = ['''pixel_values'''] def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE:int = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE:str = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:List[Any] = do_resize SCREAMING_SNAKE_CASE:Optional[int] = size SCREAMING_SNAKE_CASE:List[Any] = resample SCREAMING_SNAKE_CASE:Any = do_center_crop SCREAMING_SNAKE_CASE:List[Any] = crop_size SCREAMING_SNAKE_CASE:Tuple = do_rescale SCREAMING_SNAKE_CASE:Optional[Any] = rescale_factor SCREAMING_SNAKE_CASE:Dict = do_normalize SCREAMING_SNAKE_CASE:int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE:Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE:Optional[int] = do_convert_rgb def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Any ,): SCREAMING_SNAKE_CASE:List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE:Dict = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=size["shortest_edge"] ,default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,): SCREAMING_SNAKE_CASE:List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size["height"], size["width"]) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : int = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : List[str] ,): SCREAMING_SNAKE_CASE:Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE:Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE:Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="size" ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE:Dict = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE:Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE:str = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE:Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE:List[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE:List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE:Any = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE:str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE:Any = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE:List[Any] = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE:Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE:Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE:Union[str, Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE:Any = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE:List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:Optional[int] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
465
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Dict = { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __UpperCamelCase ( __snake_case ): __snake_case :Union[str, Any] = """xglm""" __snake_case :Any = ["""past_key_values"""] __snake_case :Union[str, Any] = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=25_6008 , _lowerCAmelCase : Dict=2048 , _lowerCAmelCase : Tuple=1024 , _lowerCAmelCase : Any=4096 , _lowerCAmelCase : List[str]=24 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : str=1 , _lowerCAmelCase : str=0 , _lowerCAmelCase : Any=2 , **_lowerCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = ffn_dim __lowercase = num_layers __lowercase = attention_heads __lowercase = activation_function __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = layerdrop __lowercase = init_std __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = use_cache super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
80
"""simple docstring""" from functools import lru_cache def a__ ( __SCREAMING_SNAKE_CASE ) -> set: __lowerCAmelCase: Any = 2 __lowerCAmelCase: Optional[Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__SCREAMING_SNAKE_CASE ) if n > 1: factors.add(__SCREAMING_SNAKE_CASE ) return factors @lru_cache def a__ ( __SCREAMING_SNAKE_CASE ) -> int: return len(unique_prime_factors(__SCREAMING_SNAKE_CASE ) ) def a__ ( __SCREAMING_SNAKE_CASE ) -> bool: return len(set(__SCREAMING_SNAKE_CASE ) ) in (0, 1) def a__ ( __SCREAMING_SNAKE_CASE ) -> list: __lowerCAmelCase: int = 2 while True: # Increment each value of a generated range __lowerCAmelCase: Union[str, Any] = [base + i for i in range(__SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCAmelCase: Dict = [upf_len(__SCREAMING_SNAKE_CASE ) for x in group] checker.append(__SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(__SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def a__ ( __SCREAMING_SNAKE_CASE = 4 ) -> int: __lowerCAmelCase: List[str] = run(__SCREAMING_SNAKE_CASE ) return results[0] if len(__SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
346
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : str = '''layoutlmv3''' def __init__( self: Any , UpperCamelCase_: Optional[int]=50_265 , UpperCamelCase_: Any=768 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: Tuple=3_072 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: str=512 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: str=1E-5 , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: List[str]=1_024 , UpperCamelCase_: Tuple=128 , UpperCamelCase_: Union[str, Any]=128 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=32 , UpperCamelCase_: Tuple=128 , UpperCamelCase_: Tuple=64 , UpperCamelCase_: Optional[Any]=256 , UpperCamelCase_: int=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[int]=224 , UpperCamelCase_: Dict=3 , UpperCamelCase_: Dict=16 , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: Optional[int] , ) -> Optional[int]: """simple docstring""" super().__init__( vocab_size=UpperCamelCase_ , hidden_size=UpperCamelCase_ , num_hidden_layers=UpperCamelCase_ , num_attention_heads=UpperCamelCase_ , intermediate_size=UpperCamelCase_ , hidden_act=UpperCamelCase_ , hidden_dropout_prob=UpperCamelCase_ , attention_probs_dropout_prob=UpperCamelCase_ , max_position_embeddings=UpperCamelCase_ , type_vocab_size=UpperCamelCase_ , initializer_range=UpperCamelCase_ , layer_norm_eps=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = max_ad_position_embeddings lowercase__ = coordinate_size lowercase__ = shape_size lowercase__ = has_relative_attention_bias lowercase__ = rel_pos_bins lowercase__ = max_rel_pos lowercase__ = has_spatial_attention_bias lowercase__ = rel_ad_pos_bins lowercase__ = max_rel_ad_pos lowercase__ = text_embed lowercase__ = visual_embed lowercase__ = input_size lowercase__ = num_channels lowercase__ = patch_size lowercase__ = classifier_dropout class _a ( UpperCamelCase__ ): _lowercase : Tuple = version.parse('''1.12''' ) @property def lowerCamelCase_ ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def lowerCamelCase_ ( self: str ) -> float: """simple docstring""" return 1E-5 @property def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" return 12 def lowerCamelCase_ ( self: str , UpperCamelCase_: "ProcessorMixin" , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional["TensorType"] = None , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 40 , UpperCamelCase_: int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , '''apply_ocr''' , UpperCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = processor.tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowercase__ = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase__ = self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = dict( processor( UpperCamelCase_ , text=UpperCamelCase_ , boxes=UpperCamelCase_ , return_tensors=UpperCamelCase_ , ) ) return inputs
429
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowercase__ = Vector() def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase_ ) , '''(0,0,0,0,0,1)''' ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase_ ) , 4 ) def lowerCamelCase_ ( self: str ) -> None: """simple docstring""" lowercase__ = Vector([1, 2] ) lowercase__ = Vector([1, 2, 3, 4, 5] ) lowercase__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowercase__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCamelCase_ ( self: List[str] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCamelCase_ ( self: str ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([2, -1, 4] ) # for test of dot product lowercase__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def lowerCamelCase_ ( self: List[Any] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase_ , UpperCamelCase_ ) ) , '''(3,4,7)''' ) def lowerCamelCase_ ( self: Dict ) -> None: """simple docstring""" lowercase__ = Vector([1, 0, 0, 0, 0, 0] ) lowercase__ = x.copy() self.assertEqual(str(UpperCamelCase_ ) , str(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" lowercase__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase_ ) , '''(0,1,0)''' ) def lowerCamelCase_ ( self: Optional[Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Optional[Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase_ ( self: List[str] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCamelCase_ ( self: Union[str, Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowercase__ = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCamelCase_ ( self: Dict ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
429
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : List[str] , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Optional[Any] , *snake_case_ : List[str] , **snake_case_ : List[str] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Optional[Any] , *snake_case_ : Tuple , **snake_case_ : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : List[Any] , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : Tuple , **snake_case_ : Any ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : List[str] , *snake_case_ : Optional[int] , **snake_case_ : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : int , *snake_case_ : Dict , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Tuple , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : int , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : Optional[int] , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : Any ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : int , *snake_case_ : List[str] , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Dict , *snake_case_ : Any , **snake_case_ : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Dict , *snake_case_ : int , **snake_case_ : List[str] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : str , **snake_case_ : List[str] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : List[Any] , *snake_case_ : Dict , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : str , *snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : List[str] , *snake_case_ : Any , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : Any , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Optional[Any] , *snake_case_ : Tuple , **snake_case_ : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *snake_case_ : int , **snake_case_ : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : List[Any] , *snake_case_ : Any , **snake_case_ : List[str] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : int , *snake_case_ : List[str] , **snake_case_ : List[str] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Any , *snake_case_ : List[str] , **snake_case_ : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : int , *snake_case_ : Optional[Any] , **snake_case_ : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""sentencepiece"""] def __init__( self : Dict , *snake_case_ : Dict , **snake_case_ : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] )
347
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _a ( __lowerCAmelCase : Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" snake_case__ : List[Any] = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _a ( __lowerCAmelCase : int , __lowerCAmelCase : Tuple[int, ...] ): """simple docstring""" snake_case__ : Optional[int] = [] for d in reversed(__lowerCAmelCase ): idx.append(flat_idx % d ) snake_case__ : Union[str, Any] = flat_idx // d return tuple(reversed(__lowerCAmelCase ) ) @torch.jit.ignore def _a ( __lowerCAmelCase : Sequence[int] , __lowerCAmelCase : Sequence[int] , __lowerCAmelCase : Sequence[int] , __lowerCAmelCase : Optional[Sequence[bool]] = None , __lowerCAmelCase : Optional[Sequence[bool]] = None , ): """simple docstring""" def reduce_edge_list(__lowerCAmelCase : List[bool] ) -> None: snake_case__ : List[Any] = True for i in range(len(__lowerCAmelCase ) ): snake_case__ : Optional[int] = -1 * (i + 1) l[reversed_idx] &= tally snake_case__ : Union[str, Any] = l[reversed_idx] if start_edges is None: snake_case__ : List[str] = [s == 0 for s in start] reduce_edge_list(__lowerCAmelCase ) if end_edges is None: snake_case__ : Union[str, Any] = [e == (d - 1) for e, d in zip(__lowerCAmelCase , __lowerCAmelCase )] reduce_edge_list(__lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowerCAmelCase ) == 0: return [()] elif len(__lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] snake_case__ : List[Tuple[slice, ...]] = [] snake_case__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowerCAmelCase , __lowerCAmelCase ): if s == e: path_list.append(slice(__lowerCAmelCase , s + 1 ) ) else: break snake_case__ : Tuple[slice, ...] = tuple(__lowerCAmelCase ) snake_case__ : List[Any] = len(__lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(__lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case__ : Any = start[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case__ : Dict = end[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) snake_case__ : str = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _a ( __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : Union[str, Any] = t.shape[:no_batch_dims] snake_case__ : str = list(_flat_idx_to_idx(__lowerCAmelCase , __lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive snake_case__ : List[Any] = list(_flat_idx_to_idx(flat_end - 1 , __lowerCAmelCase ) ) # Get an ordered list of slices to perform snake_case__ : Any = _get_minimal_slice_set( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) snake_case__ : List[str] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _a ( __lowerCAmelCase : Callable , __lowerCAmelCase : Dict[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : bool = False , __lowerCAmelCase : Any = None , __lowerCAmelCase : bool = False , ): """simple docstring""" if not (len(__lowerCAmelCase ) > 0): raise ValueError('''Must provide at least one input''' ) snake_case__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(__lowerCAmelCase )] snake_case__ : str = tuple([max(__lowerCAmelCase ) for s in zip(*__lowerCAmelCase )] ) def _prep_inputs(__lowerCAmelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: snake_case__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) snake_case__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: snake_case__ : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t snake_case__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , __lowerCAmelCase ) snake_case__ : str = None if _out is not None: snake_case__ : int = tensor_tree_map(lambda __lowerCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) snake_case__ : Tuple = 1 for d in orig_batch_dims: flat_batch_dim *= d snake_case__ : Dict = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__lowerCAmelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t snake_case__ : Any = 0 snake_case__ : Dict = prepped_outputs for _ in range(__lowerCAmelCase ): # Chunk the input if not low_mem: snake_case__ : int = _select_chunk else: snake_case__ : Optional[Any] = partial( _chunk_slice , flat_start=__lowerCAmelCase , flat_end=min(__lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(__lowerCAmelCase ) , ) snake_case__ : Dict[str, Any] = tensor_tree_map(__lowerCAmelCase , __lowerCAmelCase ) # Run the layer on the chunk snake_case__ : Optional[int] = layer(**__lowerCAmelCase ) # Allocate space for the output if out is None: snake_case__ : str = tensor_tree_map(lambda __lowerCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__lowerCAmelCase , __lowerCAmelCase ): def assign(__lowerCAmelCase : dict , __lowerCAmelCase : dict ) -> None: for k, v in da.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): assign(__lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: snake_case__ : List[Any] = da[k] assign(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for xa, xa in zip(__lowerCAmelCase , __lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: snake_case__ : Optional[int] = xa elif isinstance(__lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: snake_case__ : str = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size snake_case__ : Optional[Any] = tensor_tree_map(lambda __lowerCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) , __lowerCAmelCase ) return out class a : """simple docstring""" def __init__( self : str , snake_case_ : int = 5_1_2 , ): '''simple docstring''' snake_case__ : Any = max_chunk_size snake_case__ : Optional[int] = None snake_case__ : Optional[tuple] = None def __magic_name__ ( self : List[Any] , snake_case_ : Callable , snake_case_ : tuple , snake_case_ : int ): '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size snake_case__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] snake_case__ : Any = [c for c in candidates if c > min_chunk_size] snake_case__ : int = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(snake_case_ : int ) -> bool: try: with torch.no_grad(): fn(*snake_case_ , chunk_size=snake_case_ ) return True except RuntimeError: return False snake_case__ : Any = 0 snake_case__ : Optional[int] = len(snake_case_ ) - 1 while i > min_viable_chunk_size_index: snake_case__ : Any = test_chunk_size(candidates[i] ) if not viable: snake_case__ : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: snake_case__ : Tuple = i snake_case__ : Any = (i + len(snake_case_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __magic_name__ ( self : List[Any] , snake_case_ : Iterable , snake_case_ : Iterable ): '''simple docstring''' snake_case__ : str = True for aa, aa in zip(snake_case_ , snake_case_ ): assert type(snake_case_ ) == type(snake_case_ ) if isinstance(snake_case_ , (list, tuple) ): consistent &= self._compare_arg_caches(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): snake_case__ : List[str] = [v for _, v in sorted(aa.items() , key=lambda snake_case_ : x[0] )] snake_case__ : Any = [v for _, v in sorted(aa.items() , key=lambda snake_case_ : x[0] )] consistent &= self._compare_arg_caches(snake_case_ , snake_case_ ) else: consistent &= aa == aa return consistent def __magic_name__ ( self : Union[str, Any] , snake_case_ : Callable , snake_case_ : tuple , snake_case_ : int , ): '''simple docstring''' snake_case__ : str = True snake_case__ : tuple = tree_map(lambda snake_case_ : a.shape if isinstance(snake_case_ , torch.Tensor ) else a , snake_case_ , snake_case_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(snake_case_ ) snake_case__ : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , snake_case_ ) else: # Otherwise, we can reuse the precomputed value snake_case__ : str = False if not consistent: snake_case__ : Dict = self._determine_favorable_chunk_size( snake_case_ , snake_case_ , snake_case_ , ) snake_case__ : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
347
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase (A__ ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """depth_multiplier""" ) ) class lowerCamelCase : def __init__( self : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Any=1_3 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : int=3_2 , __UpperCAmelCase : Tuple=0.25 , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : Any=8 , __UpperCAmelCase : str=6 , __UpperCAmelCase : Optional[int]=3_2 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Any="relu6" , __UpperCAmelCase : str=1_2_8_0 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Dict=1_0 , __UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = depth_multiplier SCREAMING_SNAKE_CASE__ = depth_divisible_by SCREAMING_SNAKE_CASE__ = min_depth SCREAMING_SNAKE_CASE__ = expand_ratio SCREAMING_SNAKE_CASE__ = tf_padding SCREAMING_SNAKE_CASE__ = output_stride SCREAMING_SNAKE_CASE__ = first_layer_is_expansion SCREAMING_SNAKE_CASE__ = finegrained_output SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE__ = classifier_dropout_prob SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scope def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any ) -> str: SCREAMING_SNAKE_CASE__ = MobileNetVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = MobileNetVaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = MobileNetVaForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : str = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ : str = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE__ = MobileNetVaConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: def check_hidden_states_output(__UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = outputs.hidden_states SCREAMING_SNAKE_CASE__ = 1_6 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = MobileNetVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) SCREAMING_SNAKE_CASE__ = model.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
713
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
616
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = LayoutLMTokenizer UpperCAmelCase__ = LayoutLMTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' super().setUp() A__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def SCREAMING_SNAKE_CASE ( self : Dict , **UpperCAmelCase__ : List[str]) ->Optional[Any]: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[str]) ->Tuple: '''simple docstring''' A__ = '''UNwant\u00E9d,running''' A__ = '''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ = self.tokenizer_class(self.vocab_file) A__ = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(UpperCAmelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [7, 4, 5, 10, 8, 9]) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' pass
87
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __SCREAMING_SNAKE_CASE ( A__ ): A : int = 'openai-gpt' A : str = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE__=40478 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__="cls_index" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ): lowercase : Dict = vocab_size lowercase : List[Any] = n_positions lowercase : List[Any] = n_embd lowercase : str = n_layer lowercase : str = n_head lowercase : List[Any] = afn lowercase : Union[str, Any] = resid_pdrop lowercase : Optional[Any] = embd_pdrop lowercase : Optional[int] = attn_pdrop lowercase : Optional[Any] = layer_norm_epsilon lowercase : int = initializer_range lowercase : Tuple = summary_type lowercase : Union[str, Any] = summary_use_proj lowercase : List[str] = summary_activation lowercase : List[str] = summary_first_dropout lowercase : Any = summary_proj_to_labels super().__init__(**SCREAMING_SNAKE_CASE__ )
319
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = """laion/clap-htsat-unfused""" UpperCamelCase__ = tempfile.mkdtemp() def A ( self : Optional[int] , **lowercase : List[str] ) -> Optional[int]: '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase__ ) def A ( self : Dict , **lowercase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase__ ) def A ( self : Tuple ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) def A ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase__ = self.get_feature_extractor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase__ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) def A ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) UpperCamelCase__ = floats_list((3, 1_0_0_0) ) UpperCamelCase__ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ) UpperCamelCase__ = processor(audios=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : List[str] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) UpperCamelCase__ = """This is a test string""" UpperCamelCase__ = processor(text=UpperCamelCase__ ) UpperCamelCase__ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase__ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
711
'''simple docstring''' import math def __magic_name__( _A ): '''simple docstring''' assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase__ = range(3 , int(math.sqrt(_A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __magic_name__( _A , _A=1 , **_A ): '''simple docstring''' UpperCamelCase__ = factor * value UpperCamelCase__ = value while not is_prime(_A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_A ) return value
265
0
def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :list[str] ) -> str: '''simple docstring''' A_ = '''''' for word_or_phrase in separated: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
188
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): """simple docstring""" A_ = 0 @slow def __UpperCAmelCase ( self ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__snake_case ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__snake_case ) ,0 ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,1_2 ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,2_0 ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) # Check that tokenizer_type ≠ model_type A_ = AutoTokenizer.from_pretrained(__snake_case ,config=__snake_case ) self.assertIsInstance(__snake_case ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,1_2 ) def __UpperCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(__snake_case ,'''vocab.txt''' ) ) A_ = AutoTokenizer.from_pretrained(__snake_case ,tokenizer_type='''bert''' ,use_fast=__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(__snake_case ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(__snake_case ,'''merges.txt''' ) ) A_ = AutoTokenizer.from_pretrained(__snake_case ,tokenizer_type='''gpt2''' ,use_fast=__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(__snake_case ,'''vocab.txt''' ) ) A_ = AutoTokenizer.from_pretrained(__snake_case ,tokenizer_type='''bert''' ) self.assertIsInstance(__snake_case ,__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(__snake_case ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(__snake_case ,'''merges.txt''' ) ) A_ = AutoTokenizer.from_pretrained(__snake_case ,tokenizer_type='''gpt2''' ) self.assertIsInstance(__snake_case ,__snake_case ) def __UpperCAmelCase ( self ): """simple docstring""" with pytest.raises(__snake_case ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A_ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__snake_case ,(BertTokenizer, BertTokenizerFast) ) if isinstance(__snake_case ,__snake_case ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,__snake_case ) else: self.assertEqual(tokenizer.do_lower_case ,__snake_case ) self.assertEqual(tokenizer.model_max_length ,5_1_2 ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __snake_case ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): A_ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = TOKENIZER_MAPPING.values() A_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__snake_case ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=__snake_case ) ,__snake_case ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,__snake_case ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=__snake_case ) A_ = '''Hello, world. How are you?''' A_ = tokenizer.tokenize(__snake_case ) self.assertEqual('''[UNK]''' ,tokens[0] ) A_ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=__snake_case ) A_ = tokenizer.tokenize(__snake_case ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__snake_case ) ,__snake_case ) self.assertEqual(tokenizer.model_max_length ,5_1_2 ) self.assertEqual(tokenizer.vocab_size ,3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case ) A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,1_2 ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__snake_case ,__snake_case ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = get_tokenizer_config('''bert-base-cased''' ) A_ = config.pop('''_commit_hash''' ,__snake_case ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__snake_case ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. A_ = get_tokenizer_config(__snake_case ) self.assertDictEqual(__snake_case ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A_ = AutoTokenizer.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case ) A_ = get_tokenizer_config(__snake_case ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def __UpperCAmelCase ( self ): """simple docstring""" try: AutoConfig.register('''custom''' ,__snake_case ) AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) A_ = CustomTokenizer.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case ) A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" try: AutoConfig.register('''custom''' ,__snake_case ) # Can register in two steps AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(__snake_case ,fast_tokenizer_class=__snake_case ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __snake_case ,slow_tokenizer_class=__snake_case ,fast_tokenizer_class=__snake_case ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoTokenizer.register(__snake_case ,fast_tokenizer_class=__snake_case ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A_ = BertTokenizerFast.from_pretrained(__snake_case ) bert_tokenizer.save_pretrained(__snake_case ) A_ = CustomTokenizerFast.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case ) A_ = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) A_ = AutoTokenizer.from_pretrained(__snake_case ,use_fast=__snake_case ) self.assertIsInstance(__snake_case ,__snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ): """simple docstring""" with self.assertRaises(__snake_case ): A_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ) A_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case ) A_ = AutoTokenizer.from_pretrained(__snake_case ,trust_remote_code=__snake_case ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ,use_fast=__snake_case ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case ) A_ = AutoTokenizer.from_pretrained(__snake_case ,trust_remote_code=__snake_case ,use_fast=__snake_case ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def __UpperCAmelCase ( self ): """simple docstring""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = False class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = NewTokenizer __lowerCAmelCase : Union[str, Any] = False try: AutoConfig.register('''custom''' ,__snake_case ) AutoTokenizer.register(__snake_case ,slow_tokenizer_class=__snake_case ) AutoTokenizer.register(__snake_case ,fast_tokenizer_class=__snake_case ) # If remote code is not set, the default is to use local A_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=__snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ,use_fast=__snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=__snake_case ,use_fast=__snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=__snake_case ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version A_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=__snake_case ,use_fast=__snake_case ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def __UpperCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __snake_case ,'''bert-base is not a local folder and is not a valid model identifier''' ): A_ = AutoTokenizer.from_pretrained('''bert-base''' ) def __UpperCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __snake_case ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A_ = AutoTokenizer.from_pretrained(__snake_case ,revision='''aaaaaa''' ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: A_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
188
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case__ : int = logging.get_logger(__name__) snake_case__ : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : List[str] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } snake_case__ : str = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } snake_case__ : List[str] = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase_ :Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ :Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ :int = SqueezeBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): '''simple docstring''' super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) UpperCAmelCase_ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): UpperCAmelCase_ : Union[str, Any] = getattr(snake_case_ , normalizer_state.pop('type' ) ) UpperCAmelCase_ : List[str] = do_lower_case UpperCAmelCase_ : str = strip_accents UpperCAmelCase_ : Any = tokenize_chinese_chars UpperCAmelCase_ : Union[str, Any] = normalizer_class(**snake_case_ ) UpperCAmelCase_ : Optional[Any] = do_lower_case def _UpperCamelCase ( self , snake_case_ , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Tuple = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
389
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Dict = '''Hello world! cécé herlolip''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool ): """simple docstring""" UpperCAmelCase_ : Optional[int] = FairseqRobertaModel.from_pretrained(lowerCamelCase_ ) roberta.eval() # disable dropout UpperCAmelCase_ : Optional[Any] = roberta.model.encoder.sentence_encoder UpperCAmelCase_ : str = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCAmelCase_ : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowerCamelCase_ ) UpperCAmelCase_ : str = XLMRobertaXLForSequenceClassification(lowerCamelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ : List[Any] = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ : Union[str, Any] = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ : Tuple = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ : int = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ : Optional[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ : BertLayer = model.roberta.encoder.layer[i] UpperCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] UpperCAmelCase_ : RobertaAttention = layer.attention UpperCAmelCase_ : str = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ : Tuple = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ : str = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ : List[str] = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ : Any = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ : Tuple = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ : str = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ : Any = roberta_layer.final_layer_norm.weight UpperCAmelCase_ : int = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ : Any = roberta_layer.fca.weight UpperCAmelCase_ : Optional[int] = roberta_layer.fca.bias # output UpperCAmelCase_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ : Any = roberta_layer.fca.weight UpperCAmelCase_ : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ : Dict = roberta.model.classification_heads['mnli'].dense.weight UpperCAmelCase_ : Dict = roberta.model.classification_heads['mnli'].dense.bias UpperCAmelCase_ : List[str] = roberta.model.classification_heads['mnli'].out_proj.weight UpperCAmelCase_ : Dict = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head UpperCAmelCase_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ : Dict = roberta.model.encoder.lm_head.weight UpperCAmelCase_ : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ : torch.Tensor = roberta.encode(lowerCamelCase_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ : Any = model(lowerCamelCase_ )[0] if classification_head: UpperCAmelCase_ : Tuple = roberta.model.classification_heads['mnli'](roberta.extract_features(lowerCamelCase_ ) ) else: UpperCAmelCase_ : Any = roberta.model(lowerCamelCase_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase_ : List[Any] = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowerCamelCase_ ).mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) snake_case__ : List[str] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
389
1
"""simple docstring""" A = [0, 2, 4, 6, 8] A = [1, 3, 5, 7, 9] def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int , lowerCamelCase_: int , lowerCamelCase_: list[int] , lowerCamelCase_: int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case : Any = 0 for digit in range(1_0 ): snake_case : Union[str, Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , lowerCamelCase_ , lowerCamelCase_ ) return result snake_case : Dict = 0 for digita in range(1_0 ): snake_case : Tuple = digita if (remainder + digita) % 2 == 0: snake_case : Union[str, Any] = ODD_DIGITS else: snake_case : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: snake_case : str = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , lowerCamelCase_ , lowerCamelCase_ , ) return result def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int = 9 ): """simple docstring""" snake_case : List[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCamelCase_ , 0 , [0] * length , lowerCamelCase_ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
449
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _a : def __init__( self : str , _lowercase : Tuple , _lowercase : List[Any]=100 , _lowercase : Union[str, Any]=13 , _lowercase : Tuple=30 , _lowercase : Dict=2 , _lowercase : Union[str, Any]=3 , _lowercase : Union[str, Any]=True , _lowercase : Dict=True , _lowercase : Dict=32 , _lowercase : Tuple=4 , _lowercase : List[Any]=4 , _lowercase : List[Any]=37 , _lowercase : List[Any]="gelu" , _lowercase : int=0.1 , _lowercase : Optional[Any]=0.1 , _lowercase : Dict=10 , _lowercase : List[str]=0.02 , _lowercase : Optional[int]=3 , _lowercase : Tuple=None , _lowercase : Optional[Any]=[0, 1, 2, 3] , ) -> Any: snake_case : str = parent snake_case : List[Any] = 100 snake_case : Any = batch_size snake_case : str = image_size snake_case : Optional[Any] = patch_size snake_case : Union[str, Any] = num_channels snake_case : str = is_training snake_case : List[str] = use_labels snake_case : Optional[Any] = hidden_size snake_case : Any = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads snake_case : Any = intermediate_size snake_case : List[Any] = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Optional[Any] = type_sequence_label_size snake_case : Any = initializer_range snake_case : Tuple = scope snake_case : Optional[int] = out_indices snake_case : List[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case : Optional[Any] = (image_size // patch_size) ** 2 snake_case : Any = num_patches + 1 def __lowercase ( self : Tuple ) -> Union[str, Any]: snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None snake_case : Optional[int] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case : str = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self : str ) -> List[Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __lowercase ( self : Union[str, Any] , _lowercase : int , _lowercase : Any , _lowercase : List[Any] , _lowercase : List[Any] ) -> Any: snake_case : int = BeitModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case : List[str] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Any , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] ) -> Tuple: snake_case : str = BeitForMaskedImageModeling(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case : Tuple = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowercase ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[Any] ) -> str: snake_case : str = self.type_sequence_label_size snake_case : Union[str, Any] = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Union[str, Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Dict = 1 snake_case : Tuple = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : List[str] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : str , _lowercase : Dict , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : List[Any] ) -> List[Any]: snake_case : List[Any] = self.num_labels snake_case : Union[str, Any] = BeitForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Tuple = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) snake_case : Any = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowercase ( self : Any ) -> Dict: snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Optional[int] = config_and_inputs snake_case : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): __magic_name__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __magic_name__ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowercase ( self : Optional[int] ) -> Tuple: snake_case : Optional[Any] = BeitModelTester(self ) snake_case : Union[str, Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def __lowercase ( self : int ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __lowercase ( self : Optional[Any] ) -> Tuple: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __lowercase ( self : List[str] ) -> str: pass def __lowercase ( self : List[str] ) -> Union[str, Any]: snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[str] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def __lowercase ( self : List[Any] ) -> List[Any]: snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(_lowercase ) snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : List[Any] = [*signature.parameters.keys()] snake_case : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def __lowercase ( self : Any ) -> List[str]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __lowercase ( self : Optional[int] ) -> str: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def __lowercase ( self : List[Any] ) -> Tuple: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) def __lowercase ( self : Union[str, Any] ) -> Optional[int]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def __lowercase ( self : Optional[int] ) -> Optional[Any]: if not self.model_tester.is_training: return snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling]: continue snake_case : List[str] = model_class(_lowercase ) model.to(_lowercase ) model.train() snake_case : Dict = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) snake_case : Tuple = model(**_lowercase ).loss loss.backward() def __lowercase ( self : Dict ) -> str: snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case : Dict = False snake_case : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue snake_case : str = model_class(_lowercase ) model.gradient_checkpointing_enable() model.to(_lowercase ) model.train() snake_case : Dict = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) snake_case : str = model(**_lowercase ).loss loss.backward() def __lowercase ( self : List[Any] ) -> Optional[int]: snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[Any] = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(config=_lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __lowercase ( self : Optional[Any] ) -> List[Any]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = BeitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" snake_case : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase): @cached_property def __lowercase ( self : Any ) -> List[str]: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __lowercase ( self : Dict ) -> Tuple: snake_case : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_lowercase ) snake_case : str = self.default_image_processor snake_case : int = prepare_img() snake_case : int = image_processor(images=_lowercase , return_tensors="pt" ).pixel_values.to(_lowercase ) # prepare bool_masked_pos snake_case : str = torch.ones((1, 196) , dtype=torch.bool ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case : Optional[Any] = model(pixel_values=_lowercase , bool_masked_pos=_lowercase ) snake_case : Any = outputs.logits # verify the logits snake_case : int = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _lowercase ) snake_case : List[Any] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowercase , atol=1E-2 ) ) @slow def __lowercase ( self : List[str] ) -> Tuple: snake_case : List[Any] = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_lowercase ) snake_case : Tuple = self.default_image_processor snake_case : Dict = prepare_img() snake_case : int = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**_lowercase ) snake_case : Union[str, Any] = outputs.logits # verify the logits snake_case : Dict = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _lowercase ) snake_case : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) ) snake_case : Optional[int] = 281 self.assertEqual(logits.argmax(-1 ).item() , _lowercase ) @slow def __lowercase ( self : Union[str, Any] ) -> List[str]: snake_case : str = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _lowercase ) snake_case : int = self.default_image_processor snake_case : List[str] = prepare_img() snake_case : Tuple = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case : Optional[Any] = model(**_lowercase ) snake_case : str = outputs.logits # verify the logits snake_case : int = torch.Size((1, 21841) ) self.assertEqual(logits.shape , _lowercase ) snake_case : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) ) snake_case : Dict = 2396 self.assertEqual(logits.argmax(-1 ).item() , _lowercase ) @slow def __lowercase ( self : int ) -> Union[str, Any]: snake_case : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) snake_case : Optional[int] = model.to(_lowercase ) snake_case : Optional[Any] = BeitImageProcessor(do_resize=_lowercase , size=640 , do_center_crop=_lowercase ) snake_case : List[str] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) snake_case : Tuple = Image.open(ds[0]["file"] ) snake_case : List[Any] = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case : Union[str, Any] = model(**_lowercase ) snake_case : Any = outputs.logits # verify the logits snake_case : Union[str, Any] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _lowercase ) snake_case : Dict = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: snake_case : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_lowercase , ) else: snake_case : List[Any] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def __lowercase ( self : List[str] ) -> Tuple: snake_case : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) snake_case : Tuple = model.to(_lowercase ) snake_case : List[str] = BeitImageProcessor(do_resize=_lowercase , size=640 , do_center_crop=_lowercase ) snake_case : Optional[Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) snake_case : Union[str, Any] = Image.open(ds[0]["file"] ) snake_case : List[str] = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**_lowercase ) snake_case : Tuple = outputs.logits.detach().cpu() snake_case : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=_lowercase , target_sizes=[(500, 300)] ) snake_case : List[str] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowercase ) snake_case : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=_lowercase ) snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _lowercase )
449
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[int]: if isinstance(__UpperCAmelCase , np.ndarray ): return list(tensor.shape ) SCREAMING_SNAKE_CASE__ = tf.shape(__UpperCAmelCase ) if tensor.shape == tf.TensorShape(__UpperCAmelCase ): return dynamic SCREAMING_SNAKE_CASE__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__UpperCAmelCase )] def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=__UpperCAmelCase , name=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-5 , __UpperCAmelCase=-1 ) -> Optional[Any]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tf.nn.moments(__UpperCAmelCase , axes=[axis] , keepdims=__UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis SCREAMING_SNAKE_CASE__ = [1] * inputs.shape.rank SCREAMING_SNAKE_CASE__ = shape_list(__UpperCAmelCase )[axis] SCREAMING_SNAKE_CASE__ = tf.reshape(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tf.reshape(__UpperCAmelCase , __UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. SCREAMING_SNAKE_CASE__ = tf.nn.batch_normalization( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , offset=__UpperCAmelCase , scale=__UpperCAmelCase , variance_epsilon=__UpperCAmelCase , ) return outputs def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=-1 ) -> Optional[int]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input SCREAMING_SNAKE_CASE__ = tf.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) SCREAMING_SNAKE_CASE__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> tf.Tensor: if not isinstance(__UpperCAmelCase , tf.Tensor ): SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(__UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) SCREAMING_SNAKE_CASE__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "input_ids" ) -> None: tf.debugging.assert_less( __UpperCAmelCase , tf.cast(__UpperCAmelCase , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(__UpperCAmelCase )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. SCREAMING_SNAKE_CASE__ = [x for x in data if len(__UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) SCREAMING_SNAKE_CASE__ = np.asarray(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = np.array_split(__UpperCAmelCase , __UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 SCREAMING_SNAKE_CASE__ = np.array_split(__UpperCAmelCase , __UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = chunk_data else: SCREAMING_SNAKE_CASE__ = data def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: if name in group.attrs: SCREAMING_SNAKE_CASE__ = [n.decode("utf8" ) if hasattr(__UpperCAmelCase , "decode" ) else n for n in group.attrs[name]] else: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__UpperCAmelCase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Union[str, Any]: def _expand_single_ad_tensor(__UpperCAmelCase ): if isinstance(__UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __UpperCAmelCase )
538
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
538
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''audio-spectrogram-transformer''' def __init__( self : Tuple , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Optional[int]=1e-12 , UpperCAmelCase__ : Optional[int]=16 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : Any=10 , UpperCAmelCase__ : Optional[Any]=1_024 , UpperCAmelCase__ : List[str]=128 , **UpperCAmelCase__ : Optional[Any] , ) ->Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = patch_size A__ = qkv_bias A__ = frequency_stride A__ = time_stride A__ = max_length A__ = num_mel_bins
87
def a__ ( __UpperCamelCase ): if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
140
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase ( __snake_case ): def lowerCamelCase_ ( self : Optional[Any] , __magic_name__ : float ): """simple docstring""" return 0.0 def _lowercase ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) UpperCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _lowercase ( SCREAMING_SNAKE_CASE_ : FilterType , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = 512 UpperCamelCase = [1] + [0] * (size - 1) UpperCamelCase = [filter_type.process(SCREAMING_SNAKE_CASE_ ) for item in inputs] UpperCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCamelCase = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = 20 * np.logaa(SCREAMING_SNAKE_CASE_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds UpperCamelCase = get_bounds(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(SCREAMING_SNAKE_CASE_ ) plt.show() def _lowercase ( SCREAMING_SNAKE_CASE_ : FilterType , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = 512 UpperCamelCase = [1] + [0] * (size - 1) UpperCamelCase = [filter_type.process(SCREAMING_SNAKE_CASE_ ) for item in inputs] UpperCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCamelCase = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE_ , -2 * pi ) ) plt.show()
181
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _lowercase ( *SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase = list(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _lowercase ( SCREAMING_SNAKE_CASE_ : Exception ): """simple docstring""" UpperCamelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _lowercase ( SCREAMING_SNAKE_CASE_ : callable = None , SCREAMING_SNAKE_CASE_ : int = 128 ): """simple docstring""" if function is None: return functools.partial(SCREAMING_SNAKE_CASE_ , starting_batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCamelCase = list(inspect.signature(SCREAMING_SNAKE_CASE_ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE_ ) < (len(SCREAMING_SNAKE_CASE_ ) + 1): UpperCamelCase = """, """.join([f'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'Batch size was passed into `{function.__name__}` as the first argument when called.' f'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
181
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : List[Any] = tempfile.mkdtemp() # fmt: off __magic_name__ : int = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __magic_name__ : List[str] = dict(zip(A_ , range(len(A_ ) ) ) ) __magic_name__ : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] __magic_name__ : Optional[Any] = {"unk_token": "<unk>"} __magic_name__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) __magic_name__ : Optional[int] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __magic_name__ : Union[str, Any] = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def __lowerCAmelCase ( self : int , **_A : int ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __lowerCAmelCase ( self : List[Any] , **_A : List[Any] ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __lowerCAmelCase ( self : Union[str, Any] , **_A : Dict ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __lowerCAmelCase ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: __magic_name__ : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __magic_name__ : Optional[Any] = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Tuple ) -> List[Any]: __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Optional[Any] = self.get_rust_tokenizer() __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Any = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __magic_name__ : Any = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: __magic_name__ : Optional[int] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ : List[str] = self.get_image_processor(do_normalize=A_ ) __magic_name__ : str = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __lowerCAmelCase ( self : str ) -> int: __magic_name__ : Dict = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : List[Any] = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) __magic_name__ : List[str] = self.prepare_image_inputs() __magic_name__ : Dict = image_processor(A_ , return_tensors='np' ) __magic_name__ : Optional[Any] = processor(images=A_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : List[str] ) -> Dict: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Optional[int] = self.get_tokenizer() __magic_name__ : int = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) __magic_name__ : Union[str, Any] = "lower newer" __magic_name__ : List[str] = processor(text=A_ , return_tensors='np' ) __magic_name__ : Union[str, Any] = tokenizer(A_ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : List[Any] = self.get_image_processor() __magic_name__ : Optional[int] = self.get_tokenizer() __magic_name__ : Any = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) __magic_name__ : Optional[int] = "lower newer" __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : Optional[int] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __lowerCAmelCase ( self : Tuple ) -> Any: __magic_name__ : List[Any] = "google/owlvit-base-patch32" __magic_name__ : List[Any] = OwlViTProcessor.from_pretrained(A_ ) __magic_name__ : Tuple = ["cat", "nasa badge"] __magic_name__ : Tuple = processor(text=A_ ) __magic_name__ : int = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = "google/owlvit-base-patch32" __magic_name__ : Dict = OwlViTProcessor.from_pretrained(A_ ) __magic_name__ : Optional[Any] = [["cat", "nasa badge"], ["person"]] __magic_name__ : Optional[int] = processor(text=A_ ) __magic_name__ : List[Any] = 16 __magic_name__ : Dict = len(A_ ) __magic_name__ : Optional[int] = max([len(A_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __lowerCAmelCase ( self : int ) -> Union[str, Any]: __magic_name__ : List[str] = "google/owlvit-base-patch32" __magic_name__ : List[Any] = OwlViTProcessor.from_pretrained(A_ ) __magic_name__ : int = ["cat", "nasa badge"] __magic_name__ : Union[str, Any] = processor(text=A_ ) __magic_name__ : int = 16 __magic_name__ : Optional[Any] = inputs["input_ids"] __magic_name__ : Union[str, Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : str = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) __magic_name__ : Optional[Any] = self.prepare_image_inputs() __magic_name__ : Optional[Any] = self.prepare_image_inputs() __magic_name__ : List[str] = processor(images=A_ , query_images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) __magic_name__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[int] = processor.batch_decode(A_ ) __magic_name__ : str = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
561
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Any = 3 _UpperCAmelCase : List[Any] = (32, 32) _UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' def extract(*A_ , **A_ ): class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.ones([0] ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' self.pixel_values.to(A_ ) return self return Out() return extract def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Dict = 77 _UpperCAmelCase : Optional[int] = self.dummy_image.to(A_ ) _UpperCAmelCase : List[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _UpperCAmelCase : Tuple = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : Dict = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , ) _UpperCAmelCase : str = output.images _UpperCAmelCase : Tuple = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Dict = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , return_dict=A_ , )[0] _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : int = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.dummy_cond_unet _UpperCAmelCase : Any = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[Any] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Dict = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Any = 77 _UpperCAmelCase : List[Any] = self.dummy_image.to(A_ ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : Optional[Any] = vae.half() _UpperCAmelCase : int = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : List[str] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : int = alt_pipe( [prompt] , generator=A_ , num_inference_steps=2 , output_type="np" , image=A_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase : Dict = init_image.resize((760, 504) ) _UpperCAmelCase : str = "BAAI/AltDiffusion" _UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "A fantasy landscape, trending on artstation" _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] _UpperCAmelCase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _UpperCAmelCase : Optional[int] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase : Optional[int] = init_image.resize((768, 512) ) _UpperCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _UpperCAmelCase : int = "BAAI/AltDiffusion" _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : int = "A fantasy landscape, trending on artstation" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : int = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self : str ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) requires_backends(self ,'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : List[Any]=None ,_SCREAMING_SNAKE_CASE : List[str]=None ,_SCREAMING_SNAKE_CASE : int=None ) -> Any: '''simple docstring''' A = {} A = {} if prompt is not None: A = prompt if generate_kwargs is not None: A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : int ,_SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: '''simple docstring''' return super().__call__(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def A( self : Dict ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: '''simple docstring''' A = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) A = self.model.config.model_type if model_type == "git": A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) A = self.tokenizer(text=_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids A = [self.tokenizer.cls_token_id] + input_ids A = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,header_text=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) A = self.tokenizer(_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: A = None return model_inputs def A( self : str ,_SCREAMING_SNAKE_CASE : str ,_SCREAMING_SNAKE_CASE : Dict=None ) -> List[str]: '''simple docstring''' # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] ,_SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): A = None if generate_kwargs is None: A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A = model_inputs.pop(self.model.main_input_name ) A = self.model.generate(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) return model_outputs def A( self : Dict ,_SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: '''simple docstring''' A = [] for output_ids in model_outputs: A = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ,) } records.append(_SCREAMING_SNAKE_CASE ) return records
110
0
'''simple docstring''' def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __A : Dict = f"Input value of [number={number}] must be an integer" raise TypeError(UpperCAmelCase__ ) if number < 1: __A : Union[str, Any] = f"Input value of [number={number}] must be > 0" raise ValueError(UpperCAmelCase__ ) __A : str = 1 for i in range(1 , UpperCAmelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
111
import argparse from collections import defaultdict import yaml a = 'docs/source/en/_toctree.yml' def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = defaultdict(UpperCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase_ = [key for key, value in counts.items() if value > 1] lowercase_ = [] for duplicate_key in duplicates: lowercase_ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(UpperCAmelCase__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : s["title"].lower() ) def UpperCAmelCase_ ( UpperCAmelCase__=False ): with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: lowercase_ = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ = content[api_idx]["""sections"""] # Then to the model doc lowercase_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase_ = api_doc[model_idx]["""sections"""] lowercase_ = [(idx, section) for idx, section in enumerate(UpperCAmelCase__ ) if """sections""" in section] lowercase_ = False for idx, modality_doc in modalities_docs: lowercase_ = modality_doc["""sections"""] lowercase_ = clean_model_doc_toc(UpperCAmelCase__ ) if old_modality_doc != new_modality_doc: lowercase_ = True if overwrite: lowercase_ = new_modality_doc if diff: if overwrite: lowercase_ = model_doc lowercase_ = api_doc with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCAmelCase__ , allow_unicode=UpperCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a = parser.parse_args() check_model_doc(args.fix_and_overwrite)
412
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __UpperCAmelCase : int = logging.get_logger(__name__) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , *__snake_case : Any , **__snake_case : Optional[int] ) -> None: warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
249
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self : Any , __snake_case : int , __snake_case : Optional[Any]=13 , __snake_case : int=7 , __snake_case : Dict=True , __snake_case : str=True , __snake_case : List[str]=True , __snake_case : int=True , __snake_case : str=99 , __snake_case : Dict=24 , __snake_case : int=2 , __snake_case : Dict=6 , __snake_case : str=37 , __snake_case : str="gelu" , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Any=16 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=0.02 , __snake_case : str=3 , __snake_case : List[Any]=None , __snake_case : Any=1000 , ) -> str: _a : Dict = parent _a : Tuple = batch_size _a : Optional[int] = seq_length _a : Optional[int] = is_training _a : Dict = use_input_mask _a : Optional[Any] = use_token_type_ids _a : List[Any] = use_labels _a : List[str] = vocab_size _a : int = hidden_size _a : List[str] = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Dict = intermediate_size _a : str = hidden_act _a : str = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : List[str] = type_vocab_size _a : List[Any] = type_sequence_label_size _a : Optional[int] = initializer_range _a : str = num_labels _a : int = scope _a : Tuple = range_bbox def snake_case_ ( self : Any ) -> Any: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : Any = bbox[i, j, 3] _a : Any = bbox[i, j, 1] _a : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _a : int = bbox[i, j, 2] _a : str = bbox[i, j, 0] _a : List[Any] = t _a : Any = None if self.use_input_mask: _a : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a : Optional[Any] = None if self.use_token_type_ids: _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Any = None _a : Union[str, Any] = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : str ) -> List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self : int , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , ) -> Any: _a : Union[str, Any] = LiltModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Union[str, Any] = model(__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : int , ) -> Tuple: _a : List[str] = self.num_labels _a : Optional[Any] = LiltForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Optional[Any] = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , ) -> Optional[int]: _a : List[str] = LiltForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() _a : int = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Any ) -> Optional[int]: _a : List[Any] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = False def snake_case_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[int] ) -> List[str]: return True def snake_case_ ( self : int ) -> Dict: _a : Union[str, Any] = LiltModelTester(self ) _a : List[str] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def snake_case_ ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def snake_case_ ( self : str ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : str ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : Optional[Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def snake_case_ ( self : List[Any] ) -> List[Any]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def snake_case_ ( self : Dict ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = LiltModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @slow class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : Optional[Any] ) -> str: _a : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__snake_case ) _a : List[str] = torch.tensor([[1, 2]] , device=__snake_case ) _a : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__snake_case ) # forward pass with torch.no_grad(): _a : List[Any] = model(input_ids=__snake_case , bbox=__snake_case ) _a : Optional[Any] = torch.Size([1, 2, 768] ) _a : Optional[Any] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , __snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __snake_case , atol=1E-3 ) )
249
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : a__ = 42 a__ = 42 a__ = 42 @dataclass class lowerCamelCase_ : a__ = 42 a__ = 42 a__ = None a__ = None class lowerCamelCase_ ( lowerCamelCase ): a__ = '''train''' a__ = '''dev''' a__ = '''test''' class lowerCamelCase_ : @staticmethod def A ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError @staticmethod def A ( __lowerCAmelCase ): """simple docstring""" raise NotImplementedError @staticmethod def A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase="[CLS]" , __lowerCAmelCase=1 , __lowerCAmelCase="[SEP]" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=-1_0_0 , __lowerCAmelCase=0 , __lowerCAmelCase=True , ): """simple docstring""" __magic_name__ :str = {label: i for i, label in enumerate(__lowerCAmelCase )} __magic_name__ :int = [] for ex_index, example in enumerate(__lowerCAmelCase ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , __lowerCAmelCase , len(__lowerCAmelCase ) ) __magic_name__ :Tuple = [] __magic_name__ :str = [] for word, label in zip(example.words , example.labels ): __magic_name__ :Tuple = tokenizer.tokenize(__lowerCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__lowerCAmelCase ) > 0: tokens.extend(__lowerCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowerCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __magic_name__ :List[Any] = tokenizer.num_special_tokens_to_add() if len(__lowerCAmelCase ) > max_seq_length - special_tokens_count: __magic_name__ :Optional[int] = tokens[: (max_seq_length - special_tokens_count)] __magic_name__ :Tuple = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __magic_name__ :Dict = [sequence_a_segment_id] * len(__lowerCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __magic_name__ :Tuple = [cls_token] + tokens __magic_name__ :Any = [pad_token_label_id] + label_ids __magic_name__ :Optional[int] = [cls_token_segment_id] + segment_ids __magic_name__ :int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __magic_name__ :Dict = [1 if mask_padding_with_zero else 0] * len(__lowerCAmelCase ) # Zero-pad up to the sequence length. __magic_name__ :Any = max_seq_length - len(__lowerCAmelCase ) if pad_on_left: __magic_name__ :Optional[Any] = ([pad_token] * padding_length) + input_ids __magic_name__ :Optional[Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __magic_name__ :Optional[int] = ([pad_token_segment_id] * padding_length) + segment_ids __magic_name__ :Union[str, Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__lowerCAmelCase ) == max_seq_length assert len(__lowerCAmelCase ) == max_seq_length assert len(__lowerCAmelCase ) == max_seq_length assert len(__lowerCAmelCase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__lowerCAmelCase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__lowerCAmelCase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__lowerCAmelCase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__lowerCAmelCase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__lowerCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__ :Tuple = None features.append( InputFeatures( input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , label_ids=__lowerCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCamelCase_ ( lowerCamelCase ): a__ = 42 a__ = nn.CrossEntropyLoss().ignore_index def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase = Split.train , ): """simple docstring""" # Load data features from cache or dataset file __magic_name__ :Any = os.path.join( __lowerCAmelCase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__lowerCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ :Optional[int] = cached_features_file + '''.lock''' with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) __magic_name__ :Optional[int] = torch.load(__lowerCAmelCase ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) __magic_name__ :int = token_classification_task.read_examples_from_file(__lowerCAmelCase , __lowerCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__ :str = token_classification_task.convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCAmelCase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , __lowerCAmelCase ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCamelCase_ : a__ = 42 a__ = -1_00 def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase = Split.train , ): """simple docstring""" __magic_name__ :Union[str, Any] = token_classification_task.read_examples_from_file(__lowerCAmelCase , __lowerCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__ :Tuple = token_classification_task.convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCAmelCase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__ :Any = tf.data.Dataset.from_generator( __lowerCAmelCase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __magic_name__ :Optional[int] = tf.data.Dataset.from_generator( __lowerCAmelCase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return self.features[i]
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __UpperCamelCase ( lowercase__ : Union[str, Any] ): '''simple docstring''' return EnvironmentCommand() def __UpperCamelCase ( lowercase__ : Any ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class lowerCAmelCase ( A ): @staticmethod def snake_case ( __lowercase : ArgumentParser ): """simple docstring""" __lowercase =parser.add_parser('env' ) download_parser.set_defaults(func=__lowercase ) download_parser.add_argument( '--accelerate-config_file' , default=__lowercase , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=__lowercase ) def __init__( self : int , __lowercase : Any , *__lowercase : str ): """simple docstring""" __lowercase =accelerate_config_file def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase ='not installed' if is_safetensors_available(): import safetensors __lowercase =safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors __lowercase =f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __lowercase ='not installed' __lowercase =__lowercase ='not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __lowercase =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__lowercase ): __lowercase =load_config_from_file(self._accelerate_config_file ).to_dict() __lowercase =( '\n'.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__lowercase , __lowercase ) else f'''\t{accelerate_config}''' ) __lowercase ='not installed' __lowercase ='NA' if is_torch_available(): import torch __lowercase =torch.__version__ __lowercase =torch.cuda.is_available() __lowercase ='not installed' __lowercase ='NA' if is_tf_available(): import tensorflow as tf __lowercase =tf.__version__ try: # deprecated in v2.1 __lowercase =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __lowercase =bool(tf.config.list_physical_devices('GPU' ) ) __lowercase ='not installed' __lowercase ='not installed' __lowercase ='not installed' __lowercase ='NA' if is_flax_available(): import flax import jax import jaxlib __lowercase =flax.__version__ __lowercase =jax.__version__ __lowercase =jaxlib.__version__ __lowercase =jax.lib.xla_bridge.get_backend().platform __lowercase ={ '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': f'''{safetensors_version}''', 'Accelerate version': f'''{accelerate_version}''', 'Accelerate config': f'''{accelerate_config_str}''', 'PyTorch version (GPU?)': f'''{pt_version} ({pt_cuda_available})''', 'Tensorflow version (GPU?)': f'''{tf_version} ({tf_cuda_available})''', 'Flax version (CPU?/GPU?/TPU?)': f'''{flax_version} ({jax_backend})''', 'Jax version': f'''{jax_version}''', 'JaxLib version': f'''{jaxlib_version}''', 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__lowercase ) ) return info @staticmethod def snake_case ( __lowercase : Optional[Any] ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
119
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_( unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[str] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCAmelCase__ : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" lowerCAmelCase__ : str = model(__A )["""last_hidden_state"""] lowerCAmelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,__A ) # compare the actual values for a slice. lowerCAmelCase__ : List[str] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
715
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase__ : Tuple = mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: lowerCAmelCase__ : List[str] = max( mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase__ : Union[str, Any] = val return f[i][j] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase__ : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase__ : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if not (isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowerCAmelCase__ : Tuple = len(UpperCamelCase ) if num_items != len(UpperCamelCase ): lowerCAmelCase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(UpperCamelCase )} values""" ) raise ValueError(UpperCamelCase ) for i in range(UpperCamelCase ): if not isinstance(wt[i] , UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = ( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : str = knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : set = set() _construct_solution(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return optimal_val, example_optional_set def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , UpperCamelCase , UpperCamelCase ) else: optimal_set.add(UpperCamelCase ) _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , j - wt[i - 1] , UpperCamelCase ) if __name__ == "__main__": _lowerCAmelCase = [3, 2, 4, 4] _lowerCAmelCase = [4, 3, 2, 3] _lowerCAmelCase = 4 _lowerCAmelCase = 6 _lowerCAmelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _lowerCAmelCase , _lowerCAmelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _lowerCAmelCase , _lowerCAmelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
160
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = (n * (n + 1) // 2) ** 2 snake_case__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"""{solution() = }""")
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
'''simple docstring''' from math import factorial def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCamelCase_ ) // (factorial(lowerCamelCase_ ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", f'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", f'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
702
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) SCREAMING_SNAKE_CASE : Dict = { """input_ids""": tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )["""last_hidden_state"""] SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
79
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class __a : UpperCamelCase_ : Dict = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[int] = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Union[str, Any] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) UpperCamelCase_ : str = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Dict = field(default=_lowerCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Union[str, Any] = field( default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __a : UpperCamelCase_ : List[str] = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) UpperCamelCase_ : Dict = field( default=_lowerCAmelCase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) UpperCamelCase_ : Tuple = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : Tuple = field( default=_lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ ( )-> Optional[Any]: """simple docstring""" UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) UpperCamelCase = import_module("tasks" ) try: UpperCamelCase = getattr(_snake_case , model_args.task_type ) UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _snake_case ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCamelCase = token_classification_task.get_labels(data_args.labels ) UpperCamelCase = dict(enumerate(_snake_case ) ) UpperCamelCase = len(_snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , idalabel=_snake_case , labelaid={label: i for i, label in enumerate(_snake_case )} , cache_dir=model_args.cache_dir , ) UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple[List[int], List[int]]: UpperCamelCase = np.argmax(_snake_case , axis=2 ) UpperCamelCase = preds.shape UpperCamelCase = [[] for _ in range(_snake_case )] UpperCamelCase = [[] for _ in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase_ ) -> Dict: UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_snake_case , _snake_case ), "precision": precision_score(_snake_case , _snake_case ), "recall": recall_score(_snake_case , _snake_case ), "f1": fa_score(_snake_case , _snake_case ), } # Data collator UpperCamelCase = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase = trainer.evaluate() UpperCamelCase = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(_snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _snake_case , _snake_case ) writer.write("%s = %s\n" % (key, value) ) results.update(_snake_case ) # Predict if training_args.do_predict: UpperCamelCase = TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCamelCase = trainer.predict(_snake_case ) UpperCamelCase = align_predictions(_snake_case , _snake_case ) UpperCamelCase = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(_snake_case , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , _snake_case , _snake_case ) writer.write("%s = %s\n" % (key, value) ) # Save predictions UpperCamelCase = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(_snake_case , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(_snake_case , _snake_case , _snake_case ) return results def lowerCamelCase__ ( UpperCAmelCase_ )-> int: """simple docstring""" main() if __name__ == "__main__": main()
554
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 class _snake_case ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = (16, 32, 96, 256) UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): __magic_name__ : Any = self.block_out_channels[i] __magic_name__ : Optional[int] = self.block_out_channels[i + 1] __magic_name__ : List[str] = nn.Conv( _a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) __magic_name__ : Optional[Any] = nn.Conv( _a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) __magic_name__ : Union[str, Any] = blocks __magic_name__ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a ): __magic_name__ : List[Any] = self.conv_in(_a ) __magic_name__ : Dict = nn.silu(_a ) for block in self.blocks: __magic_name__ : Dict = block(_a ) __magic_name__ : int = nn.silu(_a ) __magic_name__ : str = self.conv_out(_a ) return embedding @flax_register_to_config class _snake_case ( nn.Module , snake_case , snake_case ): UpperCamelCase__ = 32 UpperCamelCase__ = 4 UpperCamelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ = False UpperCamelCase__ = (320, 640, 1280, 1280) UpperCamelCase__ = 2 UpperCamelCase__ = 8 UpperCamelCase__ = None UpperCamelCase__ = 1280 UpperCamelCase__ = 0.0 UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa UpperCamelCase__ = True UpperCamelCase__ = 0 UpperCamelCase__ = "rgb" UpperCamelCase__ = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE ( self , _a ): # init input tensors __magic_name__ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) __magic_name__ : Dict = jnp.zeros(_a , dtype=jnp.floataa ) __magic_name__ : int = jnp.ones((1,) , dtype=jnp.intaa ) __magic_name__ : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __magic_name__ : List[str] = (1, 3, self.sample_size * 8, self.sample_size * 8) __magic_name__ : Optional[int] = jnp.zeros(_a , dtype=jnp.floataa ) __magic_name__ , __magic_name__ : Dict = jax.random.split(_a ) __magic_name__ : str = {"params": params_rng, "dropout": dropout_rng} return self.init(_a , _a , _a , _a , _a )["params"] def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.block_out_channels __magic_name__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __magic_name__ : str = self.num_attention_heads or self.attention_head_dim # input __magic_name__ : Tuple = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __magic_name__ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __magic_name__ : str = FlaxTimestepEmbedding(_a , dtype=self.dtype ) __magic_name__ : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __magic_name__ : Tuple = self.only_cross_attention if isinstance(_a , _a ): __magic_name__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_a , _a ): __magic_name__ : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down __magic_name__ : List[Any] = [] __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = block_out_channels[0] __magic_name__ : str = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) for i, down_block_type in enumerate(self.down_block_types ): __magic_name__ : Optional[int] = output_channel __magic_name__ : int = block_out_channels[i] __magic_name__ : List[str] = i == len(_a ) - 1 if down_block_type == "CrossAttnDownBlock2D": __magic_name__ : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __magic_name__ : List[Any] = FlaxDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_a ) for _ in range(self.layers_per_block ): __magic_name__ : List[Any] = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) if not is_final_block: __magic_name__ : str = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) __magic_name__ : Any = down_blocks __magic_name__ : Any = controlnet_down_blocks # mid __magic_name__ : Optional[int] = block_out_channels[-1] __magic_name__ : List[str] = FlaxUNetMidBlockaDCrossAttn( in_channels=_a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __magic_name__ : Optional[int] = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a , _a , _a , _a , _a = 1.0 , _a = True , _a = False , ): __magic_name__ : List[str] = self.controlnet_conditioning_channel_order if channel_order == "bgr": __magic_name__ : int = jnp.flip(_a , axis=1 ) # 1. time if not isinstance(_a , jnp.ndarray ): __magic_name__ : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_a , jnp.ndarray ) and len(timesteps.shape ) == 0: __magic_name__ : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __magic_name__ : Dict = jnp.expand_dims(_a , 0 ) __magic_name__ : Any = self.time_proj(_a ) __magic_name__ : int = self.time_embedding(_a ) # 2. pre-process __magic_name__ : Dict = jnp.transpose(_a , (0, 2, 3, 1) ) __magic_name__ : Any = self.conv_in(_a ) __magic_name__ : List[str] = jnp.transpose(_a , (0, 2, 3, 1) ) __magic_name__ : Tuple = self.controlnet_cond_embedding(_a ) sample += controlnet_cond # 3. down __magic_name__ : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_a , _a ): __magic_name__ , __magic_name__ : List[str] = down_block(_a , _a , _a , deterministic=not train ) else: __magic_name__ , __magic_name__ : List[Any] = down_block(_a , _a , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __magic_name__ : int = self.mid_block(_a , _a , _a , deterministic=not train ) # 5. contronet blocks __magic_name__ : Any = () for down_block_res_sample, controlnet_block in zip(_a , self.controlnet_down_blocks ): __magic_name__ : Dict = controlnet_block(_a ) controlnet_down_block_res_samples += (down_block_res_sample,) __magic_name__ : Optional[Any] = controlnet_down_block_res_samples __magic_name__ : int = self.controlnet_mid_block(_a ) # 6. scaling __magic_name__ : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_a , mid_block_res_sample=_a )
124
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=[1, 1, 2] , lowerCamelCase=1 , lowerCamelCase=32 , lowerCamelCase=4 , lowerCamelCase=8 , lowerCamelCase=37 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=5_12 , lowerCamelCase=3 , lowerCamelCase=0.0_2 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , lowerCamelCase=False , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = block_sizes snake_case__ = num_decoder_layers snake_case__ = d_model snake_case__ = n_head snake_case__ = d_head snake_case__ = d_inner snake_case__ = hidden_act snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = 2 snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope snake_case__ = initializer_std # Used in the tests to check the size of the first attention layer snake_case__ = n_head # Used in the tests to check the size of the first hidden state snake_case__ = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case__ = self.num_hidden_layers + 2 def A_ ( self ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = TFFunnelModel(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) snake_case__ = [input_ids, input_mask] snake_case__ = model(lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case__ = False snake_case__ = TFFunnelModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case__ = False snake_case__ = TFFunnelModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = TFFunnelBaseModel(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) snake_case__ = [input_ids, input_mask] snake_case__ = model(lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) snake_case__ = False snake_case__ = TFFunnelBaseModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) snake_case__ = False snake_case__ = TFFunnelBaseModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = TFFunnelForPreTraining(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = TFFunnelForMaskedLM(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = self.num_labels snake_case__ = TFFunnelForSequenceClassification(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = self.num_choices snake_case__ = TFFunnelForMultipleChoice(config=lowerCamelCase ) snake_case__ = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = self.num_labels snake_case__ = TFFunnelForTokenClassification(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = TFFunnelForQuestionAnswering(config=lowerCamelCase ) snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): _A : str = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _A : Optional[int] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _A : Optional[Any] = False _A : Optional[Any] = False def A_ ( self ): snake_case__ = TFFunnelModelTester(self ) snake_case__ = ConfigTester(self , config_class=lowerCamelCase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) @require_tf class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _A : Optional[Any] = False _A : List[Any] = False def A_ ( self ): snake_case__ = TFFunnelModelTester(self , base=lowerCamelCase ) snake_case__ = ConfigTester(self , config_class=lowerCamelCase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase )
530
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case__ = ksize + 1 snake_case__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center snake_case__ = x - ksize // 2 snake_case__ = y - ksize // 2 # degree to radiant snake_case__ = theta / 180 * np.pi snake_case__ = np.cos(_theta ) snake_case__ = np.sin(_theta ) # get kernel x snake_case__ = cos_theta * px + sin_theta * py # get kernel y snake_case__ = -sin_theta * px + cos_theta * py # fill kernel snake_case__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __magic_name__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ = out / out.max() * 255 __magic_name__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
530
1
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str, SCREAMING_SNAKE_CASE__: int ) -> str: """simple docstring""" __a = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] __a = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(SCREAMING_SNAKE_CASE__ ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE__ ): __a = position % (lowest * 2) # puts it in bounds __a = min(SCREAMING_SNAKE_CASE__, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE__ ) __a = [''.join(SCREAMING_SNAKE_CASE__ ) for row in temp_grid] __a = ''.join(SCREAMING_SNAKE_CASE__ ) return output_string def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str, SCREAMING_SNAKE_CASE__: int ) -> str: """simple docstring""" __a = [] __a = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string __a = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] # generates template for position in range(len(SCREAMING_SNAKE_CASE__ ) ): __a = position % (lowest * 2) # puts it in bounds __a = min(SCREAMING_SNAKE_CASE__, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) __a = 0 for row in temp_grid: # fills in the characters __a = input_string[counter : counter + len(SCREAMING_SNAKE_CASE__ )] grid.append(list(SCREAMING_SNAKE_CASE__ ) ) counter += len(SCREAMING_SNAKE_CASE__ ) __a = '' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE__ ) ): __a = position % (lowest * 2) # puts it in bounds __a = min(SCREAMING_SNAKE_CASE__, lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> dict[int, str]: """simple docstring""" __a = {} for key_guess in range(1, len(SCREAMING_SNAKE_CASE__ ) ): # tries every key __a = decrypt(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
448
'''simple docstring''' from timeit import timeit __UpperCamelCase : int = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> bool: """simple docstring""" __a = 0 __a = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> bool: """simple docstring""" __a = len(SCREAMING_SNAKE_CASE__ ) // 2 __a = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> bool: """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> bool: """simple docstring""" return s == s[::-1] def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> None: """simple docstring""" __a = f"""all({name}(key) is value for key, value in test_data.items())""" __a = f"""from __main__ import test_data, {name}""" __a = 500000 __a = timeit(stmt=SCREAMING_SNAKE_CASE__, setup=SCREAMING_SNAKE_CASE__, number=SCREAMING_SNAKE_CASE__ ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
448
1
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowercase : str = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): a__ : Optional[datasets.Features] = None a__ : str = "utf-8" a__ : Optional[str] = None a__ : Optional[str] = None a__ : bool = True # deprecated a__ : Optional[int] = None # deprecated a__ : int = 10 << 20 # 10MB a__ : Optional[bool] = None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): a__ : str = JsonConfig def a ( self : Optional[int] ): if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __UpperCAmelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def a ( self : Union[str, Any] , _lowercase : Union[str, Any] ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase_ , (str, list, tuple) ): __UpperCAmelCase = data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase = [files] __UpperCAmelCase = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase = [files] __UpperCAmelCase = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={'''files''': files} ) ) return splits def a ( self : Tuple , _lowercase : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __UpperCAmelCase = self.config.features.arrow_schema.field(UpperCAmelCase_ ).type __UpperCAmelCase = pa_table.append_column(UpperCAmelCase_ , pa.array([None] * len(UpperCAmelCase_ ) , type=UpperCAmelCase_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase = table_cast(UpperCAmelCase_ , self.config.features.arrow_schema ) return pa_table def a ( self : Optional[Any] , _lowercase : str ): for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase = json.load(UpperCAmelCase_ ) # We keep only the field we are interested in __UpperCAmelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase_ , (list, tuple) ): __UpperCAmelCase = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase = {col: [row.get(UpperCAmelCase_ ) for row in dataset] for col in keys} else: __UpperCAmelCase = dataset __UpperCAmelCase = pa.Table.from_pydict(UpperCAmelCase_ ) yield file_idx, self._cast_table(UpperCAmelCase_ ) # If the file has one json object per line else: with open(UpperCAmelCase_ , '''rb''' ) as f: __UpperCAmelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCAmelCase = max(self.config.chunksize // 32 , 16 << 10 ) __UpperCAmelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __UpperCAmelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCAmelCase = batch.decode(self.config.encoding , errors=UpperCAmelCase_ ).encode('''utf-8''' ) try: while True: try: __UpperCAmelCase = paj.read_json( io.BytesIO(UpperCAmelCase_ ) , read_options=paj.ReadOptions(block_size=UpperCAmelCase_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase_ , pa.ArrowInvalid ) and "straddling" not in str(UpperCAmelCase_ ) or block_size > len(UpperCAmelCase_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(UpperCAmelCase_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase = json.load(UpperCAmelCase_ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # list is the only sequence type supported in JSON try: __UpperCAmelCase = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase = {col: [row.get(UpperCAmelCase_ ) for row in dataset] for col in keys} __UpperCAmelCase = pa.Table.from_pydict(UpperCAmelCase_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase_ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(UpperCAmelCase_ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase_ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase_ ) batch_idx += 1
702
"""simple docstring""" def lowercase__ ( snake_case_ :int ): if not isinstance(snake_case_ , snake_case_ ): raise TypeError('''only integers accepted as input''' ) else: __UpperCAmelCase = str(abs(snake_case_ ) ) __UpperCAmelCase = [list(snake_case_ ) for char in range(len(snake_case_ ) )] for index in range(len(snake_case_ ) ): num_transpositions[index].pop(snake_case_ ) return max( int(''''''.join(list(snake_case_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
397
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : int = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase : Optional[Any] = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) __UpperCAmelCase : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase : List[str] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase : List[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Any: """simple docstring""" __UpperCAmelCase : str = dct.pop(UpperCamelCase ) __UpperCAmelCase : List[Any] = val def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" __UpperCAmelCase : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[str] = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase ) __UpperCAmelCase : Any = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase : Optional[int] = 768 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase : Any = 1024 __UpperCAmelCase : int = 4096 __UpperCAmelCase : Tuple = 24 __UpperCAmelCase : Any = 16 __UpperCAmelCase : Union[str, Any] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = "relu" __UpperCAmelCase : Any = 1024 __UpperCAmelCase : str = True __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = False # load HuggingFace model __UpperCAmelCase : Optional[Any] = ViTModel(UpperCamelCase , add_pooling_layer=UpperCamelCase ) __UpperCAmelCase : str = TrOCRForCausalLM(UpperCamelCase ) __UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="cpu" , check_hash=UpperCamelCase )["model"] __UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase : Optional[int] = state_dict.pop(UpperCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: __UpperCAmelCase : Any = val else: __UpperCAmelCase : int = val # load state dict model.load_state_dict(UpperCamelCase ) # Check outputs on an image __UpperCAmelCase : List[str] = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase : Union[str, Any] = RobertaTokenizer.from_pretrained("roberta-large" ) __UpperCAmelCase : Dict = TrOCRProcessor(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = processor(images=prepare_img(UpperCamelCase ) , return_tensors="pt" ).pixel_values # verify logits __UpperCAmelCase : Dict = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase : Optional[Any] = model(pixel_values=UpperCamelCase , decoder_input_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = outputs.logits __UpperCAmelCase : List[str] = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase : str = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase : int = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase : str = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase : Union[str, Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) A = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
77
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = DistilBertTokenizer lowerCamelCase_ : Any = DistilBertTokenizerFast lowerCamelCase_ : Union[str, Any] = True @slow def __UpperCAmelCase( self ): __A : Any = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) __A : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCAmelCase ) __A : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCAmelCase ) __A : Any = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __A : str = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
520
0
'''simple docstring''' import math def lowerCamelCase__ ( a , a ): if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
427
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( a , a , a ): # Construct model if openai_config_file == "": __snake_case = OpenAIGPTConfig() else: __snake_case = OpenAIGPTConfig.from_json_file(a ) __snake_case = OpenAIGPTModel(a ) # Load weights from numpy load_tf_weights_in_openai_gpt(a , a , a ) # Save pytorch-model __snake_case = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __snake_case = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , a ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowercase = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
427
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __a = logging.get_logger('transformers.models.encodec') __a = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } __a = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } __a = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } __a = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } __a = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } __a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __a = [] __a = [] def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase_ : Optional[Any] = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase_ : List[Any] = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase_ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ : Tuple = value elif weight_type == "weight_g": UpperCAmelCase_ : Any = value elif weight_type == "weight_v": UpperCAmelCase_ : List[Any] = value elif weight_type == "bias": UpperCAmelCase_ : str = value elif weight_type == "running_mean": UpperCAmelCase_ : Union[str, Any] = value elif weight_type == "running_var": UpperCAmelCase_ : str = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ : List[Any] = value elif weight_type == "weight_ih_l0": UpperCAmelCase_ : str = value elif weight_type == "weight_hh_l0": UpperCAmelCase_ : str = value elif weight_type == "bias_ih_l0": UpperCAmelCase_ : Optional[Any] = value elif weight_type == "bias_hh_l0": UpperCAmelCase_ : int = value elif weight_type == "weight_ih_l1": UpperCAmelCase_ : List[Any] = value elif weight_type == "weight_hh_l1": UpperCAmelCase_ : int = value elif weight_type == "bias_ih_l1": UpperCAmelCase_ : int = value elif weight_type == "bias_hh_l1": UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : int = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase_, UpperCAmelCase_ : Dict = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase_ : Tuple = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase_ : str = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(_lowercase , _lowercase ): logger.info(f'''{name} was ignored''' ) continue UpperCAmelCase_ : int = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue UpperCAmelCase_ : int = True if "*" in mapped_key: UpperCAmelCase_ : Optional[int] = name.split(_lowercase )[0].split('''.''' )[-2] UpperCAmelCase_ : Optional[int] = mapped_key.replace('''*''' , _lowercase ) if "weight_g" in name: UpperCAmelCase_ : List[Any] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ : Tuple = '''weight_v''' elif "weight_ih_l0" in name: UpperCAmelCase_ : Optional[int] = '''weight_ih_l0''' elif "weight_hh_l0" in name: UpperCAmelCase_ : Optional[int] = '''weight_hh_l0''' elif "bias_ih_l0" in name: UpperCAmelCase_ : Dict = '''bias_ih_l0''' elif "bias_hh_l0" in name: UpperCAmelCase_ : Any = '''bias_hh_l0''' elif "weight_ih_l1" in name: UpperCAmelCase_ : int = '''weight_ih_l1''' elif "weight_hh_l1" in name: UpperCAmelCase_ : int = '''weight_hh_l1''' elif "bias_ih_l1" in name: UpperCAmelCase_ : Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: UpperCAmelCase_ : Union[str, Any] = '''bias_hh_l1''' elif "bias" in name: UpperCAmelCase_ : List[str] = '''bias''' elif "weight" in name: UpperCAmelCase_ : int = '''weight''' elif "running_mean" in name: UpperCAmelCase_ : Tuple = '''running_mean''' elif "running_var" in name: UpperCAmelCase_ : Dict = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase_ : Tuple = '''num_batches_tracked''' else: UpperCAmelCase_ : Dict = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ): '''simple docstring''' if config_path is not None: UpperCAmelCase_ : int = EncodecConfig.from_pretrained(_lowercase ) else: UpperCAmelCase_ : List[str] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase_ : Union[str, Any] = [8, 5, 4, 4] UpperCAmelCase_ : str = [2.2] UpperCAmelCase_ : Optional[Any] = 64 UpperCAmelCase_ : str = 32000 UpperCAmelCase_ : Tuple = 2048 UpperCAmelCase_ : str = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : int = False elif model_name == "encodec_48khz": UpperCAmelCase_ : List[str] = [8, 5, 4, 2] UpperCAmelCase_ : Optional[int] = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase_ : Optional[int] = 48000 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Any = '''time_group_norm''' UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Union[str, Any] = 1.0 UpperCAmelCase_ : List[Any] = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) UpperCAmelCase_ : int = EncodecModel(_lowercase ) UpperCAmelCase_ : List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_lowercase ) UpperCAmelCase_ : int = torch.load(_lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase_ : Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(_lowercase , _lowercase , _lowercase ) model.save_pretrained(_lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __a = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
30
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None: '''simple docstring''' _a : int =order # a_{0} ... a_{k} _a : Optional[Any] =[1.0] + [0.0] * order # b_{0} ... b_{k} _a : Tuple =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _a : List[Any] =[0.0] * self.order # y[n-1] ... y[n-k] _a : Tuple =[0.0] * self.order def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None: '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < self.order: _a : int =[1.0, *a_coeffs] if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : int =( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : Optional[Any] =( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) _a : List[str] =a_coeffs _a : Union[str, Any] =b_coeffs def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float: '''simple docstring''' _a : str =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _a : str =self.input_history[:-1] _a : Optional[Any] =self.output_history[:-1] _a : Optional[int] =sample _a : Tuple =result return result
694
0
"""simple docstring""" import re def A__ ( UpperCamelCase ): A = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(UpperCamelCase , UpperCamelCase ) ) if __name__ == "__main__": _snake_case : Optional[int] = '0094702343221' print(is_sri_lankan_phone_number(phone))
709
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def A__ ( UpperCamelCase ): A, A, A = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def A__ ( UpperCamelCase ): return (gray > 127) & (gray <= 255) def A__ ( UpperCamelCase , UpperCamelCase ): A = np.zeros_like(UpperCamelCase ) A = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image A = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): A = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() A = int(summation > 0 ) return output if __name__ == "__main__": # read original image _snake_case : str = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _snake_case : Any = np.array(Image.open(lena_path)) # kernel to be applied _snake_case : Tuple = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _snake_case : int = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _snake_case : List[Any] = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
524
0
def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [[0 for _ in range(__UpperCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): A_ = 1 for n in range(m + 1 ): for k in range(1 ,__UpperCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __a :Tuple = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __a :Optional[Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
86
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str ) ->list: lowerCamelCase__ : Optional[Any] =len(snake_case_ ) lowerCamelCase__ : Any =[] for i in range(len(snake_case_ ) - pat_len + 1 ): lowerCamelCase__ : str =True for j in range(snake_case_ ): if s[i + j] != pattern[j]: lowerCamelCase__ : Optional[int] =False break if match_found: position.append(snake_case_ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
174
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE_ (datasets.BuilderConfig ): '''simple docstring''' _a = None class SCREAMING_SNAKE_CASE_ (datasets.ArrowBasedBuilder ): '''simple docstring''' _a = PandasConfig def _lowerCAmelCase ( self : List[Any] ) ->Tuple: return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Dict , __a : Optional[int] ) ->Optional[int]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCamelCase_ : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): lowerCamelCase_ : Optional[int] = data_files if isinstance(__a , __a ): lowerCamelCase_ : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ : List[str] = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCamelCase_ : List[str] = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): lowerCamelCase_ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ : str = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"""files""": files} ) ) return splits def _lowerCAmelCase ( self : Tuple , __a : pa.Table ) ->pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase_ : Union[str, Any] = table_cast(__a , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase ( self : Optional[Any] , __a : Any ) ->Any: for i, file in enumerate(itertools.chain.from_iterable(__a ) ): with open(__a , """rb""" ) as f: lowerCamelCase_ : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a ) ) yield i, self._cast_table(__a )
703
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( A__ : int ) -> int: lowerCamelCase_ : Union[str, Any] = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
171
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = 16 ) ->List[str]: """simple docstring""" __magic_name__ : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __magic_name__ : Dict = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCAmelCase, max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ : Dict = datasets.map( UpperCAmelCase, batched=UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ : Tuple = 16 elif accelerator.mixed_precision != "no": __magic_name__ : Optional[int] = 8 else: __magic_name__ : List[Any] = None return tokenizer.pad( UpperCAmelCase, padding='''longest''', max_length=UpperCAmelCase, pad_to_multiple_of=UpperCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __magic_name__ : List[str] = DataLoader( tokenized_datasets['''train'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase ) __magic_name__ : int = DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', UpperCAmelCase ) == "1": __magic_name__ : Dict = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __magic_name__ : List[Any] = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with='''all''', project_dir=args.project_dir ) else: __magic_name__ : Optional[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : List[Any] = config['''lr'''] __magic_name__ : str = int(config['''num_epochs'''] ) __magic_name__ : Tuple = int(config['''seed'''] ) __magic_name__ : str = int(config['''batch_size'''] ) set_seed(UpperCAmelCase ) __magic_name__ , __magic_name__ : str = get_dataloaders(UpperCAmelCase, UpperCAmelCase ) __magic_name__ : Union[str, Any] = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation __magic_name__ : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ : Dict = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ : str = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ : Optional[int] = AdamW(params=model.parameters(), lr=UpperCAmelCase ) # Instantiate scheduler __magic_name__ : Dict = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : int = accelerator.prepare( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __magic_name__ : Dict = os.path.split(UpperCAmelCase )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCAmelCase, UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __magic_name__ : Tuple = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ : int = model(**UpperCAmelCase ) __magic_name__ : str = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __magic_name__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ : Tuple = model(**UpperCAmelCase ) __magic_name__ : Dict = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ : Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCAmelCase, references=UpperCAmelCase, ) __magic_name__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', UpperCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(UpperCAmelCase ), '''epoch''': epoch, }, step=UpperCAmelCase, ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ) ->int: """simple docstring""" __magic_name__ : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCAmelCase, default=UpperCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''', action='''store_true''', help='''Whether to load in all available experiment trackers from the environment and use them for logging.''', ) parser.add_argument( '''--project_dir''', type=UpperCAmelCase, default='''logs''', help='''Location on where to store experiment tracking logs` and relevent project information''', ) __magic_name__ : Tuple = parser.parse_args() __magic_name__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": main()
154
def lowerCAmelCase ( ) ->Dict: """simple docstring""" __magic_name__ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __magic_name__ : Optional[Any] = 6 __magic_name__ : Dict = 1 __magic_name__ : Union[str, Any] = 1901 __magic_name__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __magic_name__ : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __magic_name__ : Optional[int] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __magic_name__ : Any = day - days_per_month[month - 2] if month > 12: year += 1 __magic_name__ : int = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
154
1
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case__ : List[str] = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] snake_case__ : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check snake_case__ : Optional[int] = primes[:idx] break snake_case__ : List[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case__ : Tuple = False for r in range(_lowerCAmelCase ): snake_case__ : Dict = pow(_lowerCAmelCase , d * 2**r , _lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case__ : int = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __snake_case( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
709
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __a = list[list[float | int]] def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Matrix: snake_case__ : int = len(_lowerCAmelCase ) snake_case__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCAmelCase )] snake_case__ : int snake_case__ : int snake_case__ : int snake_case__ : int snake_case__ : int snake_case__ : float for row in range(_lowerCAmelCase ): for col in range(_lowerCAmelCase ): snake_case__ : Optional[int] = matrix[row][col] snake_case__ : Optional[Any] = vector[row][0] snake_case__ : List[str] = 0 snake_case__ : Optional[int] = 0 while row < size and col < size: # pivoting snake_case__ : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCAmelCase , _lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case__ , snake_case__ : Dict = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCAmelCase ): snake_case__ : int = augmented[rowa][col] / augmented[row][col] snake_case__ : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCAmelCase ): for row in range(_lowerCAmelCase ): snake_case__ : str = augmented[row][col] / augmented[col][col] for cola in range(_lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCAmelCase ) ] def __snake_case( _lowerCAmelCase ) -> Callable[[int], int]: snake_case__ : int = len(_lowerCAmelCase ) snake_case__ : Matrix = [[0 for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] snake_case__ : Matrix = [[0] for _ in range(_lowerCAmelCase )] snake_case__ : Matrix snake_case__ : int snake_case__ : int snake_case__ : int for x_val, y_val in enumerate(_lowerCAmelCase ): for col in range(_lowerCAmelCase ): snake_case__ : str = (x_val + 1) ** (size - col - 1) snake_case__ : List[str] = y_val snake_case__ : List[Any] = solve(_lowerCAmelCase , _lowerCAmelCase ) def interpolated_func(_lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCAmelCase ) ) return interpolated_func def __snake_case( _lowerCAmelCase ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __snake_case( _lowerCAmelCase = question_function , _lowerCAmelCase = 10 ) -> int: snake_case__ : list[int] = [func(_lowerCAmelCase ) for x_val in range(1 , order + 1 )] snake_case__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] snake_case__ : int = 0 snake_case__ : Callable[[int], int] snake_case__ : int for poly in polynomials: snake_case__ : Optional[Any] = 1 while func(_lowerCAmelCase ) == poly(_lowerCAmelCase ): x_val += 1 ret += poly(_lowerCAmelCase ) return ret if __name__ == "__main__": print(F"{solution() = }")
301
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__ : """simple docstring""" a__ : str a__ : str = None @staticmethod def snake_case_ ( ) -> Any: raise NotImplementedError def snake_case_ ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Optional[int] ) -> int: raise NotImplementedError def snake_case_ ( self : str , __lowerCAmelCase : Dict ) -> Tuple: raise NotImplementedError def snake_case_ ( self : Any ) -> Dict: if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def snake_case_ ( cls : Union[str, Any] ) -> Any: return f'''`pip install {cls.pip_package or cls.name}`''' class lowerCamelCase__ ( lowercase_): """simple docstring""" a__ : Optional[int] = '''optuna''' @staticmethod def snake_case_ ( ) -> Tuple: return is_optuna_available() def snake_case_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Optional[int] ) -> Union[str, Any]: return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Tuple: return default_hp_space_optuna(__lowerCAmelCase ) class lowerCamelCase__ ( lowercase_): """simple docstring""" a__ : Dict = '''ray''' a__ : Optional[Any] = '''\'ray[tune]\'''' @staticmethod def snake_case_ ( ) -> Union[str, Any]: return is_ray_available() def snake_case_ ( self : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : str ) -> Optional[Any]: return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : int , __lowerCAmelCase : Optional[Any] ) -> List[Any]: return default_hp_space_ray(__lowerCAmelCase ) class lowerCamelCase__ ( lowercase_): """simple docstring""" a__ : List[str] = '''sigopt''' @staticmethod def snake_case_ ( ) -> List[str]: return is_sigopt_available() def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Dict ) -> Any: return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : int , __lowerCAmelCase : List[Any] ) -> str: return default_hp_space_sigopt(__lowerCAmelCase ) class lowerCamelCase__ ( lowercase_): """simple docstring""" a__ : Optional[int] = '''wandb''' @staticmethod def snake_case_ ( ) -> Dict: return is_wandb_available() def snake_case_ ( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Optional[Any] ) -> Dict: return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : int ) -> Dict: return default_hp_space_wandb(__lowerCAmelCase ) UpperCAmelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE_ ( ) -> str: _A = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a__ ) > 0: _A = available_backends[0].name if len(a__ ) > 1: logger.info( F'''{len(a__ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
2
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers SCREAMING_SNAKE_CASE_ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
517
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _lowercase: Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Tuple , lowercase__ : Any , lowercase__ : Any=7_68 ): super().__init__(lowercase__ ) _lowerCAmelCase = proj_size _lowerCAmelCase = CLIPVisionModel(lowercase__ ) _lowerCAmelCase = PaintByExampleMapper(lowercase__ ) _lowerCAmelCase = nn.LayerNorm(config.hidden_size ) _lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Tuple=False ): _lowerCAmelCase = self.model(pixel_values=lowercase__ ) _lowerCAmelCase = clip_output.pooler_output _lowerCAmelCase = self.mapper(latent_states[:, None] ) _lowerCAmelCase = self.final_layer_norm(lowercase__ ) _lowerCAmelCase = self.proj_out(lowercase__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase__ ( nn.Module ): def __init__( self : int , lowercase__ : List[Any] ): super().__init__() _lowerCAmelCase = (config.num_hidden_layers + 1) // 5 _lowerCAmelCase = config.hidden_size _lowerCAmelCase = 1 _lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(lowercase__ , lowercase__ , lowercase__ , activation_fn='gelu' , attention_bias=lowercase__ ) for _ in range(lowercase__ ) ] ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[str] ): for block in self.blocks: _lowerCAmelCase = block(lowercase__ ) return hidden_states
225
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def SCREAMING_SNAKE_CASE__ ( *lowercase__ : Dict , **lowercase__ : Union[str, Any] ): pass def _lowerCamelCase ( snake_case ): _lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _lowerCamelCase ( snake_case ): _lowerCAmelCase = np.array(snake_case ) _lowerCAmelCase = npimg.shape return {"hash": hashimage(snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): UpperCamelCase__ =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase__ =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : str , lowercase__ : Dict , lowercase__ : Union[str, Any] ): _lowerCAmelCase = MaskGenerationPipeline(model=lowercase__ , image_processor=lowercase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Any , lowercase__ : str ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self : int ): pass @slow @require_torch def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _lowerCAmelCase = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_56 ) # Shortening by hashing _lowerCAmelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowercase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase__ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = 'facebook/sam-vit-huge' _lowerCAmelCase = pipeline('mask-generation' , model=lowercase__ ) _lowerCAmelCase = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing _lowerCAmelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowercase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase__ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0_0_5_3}, ] , )
225
1
"""simple docstring""" import sys lowerCAmelCase_ : Optional[int] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _lowerCAmelCase ( lowerCAmelCase = N ): '''simple docstring''' UpperCAmelCase = -sys.maxsize - 1 for i in range(len(__lowercase ) - 12 ): UpperCAmelCase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: UpperCAmelCase = product return largest_product if __name__ == "__main__": print(F'{solution() = }')
673
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _snake_case = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase( cls ) -> int: __UpperCamelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __lowercase( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='test-model-flax' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) def __lowercase( self ) -> List[Any]: __UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='valid_org/test-model-flax-org' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) def _a ( __lowercase , __lowercase ) -> str: """simple docstring""" __UpperCamelCase = True __UpperCamelCase = flatten_dict(modela.params ) __UpperCamelCase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __UpperCamelCase = False return models_are_equal @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> List[Any]: __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Union[str, Any]: __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='10KB' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Dict: __UpperCamelCase = 'bert' __UpperCamelCase = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> List[str]: __UpperCamelCase = 'bert' __UpperCamelCase = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
383
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __magic_name__ : def __init__( self : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : str=False , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=False , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : str=19 , lowerCamelCase__ : List[str]=32 , lowerCamelCase__ : int=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Dict=37 , lowerCamelCase__ : Union[str, Any]="gelu" , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : str=512 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : Optional[int]=None , ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : str = batch_size UpperCamelCase__ : Optional[Any] = seq_length UpperCamelCase__ : str = is_training UpperCamelCase__ : int = use_input_mask UpperCamelCase__ : List[str] = use_token_type_ids UpperCamelCase__ : Any = use_labels UpperCamelCase__ : str = vocab_size UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Optional[Any] = max_position_embeddings UpperCamelCase__ : Tuple = type_vocab_size UpperCamelCase__ : Optional[int] = type_sequence_label_size UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Optional[Any] = num_labels UpperCamelCase__ : Union[str, Any] = num_choices UpperCamelCase__ : List[Any] = scope def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : List[Any] = None if self.use_input_mask: UpperCamelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : List[Any] = None UpperCamelCase__ : List[str] = None UpperCamelCase__ : Union[str, Any] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Any = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCamelCase__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : int = EsmForProteinFolding(config=lowerCamelCase__ ).float() model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : str = config_and_inputs UpperCamelCase__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Tuple = False A: Tuple = (EsmForProteinFolding,) if is_torch_available() else () A: Any = () A: Any = {} if is_torch_available() else {} A: Any = False def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = EsmFoldModelTester(self ) UpperCamelCase__ : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @unittest.skip('''Does not support attention outputs''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' pass @unittest.skip def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def UpperCAmelCase__ ( self : int ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Any ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : str ) -> str: '''simple docstring''' pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold only has one output format.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support input chunking.''' ) def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def UpperCAmelCase__ ( self : int ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' pass @require_torch class __magic_name__ ( __lowerCAmelCase): @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCamelCase__ : str = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase__ : Optional[Any] = model(lowerCamelCase__ )['''positions'''] UpperCamelCase__ : Dict = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCamelCase__ , atol=1E-4 ) )
106
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = "markuplm" def __init__( self : List[Any] , lowerCamelCase__ : Optional[int]=30522 , lowerCamelCase__ : Dict=768 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Optional[Any]=3072 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Tuple=512 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Union[str, Any]=0.02 , lowerCamelCase__ : Optional[Any]=1E-1_2 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : List[Any]=256 , lowerCamelCase__ : List[str]=1024 , lowerCamelCase__ : Optional[int]=216 , lowerCamelCase__ : Any=1001 , lowerCamelCase__ : int=32 , lowerCamelCase__ : Tuple=50 , lowerCamelCase__ : str="absolute" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=None , **lowerCamelCase__ : List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Any = position_embedding_type UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : int = classifier_dropout # additional properties UpperCamelCase__ : int = max_depth UpperCamelCase__ : Optional[Any] = max_xpath_tag_unit_embeddings UpperCamelCase__ : List[Any] = max_xpath_subs_unit_embeddings UpperCamelCase__ : List[Any] = tag_pad_id UpperCamelCase__ : Optional[int] = subs_pad_id UpperCamelCase__ : Optional[Any] = xpath_unit_hidden_size
106
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class _UpperCAmelCase : lowerCamelCase_ : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCamelCase_ : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase_ : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) lowerCamelCase_ : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) lowerCamelCase_ : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) lowerCamelCase_ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCamelCase_ : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCamelCase_ : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : List[Any]): SCREAMING_SNAKE_CASE_ :Tuple = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE_ :Tuple = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE_ :Dict = self.validation_dir SCREAMING_SNAKE_CASE_ :Optional[int] = data_files if data_files else None @dataclass class _UpperCAmelCase : lowerCamelCase_ : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowerCamelCase_ : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowerCamelCase_ : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowerCamelCase_ : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCamelCase_ : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCamelCase_ : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCamelCase_ : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowerCamelCase_ : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : float = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[str] = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , a , a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ :Tuple = training_args.get_process_log_level() logger.setLevel(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ :Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ :Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. SCREAMING_SNAKE_CASE_ :int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE_ :Tuple = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE_ :Optional[int] = ds["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE_ :Tuple = split["train"] SCREAMING_SNAKE_CASE_ :Any = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ :int = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE_ :Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **a ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ :Tuple = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **a ) else: SCREAMING_SNAKE_CASE_ :int = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE_ :Tuple = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **a ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ :int = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **a ) else: SCREAMING_SNAKE_CASE_ :List[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ :List[str] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) SCREAMING_SNAKE_CASE_ :Optional[Any] = ViTMAEForPreTraining(a ) if training_args.do_train: SCREAMING_SNAKE_CASE_ :Any = ds["train"].column_names else: SCREAMING_SNAKE_CASE_ :Union[str, Any] = ds["validation"].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE_ :Any = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE_ :List[Any] = "image" elif "img" in column_names: SCREAMING_SNAKE_CASE_ :List[Any] = "img" else: SCREAMING_SNAKE_CASE_ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE_ :List[Any] = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_ :Optional[int] = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE_ :List[str] = Compose( [ Lambda(lambda a : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(a ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = [transforms(a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ :Union[str, Any] = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(a ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ :Any = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(a ) # Compute absolute learning rate SCREAMING_SNAKE_CASE_ :Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE_ :Dict = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer SCREAMING_SNAKE_CASE_ :str = Trainer( model=a , args=a , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=a , data_collator=a , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ :Dict = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ :str = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ :Any = last_checkpoint SCREAMING_SNAKE_CASE_ :Dict = trainer.train(resume_from_checkpoint=a ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ :Dict = trainer.evaluate() trainer.log_metrics("eval" , a ) trainer.save_metrics("eval" , a ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ :Any = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) def lowercase ( a ): '''simple docstring''' main() if __name__ == "__main__": main()
631
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow SCREAMING_SNAKE_CASE__ = False class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : str , UpperCAmelCase : Dict=32): set_seed(0) SCREAMING_SNAKE_CASE_ :Dict = UNetaDModel(sample_size=UpperCAmelCase , in_channels=3 , out_channels=3) SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def _snake_case ( self : str): SCREAMING_SNAKE_CASE_ :List[str] = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE_ :Any = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ :str = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) SCREAMING_SNAKE_CASE_ :Any = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(UpperCAmelCase) for _ in range(4)] SCREAMING_SNAKE_CASE_ :str = [torch.randn((4, 3, 32, 32)).to(UpperCAmelCase) for _ in range(4)] SCREAMING_SNAKE_CASE_ :List[Any] = [torch.randint(0 , 10_00 , (4,)).long().to(UpperCAmelCase) for _ in range(4)] # train with a DDPM scheduler SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = self.get_model_optimizer(resolution=32) model.train().to(UpperCAmelCase) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_ :List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_ :Optional[Any] = model(UpperCAmelCase , timesteps[i]).sample SCREAMING_SNAKE_CASE_ :List[Any] = torch.nn.functional.mse_loss(UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_model_optimizer(resolution=32) model.train().to(UpperCAmelCase) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_ :List[str] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_ :Tuple = model(UpperCAmelCase , timesteps[i]).sample SCREAMING_SNAKE_CASE_ :Optional[Any] = torch.nn.functional.mse_loss(UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5)) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5))
631
1
"""simple docstring""" from typing import Any def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): _validation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # Creates data structures and fill initial step _lowercase : dict = {} _lowercase : dict = {} for state in states_space: _lowercase : Tuple = observations_space[0] _lowercase : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase : Any = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__UpperCAmelCase ) ): _lowercase : int = observations_space[o] _lowercase : Any = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase : Any = """""" _lowercase : Union[str, Any] = -1 for k_state in states_space: _lowercase : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase : Optional[Any] = probability _lowercase : Optional[Any] = k_state # Update probabilities and pointers dicts _lowercase : Optional[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase : Tuple = arg_max # The final observation _lowercase : Tuple = observations_space[len(__UpperCAmelCase ) - 1] # argmax for given final observation _lowercase : Any = """""" _lowercase : Any = -1 for k_state in states_space: _lowercase : str = probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase : Union[str, Any] = probability _lowercase : Any = k_state _lowercase : Optional[Any] = arg_max # Process pointers backwards _lowercase : str = last_state _lowercase : int = [] for o in range(len(__UpperCAmelCase ) - 1 , -1 , -1 ): result.append(__UpperCAmelCase ) _lowercase : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): _validate_not_empty( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) _validate_lists(__UpperCAmelCase , __UpperCAmelCase ) _validate_dicts( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _validate_list(__UpperCAmelCase , """observations_space""" ) _validate_list(__UpperCAmelCase , """states_space""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(_object , __UpperCAmelCase ): _lowercase : int = F"""{var_name} must be a list""" raise ValueError(__UpperCAmelCase ) else: for x in _object: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowercase : Union[str, Any] = F"""{var_name} must be a list of strings""" raise ValueError(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): _validate_dict(__UpperCAmelCase , """initial_probabilities""" , __UpperCAmelCase ) _validate_nested_dict(__UpperCAmelCase , """transition_probabilities""" ) _validate_nested_dict(__UpperCAmelCase , """emission_probabilities""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _validate_dict(_object , __UpperCAmelCase , __UpperCAmelCase ) for x in _object.values(): _validate_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): if not isinstance(_object , __UpperCAmelCase ): _lowercase : Optional[int] = F"""{var_name} must be a dict""" raise ValueError(__UpperCAmelCase ) if not all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for x in _object ): _lowercase : Any = F"""{var_name} all keys must be strings""" raise ValueError(__UpperCAmelCase ) if not all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for x in _object.values() ): _lowercase : Optional[int] = """nested dictionary """ if nested else """""" _lowercase : Optional[int] = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
600
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: str = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase: Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } UpperCAmelCase: Union[str, Any] = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } UpperCAmelCase: str = """▁""" class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = ["input_ids", "attention_mask"] def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): # Mask token behave like a normal word, i.e. include the space before it _lowercase : List[Any] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else mask_token _lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,sp_model_kwargs=self.sp_model_kwargs ,**UpperCAmelCase_ ,) _lowercase : int = vocab_file _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) _lowercase : int = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _lowercase : Optional[Any] = len(self.sp_model ) - 1 _lowercase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] _lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ ,token_ids_a=UpperCAmelCase_ ,already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Dict = [self.sep_token_id] _lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): return len(self.sp_model ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.sp_model.encode(UpperCAmelCase_ ,out_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : int = self.sp_model.PieceToId(UpperCAmelCase_ ) return spm_id if spm_id else self.unk_token_id def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : str = [] _lowercase : List[Any] = """""" _lowercase : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token _lowercase : int = True _lowercase : List[str] = [] else: current_sub_tokens.append(UpperCAmelCase_ ) _lowercase : Optional[Any] = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def __getstate__( self ): _lowercase : Dict = self.__dict__.copy() _lowercase : List[str] = None return state def __setstate__( self ,UpperCAmelCase_ ): _lowercase : str = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _lowercase : Union[str, Any] = {} _lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : List[str] = os.path.join( UpperCAmelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ ,"""wb""" ) as fi: _lowercase : int = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
600
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case__ ( ) ->str: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_lowerCamelCase ): requests.request("GET", "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET", "https://huggingface.co", timeout=1.0 ) @pytest.mark.integration def snake_case__ ( ) ->Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET", "https://huggingface.co" ) def snake_case__ ( ) ->Any: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" )
575
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" if isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __lowercase : int = False if num < 0: __lowercase : List[Any] = True __lowercase : List[Any] = -num __lowercase : list[int] = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCamelCase ) for e in binary ) return "0b" + "".join(str(_lowerCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
575
1
import requests snake_case_ : Optional[int] = '' # <-- Put your OpenWeatherMap appid here! snake_case_ : int = 'https://api.openweathermap.org/data/2.5/' def __UpperCAmelCase ( snake_case_ : str = "Chicago" , snake_case_ : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def __UpperCAmelCase ( snake_case_ : str = "Kolkata, India" , snake_case_ : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def __UpperCAmelCase ( snake_case_ : float = 55.68 , snake_case_ : float = 12.57 , snake_case_ : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case_ : Union[str, Any] = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
704
from __future__ import annotations import numpy as np def __UpperCAmelCase ( snake_case_ : list[float] ): '''simple docstring''' return np.maximum(0 , snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
166
0
UpperCamelCase = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCamelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def A ( lowercase__ : str ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A ( lowercase__ : str ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def A ( ) -> None: UpperCamelCase__ :Union[str, Any] = """Morse code here!""" print(lowercase__ ) UpperCamelCase__ :Dict = encrypt(lowercase__ ) print(lowercase__ ) UpperCamelCase__ :Optional[Any] = decrypt(lowercase__ ) print(lowercase__ ) if __name__ == "__main__": main()
45
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" lowerCAmelCase_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ : Optional[bool] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCAmelCase_ : Optional[bool] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCAmelCase_ : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) lowerCAmelCase_ : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) lowerCAmelCase_ : Optional[float] = field( default=0.99_9995 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def __a ( a, a ): """simple docstring""" logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) _a = logging.WARNING if model_args.verbose_logging: _a = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _a = logging.INFO logger.setLevel(a ) @dataclass class __snake_case : """simple docstring""" lowerCAmelCase_ : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowerCAmelCase_ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase_ : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCAmelCase_ : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCAmelCase_ : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCAmelCase_ : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase_ : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCAmelCase_ : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCAmelCase_ : Optional[float] = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __snake_case : """simple docstring""" lowerCAmelCase_ : WavaVecaForPreTraining lowerCAmelCase_ : WavaVecaFeatureExtractor lowerCAmelCase_ : Union[bool, str] = "longest" lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None def __call__( self :Optional[Any] , UpperCamelCase__ :List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format _a = self.feature_extractor.pad( UpperCamelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _a = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) _a = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _a = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) _a = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to _a = 1 _a = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices _a = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCamelCase__ , min_masks=2 , ) return batch class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self :Union[str, Any] , *UpperCamelCase__ :Tuple , UpperCamelCase__ :List[Any]=1 , UpperCamelCase__ :Union[str, Any]=0 , UpperCamelCase__ :Tuple=1.0 , **UpperCamelCase__ :Tuple ): super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) _a = 0 _a = max_gumbel_temp _a = min_gumbel_temp _a = gumbel_temp_decay def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :nn.Module , UpperCamelCase__ :Dict[str, Union[torch.Tensor, Any]] ): model.train() _a = self._prepare_inputs(UpperCamelCase__ ) if self.use_amp: with autocast(): _a = self.compute_loss(UpperCamelCase__ , UpperCamelCase__ ) else: _a = self.compute_loss(UpperCamelCase__ , UpperCamelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _a = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _a = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: _a = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __a ( ): """simple docstring""" _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a = parser.parse_args_into_dataclasses() configure_logger(a, a ) # Downloading and loading a dataset from the hub. _a = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _a = DatasetDict() _a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]', cache_dir=model_args.cache_dir, ) _a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]', cache_dir=model_args.cache_dir, ) else: # make sure only "validation" and "train" keys remain" _a = DatasetDict() _a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split="validation", cache_dir=model_args.cache_dir, ) _a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F'{data_args.train_split_name}', cache_dir=model_args.cache_dir, ) # only normalized-inputs-training is supported _a = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=a ) def prepare_dataset(a ): # check that all files have the correct sampling rate _a , _a = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _a = datasets.map( a, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names ) # filter audio files that are too long _a = vectorized_datasets.filter( lambda a : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a ): return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _a = vectorized_datasets.map( a, batched=a, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, remove_columns=vectorized_datasets["train"].column_names, ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _a = WavaVecaConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, gradient_checkpointing=training_args.gradient_checkpointing, ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _a = WavaVecaForPreTraining(a ) _a = DataCollatorForWavaVecaPretraining(model=a, feature_extractor=a ) _a = WavaVecaPreTrainer( model=a, data_collator=a, args=a, train_dataset=vectorized_datasets["train"], eval_dataset=vectorized_datasets["validation"], tokenizer=a, max_gumbel_temp=model_args.max_gumbel_temperature, min_gumbel_temp=model_args.min_gumbel_temperature, gumbel_temp_decay=model_args.gumbel_temperature_decay, ) trainer.train() if __name__ == "__main__": main()
388
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE__ : Tuple = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ : Optional[int] = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : Dict = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = ['input_ids', 'attention_mask'] __snake_case : Any = BartTokenizer def __init__( self : List[str] , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str="replace" , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : Tuple="</s>" , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : Optional[int]="<unk>" , SCREAMING_SNAKE_CASE : Any="<pad>" , SCREAMING_SNAKE_CASE : List[Any]="<mask>" , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Any=True , **SCREAMING_SNAKE_CASE : Any , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE_ :Dict = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE_ :Any = pre_tok_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_ :str = 'post_processor' SCREAMING_SNAKE_CASE_ :Dict = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ :Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ :int = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE_ :int = tuple(state['cls'] ) SCREAMING_SNAKE_CASE_ :str = False if state.get('add_prefix_space' , SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE_ :str = add_prefix_space SCREAMING_SNAKE_CASE_ :str = True if state.get('trim_offsets' , SCREAMING_SNAKE_CASE ) != trim_offsets: SCREAMING_SNAKE_CASE_ :Optional[Any] = trim_offsets SCREAMING_SNAKE_CASE_ :List[Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE_ :List[Any] = getattr(SCREAMING_SNAKE_CASE , state.pop('type' ) ) SCREAMING_SNAKE_CASE_ :Any = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property def _lowercase ( self : int ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value SCREAMING_SNAKE_CASE_ :Any = value def _lowercase ( self : Optional[Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Any = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :int = [self.sep_token_id] SCREAMING_SNAKE_CASE_ :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } SCREAMING_SNAKE_CASE__ : Any = { """moussaKam/mbarthez""": 10_24, """moussaKam/barthez""": 10_24, """moussaKam/barthez-orangesum-title""": 10_24, } SCREAMING_SNAKE_CASE__ : int = """▁""" class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : Union[str, Any] = VOCAB_FILES_NAMES __snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ['input_ids', 'attention_mask'] def __init__( self : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str]="<s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : Dict="</s>" , SCREAMING_SNAKE_CASE : Any="<s>" , SCREAMING_SNAKE_CASE : Dict="<unk>" , SCREAMING_SNAKE_CASE : Any="<pad>" , SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : str , ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token SCREAMING_SNAKE_CASE_ :Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ :Optional[int] = vocab_file SCREAMING_SNAKE_CASE_ :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ :Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} SCREAMING_SNAKE_CASE_ :Optional[int] = len(self.sp_model ) - 1 SCREAMING_SNAKE_CASE_ :Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ :str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ :str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase ( self : Any ): """simple docstring""" return len(self.sp_model ) def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ :Any = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = [] SCREAMING_SNAKE_CASE_ :Tuple = '' SCREAMING_SNAKE_CASE_ :int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ :Dict = True SCREAMING_SNAKE_CASE_ :int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ :List[Any] = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ :List[Any] = {} SCREAMING_SNAKE_CASE_ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ :int = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ :List[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
233
0
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] snake_case_ : Optional[int] = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } snake_case_ : Optional[Any] = F'{src_lang}-{tgt_lang}' snake_case_ : Dict = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case_ : List[str] = os.path.join(__UpperCamelCase , """README.md""" ) print(F'Generating {path}' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __lowerCAmelCase : str = Path(__file__).resolve().parent.parent.parent __lowerCAmelCase : Optional[int] = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = model_name.split('''-''') __lowerCAmelCase : Optional[int] = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
58
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCAmelCase__ ="scheduler_config.json" class A__( __magic_name__ ): lowerCAmelCase = 1 lowerCAmelCase = 2 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = 5 lowerCAmelCase = 6 lowerCAmelCase = 7 lowerCAmelCase = 8 lowerCAmelCase = 9 lowerCAmelCase = 10 lowerCAmelCase = 11 lowerCAmelCase = 12 lowerCAmelCase = 13 lowerCAmelCase = 14 @dataclass class A__( __magic_name__ ): lowerCAmelCase = 42 class A__: lowerCAmelCase = SCHEDULER_CONFIG_NAME lowerCAmelCase = [] lowerCAmelCase = True @classmethod def _a ( cls : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = cls.load_config( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , subfolder=__SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE , return_commit_hash=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) return cls.from_config(__SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" self.save_config(save_directory=__SCREAMING_SNAKE_CASE , push_to_hub=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _a ( self : List[str] ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def _a ( cls : str ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) ) __SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split('''.''' )[0] ) __SCREAMING_SNAKE_CASE = [ getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in compatible_classes_str if hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] return compatible_classes
482
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' a__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) a__ = Vector() def _A ( self ): '''simple docstring''' a__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowerCamelCase ) , """(0,0,0,0,0,1)""" ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowerCamelCase ) , 4 ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 2] ) a__ = Vector([1, 2, 3, 4, 5] ) a__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) a__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 2, 3] ) a__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 2, 3] ) a__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 2, 3] ) a__ = Vector([2, -1, 4] ) # for test of dot product a__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _A ( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _A ( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 2, 3] ) a__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowerCamelCase , lowerCamelCase ) ) , """(3,4,7)""" ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 0, 0, 0, 0, 0] ) a__ = x.copy() self.assertEqual(str(lowerCamelCase ) , str(lowerCamelCase ) ) def _A ( self ): '''simple docstring''' a__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowerCamelCase ) , """(0,1,0)""" ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCamelCase ) ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowerCamelCase , lowerCamelCase ) ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCamelCase , lowerCamelCase ) ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) a__ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCamelCase ) ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _A ( self ): '''simple docstring''' a__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _A ( self ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
701
import math def UpperCAmelCase ( lowercase__ : list , lowercase__ : int ): '''simple docstring''' a__ = len(lowercase__ ) a__ = int(math.floor(math.sqrt(lowercase__ ) ) ) a__ = 0 while arr[min(lowercase__ , lowercase__ ) - 1] < x: a__ = step step += int(math.floor(math.sqrt(lowercase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: a__ = prev + 1 if prev == min(lowercase__ , lowercase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _lowercase : Any =input("""Enter numbers separated by a comma:\n""").strip() _lowercase : Any =[int(item) for item in user_input.split(""",""")] _lowercase : Any =int(input("""Enter the number to be searched:\n""")) _lowercase : Optional[int] =jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f'''Number {x} is at index {res}''')
412
0
from random import shuffle import tensorflow as tf from numpy import array def snake_case (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality lowerCamelCase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCamelCase__ = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCamelCase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCamelCase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCamelCase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCamelCase__ = tf.placeholder("""float64""" , [dim] ) lowerCamelCase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCamelCase__ = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCamelCase__ = tf.placeholder("""int32""" ) lowerCamelCase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCamelCase__ = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCamelCase__ = tf.reduce_mean(__lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCamelCase__ = tf.placeholder("""float""" , [dim] ) lowerCamelCase__ = tf.placeholder("""float""" , [dim] ) lowerCamelCase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase , __lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCamelCase__ = tf.placeholder("""float""" , [noofclusters] ) lowerCamelCase__ = tf.argmin(__lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCamelCase__ = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCamelCase__ = 100 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCamelCase__ = [ sess.run(__lowerCAmelCase , feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCamelCase__ = sess.run( __lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster lowerCamelCase__ = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCamelCase__ = sess.run( __lowerCAmelCase , feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCamelCase__ = sess.run(__lowerCAmelCase ) lowerCamelCase__ = sess.run(__lowerCAmelCase ) return centroids, assignments
165
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a :str = 16 a :Union[str, Any] = 32 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 16 ) -> Tuple: SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Dict = 8 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a :Dict = mocked_dataloaders # noqa: F811 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": SCREAMING_SNAKE_CASE__ : Optional[int] = 2 # New Code # SCREAMING_SNAKE_CASE__ : Optional[int] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Any = config["""lr"""] SCREAMING_SNAKE_CASE__ : str = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ : List[str] = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ : Any = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : int = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Any = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def _lowercase ( ) -> Any: SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
680
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class a : def __init__( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=13 , lowerCamelCase_ : Union[str, Any]=7 , lowerCamelCase_ : Optional[Any]=6 , lowerCamelCase_ : Tuple=17 , lowerCamelCase_ : List[Any]=23 , lowerCamelCase_ : Tuple=11 , lowerCamelCase_ : Dict=True , ) -> Union[str, Any]: __a = parent __a = batch_size __a = seq_length __a = act_dim __a = state_dim __a = hidden_size __a = max_length __a = is_training def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: __a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __a = floats_tensor((self.batch_size, self.seq_length, 1) ) __a = floats_tensor((self.batch_size, self.seq_length, 1) ) __a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) __a = random_attention_mask((self.batch_size, self.seq_length) ) __a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCAmelCase_ ( self : str ) -> List[str]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , ) -> int: __a = DecisionTransformerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCAmelCase_ ( self : Any ) -> List[Any]: __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class a ( A_ , A_ , A_ , unittest.TestCase ): A_ : List[str] = (DecisionTransformerModel,) if is_torch_available() else () A_ : Union[str, Any] = () A_ : Optional[Any] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids A_ : Tuple = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features A_ : Optional[int] = False A_ : Optional[int] = False A_ : Tuple = False A_ : Tuple = False A_ : int = False A_ : Any = False A_ : Union[str, Any] = False A_ : Optional[Any] = False A_ : List[Any] = False def lowerCAmelCase_ ( self : Any ) -> Optional[Any]: __a = DecisionTransformerModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Optional[Any] ) -> str: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @slow def lowerCAmelCase_ ( self : Tuple ) -> Union[str, Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DecisionTransformerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] ) -> int: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase_ ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(lowerCamelCase_ )] , lowerCamelCase_ ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Any ) -> Dict: __a = 2 # number of steps of autoregressive prediction we will perform __a = 10 # defined by the RL environment, may be normalized __a = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) __a = model.to(lowerCamelCase_ ) __a = model.config torch.manual_seed(0 ) __a = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase_ , dtype=torch.floataa ) # env.reset() __a = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowerCamelCase_ ) __a = torch.tensor(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __a = state __a = torch.zeros(1 , 0 , config.act_dim , device=lowerCamelCase_ , dtype=torch.floataa ) __a = torch.zeros(1 , 0 , device=lowerCamelCase_ , dtype=torch.floataa ) __a = torch.tensor(0 , device=lowerCamelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCamelCase_ ): __a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCamelCase_ )] , dim=1 ) __a = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCamelCase_ )] , dim=1 ) __a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __a , __a , __a = model( states=lowerCamelCase_ , actions=lowerCamelCase_ , rewards=lowerCamelCase_ , returns_to_go=lowerCamelCase_ , timesteps=lowerCamelCase_ , attention_mask=lowerCamelCase_ , return_dict=lowerCamelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __a , __a , __a , __a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) __a = action_pred[0, -1] __a = torch.cat([states, state] , dim=1 ) __a = returns_to_go[0, -1] - reward __a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __a = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCamelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
703
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __a = (boundary[1] - boundary[0]) / steps __a = boundary[0] __a = boundary[1] __a = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __a = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ): __a = a + h while x < (b - h): yield x __a = x + h def UpperCamelCase ( _lowerCAmelCase : int ): # enter your function here __a = (x - 0) * (x - 0) return y def UpperCamelCase ( ): __a = 0.0 # Lower bound of integration __a = 1.0 # Upper bound of integration __a = 10.0 # define number of steps or resolution __a = [a, b] # define boundary of integration __a = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
173
0
'''simple docstring''' from maths.prime_factors import prime_factors def __UpperCamelCase( _A : int ): '''simple docstring''' if not isinstance(_A , _A ): UpperCAmelCase__ : Dict = F'''Input value of [number={number}] must be an integer''' raise TypeError(_A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
614
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = AutoencoderKL UpperCAmelCase_ : Any = '''sample''' UpperCAmelCase_ : List[str] = 1E-2 @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : Optional[int] = 3 UpperCAmelCase__ : Tuple = (32, 32) UpperCAmelCase__ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return (3, 32, 32) @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return (3, 32, 32) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' ,'''Gradient checkpointing skipped on MPS''' ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase__ : Any = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase__ : Optional[int] = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase__ : Optional[int] = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase__ : int = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase__ : Union[str, Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase__ : Union[str, Any] = dict(model.named_parameters() ) UpperCAmelCase__ : int = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Tuple = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) UpperCAmelCase__ : Optional[Any] = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase__ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase__ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : str = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase__ : int = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase__ : int = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase__ : List[Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: UpperCAmelCase__ : Optional[Any] = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ,lowerCamelCase_=0 ,lowerCamelCase_=(4, 3, 512, 512) ,lowerCamelCase_=False ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = torch.floataa if fpaa else torch.floataa UpperCAmelCase__ : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def lowerCAmelCase__ ( self ,lowerCamelCase_="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_=False ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''fp16''' if fpaa else None UpperCAmelCase__ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase__ : List[Any] = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder='''vae''' ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def lowerCAmelCase__ ( self ,lowerCamelCase_=0 ) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_sd_vae_model() UpperCAmelCase__ : str = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase__ : Dict = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Tuple = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase__ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase__ : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase__ : Tuple = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase__ : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase__ : List[str] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> str: '''simple docstring''' UpperCAmelCase__ : Any = self.get_sd_vae_model() UpperCAmelCase__ : Optional[int] = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase__ : str = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase__ : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Dict = self.get_sd_vae_model() UpperCAmelCase__ : Dict = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase__ : Optional[int] = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase__ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : int = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase__ : str = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Dict = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase__ : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase__ : Any = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Any = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase__ : int = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_sd_vae_model() UpperCAmelCase__ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase__ : Tuple = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase__ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = self.get_sd_vae_model() UpperCAmelCase__ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase__ : Tuple = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase__ : List[str] = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase__ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
614
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = '▁' snake_case = {'vocab_file': 'spiece.model'} snake_case = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } snake_case = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , lowercase__ , lowercase__="</s>" , lowercase__="<unk>" , lowercase__=[] , lowercase__ = None , **lowercase__ , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ , unk_token=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @property def A ( self ) -> List[str]: """simple docstring""" return self.sp_model.get_piece_size() def A ( self ) -> Dict[str, int]: """simple docstring""" SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , lowercase__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self , lowercase__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def A ( self , lowercase__ ) -> int: """simple docstring""" return self.sp_model.piece_to_id(lowercase__ ) def A ( self , lowercase__ ) -> int: """simple docstring""" if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(lowercase__ ) return token def A ( self , lowercase__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase__ ) + token SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(lowercase__ ) out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def A ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
717
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : str = "beit" def __init__( self , lowercase__=8192 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3072 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=224 , lowercase__=16 , lowercase__=3 , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=0.1 , lowercase__=0.1 , lowercase__=True , lowercase__=[3, 5, 7, 11] , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=256 , lowercase__=1 , lowercase__=False , lowercase__=255 , **lowercase__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = use_mask_token SCREAMING_SNAKE_CASE = use_absolute_position_embeddings SCREAMING_SNAKE_CASE = use_relative_position_bias SCREAMING_SNAKE_CASE = use_shared_relative_position_bias SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE = out_indices SCREAMING_SNAKE_CASE = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE = use_auxiliary_head SCREAMING_SNAKE_CASE = auxiliary_loss_weight SCREAMING_SNAKE_CASE = auxiliary_channels SCREAMING_SNAKE_CASE = auxiliary_num_convs SCREAMING_SNAKE_CASE = auxiliary_concat_input SCREAMING_SNAKE_CASE = semantic_loss_ignore_index class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = version.parse("1.11" ) @property def A ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self ) -> float: """simple docstring""" return 1E-4
406
0
"""simple docstring""" def __lowercase ( _a ): return str(__A ) == str(__A )[::-1] def __lowercase ( _a ): return int(__A ) + int(str(__A )[::-1] ) def __lowercase ( _a = 10_000 ): snake_case_ : int = [] for num in range(1 , __A ): snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = num while iterations < 50: snake_case_ : Optional[Any] = sum_reverse(__A ) iterations += 1 if is_palindrome(__A ): break else: lychrel_nums.append(__A ) return len(__A ) if __name__ == "__main__": print(f'{solution() = }')
123
from collections import deque def A__ ( __A : Optional[Any] ) ->Tuple: __A =len(__A ) __A =deque() __A =[False for _ in range(__A )] __A =[-1 for _ in range(__A )] __A =index_of[:] def strong_connect(__A : Union[str, Any] , __A : int , __A : Optional[int] ): __A =index # the number when this node is seen __A =index # lowest rank node reachable from here index += 1 stack.append(__A ) __A =True for w in g[v]: if index_of[w] == -1: __A =strong_connect(__A , __A , __A ) __A =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __A =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __A =[] __A =stack.pop() __A =False component.append(__A ) while w != v: __A =stack.pop() __A =False component.append(__A ) components.append(__A ) return index __A =[] for v in range(__A ): if index_of[v] == -1: strong_connect(__A , 0 , __A ) return components def A__ ( __A : List[Any] , __A : Optional[int] ) ->Tuple: __A =[[] for _ in range(__A )] for u, v in edges: g[u].append(__A ) return g if __name__ == "__main__": # Test _lowerCamelCase : int = 7 _lowerCamelCase : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _lowerCamelCase : Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5] _lowerCamelCase : Optional[Any] = [(u, v) for u, v in zip(source, target)] _lowerCamelCase : Dict = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
184
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> bool: if not isinstance(snake_case , snake_case ): raise ValueError('check_bouncy() accepts only integer arguments' ) _lowerCamelCase = str(snake_case ) _lowerCamelCase = ''.join(sorted(snake_case ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def SCREAMING_SNAKE_CASE_ ( snake_case : float = 99 )-> int: if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _lowerCamelCase = 0 _lowerCamelCase = 1 while True: if check_bouncy(snake_case ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(9_9)}')
222
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A_ : List[str] ={ """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : List[Any] )-> Tuple: if got_ver is None or want_ver is None: raise ValueError( f'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' f' reinstalling {pkg}.' ) if not ops[op](version.parse(snake_case ) , version.parse(snake_case ) ): raise ImportError( f'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : Optional[str] = None )-> None: _lowerCamelCase = f'\n{hint}' if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , snake_case ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = requirement, None, None else: _lowerCamelCase = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , snake_case ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f' got {requirement}' ) _lowerCamelCase , _lowerCamelCase = match[0] _lowerCamelCase = want_full.split(',' ) # there could be multiple requirements _lowerCamelCase = {} for w in want_range: _lowerCamelCase = re.findall(r'^([\s!=<>]{1,2})(.+)' , snake_case ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f' but got {requirement}' ) _lowerCamelCase , _lowerCamelCase = match[0] _lowerCamelCase = want_ver if op not in ops: raise ValueError(f'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": _lowerCamelCase = '.'.join([str(snake_case ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) return # check if any version is installed try: _lowerCamelCase = importlib.metadata.version(snake_case ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> List[Any]: _lowerCamelCase = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(snake_case , snake_case )
222
1
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = year % 1_9 snake_case_ = year % 4 snake_case_ = year % 7 snake_case_ = math.floor(year / 1_0_0 ) snake_case_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) snake_case_ = leap_day_inhibits / 4 snake_case_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 snake_case_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon snake_case_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(snake_case , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(snake_case , 4 , 1_8 ) else: return datetime(snake_case , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _SCREAMING_SNAKE_CASE : Any = "will be" if year > datetime.now().year else "was" print(F"Easter in {year} {tense} {gauss_easter(year)}")
400
'''simple docstring''' import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE : Optional[int] = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCamelCase_( snake_case : str ): '''simple docstring''' re.sub("<n>" , "" , snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case ) )
400
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> List[str]: super().__init__(*_lowercase , **_lowercase ) _lowerCamelCase : Any = {} def a__ ( self , _lowercase , *_lowercase , **_lowercase ) -> int: _lowerCamelCase : List[str] = super().add_tokens(_lowercase , *_lowercase , **_lowercase ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ''' `placeholder_token` that is not already in the tokenizer.''' ) def a__ ( self , _lowercase , *_lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: _lowerCamelCase : str = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowercase , *_lowercase , **_lowercase ) output.append(_lowercase ) else: _lowerCamelCase : Union[str, Any] = [] for i in range(_lowercase ): _lowerCamelCase : Any = placeholder_token + F'''_{i}''' self.try_adding_tokens(_lowercase , *_lowercase , **_lowercase ) output.append(_lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) _lowerCamelCase : Dict = output def a__ ( self , _lowercase , _lowercase=False , _lowercase=1.0 ) -> Tuple: if isinstance(_lowercase , _lowercase ): _lowerCamelCase : Optional[int] = [] for i in range(len(_lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _lowerCamelCase : List[Any] = self.token_map[placeholder_token] _lowerCamelCase : Optional[int] = tokens[: 1 + int(len(_lowercase ) * prop_tokens_to_load )] if vector_shuffle: _lowerCamelCase : List[Any] = copy.copy(_lowercase ) random.shuffle(_lowercase ) _lowerCamelCase : List[str] = text.replace(_lowercase , ''' '''.join(_lowercase ) ) return text def __call__( self , _lowercase , *_lowercase , _lowercase=False , _lowercase=1.0 , **_lowercase ) -> Optional[int]: return super().__call__( self.replace_placeholder_tokens_in_text( _lowercase , vector_shuffle=_lowercase , prop_tokens_to_load=_lowercase ) , *_lowercase , **_lowercase , ) def a__ ( self , _lowercase , *_lowercase , _lowercase=False , _lowercase=1.0 , **_lowercase ) -> Union[str, Any]: return super().encode( self.replace_placeholder_tokens_in_text( _lowercase , vector_shuffle=_lowercase , prop_tokens_to_load=_lowercase ) , *_lowercase , **_lowercase , )
558
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" __snake_case = CLIPTokenizer __snake_case = CLIPTokenizerFast __snake_case = True __snake_case = {} __snake_case = False def a__ ( self ) -> Tuple: super().setUp() # fmt: off _lowerCamelCase : List[str] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _lowerCamelCase : Any = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCamelCase : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowercase ) ) def a__ ( self , **_lowercase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , **_lowercase ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , _lowercase ) -> Any: _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def a__ ( self ) -> Tuple: _lowerCamelCase : Dict = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Optional[int] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] _lowerCamelCase : str = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _lowerCamelCase : Any = tokens + [tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) @require_ftfy def a__ ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCamelCase : Any = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' _lowerCamelCase : Tuple = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowerCamelCase : Any = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' _lowerCamelCase : Tuple = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Optional[Any] = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on unicode of space type _lowerCamelCase : Optional[int] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowerCamelCase : Optional[int] = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Any = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on unicode of line break type _lowerCamelCase : Union[str, Any] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowerCamelCase : Dict = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : str = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a__ ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : List[Any] = F'''{text_of_1_token} {text_of_1_token}''' _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , ) _lowerCamelCase : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCamelCase : str = F''' {text}''' _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , ) _lowerCamelCase : List[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) def a__ ( self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowercase ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def a__ ( self ) -> Tuple: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Tuple: # CLIP always lower cases letters pass
558
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCamelCase (a_ ): def __UpperCAmelCase ( self , __UpperCamelCase )-> int: with open(__UpperCamelCase , encoding="utf-8" ) as input_file: __lowerCAmelCase = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __lowerCAmelCase = input_file.read() __lowerCAmelCase = regexp.search(__UpperCamelCase ) return match def __UpperCAmelCase ( self , __UpperCamelCase )-> Optional[int]: with open(__UpperCamelCase , encoding="utf-8" ) as input_file: __lowerCAmelCase = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __lowerCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowerCAmelCase = regexp.finditer(__UpperCamelCase ) __lowerCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = Path("./datasets" ) __lowerCAmelCase = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__UpperCamelCase ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = Path("./datasets" ) __lowerCAmelCase = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__UpperCamelCase ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
367
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase : List[str] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer lowerCamelCase : Dict = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase : int = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase : Optional[int] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a_ ) class _UpperCamelCase : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] __lowerCAmelCase = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" __lowerCAmelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , )-> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class _UpperCamelCase (a_ , a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = DPRReaderTokenizer
367
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() self.register_modules(vqvae=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 50 , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ): UpperCamelCase_ : Any = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__lowerCAmelCase , ) UpperCamelCase_ : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ : Optional[Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__lowerCAmelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase_ : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ : str = {} if accepts_eta: UpperCamelCase_ : str = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase_ : str = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual UpperCamelCase_ : Dict = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ : Union[str, Any] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # decode the image latents with the VAE UpperCamelCase_ : Optional[int] = self.vqvae.decode(__lowerCAmelCase ).sample UpperCamelCase_ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ : Tuple = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
543
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" random.seed(a_ ) np.random.seed(a_ ) torch.manual_seed(a_ ) torch.cuda.manual_seed_all(a_ ) # ^^ safe to call this function even if cuda is not available class A : """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 0.99_99 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 2 / 3 , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : Dict = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : str = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase_ : Optional[int] = True if kwargs.get("""max_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Tuple = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : str = kwargs["""max_value"""] if kwargs.get("""min_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Dict = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = kwargs["""min_value"""] UpperCamelCase_ : Optional[Any] = list(__lowerCAmelCase ) UpperCamelCase_ : Any = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) self.to(device=kwargs["""device"""] ) UpperCamelCase_ : List[Any] = None UpperCamelCase_ : Optional[Any] = decay UpperCamelCase_ : List[str] = min_decay UpperCamelCase_ : int = update_after_step UpperCamelCase_ : Optional[int] = use_ema_warmup UpperCamelCase_ : Optional[int] = inv_gamma UpperCamelCase_ : Any = power UpperCamelCase_ : str = 0 UpperCamelCase_ : List[str] = None # set in `step()` UpperCamelCase_ : Union[str, Any] = model_cls UpperCamelCase_ : Any = model_config @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ , UpperCamelCase_ : int = model_cls.load_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase ) UpperCamelCase_ : str = model_cls.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = cls(model.parameters() , model_cls=__lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(__lowerCAmelCase ) return ema_model def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCamelCase_ : int = self.model_cls.from_config(self.model_config ) UpperCamelCase_ : List[Any] = self.state_dict() state_dict.pop("""shadow_params""" , __lowerCAmelCase ) model.register_to_config(**__lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase_ : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase_ : List[Any] = (1 + step) / (10 + step) UpperCamelCase_ : Optional[Any] = min(__lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase_ : Optional[Any] = max(__lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def _UpperCAmelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : str = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : int = parameters.parameters() UpperCamelCase_ : Optional[int] = list(__lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase_ : Any = self.get_decay(self.optimization_step ) UpperCamelCase_ : List[str] = decay UpperCamelCase_ : Any = 1 - decay UpperCamelCase_ : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase_ : Optional[Any] = deepspeed.zero.GatheredParameters(__lowerCAmelCase , modifier_rank=__lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : str = list(__lowerCAmelCase ) for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def _UpperCAmelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ): UpperCamelCase_ : Union[str, Any] = [ p.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) if p.is_floating_point() else p.to(device=__lowerCAmelCase ) for p in self.shadow_params ] def _UpperCAmelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[str] = [param.detach().cpu().clone() for param in parameters] def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , __lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase_ : List[Any] = None def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = copy.deepcopy(__lowerCAmelCase ) UpperCamelCase_ : int = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCamelCase_ : Dict = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , __lowerCAmelCase ): raise ValueError("""Invalid min_decay""" ) UpperCamelCase_ : str = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , __lowerCAmelCase ): raise ValueError("""Invalid optimization_step""" ) UpperCamelCase_ : Dict = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , __lowerCAmelCase ): raise ValueError("""Invalid update_after_step""" ) UpperCamelCase_ : List[str] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __lowerCAmelCase ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCamelCase_ : Any = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCamelCase_ : str = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCamelCase_ : Dict = state_dict.get("""shadow_params""" , __lowerCAmelCase ) if shadow_params is not None: UpperCamelCase_ : Any = shadow_params if not isinstance(self.shadow_params , __lowerCAmelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(__lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
543
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 200 ): snake_case__ : Union[str, Any] = [1, 2, 5, 10, 20, 50, 100, 200] snake_case__ : Dict = [0] * (pence + 1) snake_case__ : Union[str, Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
297
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : int = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : Dict = { """yjernite/retribert-base-uncased""": 512, } __lowerCamelCase : List[str] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["input_ids", "attention_mask"] def __init__( self : Dict , __A : Tuple=None , __A : List[Any]=None , __A : Optional[Any]=True , __A : List[Any]="[UNK]" , __A : Any="[SEP]" , __A : str="[PAD]" , __A : List[str]="[CLS]" , __A : str="[MASK]" , __A : Tuple=True , __A : str=None , **__A : Tuple , ): super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) snake_case__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __A ) != do_lower_case or normalizer_state.get("strip_accents" , __A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __A ) != tokenize_chinese_chars ): snake_case__ : List[str] = getattr(__A , normalizer_state.pop("type" ) ) snake_case__ : List[str] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Any = tokenize_chinese_chars snake_case__ : Any = normalizer_class(**__A ) snake_case__ : List[Any] = do_lower_case def _lowercase ( self : Any , __A : Any , __A : str=None ): snake_case__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[int] = [self.sep_token_id] snake_case__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): snake_case__ : int = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
297
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __SCREAMING_SNAKE_CASE : Dict =logging.getLogger() def UpperCamelCase__ ( ): lowercase = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase = parser.parse_args() return args.f class A_ ( __lowerCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[str] ): lowercase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_UpperCamelCase , """argv""" , _UpperCamelCase ): lowercase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCamelCase , 0.666 ) @slow @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_UpperCamelCase ) lowercase = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCamelCase ) lowercase = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCamelCase )
715
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __SCREAMING_SNAKE_CASE : Tuple =get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures/vocab.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures''') class A_ ( unittest.TestCase ): _A :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = 0 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write("""{}""" ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) lowercase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): class A_ ( __a ): _A :List[str] = False class A_ ( __a ): _A :Dict = False class A_ ( __a ): _A :Union[str, Any] = '''AutoFeatureExtractor''' _A :Tuple = '''AutoTokenizer''' _A :Optional[Any] = False try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class A_ ( unittest.TestCase ): _A :Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] ): lowercase = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor""" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor-org""" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="""valid_org""" , ) lowercase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase = Repository(snake_case__ , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , """tokenizer_config.json""" ) ) as f: lowercase = json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
72
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __UpperCAmelCase : int = random.Random() def lowercase_ ( __snake_case : List[Any] , __snake_case : Optional[int]=1.0 , __snake_case : Tuple=None , __snake_case : Tuple=None ) -> List[str]: '''simple docstring''' if rng is None: snake_case__ :Optional[int] = global_rng snake_case__ :Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=400 ,UpperCamelCase=2_000 ,UpperCamelCase=10 ,UpperCamelCase=160 ,UpperCamelCase=8 ,UpperCamelCase=0.0 ,UpperCamelCase=4_000 ,UpperCamelCase=False ,UpperCamelCase=True ,) -> Any: snake_case__ :Optional[int] = parent snake_case__ :Dict = batch_size snake_case__ :Any = min_seq_length snake_case__ :Union[str, Any] = max_seq_length snake_case__ :Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ :Optional[Any] = padding_value snake_case__ :int = sampling_rate snake_case__ :Tuple = return_attention_mask snake_case__ :str = do_normalize snake_case__ :int = feature_size snake_case__ :List[Any] = chunk_length snake_case__ :Optional[Any] = hop_length def lowerCAmelCase_ ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase_ ( self ,UpperCamelCase=False ,UpperCamelCase=False ) -> List[Any]: def _flatten(UpperCamelCase ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: snake_case__ :List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ :Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: snake_case__ :List[Any] = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( _A , unittest.TestCase ): _A = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[Any] = WhisperFeatureExtractionTester(self ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ :Any = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) snake_case__ :Dict = self.feature_extraction_class.from_pretrained(UpperCamelCase ) snake_case__ :str = feat_extract_first.to_dict() snake_case__ :int = feat_extract_second.to_dict() snake_case__ :Union[str, Any] = feat_extract_first.mel_filters snake_case__ :Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ) ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ :Any = os.path.join(UpperCamelCase ,"feat_extract.json" ) feat_extract_first.to_json_file(UpperCamelCase ) snake_case__ :Dict = self.feature_extraction_class.from_json_file(UpperCamelCase ) snake_case__ :Optional[int] = feat_extract_first.to_dict() snake_case__ :Union[str, Any] = feat_extract_second.to_dict() snake_case__ :Optional[Any] = feat_extract_first.mel_filters snake_case__ :Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ) ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ :Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] snake_case__ :List[str] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test feature size snake_case__ :List[Any] = feature_extractor(UpperCamelCase ,padding="max_length" ,return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case__ :Optional[int] = feature_extractor(speech_inputs[0] ,return_tensors="np" ).input_features snake_case__ :Dict = feature_extractor(np_speech_inputs[0] ,return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) # Test batched snake_case__ :Optional[int] = feature_extractor(UpperCamelCase ,return_tensors="np" ).input_features snake_case__ :Any = feature_extractor(UpperCamelCase ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ :int = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case__ :Optional[int] = np.asarray(UpperCamelCase ) snake_case__ :int = feature_extractor(UpperCamelCase ,return_tensors="np" ).input_features snake_case__ :Optional[int] = feature_extractor(UpperCamelCase ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) # Test truncation required snake_case__ :List[str] = [floats_list((1, x) )[0] for x in range(200 ,(feature_extractor.n_samples + 500) ,200 )] snake_case__ :Union[str, Any] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] snake_case__ :Optional[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case__ :Any = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs_truncated] snake_case__ :Dict = feature_extractor(UpperCamelCase ,return_tensors="np" ).input_features snake_case__ :Dict = feature_extractor(UpperCamelCase ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: import torch snake_case__ :Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ :Optional[int] = np.random.rand(100 ,32 ).astype(np.floataa ) snake_case__ :Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ :str = feature_extractor.pad([{"input_features": inputs}] ,return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case__ :List[str] = feature_extractor.pad([{"input_features": inputs}] ,return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: snake_case__ :Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" ,"clean" ,split="validation" ) # automatic decoding with librispeech snake_case__ :Optional[Any] = ds.sort("id" ).select(range(UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self ) -> int: # fmt: off snake_case__ :Optional[Any] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on snake_case__ :Optional[Any] = self._load_datasamples(1 ) snake_case__ :Optional[int] = WhisperFeatureExtractor() snake_case__ :Tuple = feature_extractor(UpperCamelCase ,return_tensors="pt" ).input_features self.assertEqual(input_features.shape ,(1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] ,UpperCamelCase ,atol=1E-4 ) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ :str = self._load_datasamples(1 )[0] snake_case__ :List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue snake_case__ :Any = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=UpperCamelCase )[0] self.assertTrue(np.all(np.mean(UpperCamelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase ) - 1 ) < 1E-3 ) )
241
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = DDIMPipeline _A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _A = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _A = False def lowerCAmelCase_ ( self ) -> Any: torch.manual_seed(0 ) snake_case__ :List[str] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) snake_case__ :int = DDIMScheduler() snake_case__ :List[Any] = {"unet": unet, "scheduler": scheduler} return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Optional[Any]: if str(UpperCamelCase ).startswith("mps" ): snake_case__ :Dict = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = "cpu" snake_case__ :int = self.get_dummy_components() snake_case__ :str = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[Any] = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Dict = pipe(**UpperCamelCase ).images snake_case__ :Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) snake_case__ :Tuple = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) snake_case__ :Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase ,1E-3 ) def lowerCAmelCase_ ( self ) -> Any: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> List[Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[int] = "google/ddpm-cifar10-32" snake_case__ :int = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :List[str] = DDIMScheduler() snake_case__ :Any = DDIMPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) ddim.to(UpperCamelCase ) ddim.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = torch.manual_seed(0 ) snake_case__ :Optional[Any] = ddim(generator=UpperCamelCase ,eta=0.0 ,output_type="numpy" ).images snake_case__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :str = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = "google/ddpm-ema-bedroom-256" snake_case__ :Tuple = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :int = DDIMScheduler.from_pretrained(UpperCamelCase ) snake_case__ :Union[str, Any] = DDIMPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) ddpm.to(UpperCamelCase ) ddpm.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :int = torch.manual_seed(0 ) snake_case__ :Optional[int] = ddpm(generator=UpperCamelCase ,output_type="numpy" ).images snake_case__ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case__ :Optional[int] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
241
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> str: A__ = tempfile.mkdtemp() A__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) A__ = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } A__ = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Tuple: return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> int: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> List[str]: A__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> Union[str, Any]: A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) A__ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) A__ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self ) -> List[str]: A__ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) A__ = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ) A__ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self ) -> List[str]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A__ = self.prepare_image_inputs() A__ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) A__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ) -> List[str]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A__ = "Alexandra,T-shirt的价格是15便士。" A__ = processor(text=_SCREAMING_SNAKE_CASE ) A__ = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self ) -> Dict: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A__ = "Alexandra,T-shirt的价格是15便士。" A__ = self.prepare_image_inputs() A__ = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_SCREAMING_SNAKE_CASE ) A__ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self ) -> List[Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A__ = "Alexandra,T-shirt的价格是15便士。" A__ = self.prepare_image_inputs() A__ = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = AudioLDMPipeline snake_case = TEXT_TO_AUDIO_PARAMS snake_case = TEXT_TO_AUDIO_BATCH_PARAMS snake_case = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def _snake_case ( self )->str: '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase_ , ) A_ : Dict = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) A_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) A_ : Optional[Any] = ClapTextModelWithProjection(lowerCamelCase_ ) A_ : Dict = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) A_ : List[str] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase_ , ) A_ : Tuple = SpeechTaHifiGan(lowerCamelCase_ ) A_ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->str: '''simple docstring''' if str(lowerCamelCase_ ).startswith('''mps''' ): A_ : int = torch.manual_seed(lowerCamelCase_ ) else: A_ : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) A_ : Optional[int] = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator A_ : Optional[int] = self.get_dummy_components() A_ : str = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Optional[int] = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : int = self.get_dummy_inputs(lowerCamelCase_ ) A_ : List[Any] = audioldm_pipe(**lowerCamelCase_ ) A_ : Tuple = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 A_ : Optional[Any] = audio[:10] A_ : List[str] = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _snake_case ( self )->Dict: '''simple docstring''' A_ : Dict = self.get_dummy_components() A_ : Tuple = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Union[str, Any] = audioldm_pipe.to(lowerCamelCase_ ) A_ : List[Any] = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : Optional[Any] = self.get_dummy_inputs(lowerCamelCase_ ) A_ : Dict = 3 * [inputs['prompt']] # forward A_ : List[Any] = audioldm_pipe(**lowerCamelCase_ ) A_ : Optional[Any] = output.audios[0] A_ : Tuple = self.get_dummy_inputs(lowerCamelCase_ ) A_ : Optional[Any] = 3 * [inputs.pop('''prompt''' )] A_ : Any = audioldm_pipe.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors='''pt''' , ) A_ : Union[str, Any] = text_inputs['input_ids'].to(lowerCamelCase_ ) A_ : List[str] = audioldm_pipe.text_encoder( lowerCamelCase_ , ) A_ : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state A_ : Dict = F.normalize(lowerCamelCase_ , dim=-1 ) A_ : Tuple = prompt_embeds # forward A_ : str = audioldm_pipe(**lowerCamelCase_ ) A_ : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Any = self.get_dummy_components() A_ : Optional[int] = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Any = audioldm_pipe.to(lowerCamelCase_ ) A_ : List[str] = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : Any = self.get_dummy_inputs(lowerCamelCase_ ) A_ : Tuple = 3 * ['this is a negative prompt'] A_ : Optional[int] = negative_prompt A_ : Optional[int] = 3 * [inputs['prompt']] # forward A_ : Optional[int] = audioldm_pipe(**lowerCamelCase_ ) A_ : Union[str, Any] = output.audios[0] A_ : str = self.get_dummy_inputs(lowerCamelCase_ ) A_ : Tuple = 3 * [inputs.pop('''prompt''' )] A_ : List[str] = [] for p in [prompt, negative_prompt]: A_ : List[str] = audioldm_pipe.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors='''pt''' , ) A_ : Any = text_inputs['input_ids'].to(lowerCamelCase_ ) A_ : Union[str, Any] = audioldm_pipe.text_encoder( lowerCamelCase_ , ) A_ : Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state A_ : Optional[int] = F.normalize(lowerCamelCase_ , dim=-1 ) embeds.append(lowerCamelCase_ ) A_ : Optional[int] = embeds # forward A_ : int = audioldm_pipe(**lowerCamelCase_ ) A_ : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator A_ : Optional[int] = self.get_dummy_components() A_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) A_ : int = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Union[str, Any] = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : Any = self.get_dummy_inputs(lowerCamelCase_ ) A_ : List[str] = 'egg cracking' A_ : str = audioldm_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) A_ : str = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 A_ : Tuple = audio[:10] A_ : Any = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _snake_case ( self )->int: '''simple docstring''' A_ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator A_ : List[Any] = self.get_dummy_components() A_ : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) A_ : Dict = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Dict = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : Dict = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) A_ : Tuple = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts A_ : List[str] = 2 A_ : Optional[int] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt A_ : Union[str, Any] = 2 A_ : List[Any] = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts A_ : Tuple = 2 A_ : Any = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _snake_case ( self )->Any: '''simple docstring''' A_ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : int = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Optional[int] = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate A_ : List[str] = self.get_dummy_inputs(lowerCamelCase_ ) A_ : str = audioldm_pipe(audio_length_in_s=0.0_1_6 , **lowerCamelCase_ ) A_ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.0_1_6 A_ : int = audioldm_pipe(audio_length_in_s=0.0_3_2 , **lowerCamelCase_ ) A_ : List[str] = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.0_3_2 def _snake_case ( self )->Any: '''simple docstring''' A_ : Any = self.get_dummy_components() A_ : List[Any] = AudioLDMPipeline(**lowerCamelCase_ ) A_ : Any = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : Optional[Any] = ['hey'] A_ : List[str] = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) A_ : Tuple = output.audios.shape assert audio_shape == (1, 256) A_ : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 A_ : Tuple = SpeechTaHifiGan(lowerCamelCase_ ).to(lowerCamelCase_ ) A_ : Optional[int] = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) A_ : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _snake_case ( self )->Tuple: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase_ ) def _snake_case ( self )->Any: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase_ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self )->Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase_ ) @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 )->Any: '''simple docstring''' A_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) A_ : List[Any] = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 8, 128, 16) ) A_ : Optional[int] = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) A_ : int = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : str = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) A_ : Tuple = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : List[str] = self.get_inputs(lowerCamelCase_ ) A_ : Union[str, Any] = 25 A_ : str = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 8_1920 A_ : Optional[int] = audio[7_7230:7_7240] A_ : List[Any] = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) A_ : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def _snake_case ( self )->Dict: '''simple docstring''' A_ : str = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) A_ : Dict = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) A_ : str = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A_ : int = self.get_inputs(lowerCamelCase_ ) A_ : Optional[int] = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 8_1920 A_ : Any = audio[2_7780:2_7790] A_ : Dict = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) A_ : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
590
__UpperCamelCase: str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase: Tuple = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def SCREAMING_SNAKE_CASE__ ( _lowercase : dict[int, list[int]] , _lowercase : int , _lowercase : list[bool] ) -> list[int]: '''simple docstring''' lowercase__ : str = True lowercase__ : int = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_lowercase , _lowercase , _lowercase ) order.append(_lowercase ) return order def SCREAMING_SNAKE_CASE__ ( _lowercase : dict[int, list[int]] , _lowercase : int , _lowercase : list[bool] ) -> list[int]: '''simple docstring''' lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_lowercase , _lowercase , _lowercase ) return component def SCREAMING_SNAKE_CASE__ ( _lowercase : dict[int, list[int]] ) -> list[list[int]]: '''simple docstring''' lowercase__ : Optional[int] = len(_lowercase ) * [False] lowercase__ : dict[int, list[int]] = {vert: [] for vert in range(len(_lowercase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_lowercase ) lowercase__ : Dict = [] for i, was_visited in enumerate(_lowercase ): if not was_visited: order += topology_sort(_lowercase , _lowercase , _lowercase ) lowercase__ : Dict = [] lowercase__ : Optional[Any] = len(_lowercase ) * [False] for i in range(len(_lowercase ) ): lowercase__ : List[Any] = order[len(_lowercase ) - i - 1] if not visited[vert]: lowercase__ : Tuple = find_components(_lowercase , _lowercase , _lowercase ) components_list.append(_lowercase ) return components_list
266
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ =logging.get_logger(__name__) __magic_name__ ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Dict ="vit_mae" def __init__(self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=0.75 , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = decoder_num_attention_heads UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = decoder_num_hidden_layers UpperCamelCase__ = decoder_intermediate_size UpperCamelCase__ = mask_ratio UpperCamelCase__ = norm_pix_loss
469
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __magic_name__ ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __magic_name__ =concatenate_datasets __magic_name__ =DownloadConfig __magic_name__ =DownloadManager __magic_name__ =DownloadMode __magic_name__ =DownloadConfig __magic_name__ =DownloadMode __magic_name__ =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
469
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) logging.set_verbosity_info() def A__ ( snake_case_ : str , snake_case_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: SCREAMING_SNAKE_CASE__: Dict= XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= XLMProphetNetForConditionalGeneration.from_pretrained( snake_case_ , output_loading_info=snake_case_ ) else: SCREAMING_SNAKE_CASE__: int= ProphetNetForConditionalGenerationOld.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= ProphetNetForConditionalGeneration.from_pretrained( snake_case_ , output_loading_info=snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= ['''key_proj''', '''value_proj''', '''query_proj'''] SCREAMING_SNAKE_CASE__: Optional[int]= { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: SCREAMING_SNAKE_CASE__: Optional[int]= key.split('''.''' ) if attributes[0] == "lm_head": SCREAMING_SNAKE_CASE__: List[str]= prophet SCREAMING_SNAKE_CASE__: List[Any]= prophet_old else: SCREAMING_SNAKE_CASE__: List[Any]= prophet.prophetnet SCREAMING_SNAKE_CASE__: Dict= prophet_old.model SCREAMING_SNAKE_CASE__: Tuple= False for attribute in attributes: if attribute in mapping: SCREAMING_SNAKE_CASE__: Optional[Any]= mapping[attribute] if not hasattr(snake_case_ , snake_case_ ) and len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE__: Optional[int]= attribute elif hasattr(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: Optional[int]= attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" SCREAMING_SNAKE_CASE__: Tuple= old_model.weight logger.info(F'{attribute} is initialized.' ) SCREAMING_SNAKE_CASE__: Optional[Any]= True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" SCREAMING_SNAKE_CASE__: Dict= old_model.bias logger.info(F'{attribute} is initialized' ) SCREAMING_SNAKE_CASE__: Tuple= True break elif attribute in special_keys and hasattr(snake_case_ , '''in_proj_weight''' ): SCREAMING_SNAKE_CASE__: Any= old_model.in_proj_weight.shape[0] // 3 SCREAMING_SNAKE_CASE__: List[str]= getattr(snake_case_ , snake_case_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": SCREAMING_SNAKE_CASE__: Any= nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) SCREAMING_SNAKE_CASE__: Optional[Any]= nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": SCREAMING_SNAKE_CASE__: List[str]= nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) SCREAMING_SNAKE_CASE__: Dict= nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": SCREAMING_SNAKE_CASE__: Union[str, Any]= nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) SCREAMING_SNAKE_CASE__: str= nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) SCREAMING_SNAKE_CASE__: Union[str, Any]= True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." SCREAMING_SNAKE_CASE__: Dict= nn.Parameter(old_model.embed_positions.weight[:512, :] ) SCREAMING_SNAKE_CASE__: Any= True break if attribute.isdigit(): SCREAMING_SNAKE_CASE__: Tuple= model[int(snake_case_ )] SCREAMING_SNAKE_CASE__: Tuple= old_model[int(snake_case_ )] else: SCREAMING_SNAKE_CASE__: List[str]= getattr(snake_case_ , snake_case_ ) if old_attribute == "": SCREAMING_SNAKE_CASE__: List[Any]= old_model else: if not hasattr(snake_case_ , snake_case_ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) SCREAMING_SNAKE_CASE__: int= getattr(snake_case_ , snake_case_ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
64
"""simple docstring""" import sys lowerCAmelCase__ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def a__ ( SCREAMING_SNAKE_CASE : str = N ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = -sys.maxsize - 1 lowerCAmelCase : str = n[:1_3] lowerCAmelCase : Tuple = 1_3 while cur_index < len(SCREAMING_SNAKE_CASE ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): lowerCAmelCase : Any = substr[1:] + n[cur_index] cur_index += 1 else: lowerCAmelCase : int = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Dict = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F"{solution() = }")
645
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A=7 , __A=3 , __A=18 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , ) -> Optional[int]: _lowerCAmelCase =size if size is not None else {'shortest_edge': 18} _lowerCAmelCase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean _lowerCAmelCase =image_std def UpperCamelCase__ ( self ) -> Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : int = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'do_center_crop' ) ) self.assertTrue(hasattr(__A , 'size' ) ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ) -> List[str]: pass def UpperCamelCase__ ( self ) -> Optional[Any]: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ) -> int: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ) -> int: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = 42 snake_case__ = None snake_case__ = None def _A ( ): """simple docstring""" lowerCAmelCase__ = Node(1 ) lowerCAmelCase__ = Node(2 ) lowerCAmelCase__ = Node(3 ) lowerCAmelCase__ = Node(4 ) lowerCAmelCase__ = Node(5 ) return tree def _A ( lowerCAmelCase_ : Node | None ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _A ( lowerCAmelCase_ : Node | None ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _A ( lowerCAmelCase_ : Node | None ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _A ( lowerCAmelCase_ : Node | None ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _A ( lowerCAmelCase_ : Node | None ): """simple docstring""" lowerCAmelCase__ = [] if root is None: return output lowerCAmelCase__ = deque([root] ) while process_queue: lowerCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _A ( lowerCAmelCase_ : Node | None , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCAmelCase_ : Node | None , lowerCAmelCase_ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) return output def _A ( lowerCAmelCase_ : Node | None , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCAmelCase_ : Node | None , lowerCAmelCase_ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) return output def _A ( lowerCAmelCase_ : Node | None ): """simple docstring""" if root is None: return [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = height(lowerCAmelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowerCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowerCAmelCase__ = 0 return output def _A ( ): # Main function for testing. """simple docstring""" lowerCAmelCase__ = make_tree() print(F'In-order Traversal: {inorder(lowerCAmelCase_ )}' ) print(F'Pre-order Traversal: {preorder(lowerCAmelCase_ )}' ) print(F'Post-order Traversal: {postorder(lowerCAmelCase_ )}' , "\n" ) print(F'Height of Tree: {height(lowerCAmelCase_ )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowerCAmelCase_ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowerCAmelCase_ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(lowerCAmelCase_ , level=lowerCAmelCase_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
61
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase = logging.get_logger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
61
1
import pytest import datasets # Import fixture modules as plugins lowercase_ = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->Optional[int]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowerCAmelCase ( UpperCAmelCase ) ->Any: """simple docstring""" config.addinivalue_line('''markers''', '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->List[Any]: """simple docstring""" __magic_name__ : Tuple = tmp_path_factory.getbasetemp() / '''cache''' __magic_name__ : Any = test_hf_cache_home / '''datasets''' __magic_name__ : int = test_hf_cache_home / '''metrics''' __magic_name__ : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''', str(UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''', str(UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''', str(UpperCAmelCase ) ) __magic_name__ : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''', str(UpperCAmelCase ) ) __magic_name__ : Optional[int] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(UpperCAmelCase ) ) @pytest.fixture(autouse=UpperCAmelCase, scope='''session''' ) def lowerCAmelCase ( ) ->Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''', UpperCAmelCase ) @pytest.fixture def lowerCAmelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''', UpperCAmelCase )
721
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase_ = True except (ImportError, AttributeError): lowercase_ = object def lowerCAmelCase ( *UpperCAmelCase, **UpperCAmelCase ) ->Any: """simple docstring""" pass lowercase_ = False lowercase_ = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Optional[int] = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(UpperCAmelCase, args.host, args.port, args.workers ) class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : dict class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[int]] class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : str class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any class A__ ( __SCREAMING_SNAKE_CASE ): @staticmethod def lowercase ( lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : int = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" __magic_name__ : List[str] = pipeline __magic_name__ : Union[str, Any] = host __magic_name__ : int = port __magic_name__ : Optional[int] = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) __magic_name__ : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), ] , timeout=600 , ) def lowercase ( self ) -> Dict: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase ( self ) -> str: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Any: """simple docstring""" try: __magic_name__ : List[str] = self._pipeline.tokenizer.tokenize(lowerCamelCase ) if return_ids: __magic_name__ : int = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase ) return ServeTokenizeResult(tokens=lowerCamelCase , tokens_ids=lowerCamelCase ) else: return ServeTokenizeResult(tokens=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , ) -> Any: """simple docstring""" try: __magic_name__ : Any = self._pipeline.tokenizer.decode(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) async def lowercase ( self , lowerCamelCase=Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Optional[int]: """simple docstring""" if len(lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __magic_name__ : Optional[int] = self._pipeline(lowerCamelCase ) return ServeForwardResult(output=lowerCamelCase ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCamelCase )} )
336
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCAmelCase = logging.getLogger(__name__) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30_522, type=int) __UpperCAmelCase = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, '''rb''') as fp: __UpperCAmelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCAmelCase = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCAmelCase = [0] * args.vocab_size for k, v in counter.items(): __UpperCAmelCase = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
90
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: lowerCamelCase_ = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCamelCase_ = 1 lowerCamelCase_ = 2 while i * i <= n: while n % i == 0: lowerCamelCase_ = i n //= i i += 1 if n > 1: lowerCamelCase_ = n return int(_lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
142
0
'''simple docstring''' import os from pathlib import Path def __UpperCAmelCase ( ) -> Tuple: from torch.utils.cpp_extension import load snake_case__ : int = Path(UpperCamelCase__ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' snake_case__ : List[Any] = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , UpperCamelCase__ , with_cuda=UpperCamelCase__ , extra_include_paths=[str(UpperCamelCase__ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
574
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : str ={ "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowercase ( lowercase__ ): lowercase = '''facebook/nllb-200-distilled-600M''' lowercase = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase = '''translator''' lowercase = AutoTokenizer lowercase = AutoModelForSeqaSeqLM lowercase = LANGUAGE_CODES lowercase = ['''text''', '''text''', '''text'''] lowercase = ['''text'''] def UpperCAmelCase (self : Dict ,SCREAMING_SNAKE_CASE_ : Dict ,SCREAMING_SNAKE_CASE_ : Dict ,SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase = self.lang_to_code[src_lang] lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( SCREAMING_SNAKE_CASE_ ,return_tensors='''pt''' ,src_lang=SCREAMING_SNAKE_CASE_ ,tgt_lang=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : str ,SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: """simple docstring""" return self.model.generate(**SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[Any] ,SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=SCREAMING_SNAKE_CASE_ )
535
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCAmelCase = logging.get_logger(__name__) class lowercase ( lowercase__ ): def __init__(self : str ,*SCREAMING_SNAKE_CASE_ : Any ,**SCREAMING_SNAKE_CASE_ : Optional[int] ) -> None: """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' ,SCREAMING_SNAKE_CASE_ ,) super().__init__(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
535
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A_ : int = None A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ : Tuple = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 A_ : Union[str, Any] = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] lowerCamelCase__ : Any = TaTokenizer lowerCamelCase__ : List[int] = [] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="</s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_=1_0_0, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase__ : Any = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCamelCase__ : int = len(set(filter(lambda lowerCamelCase_ : bool('extra_id_' in str(lowerCamelCase_ ) ), lowerCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, pad_token=lowerCamelCase_, extra_ids=lowerCamelCase_, additional_special_tokens=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[Any] = vocab_file lowerCamelCase__ : Any = False if not self.vocab_file else True lowerCamelCase__ : Dict = extra_ids @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCamelCase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.', lowerCamelCase_, ) return max_model_length def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Tuple = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCamelCase__ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a__ (self ): '''simple docstring''' return list( set(filter(lambda lowerCamelCase_ : bool(re.search(r'<extra_id_\d+>', lowerCamelCase_ ) ) is not None, self.additional_special_tokens ) ) ) def a__ (self ): '''simple docstring''' return [self.convert_tokens_to_ids(lowerCamelCase_ ) for token in self.get_sentinel_tokens()]
696
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
696
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCamelCase( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): lowercase_ : Optional[int] = StableUnCLIPImgaImgPipeline lowercase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : List[Any] = frozenset([] ) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = 32 _lowercase : Union[str, Any] = embedder_hidden_size # image encoding components _lowercase : Union[str, Any] = CLIPImageProcessor(crop_size=32, size=32) torch.manual_seed(0) _lowercase : str = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase__, projection_dim=lowerCAmelCase__, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, )) # regular denoising components torch.manual_seed(0) _lowercase : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__) _lowercase : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) _lowercase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) _lowercase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=lowerCAmelCase__, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, )) torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D'), up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D'), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type='projection', projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=lowerCAmelCase__, layers_per_block=1, upcast_attention=lowerCAmelCase__, use_linear_projection=lowerCAmelCase__, ) torch.manual_seed(0) _lowercase : Optional[int] = DDIMScheduler( beta_schedule='scaled_linear', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, prediction_type='v_prediction', set_alpha_to_one=lowerCAmelCase__, steps_offset=1, ) torch.manual_seed(0) _lowercase : Tuple = AutoencoderKL() _lowercase : Dict = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0, lowerCamelCase=True) -> str: """simple docstring""" if str(lowerCAmelCase__).startswith('mps'): _lowercase : Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: _lowercase : Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) _lowercase : str = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) if pil_image: _lowercase : Tuple = input_image * 0.5 + 0.5 _lowercase : List[Any] = input_image.clamp(0, 1) _lowercase : Optional[Any] = input_image.cpu().permute(0, 2, 3, 1).float().numpy() _lowercase : Any = DiffusionPipeline.numpy_to_pil(lowerCAmelCase__)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : str = self.get_dummy_components() _lowercase : List[Any] = StableUnCLIPImgaImgPipeline(**lowerCAmelCase__) _lowercase : List[Any] = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) _lowercase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__) inputs.update({'image_embeds': None}) _lowercase : List[str] = sd_pipe(**lowerCAmelCase__).images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : Optional[int] = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Union[str, Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def UpperCamelCase ( self) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase__) @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') _lowercase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy') _lowercase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img', torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Tuple = torch.Generator(device='cpu').manual_seed(0) _lowercase : Tuple = pipe(lowerCAmelCase__, 'anime turle', generator=lowerCAmelCase__, output_type='np') _lowercase : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__, lowerCAmelCase__) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') _lowercase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy') _lowercase : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img', torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Optional[Any] = torch.Generator(device='cpu').manual_seed(0) _lowercase : str = pipe(lowerCAmelCase__, 'anime turle', generator=lowerCAmelCase__, output_type='np') _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__, lowerCAmelCase__) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img', torch_dtype=torch.floataa) _lowercase : List[str] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Any = pipe( lowerCAmelCase__, 'anime turtle', num_inference_steps=2, output_type='np', ) _lowercase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
89
from itertools import count def A_ ( _UpperCAmelCase = 50 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
671
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case : Dict = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' def lowercase__ ( __UpperCamelCase : int = 50000000 ): '''simple docstring''' __lowercase = set() __lowercase = int((limit - 24) ** (1 / 2) ) __lowercase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __UpperCamelCase ) ) ) for primea in primes: __lowercase = primea * primea for primea in primes: __lowercase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowercase = primea * primea * primea * primea __lowercase = square + cube + tetr if total >= limit: break ret.add(__UpperCamelCase ) return len(__UpperCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
339
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _lowercase : int ) -> list[int]: '''simple docstring''' lowercase__ : List[str] = [True] * limit lowercase__ : List[Any] = False lowercase__ : str = False lowercase__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase__ : List[str] = i * 2 while index < limit: lowercase__ : Any = False lowercase__ : Optional[int] = index + i lowercase__ : List[Any] = [2] for i in range(3 , _lowercase , 2 ): if is_prime[i]: primes.append(_lowercase ) return primes def SCREAMING_SNAKE_CASE__ ( _lowercase : int = 1_000_000 ) -> int: '''simple docstring''' lowercase__ : Optional[int] = prime_sieve(_lowercase ) lowercase__ : List[str] = 0 lowercase__ : Any = 0 for i in range(len(_lowercase ) ): for j in range(i + length , len(_lowercase ) ): lowercase__ : List[str] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ : List[str] = j - i lowercase__ : Optional[Any] = sol return largest if __name__ == "__main__": print(F'{solution() = }')
266
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_lowercase , default=_lowercase , required=_lowercase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_lowercase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_lowercase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_lowercase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_lowercase , default=0 , help='cuda_id.' , ) lowercase__ : Any = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Union[str, Any] ) -> str: '''simple docstring''' if not len(_lowercase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowercase__ , lowercase__ : Any = imgs[0].size lowercase__ : int = Image.new('RGB' , size=(cols * w, rows * h) ) lowercase__ , lowercase__ : Any = grid.size for i, img in enumerate(_lowercase ): grid.paste(_lowercase , box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__ ( _lowercase : Optional[int] , _lowercase : Tuple="robotic cat with wings" , _lowercase : Optional[Any]=7.5 , _lowercase : int=50 , _lowercase : str=1 , _lowercase : Any=42 , ) -> str: '''simple docstring''' lowercase__ : int = torch.Generator(pipeline.device ).manual_seed(_lowercase ) lowercase__ : Any = pipeline( _lowercase , guidance_scale=_lowercase , num_inference_steps=_lowercase , generator=_lowercase , num_images_per_prompt=_lowercase , ).images lowercase__ : Dict = int(math.sqrt(_lowercase ) ) lowercase__ : int = image_grid(_lowercase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase: int = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase: Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") __UpperCamelCase: List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") __UpperCamelCase: int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") __UpperCamelCase: int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") __UpperCamelCase: Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase: List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): __UpperCamelCase: Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: __UpperCamelCase: Dict = unet.to(torch.device("""cuda""", args.cuda_id)) __UpperCamelCase: Optional[int] = pipeline.to(unet.device) __UpperCamelCase, __UpperCamelCase: Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) __UpperCamelCase: List[str] = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
266
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __snake_case: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=13 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=99 , __lowerCamelCase=32 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=4 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=True , __lowerCamelCase=512 , __lowerCamelCase=16 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ): '''simple docstring''' __A : Any = parent __A : Optional[int] = batch_size __A : List[str] = seq_length __A : List[Any] = is_training __A : List[str] = use_input_mask __A : Optional[Any] = use_token_type_ids __A : str = use_labels __A : List[Any] = vocab_size __A : str = hidden_size __A : Optional[Any] = num_hidden_layers __A : Optional[int] = num_attention_heads __A : Tuple = intermediate_multiple_size __A : str = hidden_act __A : Tuple = hidden_dropout __A : Dict = attention_dropout __A : int = weight_tying __A : Any = max_position_embeddings __A : Tuple = type_vocab_size __A : int = type_sequence_label_size __A : Dict = initializer_range __A : Optional[Any] = num_labels __A : Dict = num_choices __A : Any = scope def _a ( self ): '''simple docstring''' __A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Dict = None if self.use_input_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Optional[int] = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _a ( self ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self ): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() __A : List[str] = True return config, input_ids, input_mask, token_labels def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[str] = GPTNeoXJapaneseModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) __A : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = True __A : Union[str, Any] = GPTNeoXJapaneseModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __A : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Any = True __A : Union[str, Any] = GPTNeoXJapaneseForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass __A : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) __A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __A : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase ) __A : Tuple = output_from_no_past['hidden_states'][0] __A : Optional[int] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['hidden_states'][0] # select random slice __A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : str = output_from_no_past[:, -3:, random_slice_idx].detach() __A : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _a ( self ): '''simple docstring''' __A : Dict = self.prepare_config_and_inputs() __A : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __snake_case( A_ , A_ , unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _UpperCAmelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def _a ( self ): '''simple docstring''' __A : Tuple = GPTNeoXJapaneseModelTester(self ) __A : List[str] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _a ( self ): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _a ( self ): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() __A : str = None self.model_tester.create_and_check_model_as_decoder(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _a ( self ): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _a ( self ): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCamelCase ) @slow def _a ( self ): '''simple docstring''' __A : str = 'abeja/gpt-neox-japanese-2.7b' __A : str = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] __A : Optional[Any] = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] __A : int = GPTNeoXJapaneseTokenizer.from_pretrained(__lowerCamelCase ) __A : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowerCamelCase ) __A : Dict = [] for prompt in prompts: __A : str = tokenizer(__lowerCamelCase , return_tensors='pt' ).input_ids __A : str = model.generate(__lowerCamelCase , max_length=50 ) __A : List[str] = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
711
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] =logging.get_logger(__name__) lowerCamelCase : str ={'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase : Any ={ '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } lowerCamelCase : Any ={ '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } lowerCamelCase : Tuple ='''▁''' class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __A : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __A : Any = vocab_file __A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) __A : Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __A : Any = len(self.sp_model ) - 1 __A : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : int = [self.cls_token_id] __A : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : int = [self.sep_token_id] __A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ): '''simple docstring''' return len(self.sp_model ) def _a ( self ): '''simple docstring''' __A : List[Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _a ( self , __lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __A : int = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _a ( self , __lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : str = [] __A : str = '' __A : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token __A : Any = True __A : Union[str, Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) __A : Any = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self ): '''simple docstring''' __A : int = self.__dict__.copy() __A : Optional[int] = None return state def __setstate__( self , __lowerCamelCase ): '''simple docstring''' __A : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A : str = {} __A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __A : Tuple = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , 'wb' ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
237
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[Any] = "sew" def __init__( self , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__="group" , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0_5 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="mean" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) A__ = hidden_size A__ = feat_extract_norm A__ = feat_extract_activation A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = squeeze_factor A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = apply_spec_augment A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # sequence classification A__ = use_weighted_layer_sum A__ = classifier_proj_size @property def snake_case__ ( self ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
104
"""simple docstring""" from __future__ import annotations lowercase__ :Dict = '#' class snake_case : '''simple docstring''' def __init__( self : List[str] ): '''simple docstring''' __UpperCAmelCase : dict = {} def A_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' __UpperCAmelCase : Any = self._trie for char in text: if char not in trie: __UpperCAmelCase : int = {} __UpperCAmelCase : Dict = trie[char] __UpperCAmelCase : int = True def A_ ( self : List[Any] , __lowercase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._trie for char in prefix: if char in trie: __UpperCAmelCase : Optional[int] = trie[char] else: return [] return self._elements(__lowercase ) def A_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] for c, v in d.items(): __UpperCAmelCase : Optional[int] = [''' '''] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowercase__ :Union[str, Any] = Trie() lowercase__ :Union[str, Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def lowerCamelCase_ ( UpperCAmelCase_ ) ->tuple: """simple docstring""" __UpperCAmelCase : int = trie.find_word(UpperCAmelCase_ ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( ) ->None: """simple docstring""" print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
522
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowercase ( unittest.TestCase ): a = JukeboxTokenizer a = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def lowerCamelCase_ ( self: str ): import torch lowerCamelCase__ : Optional[int] = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowerCamelCase__ : Tuple = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCamelCase__ : List[str] = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase_ ( self: Optional[Any] ): import torch lowerCamelCase__ : str = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowerCamelCase__ : Tuple = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCamelCase__ : Any = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Dict ={ '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =[ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
631
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: int = ["""pixel_values"""] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , __a = True , **__a , ): """simple docstring""" super().__init__(**__a ) A__ = size if size is not None else {'shortest_edge': 224} A__ = get_size_dict(__a , default_to_square=__a ) A__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} A__ = get_size_dict(__a , default_to_square=__a , param_name='crop_size' ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def _UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ): """simple docstring""" A__ = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A__ = get_resize_output_image_size(__a , size=size['shortest_edge'] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): """simple docstring""" A__ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a ) def _UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def _UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ): """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(__a , param_name='size' , default_to_square=__a ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__a , param_name='crop_size' , default_to_square=__a ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(__a ) for image in images] if do_resize: A__ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: A__ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: A__ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: A__ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] A__ = [to_channel_dimension_format(__a , __a ) for image in images] A__ = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
260
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): A__ , A__ = grid.shape A__ = [-1, 1, 0, 0] A__ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A__ , A__ = [(0, source)], set() A__ = np.full((rows, cols) ,np.inf ) A__ = 0 A__ = np.empty((rows, cols) ,dtype=lowerCAmelCase__ ) A__ = None while queue: ((A__) , (A__)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A__ = [] while (x, y) != source: path.append((x, y) ) A__ , A__ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): A__ , A__ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A__ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ ,(dist + 1, (nx, ny)) ) A__ = dist + 1 A__ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
260
1
from typing import Any def _lowerCAmelCase ( UpperCamelCase__: list ) -> list[Any]: """simple docstring""" if not input_list: return [] A = [input_list.count(UpperCamelCase__ ) for value in input_list] A = max(UpperCamelCase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCamelCase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
713
from sklearn.metrics import recall_score import datasets _lowercase : Any = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" _lowercase : int = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" _lowercase : Dict = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _UpperCAmelCase ( self , a__ , a__ , a__=None , a__=1 , a__="binary" , a__=None , a__="warn" , ) -> Any: A = recall_score( a__ , a__ , labels=a__ , pos_label=a__ , average=a__ , sample_weight=a__ , zero_division=a__ , ) return {"recall": float(a__ ) if score.size == 1 else score}
546
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a_ (__A , __A=False ) -> Any: """simple docstring""" __a : int = OmegaConf.load(_SCREAMING_SNAKE_CASE ) if display: print(yaml.dump(OmegaConf.to_container(_SCREAMING_SNAKE_CASE ) ) ) return config def a_ (__A , __A=None , __A=None ) -> List[Any]: """simple docstring""" if conf_path is None: __a : Optional[int] = "./model_checkpoints/vqgan_only.yaml" __a : List[Any] = load_config(_SCREAMING_SNAKE_CASE , display=_SCREAMING_SNAKE_CASE ) __a : Tuple = VQModel(**config.model.params ) if ckpt_path is None: __a : str = "./model_checkpoints/vqgan_only.pt" __a : Any = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) if ".ckpt" in ckpt_path: __a : int = sd["state_dict"] model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) del sd return model def a_ (__A , __A ) -> Union[str, Any]: """simple docstring""" __a , __a , __a : Tuple = model.encode(_SCREAMING_SNAKE_CASE ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) __a : Any = model.decode(_SCREAMING_SNAKE_CASE ) return xrec def a_ (__A , __A=False ) -> Union[str, Any]: """simple docstring""" __a , __a : Tuple = string.rsplit("." , 1 ) if reload: __a : Any = importlib.import_module(_SCREAMING_SNAKE_CASE ) importlib.reload(_SCREAMING_SNAKE_CASE ) return getattr(importlib.import_module(_SCREAMING_SNAKE_CASE , package=_SCREAMING_SNAKE_CASE ) , cls ) def a_ (__A ) -> Union[str, Any]: """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def a_ (__A , __A , __A=True , __A=True ) -> Optional[int]: """simple docstring""" __a : Dict = instantiate_from_config(_SCREAMING_SNAKE_CASE ) if sd is not None: model.load_state_dict(_SCREAMING_SNAKE_CASE ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a_ (__A , __A , __A , __A ) -> Optional[int]: """simple docstring""" if ckpt: __a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) __a : Optional[int] = pl_sd["global_step"] print(f'loaded model from global step {global_step}.' ) else: __a : Optional[int] = {"state_dict": None} __a : List[Any] = None __a : Optional[int] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_SCREAMING_SNAKE_CASE , eval_mode=_SCREAMING_SNAKE_CASE )["model"] return model, global_step
351
"""simple docstring""" import torch from transformers import AutoModel class _a ( torch.nn.Module): """simple docstring""" def __init__( self : Any , __UpperCamelCase : Optional[int]="sayef/fsner-bert-base-uncased" )->List[str]: super(__UpperCamelCase , self ).__init__() _UpperCAmelCase = AutoModel.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) _UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-08 ) _UpperCAmelCase = torch.nn.Softmax(dim=1 ) def lowercase__ ( self : List[Any] , **__UpperCamelCase : Optional[int] )->str: return self.bert(**__UpperCamelCase ).last_hidden_state def lowercase__ ( self : Any , __UpperCamelCase : List[Any] )->Optional[int]: return token_embeddings.sum(2 , keepdim=__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=1 )->Tuple: return self.softmax(T * self.cos(__UpperCamelCase , __UpperCamelCase ) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = W_supports['''sizes'''].tolist() _UpperCAmelCase = W_supports['''start_token_id'''].item() _UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCAmelCase = self.BERT(**__UpperCamelCase ) _UpperCAmelCase = self.BERT(**__UpperCamelCase ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = W_supports['''input_ids'''] == start_token_id _UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__UpperCamelCase ): if i == 0: _UpperCAmelCase = 0 else: _UpperCAmelCase = support_sizes[i - 1] _UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] _UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] _UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCAmelCase = torch.vstack((p_starts, p_start) ) _UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: _UpperCAmelCase = p_start _UpperCAmelCase = p_end return p_starts, p_ends
602
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( __a : Tuple , __a : Optional[Any]=False ) -> Optional[int]: _lowercase =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowercase =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __lowerCamelCase ( __a : str , __a : Optional[Any] , __a : Optional[int]=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: _lowercase ="" else: _lowercase ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _lowercase =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase =in_proj_weight[ : config.hidden_size, : ] _lowercase =in_proj_bias[: config.hidden_size] _lowercase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase =in_proj_weight[ -config.hidden_size :, : ] _lowercase =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __a : Tuple ) -> Dict: _lowercase =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__a , __a ) def __lowerCamelCase ( __a : Dict , __a : Optional[Any] , __a : List[str] ) -> Optional[int]: _lowercase =dct.pop(__a ) _lowercase =val def __lowerCamelCase ( ) -> int: _lowercase ="http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __a : List[str] , __a : Any , __a : Optional[Any]=True ) -> Union[str, Any]: _lowercase =ViTConfig() # patch_size if model_name[-1] == "8": _lowercase =8 # set labels if required if not base_model: _lowercase =1_000 _lowercase ="huggingface/label-files" _lowercase ="imagenet-1k-id2label.json" _lowercase =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) _lowercase ={int(__a ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowercase =384 _lowercase =1_536 _lowercase =12 _lowercase =6 # load original model from torch hub _lowercase =torch.hub.load("facebookresearch/dino:main" , __a ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowercase =original_model.state_dict() if base_model: remove_classification_head_(__a ) _lowercase =create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if base_model: _lowercase =ViTModel(__a , add_pooling_layer=__a ).eval() else: _lowercase =ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor _lowercase =ViTImageProcessor() _lowercase =image_processor(images=prepare_img() , return_tensors="pt" ) _lowercase =encoding["pixel_values"] _lowercase =model(__a ) if base_model: _lowercase =original_model(__a ) assert torch.allclose(__a , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowercase =original_model(__a ) assert logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1E-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) lowerCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
594
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCamelCase ( ) -> Tuple: _lowercase =torch.nn.Linear(2 , 4 ) _lowercase =torch.optim.AdamW(model.parameters() , lr=1.0 ) _lowercase =torch.optim.lr_scheduler.OneCycleLR(__a , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) _lowercase =DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowercase =DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCamelCase ( __a : Tuple ) -> Optional[int]: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCamelCase ( __a : str ) -> Tuple: _lowercase =torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__a ) class _a ( lowerCamelCase_ ): """simple docstring""" @require_cuda def __lowerCAmelCase ( self ): _lowercase =Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCAmelCase_ ): _lowercase =Accelerator(cpu=lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase =GradientState() assert state.num_steps == 1 _lowercase =4 assert state.num_steps == 4 assert state.sync_gradients is True _lowercase =False assert state.sync_gradients is False GradientState._reset_state() def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =create_components() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =create_components() accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __lowerCAmelCase ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCAmelCase_ , **lowerCAmelCase_ ): pass with patch("torch.cuda.set_device" , lowerCAmelCase_ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): _lowercase =Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =create_components() accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _lowercase =get_signature(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase_ ) # make sure random weights don't match load_random_weights(lowerCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase_ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowerCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase_ ) ) < 1e-3 ) def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =create_components() accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _lowercase =get_signature(lowerCAmelCase_ ) # saving hook def save_config(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase ={"class_name": models[0].__class__.__name__} with open(os.path.join(lowerCAmelCase_ , "data.json" ) , "w" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # loading hook def load_config(lowerCAmelCase_ , lowerCAmelCase_ ): with open(os.path.join(lowerCAmelCase_ , "data.json" ) , "r" ) as f: _lowercase =json.load(lowerCAmelCase_ ) _lowercase =config["class_name"] _lowercase =accelerator.register_save_state_pre_hook(lowerCAmelCase_ ) _lowercase =accelerator.register_load_state_pre_hook(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase_ ) # make sure random weights don't match with hooks load_random_weights(lowerCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase_ ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowercase ="random" # make sure loaded weights match with hooks accelerator.load_state(lowerCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase_ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase_ ) # make sure random weights don't match with hooks removed load_random_weights(lowerCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase_ ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowercase ="random" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase_ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =create_components() _lowercase =None # This should work _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertTrue(dummy_obj is None ) def __lowerCAmelCase ( self ): _lowercase =Accelerator() _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =create_components() _lowercase =[1, 2, 3] # This should work _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual( getattr(lowerCAmelCase_ , "_is_accelerate_prepared" , lowerCAmelCase_ ) , lowerCAmelCase_ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowerCAmelCase_ , "_is_accelerate_prepared" , lowerCAmelCase_ ) , lowerCAmelCase_ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase_ , "_is_accelerate_prepared" , lowerCAmelCase_ ) , lowerCAmelCase_ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase_ , "_is_accelerate_prepared" , lowerCAmelCase_ ) , lowerCAmelCase_ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase_ , "_is_accelerate_prepared" , lowerCAmelCase_ ) , lowerCAmelCase_ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase_ , "_is_accelerate_prepared" , lowerCAmelCase_ ) , lowerCAmelCase_ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __lowerCAmelCase ( self ): from transformers import AutoModelForCausalLM _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCAmelCase_ , device_map={"": 0} , ) _lowercase =Accelerator() # This should work _lowercase =accelerator.prepare(lowerCAmelCase_ ) @slow @require_bnb def __lowerCAmelCase ( self ): from transformers import AutoModelForCausalLM _lowercase =Accelerator() with init_empty_weights(): _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _lowercase =infer_auto_device_map(lowerCAmelCase_ ) _lowercase ="cpu" _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase_ ) # This should not work and get value error with self.assertRaises(lowerCAmelCase_ ): _lowercase =accelerator.prepare(lowerCAmelCase_ ) @slow @require_bnb @require_multi_gpu def __lowerCAmelCase ( self ): from transformers import AutoModelForCausalLM _lowercase ={"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _lowercase =infer_auto_device_map(lowerCAmelCase_ ) _lowercase =1 _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCAmelCase_ , device_map=lowerCAmelCase_ , ) _lowercase =Accelerator() # This should not work and get value error with self.assertRaises(lowerCAmelCase_ ): _lowercase =accelerator.prepare(lowerCAmelCase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowerCAmelCase ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) _lowercase =infer_auto_device_map(lowerCAmelCase_ ) _lowercase =1 _lowercase =AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCAmelCase_ , device_map=lowerCAmelCase_ , ) _lowercase =Accelerator() # This should work _lowercase =accelerator.prepare(lowerCAmelCase_ ) @require_cuda def __lowerCAmelCase ( self ): _lowercase =torch.nn.Linear(10 , 10 ) _lowercase =torch.optim.SGD(model.parameters() , lr=0.0_1 ) _lowercase =Accelerator(cpu=lowerCAmelCase_ ) _lowercase =accelerator.prepare(lowerCAmelCase_ )
594
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING snake_case__ : int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , **_UpperCAmelCase ) -> Union[str, Any]: super().__init__(**_UpperCAmelCase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> Union[str, Any]: if "text_queries" in kwargs: UpperCamelCase_ = kwargs.pop('text_queries' ) if isinstance(_UpperCAmelCase , (str, Image.Image) ): UpperCamelCase_ = {'image': image, 'candidate_labels': candidate_labels} else: UpperCamelCase_ = image UpperCamelCase_ = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = {} if "threshold" in kwargs: UpperCamelCase_ = kwargs['threshold'] if "top_k" in kwargs: UpperCamelCase_ = kwargs['top_k'] return {}, {}, postprocess_params def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = load_image(inputs['image'] ) UpperCamelCase_ = inputs['candidate_labels'] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = candidate_labels.split(',' ) UpperCamelCase_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCAmelCase ): UpperCamelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework ) UpperCamelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: UpperCamelCase_ = model_inputs.pop('target_size' ) UpperCamelCase_ = model_inputs.pop('candidate_label' ) UpperCamelCase_ = model_inputs.pop('is_last' ) UpperCamelCase_ = self.model(**_UpperCAmelCase ) UpperCamelCase_ = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0.1 , _UpperCAmelCase=None ) -> List[str]: UpperCamelCase_ = [] for model_output in model_outputs: UpperCamelCase_ = model_output['candidate_label'] UpperCamelCase_ = BaseModelOutput(_UpperCAmelCase ) UpperCamelCase_ = self.image_processor.post_process_object_detection( outputs=_UpperCAmelCase , threshold=_UpperCAmelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): UpperCamelCase_ = outputs['scores'][index].item() UpperCamelCase_ = self._get_bounding_box(outputs['boxes'][index][0] ) UpperCamelCase_ = {'score': score, 'label': label, 'box': box} results.append(_UpperCAmelCase ) UpperCamelCase_ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase ) if top_k: UpperCamelCase_ = results[:top_k] return results def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = box.int().tolist() UpperCamelCase_ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
23
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A ( __snake_case: Tuple ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def A ( __snake_case: str ) -> Optional[Any]: """simple docstring""" for char in word: __magic_name__ = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def A ( __snake_case: List[str] ) -> List[str]: """simple docstring""" __magic_name__ = set() for token in tokens: __magic_name__ = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) __magic_name__ = list(__snake_case ) return word_list def A ( __snake_case: List[str] , __snake_case: set() ) -> str: """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ = max([len(__snake_case ) for w in chinese_word_set] ) __magic_name__ = bert_tokens __magic_name__ , __magic_name__ = 0, len(__snake_case ) while start < end: __magic_name__ = True if is_chinese(bert_word[start] ): __magic_name__ = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): __magic_name__ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __magic_name__ = '##' + bert_word[j] __magic_name__ = start + i __magic_name__ = False break if single_word: start += 1 return bert_word def A ( __snake_case: List[str] , __snake_case: LTP , __snake_case: BertTokenizer ) -> List[Any]: """simple docstring""" __magic_name__ = [] for i in range(0 , len(__snake_case ) , 1_0_0 ): __magic_name__ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws __magic_name__ = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) __magic_name__ = [] for i in range(0 , len(__snake_case ) , 1_0_0 ): __magic_name__ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(__snake_case ) == len(__snake_case ) __magic_name__ = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): __magic_name__ = [] for id in input_ids: __magic_name__ = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) __magic_name__ = add_sub_symbol(__snake_case , __snake_case ) __magic_name__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": __magic_name__ = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def A ( __snake_case: Optional[Any] ) -> List[str]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: __magic_name__ = f.readlines() __magic_name__ = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ = LTP(args.ltp ) # faster in GPU device __magic_name__ = BertTokenizer.from_pretrained(args.bert ) __magic_name__ = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __magic_name__ = [json.dumps(__snake_case ) + '\n' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) snake_case : Any = parser.parse_args() main(args)
545
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model A__ = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( a_ : Dict ,a_ : Any ,a_ : str=None ) -> Tuple: '''simple docstring''' if rng is None: __magic_name__ = random.Random() __magic_name__ = 1 for dim in shape: total_dims *= dim __magic_name__ = [] for _ in range(a_ ): values.append(rng.randint(0 ,vocab_size - 1 ) ) __magic_name__ = np.array(a_ ,dtype=jnp.intaa ).reshape(a_ ) return output def _lowercase ( a_ : Dict ,a_ : List[str]=None ) -> Dict: '''simple docstring''' __magic_name__ = ids_tensor(a_ ,vocab_size=2 ,rng=a_ ) # make sure that at least one token is attended to for each batch __magic_name__ = 1 return attn_mask @require_flax class __UpperCamelCase : _lowercase : List[Any] = None _lowercase : Optional[Any] = () def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __magic_name__ = 2 __magic_name__ = inputs['input_ids'].shape[-1] // 2 __magic_name__ = inputs['input_ids'][:max_batch_size, :sequence_length] __magic_name__ = jnp.ones_like(__UpperCamelCase ) __magic_name__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __magic_name__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __magic_name__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = False __magic_name__ = max_length __magic_name__ = 0 for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model_class.__name__[4:] # Skip the "Flax" at the beginning __magic_name__ = getattr(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = pt_model_class(__UpperCamelCase ).eval() __magic_name__ = load_flax_weights_in_pytorch_model(__UpperCamelCase , flax_model.params ) __magic_name__ = flax_model.generate(__UpperCamelCase ).sequences __magic_name__ = pt_model.generate(torch.tensor(__UpperCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __magic_name__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = False __magic_name__ = max_length for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = True __magic_name__ = max_length for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = False __magic_name__ = max_length __magic_name__ = 2 for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = False __magic_name__ = max_length __magic_name__ = 2 __magic_name__ = 2 for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = True __magic_name__ = max_length __magic_name__ = 0.8 __magic_name__ = 10 __magic_name__ = 0.3 __magic_name__ = 1 __magic_name__ = 8 __magic_name__ = 9 for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = max_length __magic_name__ = 1 __magic_name__ = 8 __magic_name__ = 9 for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() __magic_name__ = max_length __magic_name__ = 2 __magic_name__ = 1 __magic_name__ = 8 __magic_name__ = 9 for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() # pad attention mask on the left __magic_name__ = attention_mask.at[(0, 0)].set(0 ) __magic_name__ = False __magic_name__ = max_length for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() # pad attention mask on the left __magic_name__ = attention_mask.at[(0, 0)].set(0 ) __magic_name__ = True __magic_name__ = max_length for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__, __magic_name__, __magic_name__, __magic_name__ = self._get_input_ids_and_config() # pad attention mask on the left __magic_name__ = attention_mask.at[(0, 0)].set(0 ) __magic_name__ = 2 __magic_name__ = max_length for model_class in self.all_generative_model_classes: __magic_name__ = model_class(__UpperCamelCase ) __magic_name__ = model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase ) __magic_name__ = jit(model.generate ) __magic_name__ = jit_generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __UpperCamelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) __magic_name__ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __magic_name__ = 'Hello world' __magic_name__ = tokenizer(__UpperCamelCase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCamelCase , 'do_samples' ): model.generate(__UpperCamelCase , do_samples=__UpperCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCamelCase , 'foo' ): __magic_name__ = {'foo': 'bar'} model.generate(__UpperCamelCase , **__UpperCamelCase )
184
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = "time_series_transformer" _lowercase : Dict = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: str , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: str = "student_t" , __UpperCamelCase: str = "nll" , __UpperCamelCase: int = 1 , __UpperCamelCase: List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCamelCase: Optional[Union[str, bool]] = "mean" , __UpperCamelCase: int = 0 , __UpperCamelCase: int = 0 , __UpperCamelCase: int = 0 , __UpperCamelCase: int = 0 , __UpperCamelCase: Optional[List[int]] = None , __UpperCamelCase: Optional[List[int]] = None , __UpperCamelCase: int = 32 , __UpperCamelCase: int = 32 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: bool = True , __UpperCamelCase: str = "gelu" , __UpperCamelCase: int = 64 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: int = 1_00 , __UpperCamelCase: float = 0.02 , __UpperCamelCase: Any=True , **__UpperCamelCase: Optional[Any] , ): '''simple docstring''' __magic_name__ = prediction_length __magic_name__ = context_length or prediction_length __magic_name__ = distribution_output __magic_name__ = loss __magic_name__ = input_size __magic_name__ = num_time_features __magic_name__ = lags_sequence __magic_name__ = scaling __magic_name__ = num_dynamic_real_features __magic_name__ = num_static_real_features __magic_name__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __magic_name__ = cardinality else: __magic_name__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __magic_name__ = embedding_dimension else: __magic_name__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __magic_name__ = num_parallel_samples # Transformer architecture configuration __magic_name__ = input_size * len(__UpperCamelCase ) + self._number_of_features __magic_name__ = d_model __magic_name__ = encoder_attention_heads __magic_name__ = decoder_attention_heads __magic_name__ = encoder_ffn_dim __magic_name__ = decoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = decoder_layers __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = use_cache super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
184
1
"""simple docstring""" import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> Optional[int]: a_ : Union[str, Any] = (0, 0) a_ : Any = None a_ : List[Any] = 0 a_ : Dict = 0 a_ : Dict = 0 def __eq__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.position == cell.position def A ( self ) -> int: print(self.position ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE=(5, 5) ) -> List[str]: a_ : Any = np.zeros(_SCREAMING_SNAKE_CASE ) a_ : Dict = world_size[0] a_ : Optional[Any] = world_size[1] def A ( self ) -> int: print(self.w ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a_ : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] a_ : int = cell.position[0] a_ : Union[str, Any] = cell.position[1] a_ : Optional[Any] = [] for n in neughbour_cord: a_ : Any = current_x + n[0] a_ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: a_ : int = Cell() a_ : List[str] = (x, y) a_ : Tuple = cell neighbours.append(_SCREAMING_SNAKE_CASE ) return neighbours def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Any ) -> str: a_ : List[Any] = [] a_ : Tuple = [] _open.append(_SCREAMING_SNAKE_CASE ) while _open: a_ : Dict = np.argmin([n.f for n in _open] ) a_ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(_SCREAMING_SNAKE_CASE ) ) if current == goal: break for n in world.get_neigbours(_SCREAMING_SNAKE_CASE ): for c in _closed: if c == n: continue a_ : Optional[Any] = current.g + 1 a_ , a_ : Union[str, Any] = n.position a_ , a_ : Union[str, Any] = goal.position a_ : int = (ya - ya) ** 2 + (xa - xa) ** 2 a_ : List[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = [] while current.parent is not None: path.append(current.position ) a_ : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCamelCase = Gridworld() # Start position and goal UpperCamelCase = Cell() UpperCamelCase = (0, 0) UpperCamelCase = Cell() UpperCamelCase = (4, 4) print(F'path from {start.position} to {goal.position}') UpperCamelCase = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCamelCase = 1 print(world.w)
473
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase = logging.getLogger(__name__) class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : str = """masked_bert""" def __init__( self , _SCREAMING_SNAKE_CASE=3_0_5_2_2 , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=3_0_7_2 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="topK" , _SCREAMING_SNAKE_CASE="constant" , _SCREAMING_SNAKE_CASE=0.0 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = vocab_size a_ : Optional[int] = hidden_size a_ : Any = num_hidden_layers a_ : Tuple = num_attention_heads a_ : Dict = hidden_act a_ : Dict = intermediate_size a_ : Optional[int] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Union[str, Any] = type_vocab_size a_ : Optional[Any] = initializer_range a_ : Union[str, Any] = layer_norm_eps a_ : Tuple = pruning_method a_ : Tuple = mask_init a_ : Dict = mask_scale
473
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = 4_2 class lowercase__( snake_case__ , snake_case__ ): '''simple docstring''' snake_case__ = True @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = ("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE = ("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE = (64,) , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "silu" , __SCREAMING_SNAKE_CASE = 4 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 0.1_82_15 , ) -> List[str]: """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase__ : Any =Encoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , down_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , double_z=__SCREAMING_SNAKE_CASE , ) # pass init params to Decoder UpperCamelCase__ : List[Any] =Decoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , up_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict =nn.Convad(2 * latent_channels , 2 * latent_channels , 1) UpperCamelCase__ : Dict =nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1) UpperCamelCase__ : str =False UpperCamelCase__ : str =False # only relevant if vae tiling is enabled UpperCamelCase__ : Optional[Any] =self.config.sample_size UpperCamelCase__ : Union[str, Any] =( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) UpperCamelCase__ : Optional[Any] =int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) UpperCamelCase__ : Any =0.25 def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False) -> Optional[int]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , (Encoder, Decoder)): UpperCamelCase__ : int =value def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE = True) -> Dict: """simple docstring""" UpperCamelCase__ : int =use_tiling def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" self.enable_tiling(__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : Tuple =True def UpperCAmelCase ( self) -> str: """simple docstring""" UpperCamelCase__ : str =False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase ( self) -> Dict[str, AttentionProcessor]: """simple docstring""" UpperCamelCase__ : Optional[Any] ={} def fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): if hasattr(__SCREAMING_SNAKE_CASE , "set_processor"): UpperCamelCase__ : Any =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return processors for name, module in self.named_children(): fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return processors def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : List[str] =len(self.attn_processors.keys()) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and len(__SCREAMING_SNAKE_CASE) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(__SCREAMING_SNAKE_CASE)} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''') def fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): if hasattr(__SCREAMING_SNAKE_CASE , "set_processor"): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): module.set_processor(__SCREAMING_SNAKE_CASE) else: module.set_processor(processor.pop(F'''{name}.processor''')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for name, module in self.named_children(): fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" self.set_attn_processor(AttnProcessor()) @apply_forward_hook def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) if self.use_slicing and x.shape[0] > 1: UpperCamelCase__ : List[str] =[self.encoder(__SCREAMING_SNAKE_CASE) for x_slice in x.split(1)] UpperCamelCase__ : Optional[int] =torch.cat(__SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : List[Any] =self.encoder(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =self.quant_conv(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Union[str, Any] =DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self.post_quant_conv(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[int] =self.decoder(__SCREAMING_SNAKE_CASE) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE) @apply_forward_hook def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: UpperCamelCase__ : List[Any] =[self._decode(__SCREAMING_SNAKE_CASE).sample for z_slice in z.split(1)] UpperCamelCase__ : Any =torch.cat(__SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : Any =self._decode(__SCREAMING_SNAKE_CASE).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] =min(a.shape[2] , b.shape[2] , __SCREAMING_SNAKE_CASE) for y in range(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[int] =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : Dict =min(a.shape[3] , b.shape[3] , __SCREAMING_SNAKE_CASE) for x in range(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[int] =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> AutoencoderKLOutput: """simple docstring""" UpperCamelCase__ : List[str] =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) UpperCamelCase__ : Optional[int] =int(self.tile_latent_min_size * self.tile_overlap_factor) UpperCamelCase__ : Optional[int] =self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase__ : int =[] for i in range(0 , x.shape[2] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : List[Any] =[] for j in range(0 , x.shape[3] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Dict =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase__ : Optional[int] =self.encoder(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self.quant_conv(__SCREAMING_SNAKE_CASE) row.append(__SCREAMING_SNAKE_CASE) rows.append(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =[] for i, row in enumerate(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : Union[str, Any] =[] for j, tile in enumerate(__SCREAMING_SNAKE_CASE): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ : Tuple =self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if j > 0: UpperCamelCase__ : List[Any] =self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3)) UpperCamelCase__ : Optional[Any] =torch.cat(__SCREAMING_SNAKE_CASE , dim=2) UpperCamelCase__ : Optional[Any] =DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase__ : Optional[int] =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) UpperCamelCase__ : Dict =int(self.tile_sample_min_size * self.tile_overlap_factor) UpperCamelCase__ : Any =self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase__ : Union[str, Any] =[] for i in range(0 , z.shape[2] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Tuple =[] for j in range(0 , z.shape[3] , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[Any] =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase__ : Optional[int] =self.post_quant_conv(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =self.decoder(__SCREAMING_SNAKE_CASE) row.append(__SCREAMING_SNAKE_CASE) rows.append(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =[] for i, row in enumerate(__SCREAMING_SNAKE_CASE): UpperCamelCase__ : int =[] for j, tile in enumerate(__SCREAMING_SNAKE_CASE): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ : Tuple =self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if j > 0: UpperCamelCase__ : List[Any] =self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3)) UpperCamelCase__ : Any =torch.cat(__SCREAMING_SNAKE_CASE , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase__ : int =sample UpperCamelCase__ : Dict =self.encode(__SCREAMING_SNAKE_CASE).latent_dist if sample_posterior: UpperCamelCase__ : Dict =posterior.sample(generator=__SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : Tuple =posterior.mode() UpperCamelCase__ : str =self.decode(__SCREAMING_SNAKE_CASE).sample if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE)
704
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCamelCase ( A_ : Tuple , A_ : str ) -> List[Any]: '''simple docstring''' assert isinstance(A_ , A_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( A_ : List[Any] , A_ : str , A_ : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ : Any =tmp_path / "cache" UpperCamelCase__ : int ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ : Any =ParquetDatasetReader(A_ , cache_dir=A_ , keep_in_memory=A_ ).read() _check_parquet_dataset(A_ , A_ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Dict =tmp_path / "cache" UpperCamelCase__ : List[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCamelCase__ : int =features.copy() if features else default_expected_features UpperCamelCase__ : List[str] =( Features({feature: Value(A_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ : Any =ParquetDatasetReader(A_ , features=A_ , cache_dir=A_ ).read() _check_parquet_dataset(A_ , A_ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCamelCase ( A_ : Optional[Any] , A_ : Tuple , A_ : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Union[str, Any] =tmp_path / "cache" UpperCamelCase__ : Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCamelCase__ : List[Any] =ParquetDatasetReader(A_ , cache_dir=A_ , split=A_ ).read() _check_parquet_dataset(A_ , A_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _lowerCamelCase ( A_ : Any , A_ : int , A_ : Dict ) -> Union[str, Any]: '''simple docstring''' if issubclass(A_ , A_ ): UpperCamelCase__ : Optional[int] =parquet_path elif issubclass(A_ , A_ ): UpperCamelCase__ : List[Any] =[parquet_path] UpperCamelCase__ : Optional[Any] =tmp_path / "cache" UpperCamelCase__ : Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCamelCase__ : Dict =ParquetDatasetReader(A_ , cache_dir=A_ ).read() _check_parquet_dataset(A_ , A_ ) def _lowerCamelCase ( A_ : str , A_ : List[str] , A_ : int=("train",) ) -> List[Any]: '''simple docstring''' assert isinstance(A_ , A_ ) for split in splits: UpperCamelCase__ : Dict =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( A_ : List[str] , A_ : Tuple , A_ : List[str] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple =tmp_path / "cache" UpperCamelCase__ : str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ : Optional[Any] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=A_ , keep_in_memory=A_ ).read() _check_parquet_datasetdict(A_ , A_ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( A_ : List[str] , A_ : Dict , A_ : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Dict =tmp_path / "cache" UpperCamelCase__ : str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCamelCase__ : Any =features.copy() if features else default_expected_features UpperCamelCase__ : int =( Features({feature: Value(A_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase__ : str =ParquetDatasetReader({"train": parquet_path} , features=A_ , cache_dir=A_ ).read() _check_parquet_datasetdict(A_ , A_ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCamelCase ( A_ : Any , A_ : Dict , A_ : Tuple ) -> Any: '''simple docstring''' if split: UpperCamelCase__ : str ={split: parquet_path} else: UpperCamelCase__ : Optional[Any] ="train" UpperCamelCase__ : Optional[int] ={"train": parquet_path, "test": parquet_path} UpperCamelCase__ : Any =tmp_path / "cache" UpperCamelCase__ : List[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCamelCase__ : str =ParquetDatasetReader(A_ , cache_dir=A_ ).read() _check_parquet_datasetdict(A_ , A_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowerCamelCase ( A_ : Optional[int] , A_ : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[Any] =ParquetDatasetWriter(A_ , tmp_path / "foo.parquet" ) assert writer.write() > 0 UpperCamelCase__ : str =pq.ParquetFile(tmp_path / "foo.parquet" ) UpperCamelCase__ : Optional[int] =pf.read() assert dataset.data.table == output_table def _lowerCamelCase ( A_ : Optional[Any] , A_ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[str] =str(shared_datadir / "test_image_rgb.jpg" ) UpperCamelCase__ : Dict ={"image": [image_path]} UpperCamelCase__ : Union[str, Any] =Features({"image": Image()} ) UpperCamelCase__ : Dict =Dataset.from_dict(A_ , features=A_ ) UpperCamelCase__ : Any =ParquetDatasetWriter(A_ , tmp_path / "foo.parquet" ) assert writer.write() > 0 UpperCamelCase__ : Any =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase__ : Dict =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=A_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _lowerCamelCase ( A_ : Any , A_ : List[Any] ) -> Dict: '''simple docstring''' assert get_writer_batch_size(A_ ) == expected
582
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase__ : Union[str, Any] = TypeVar('T') UpperCAmelCase__ : List[Any] = TypeVar('U') class lowerCAmelCase_ (Generic[T, U] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = key SCREAMING_SNAKE_CASE__ : Union[str, Any] = val SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] | None = None SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] | None = None def __repr__(self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCAmelCase_ (Generic[T, U] ): """simple docstring""" def __init__(self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rear, self.head def __repr__(self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""DoubleLinkedList"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.head while node.next is not None: rep.append(str(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = node.next rep.append(str(self.rear ) ) return ",\n ".join(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None SCREAMING_SNAKE_CASE__ : int = node SCREAMING_SNAKE_CASE__ : Optional[Any] = previous SCREAMING_SNAKE_CASE__ : List[str] = node SCREAMING_SNAKE_CASE__ : List[Any] = self.rear def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None SCREAMING_SNAKE_CASE__ : Optional[Any] = node.next SCREAMING_SNAKE_CASE__ : Optional[int] = node.prev SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[str] = None return node class lowerCAmelCase_ (Generic[T, U] ): """simple docstring""" __UpperCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : DoubleLinkedList[T, U] = DoubleLinkedList() SCREAMING_SNAKE_CASE__ : List[Any] = capacity SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__(self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__(self , SCREAMING_SNAKE_CASE__ ) -> bool: """simple docstring""" return key in self.cache def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 SCREAMING_SNAKE_CASE__ : DoubleLinkedListNode[T, U] = self.cache[key] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(SCREAMING_SNAKE_CASE__ ) return node.val self.miss += 1 return None def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity SCREAMING_SNAKE_CASE__ : Any = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(SCREAMING_SNAKE_CASE__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 SCREAMING_SNAKE_CASE__ : List[str] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value SCREAMING_SNAKE_CASE__ : Optional[int] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list SCREAMING_SNAKE_CASE__ : Optional[Any] = value self.list.add(SCREAMING_SNAKE_CASE__ ) @classmethod def __magic_name__ (cls , SCREAMING_SNAKE_CASE__ = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(SCREAMING_SNAKE_CASE__ ) -> Callable[..., U]: def cache_decorator_wrapper(*SCREAMING_SNAKE_CASE__ ) -> U: if func not in cls.decorator_function_to_instance_map: SCREAMING_SNAKE_CASE__ : List[str] = LRUCache(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: SCREAMING_SNAKE_CASE__ : Tuple = func(*SCREAMING_SNAKE_CASE__ ) cls.decorator_function_to_instance_map[func].put(args[0] , SCREAMING_SNAKE_CASE__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(SCREAMING_SNAKE_CASE__ , """cache_info""" , SCREAMING_SNAKE_CASE__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
223
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCAmelCase_ (pl.LightningModule ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = model SCREAMING_SNAKE_CASE__ : str = 2 SCREAMING_SNAKE_CASE__ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ (self ) -> Dict: """simple docstring""" pass def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): # load longformer model from model identifier SCREAMING_SNAKE_CASE__ : Optional[Any] = LongformerModel.from_pretrained(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = LightningModel(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.load(_snake_case ,map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model SCREAMING_SNAKE_CASE__ : int = LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
223
1
'''simple docstring''' lowerCamelCase__ = tuple[float, float, float] lowerCamelCase__ = tuple[float, float, float] def _SCREAMING_SNAKE_CASE( snake_case_ : Pointad , snake_case_ : Pointad ) ->Vectorad: '''simple docstring''' _lowercase : int = end_pointa[0] - end_pointa[0] _lowercase : str = end_pointa[1] - end_pointa[1] _lowercase : str = end_pointa[2] - end_pointa[2] return (x, y, z) def _SCREAMING_SNAKE_CASE( snake_case_ : Vectorad , snake_case_ : Vectorad ) ->Vectorad: '''simple docstring''' _lowercase : List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowercase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowercase : List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _SCREAMING_SNAKE_CASE( snake_case_ : Vectorad , snake_case_ : int ) ->bool: '''simple docstring''' return tuple(round(snake_case_ , snake_case_ ) for x in vector ) == (0, 0, 0) def _SCREAMING_SNAKE_CASE( snake_case_ : Pointad , snake_case_ : Pointad , snake_case_ : Pointad , snake_case_ : int = 10 ) ->bool: '''simple docstring''' _lowercase : Any = create_vector(snake_case_ , snake_case_ ) _lowercase : List[Any] = create_vector(snake_case_ , snake_case_ ) return is_zero_vector(get_ad_vectors_cross(snake_case_ , snake_case_ ) , snake_case_ )
720
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase__ = 'naver-clova-ix/donut-base' class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = DonutProcessor.from_pretrained(UpperCamelCase_ ) def __lowercase ( self : Tuple ) -> Tuple: '''simple docstring''' _lowercase : str = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } _lowercase : List[str] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) _lowercase : str = self.processor.tokenajson(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , UpperCamelCase_ )
411
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : int = StableDiffusionDiffEditPipeline lowerCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowerCAmelCase_ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowerCAmelCase_ : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : int = frozenset([] ) def SCREAMING_SNAKE_CASE_ ( self :str ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) _a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) _a = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) _a = CLIPTextModel(UpperCamelCase__ ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Dict=0 ): _a = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("mps" ): _a = torch.manual_seed(UpperCamelCase__ ) else: _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Any , UpperCamelCase__ :Tuple=0 ): _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" ) if str(UpperCamelCase__ ).startswith("mps" ): _a = torch.manual_seed(UpperCamelCase__ ) else: _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :Tuple , UpperCamelCase__ :Union[str, Any]=0 ): _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" ) if str(UpperCamelCase__ ).startswith("mps" ): _a = torch.manual_seed(UpperCamelCase__ ) else: _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ ( self :List[str] ): if not hasattr(self.pipeline_class , "_optional_components" ): return _a = self.get_dummy_components() _a = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _a = self.get_dummy_inputs(UpperCamelCase__ ) _a = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) _a = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) _a = self.get_dummy_inputs(UpperCamelCase__ ) _a = pipe_loaded(**UpperCamelCase__ )[0] _a = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1E-4 ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = self.get_dummy_mask_inputs(UpperCamelCase__ ) _a = pipe.generate_mask(**UpperCamelCase__ ) _a = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _a = np.array([0] * 9 ) _a = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = self.get_dummy_inversion_inputs(UpperCamelCase__ ) _a = pipe.invert(**UpperCamelCase__ ).images _a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _a = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = "cpu" _a = self.get_dummy_components() _a = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} _a = DPMSolverMultistepScheduler(**UpperCamelCase__ ) _a = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) _a = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = self.get_dummy_inversion_inputs(UpperCamelCase__ ) _a = pipe.invert(**UpperCamelCase__ ).images _a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _a = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) @require_torch_gpu @slow class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE_ ( cls :Dict ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) _a = raw_image.convert("RGB" ).resize((768, 768) ) _a = raw_image def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): _a = torch.manual_seed(0 ) _a = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) _a = DDIMScheduler.from_config(pipe.scheduler.config ) _a = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "a bowl of fruit" _a = "a bowl of pears" _a = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) _a = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents _a = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] _a = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = torch.manual_seed(0 ) _a = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) _a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _a = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "a bowl of fruit" _a = "a bowl of pears" _a = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) _a = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents _a = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] _a = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
388
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self :Optional[int] , **UpperCamelCase__ :List[str] ): super().__init__(**UpperCamelCase__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Tuple , UpperCamelCase__ :Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase__ :Dict ): return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , **UpperCamelCase__ :List[str] ): _a = {} if "candidate_labels" in kwargs: _a = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _a = kwargs["hypothesis_template"] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :str=None , UpperCamelCase__ :Dict="This is a photo of {}." ): _a = load_image(UpperCamelCase__ ) _a = self.image_processor(images=[image] , return_tensors=self.framework ) _a = candidate_labels _a = [hypothesis_template.format(UpperCamelCase__ ) for x in candidate_labels] _a = self.tokenizer(UpperCamelCase__ , return_tensors=self.framework , padding=UpperCamelCase__ ) _a = [text_inputs] return inputs def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :List[str] ): _a = model_inputs.pop("candidate_labels" ) _a = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , UpperCamelCase__ ): _a = text_inputs[0] else: # Batching case. _a = text_inputs[0][0] _a = self.model(**UpperCamelCase__ , **UpperCamelCase__ ) _a = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :int ): _a = model_outputs.pop("candidate_labels" ) _a = model_outputs["logits"][0] if self.framework == "pt": _a = logits.softmax(dim=-1 ).squeeze(-1 ) _a = probs.tolist() if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _a = [scores] elif self.framework == "tf": _a = stable_softmax(UpperCamelCase__ , axis=-1 ) _a = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) _a = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase__ , UpperCamelCase__ ) , key=lambda UpperCamelCase__ : -x[0] ) ] return result
388
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __a: Dict = ['''gpt2'''] __a: Any = '''gpt2''' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( tf.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = tokenizer _UpperCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) _UpperCAmelCase = TFGPTaLMHeadModel.from_config(lowerCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.tokenizer(lowerCamelCase ) _UpperCAmelCase = tokenized["""input_ids"""].to_tensor() _UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _UpperCAmelCase = self.model(input_ids=lowerCamelCase , attention_mask=lowerCamelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" super().setUp() _UpperCAmelCase = [GPTaTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _UpperCAmelCase = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase ( self : str ) -> str: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _UpperCAmelCase = tokenizer([test_inputs] , return_tensors="""tf""" ) _UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _UpperCAmelCase = python_outputs[key].numpy() _UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase = tf.function(lowerCamelCase ) for test_inputs in self.test_sentences: _UpperCAmelCase = tf.constant(lowerCamelCase ) _UpperCAmelCase = compiled_tokenizer(lowerCamelCase ) _UpperCAmelCase = tf_tokenizer(lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase = ModelToSave(tokenizer=lowerCamelCase ) _UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase = model.serving(lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCAmelCase = Path(lowerCamelCase ) / """saved.model""" tf.saved_model.save(lowerCamelCase , lowerCamelCase , signatures={"""serving_default""": model.serving} ) _UpperCAmelCase = tf.saved_model.load(lowerCamelCase ) _UpperCAmelCase = loaded_model.signatures["""serving_default"""](lowerCamelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase ( self : Any ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase = tf_tokenizer(lowerCamelCase ) # Build model with some sample inputs _UpperCAmelCase = tf_tokenizer.get_config() _UpperCAmelCase = TFGPTaTokenizer.from_config(lowerCamelCase ) _UpperCAmelCase = model_from_config(lowerCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _UpperCAmelCase = 12_3123 for max_length in [3, 5, 1024]: _UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase = tf_tokenizer(lowerCamelCase , max_length=lowerCamelCase ) _UpperCAmelCase = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
402
__a: int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __a: List[str] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> list[int]: _UpperCAmelCase = True _UpperCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__snake_case , __snake_case , __snake_case ) order.append(__snake_case ) return order def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> list[int]: _UpperCAmelCase = True _UpperCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__snake_case , __snake_case , __snake_case ) return component def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[list[int]]: _UpperCAmelCase = len(__snake_case ) * [False] _UpperCAmelCase = {vert: [] for vert in range(len(__snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__snake_case ) _UpperCAmelCase = [] for i, was_visited in enumerate(__snake_case ): if not was_visited: order += topology_sort(__snake_case , __snake_case , __snake_case ) _UpperCAmelCase = [] _UpperCAmelCase = len(__snake_case ) * [False] for i in range(len(__snake_case ) ): _UpperCAmelCase = order[len(__snake_case ) - i - 1] if not visited[vert]: _UpperCAmelCase = find_components(__snake_case , __snake_case , __snake_case ) components_list.append(__snake_case ) return components_list
402
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase_ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : __magic_name__ = PegasusConfig __magic_name__ = {} __magic_name__ = '''gelu''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=13 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=37 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=20 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Dict=0 , ) -> Optional[Any]: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : int = eos_token_id UpperCAmelCase_ : Dict = pad_token_id UpperCAmelCase_ : Optional[Any] = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase_ : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : Any = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : List[Any] = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = 20 UpperCAmelCase_ : Tuple = model_class_name(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : str = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) UpperCAmelCase_ : Optional[int] = model.decode(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ) -> Any: UpperCAmelCase_ : Dict = 20 UpperCAmelCase_ : int = model_class_name(lowerCAmelCase_ ) UpperCAmelCase_ : int = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : str = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) UpperCAmelCase_ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) UpperCAmelCase_ : str = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case ( A__ ,A__ ,A__ ,A__=None ,A__=None ,): if attention_mask is None: UpperCAmelCase_ : List[Any] = np.not_equal(A__ ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __magic_name__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: UpperCAmelCase_ : List[str] = FlaxPegasusModelTester(self ) UpperCAmelCase_ : Any = ConfigTester(self , config_class=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Dict = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model_class(lowerCAmelCase_ ) @jax.jit def encode_jitted(lowerCAmelCase_ : Any , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Any ): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : Dict = encode_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[int] = encode_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ : Optional[int] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : str = decode_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Tuple = decode_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[int] = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = np.ones((1, 1) ) UpperCAmelCase_ : Any = model(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: UpperCAmelCase_ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCAmelCase_ : List[str] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCAmelCase_ : Any = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCAmelCase_ : Union[str, Any] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCAmelCase_ : Dict = tokenizer(lowerCAmelCase_ , return_tensors="np" , truncation=lowerCAmelCase_ , max_length=512 , padding=lowerCAmelCase_ ) UpperCAmelCase_ : Any = model.generate(**lowerCAmelCase_ , num_beams=2 ).sequences UpperCAmelCase_ : int = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) assert tgt_text == decoded
95
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase_ : @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> str: pass def snake_case ( A__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = pipeline( "document-question-answering" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) UpperCAmelCase_ : int = INVOICE_URL UpperCAmelCase_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) UpperCAmelCase_ : Optional[Any] = "What is the placebo?" UpperCAmelCase_ : Tuple = [ { "image": load_image(lowerCAmelCase_ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = dqa_pipeline(lowerCAmelCase_ , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Tuple = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) UpperCAmelCase_ : Dict = INVOICE_URL UpperCAmelCase_ : int = "How many cats are there?" UpperCAmelCase_ : Any = [ {"score": 0.0_0_0_1, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_0_0_1, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Dict = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCAmelCase_ : Optional[Any] = INVOICE_URL UpperCAmelCase_ : Dict = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : int = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : Tuple = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCAmelCase_ : Tuple = INVOICE_URL UpperCAmelCase_ : Any = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , ) UpperCAmelCase_ : Any = INVOICE_URL UpperCAmelCase_ : List[str] = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCAmelCase_ : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : List[str] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , max_seq_len=50 , ) UpperCAmelCase_ : List[Any] = INVOICE_URL UpperCAmelCase_ : Optional[int] = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCAmelCase_ : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : Dict = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCAmelCase_ : Optional[int] = INVOICE_URL UpperCAmelCase_ : int = "What is the invoice number?" UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass
95
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowercase_ : Optional[int] = [False] * len(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] ): lowercase_ : List[str] = True lowercase_ : str = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowercase : List[str] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
717
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: lowercase_ : str = 1.5 lowercase_ : List[Any] = int(factor * num_class_images ) lowercase_ : int = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=UpperCAmelCase__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase_ : List[str] = client.query(text=UpperCAmelCase__ ) if len(UpperCAmelCase__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase_ : List[str] = int(factor * num_images ) lowercase_ : List[str] = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 , ) lowercase_ : List[str] = 0 lowercase_ : Dict = 0 lowercase_ : Tuple = tqdm(desc="""downloading real regularization images""" , total=UpperCAmelCase__ ) with open(F'''{class_data_dir}/caption.txt''' , """w""" ) as fa, open(F'''{class_data_dir}/urls.txt''' , """w""" ) as fa, open( F'''{class_data_dir}/images.txt''' , """w""" ) as fa: while total < num_class_images: lowercase_ : str = class_images[count] count += 1 try: lowercase_ : Union[str, Any] = requests.get(images["""url"""] ) if img.status_code == 200: lowercase_ : List[str] = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Any = argparse.ArgumentParser("""""" , add_help=UpperCAmelCase__ ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=UpperCAmelCase__ , type=UpperCAmelCase__ ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=UpperCAmelCase__ , type=UpperCAmelCase__ ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=UpperCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": _lowercase : Dict = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
30
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Tuple ='''markuplm''' def __init__( self :Optional[Any], snake_case :List[Any]=3_0522, snake_case :Optional[int]=768, snake_case :Union[str, Any]=12, snake_case :int=12, snake_case :Optional[int]=3072, snake_case :int="gelu", snake_case :List[str]=0.1, snake_case :Dict=0.1, snake_case :int=512, snake_case :List[Any]=2, snake_case :List[Any]=0.0_2, snake_case :Any=1e-1_2, snake_case :Optional[int]=0, snake_case :Optional[int]=0, snake_case :List[Any]=2, snake_case :Union[str, Any]=256, snake_case :Optional[int]=1024, snake_case :str=216, snake_case :Tuple=1001, snake_case :Optional[Any]=32, snake_case :Union[str, Any]=50, snake_case :int="absolute", snake_case :Dict=True, snake_case :List[Any]=None, **snake_case :Optional[int], ): """simple docstring""" super().__init__( pad_token_id=snake_case, bos_token_id=snake_case, eos_token_id=snake_case, **snake_case, ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =hidden_act _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =classifier_dropout # additional properties _lowercase =max_depth _lowercase =max_xpath_tag_unit_embeddings _lowercase =max_xpath_subs_unit_embeddings _lowercase =tag_pad_id _lowercase =subs_pad_id _lowercase =xpath_unit_hidden_size
181
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : int ='''summarization''' __lowerCAmelCase : str =['''loss'''] __lowerCAmelCase : Dict =ROUGE_KEYS __lowerCAmelCase : str ='''rouge2''' def __init__( self :Dict, snake_case :List[Any], **snake_case :Tuple): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: _lowercase =False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training') if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously') super().__init__(snake_case, num_labels=snake_case, mode=self.mode, **snake_case) use_task_specific_params(self.model, 'summarization') save_git_info(self.hparams.output_dir) _lowercase =Path(self.output_dir) / 'metrics.json' _lowercase =Path(self.output_dir) / 'hparams.pkl' pickle_save(self.hparams, self.hparams_save_path) _lowercase =0 _lowercase =defaultdict(snake_case) _lowercase =self.config.model_type _lowercase =self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size _lowercase ={ "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _lowercase ={ 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } _lowercase ={k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _lowercase ={ 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder()) assert_all_frozen(self.model.get_encoder()) _lowercase =get_git_info()['repo_sha'] _lowercase =hparams.num_workers _lowercase =None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, snake_case): _lowercase =self.tokenizer.lang_code_to_id[hparams.tgt_lang] _lowercase =self.decoder_start_token_id _lowercase =( SeqaSeqDataset if hasattr(self.tokenizer, 'prepare_seq2seq_batch') else LegacySeqaSeqDataset ) _lowercase =False _lowercase =self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _lowercase =self.hparams.eval_max_gen_length else: _lowercase =self.model.config.max_length _lowercase =self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self :str, snake_case :Dict[str, torch.Tensor]): """simple docstring""" _lowercase ={ k: self.tokenizer.batch_decode(v.tolist()) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(snake_case, Path(self.output_dir) / 'text_batch.json') save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir) / 'tok_batch.json') _lowercase =True return readable_batch def UpperCamelCase__ ( self :Dict, snake_case :List[str], **snake_case :List[Any]): """simple docstring""" return self.model(snake_case, **snake_case) def UpperCamelCase__ ( self :Any, snake_case :List[int]): """simple docstring""" _lowercase =self.tokenizer.batch_decode( snake_case, skip_special_tokens=snake_case, clean_up_tokenization_spaces=snake_case) return lmap(str.strip, snake_case) def UpperCamelCase__ ( self :Union[str, Any], snake_case :dict): """simple docstring""" _lowercase =self.tokenizer.pad_token_id _lowercase , _lowercase =batch['input_ids'], batch['attention_mask'] _lowercase =batch['labels'] if isinstance(self.model, snake_case): _lowercase =self.model._shift_right(snake_case) else: _lowercase =shift_tokens_right(snake_case, snake_case) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _lowercase =decoder_input_ids self.save_readable_batch(snake_case) _lowercase =self(snake_case, attention_mask=snake_case, decoder_input_ids=snake_case, use_cache=snake_case) _lowercase =outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _lowercase =nn.CrossEntropyLoss(ignore_index=snake_case) assert lm_logits.shape[-1] == self.vocab_size _lowercase =ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1)) else: _lowercase =nn.functional.log_softmax(snake_case, dim=-1) _lowercase , _lowercase =label_smoothed_nll_loss( snake_case, snake_case, self.hparams.label_smoothing, ignore_index=snake_case) return (loss,) @property def UpperCamelCase__ ( self :Dict): """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ ( self :Tuple, snake_case :Dict, snake_case :str): """simple docstring""" _lowercase =self._step(snake_case) _lowercase =dict(zip(self.loss_names, snake_case)) # tokens per batch _lowercase =batch['input_ids'].ne(self.pad).sum() + batch['labels'].ne(self.pad).sum() _lowercase =batch['input_ids'].shape[0] _lowercase =batch['input_ids'].eq(self.pad).sum() _lowercase =batch['input_ids'].eq(self.pad).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self :List[Any], snake_case :Dict, snake_case :List[Any]): """simple docstring""" return self._generative_step(snake_case) def UpperCamelCase__ ( self :List[Any], snake_case :List[str], snake_case :str="val"): """simple docstring""" self.step_count += 1 _lowercase ={k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} _lowercase =losses['loss'] _lowercase ={ k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } _lowercase =( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _lowercase =torch.tensor(snake_case).type_as(snake_case) generative_metrics.update({k: v.item() for k, v in losses.items()}) losses.update(snake_case) _lowercase ={f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _lowercase =self.step_count self.metrics[prefix].append(snake_case) # callback writes this to self.metrics_save_path _lowercase =flatten_list([x['preds'] for x in outputs]) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase__ ( self :Any, snake_case :str, snake_case :List[str]): """simple docstring""" return calculate_rouge(snake_case, snake_case) def UpperCamelCase__ ( self :str, snake_case :dict): """simple docstring""" _lowercase =time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _lowercase =self.model.generate( batch['input_ids'], attention_mask=batch['attention_mask'], use_cache=snake_case, decoder_start_token_id=self.decoder_start_token_id, num_beams=self.eval_beams, max_length=self.eval_max_length, ) _lowercase =(time.time() - ta) / batch['input_ids'].shape[0] _lowercase =self.ids_to_clean_text(snake_case) _lowercase =self.ids_to_clean_text(batch['labels']) _lowercase =self._step(snake_case) _lowercase =dict(zip(self.loss_names, snake_case)) _lowercase =self.calc_generative_metrics(snake_case, snake_case) _lowercase =np.mean(lmap(snake_case, snake_case)) base_metrics.update(gen_time=snake_case, gen_len=snake_case, preds=snake_case, target=snake_case, **snake_case) return base_metrics def UpperCamelCase__ ( self :Optional[Any], snake_case :str, snake_case :Optional[int]): """simple docstring""" return self._generative_step(snake_case) def UpperCamelCase__ ( self :Union[str, Any], snake_case :List[str]): """simple docstring""" return self.validation_epoch_end(snake_case, prefix='test') def UpperCamelCase__ ( self :List[Any], snake_case :str): """simple docstring""" _lowercase =self.n_obs[type_path] _lowercase =self.target_lens[type_path] _lowercase =self.dataset_class( self.tokenizer, type_path=snake_case, n_obs=snake_case, max_target_length=snake_case, **self.dataset_kwargs, ) return dataset def UpperCamelCase__ ( self :str, snake_case :str, snake_case :int, snake_case :bool = False): """simple docstring""" _lowercase =self.get_dataset(snake_case) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _lowercase =dataset.make_sortish_sampler(snake_case, distributed=self.hparams.gpus > 1) return DataLoader( snake_case, batch_size=snake_case, collate_fn=dataset.collate_fn, shuffle=snake_case, num_workers=self.num_workers, sampler=snake_case, ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _lowercase =dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1) return DataLoader( snake_case, batch_sampler=snake_case, collate_fn=dataset.collate_fn, num_workers=self.num_workers, ) else: return DataLoader( snake_case, batch_size=snake_case, collate_fn=dataset.collate_fn, shuffle=snake_case, num_workers=self.num_workers, sampler=snake_case, ) def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" _lowercase =self.get_dataloader('train', batch_size=self.hparams.train_batch_size, shuffle=snake_case) return dataloader def UpperCamelCase__ ( self :Dict): """simple docstring""" return self.get_dataloader('val', batch_size=self.hparams.eval_batch_size) def UpperCamelCase__ ( self :int): """simple docstring""" return self.get_dataloader('test', batch_size=self.hparams.eval_batch_size) @staticmethod def UpperCamelCase__ ( snake_case :Dict, snake_case :List[str]): """simple docstring""" BaseTransformer.add_model_specific_args(snake_case, snake_case) add_generic_args(snake_case, snake_case) parser.add_argument( '--max_source_length', default=1024, type=snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--max_target_length', default=56, type=snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--val_max_target_length', default=142, type=snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--test_max_target_length', default=142, type=snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument('--freeze_encoder', action='store_true') parser.add_argument('--freeze_embeds', action='store_true') parser.add_argument('--sortish_sampler', action='store_true', default=snake_case) parser.add_argument('--overwrite_output_dir', action='store_true', default=snake_case) parser.add_argument('--max_tokens_per_batch', type=snake_case, default=snake_case) parser.add_argument('--logger_name', type=snake_case, choices=['default', 'wandb', 'wandb_shared'], default='default') parser.add_argument('--n_train', type=snake_case, default=-1, required=snake_case, help='# examples. -1 means use all.') parser.add_argument('--n_val', type=snake_case, default=500, required=snake_case, help='# examples. -1 means use all.') parser.add_argument('--n_test', type=snake_case, default=-1, required=snake_case, help='# examples. -1 means use all.') parser.add_argument( '--task', type=snake_case, default='summarization', required=snake_case, help='# examples. -1 means use all.') parser.add_argument('--label_smoothing', type=snake_case, default=0.0, required=snake_case) parser.add_argument('--src_lang', type=snake_case, default='', required=snake_case) parser.add_argument('--tgt_lang', type=snake_case, default='', required=snake_case) parser.add_argument('--eval_beams', type=snake_case, default=snake_case, required=snake_case) parser.add_argument( '--val_metric', type=snake_case, default=snake_case, required=snake_case, choices=['bleu', 'rouge2', 'loss', None]) parser.add_argument('--eval_max_gen_length', type=snake_case, default=snake_case, help='never generate more than n tokens') parser.add_argument('--save_top_k', type=snake_case, default=1, required=snake_case, help='How many checkpoints to save') parser.add_argument( '--early_stopping_patience', type=snake_case, default=-1, required=snake_case, help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ), ) return parser class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] ='''translation''' __lowerCAmelCase : Any =['''loss'''] __lowerCAmelCase : Optional[int] =['''bleu'''] __lowerCAmelCase : Any ='''bleu''' def __init__( self :str, snake_case :Union[str, Any], **snake_case :Any): """simple docstring""" super().__init__(snake_case, **snake_case) _lowercase =hparams.src_lang _lowercase =hparams.tgt_lang def UpperCamelCase__ ( self :Dict, snake_case :Union[str, Any], snake_case :Any): """simple docstring""" return calculate_bleu(snake_case, snake_case) def _snake_case (_snake_case : Dict , _snake_case : int=None) -> SummarizationModule: Path(args.output_dir).mkdir(exist_ok=_snake_case) check_output_dir(_snake_case , expected_items=3) if model is None: if "summarization" in args.task: _lowercase =SummarizationModule(_snake_case) else: _lowercase =TranslationModule(_snake_case) _lowercase =Path(args.data_dir).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir).startswith('/tmp') or str(args.output_dir).startswith('/var') ): _lowercase =True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _lowercase =os.environ.get('WANDB_PROJECT' , _snake_case) _lowercase =WandbLogger(name=model.output_dir.name , project=_snake_case) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _lowercase =WandbLogger(name=model.output_dir.name , project=f'''hf_{dataset}''') if args.early_stopping_patience >= 0: _lowercase =get_early_stopping_callback(model.val_metric , args.early_stopping_patience) else: _lowercase =False _lowercase =args.val_metric == 'loss' _lowercase =generic_train( _snake_case , _snake_case , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _snake_case) , early_stopping_callback=_snake_case , logger=_snake_case , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl') if not args.do_predict: return model _lowercase ='' _lowercase =sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt') , recursive=_snake_case)) if checkpoints: _lowercase =checkpoints[-1] _lowercase =checkpoints[-1] trainer.logger.log_hyperparams(model.hparams) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE = pl.Trainer.add_argparse_args(parser) _SCREAMING_SNAKE_CASE = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
181
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @slow @require_torch def _snake_case ( self : int ) -> str: _lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) _lowerCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowerCamelCase = bertabert.config.encoder.vocab_size _lowerCamelCase = tokenizer.sep_token_id _lowerCamelCase = tokenizer.cls_token_id _lowerCamelCase = 1_2_8 _lowerCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) _lowerCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) _lowerCamelCase = train_dataset.select(range(3_2 ) ) _lowerCamelCase = val_dataset.select(range(1_6 ) ) _lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(snake_case__ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCamelCase = tokenizer(batch['article'] , padding='max_length' , truncation=snake_case__ , max_length=5_1_2 ) _lowerCamelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=snake_case__ , max_length=1_2_8 ) _lowerCamelCase = inputs.input_ids _lowerCamelCase = inputs.attention_mask _lowerCamelCase = outputs.input_ids _lowerCamelCase = outputs.input_ids.copy() _lowerCamelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] _lowerCamelCase = outputs.attention_mask assert all(len(snake_case__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(snake_case__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(snake_case__ : Union[str, Any] ): _lowerCamelCase = pred.label_ids _lowerCamelCase = pred.predictions # all unnecessary tokens are removed _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(snake_case__ ) )] ) / len(snake_case__ ) return {"accuracy": accuracy} # map train dataset _lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=snake_case__ , batch_size=snake_case__ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset _lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=snake_case__ , batch_size=snake_case__ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = SeqaSeqTrainingArguments( output_dir=snake_case__ , per_device_train_batch_size=snake_case__ , per_device_eval_batch_size=snake_case__ , predict_with_generate=snake_case__ , evaluation_strategy='steps' , do_train=snake_case__ , do_eval=snake_case__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowerCamelCase = SeqaSeqTrainer( model=snake_case__ , args=snake_case__ , compute_metrics=_compute_metrics , train_dataset=snake_case__ , eval_dataset=snake_case__ , tokenizer=snake_case__ , ) # start training trainer.train()
706
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : int , snake_case__ : UNetaDModel , snake_case__ : ScoreSdeVeScheduler ) -> Dict: super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Any , snake_case__ : int = 1 , snake_case__ : int = 2_0_0_0 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , **snake_case__ : Tuple , ) -> Union[ImagePipelineOutput, Tuple]: _lowerCamelCase = self.unet.config.sample_size _lowerCamelCase = (batch_size, 3, img_size, img_size) _lowerCamelCase = self.unet _lowerCamelCase = randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma _lowerCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _lowerCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _lowerCamelCase = self.unet(snake_case__ , snake_case__ ).sample _lowerCamelCase = self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step _lowerCamelCase = model(snake_case__ , snake_case__ ).sample _lowerCamelCase = self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) _lowerCamelCase , _lowerCamelCase = output.prev_sample, output.prev_sample_mean _lowerCamelCase = sample_mean.clamp(0 , 1 ) _lowerCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase = self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
234
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Dict = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''ctrl''' UpperCamelCase_ : List[Any] = ['''past_key_values'''] UpperCamelCase_ : int = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , A_ : str=246_534 , A_ : Dict=256 , A_ : Optional[int]=1_280 , A_ : int=8_192 , A_ : List[Any]=48 , A_ : Optional[int]=16 , A_ : Union[str, Any]=0.1 , A_ : List[Any]=0.1 , A_ : str=1E-6 , A_ : str=0.02 , A_ : Optional[Any]=True , **A_ : Tuple , ) -> Tuple: __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = dff __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache super().__init__(**A_ )
564
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase : Union[str, Any] = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
527
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
527
1
'''simple docstring''' def lowerCamelCase_ ( A_ ): def merge(A_ , A_ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(A_ ) <= 1: return collection __lowerCamelCase = len(A_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : str =input("Enter numbers separated by a comma:\n").strip() _UpperCamelCase : Any =[int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
316
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Dict ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["bs4"]) super().__init__(**UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Tuple) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =[] lowerCamelCase__: Tuple =[] lowerCamelCase__: Optional[Any] =element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCamelCase__: Tuple =parent.find_all(child.name , recursive=UpperCAmelCase_) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(UpperCAmelCase_) else next(i for i, s in enumerate(UpperCAmelCase_ , 1) if s is child)) lowerCamelCase__: str =parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int) ->str: '''simple docstring''' lowerCamelCase__: Dict =BeautifulSoup(UpperCAmelCase_ , "html.parser") lowerCamelCase__: Dict =[] lowerCamelCase__: Dict =[] lowerCamelCase__: Union[str, Any] =[] for element in html_code.descendants: if type(UpperCAmelCase_) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue lowerCamelCase__: Union[str, Any] =html.unescape(UpperCAmelCase_).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.xpath_soup(UpperCAmelCase_) stringaxtag_seq.append(UpperCAmelCase_) stringaxsubs_seq.append(UpperCAmelCase_) if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError("Number of doc strings and xtags does not correspond") if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError("Number of doc strings and xsubs does not correspond") return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Dict ="" for tagname, subs in zip(UpperCAmelCase_ , UpperCAmelCase_): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__(self : List[Any] , UpperCAmelCase_ : Optional[int]) ->BatchFeature: '''simple docstring''' lowerCamelCase__: Dict =False # Check that strings has a valid type if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =True elif isinstance(UpperCAmelCase_ , (list, tuple)): if len(UpperCAmelCase_) == 0 or isinstance(html_strings[0] , UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(UpperCAmelCase_)}.""") lowerCamelCase__: Union[str, Any] =bool(isinstance(UpperCAmelCase_ , (list, tuple)) and (isinstance(html_strings[0] , UpperCAmelCase_))) if not is_batched: lowerCamelCase__: Dict =[html_strings] # Get nodes + xpaths lowerCamelCase__: Optional[int] =[] lowerCamelCase__: Union[str, Any] =[] for html_string in html_strings: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =self.get_three_from_single(UpperCAmelCase_) nodes.append(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[] for node, tag_list, sub_list in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =self.construct_xpath(UpperCAmelCase_ , UpperCAmelCase_) xpath_strings.append(UpperCAmelCase_) xpaths.append(UpperCAmelCase_) # return as Dict lowerCamelCase__: List[str] ={"nodes": nodes, "xpaths": xpaths} lowerCamelCase__: List[str] =BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) return encoded_inputs
437
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__a ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__(self : Tuple , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[Any] , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =size if size is not None else {"shortest_edge": 256} lowerCamelCase__: Any =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) lowerCamelCase__: Tuple =crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase__: Any =get_size_dict(UpperCAmelCase_ , param_name="crop_size") lowerCamelCase__: str =do_resize lowerCamelCase__: Any =size lowerCamelCase__: Any =do_center_crop lowerCamelCase__: int =crop_size lowerCamelCase__: int =resample lowerCamelCase__: Optional[int] =do_rescale lowerCamelCase__: int =rescale_factor lowerCamelCase__: Dict =offset lowerCamelCase__: List[Any] =do_normalize lowerCamelCase__: Optional[int] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__: List[str] =image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: Dict =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" in size: lowerCamelCase__: Union[str, Any] =get_resize_output_image_size(UpperCAmelCase_ , size["shortest_edge"] , default_to_square=UpperCAmelCase_) elif "height" in size and "width" in size: lowerCamelCase__: int =(size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""") return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: List[str] =get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =image.astype(np.floataa) if offset: lowerCamelCase__: List[Any] =image - (scale / 2) return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) ->np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True.") # All transformations expect numpy arrays. lowerCamelCase__: List[str] =to_numpy_array(UpperCAmelCase_) if do_resize: lowerCamelCase__: Optional[Any] =self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) if do_center_crop: lowerCamelCase__: str =self.center_crop(UpperCAmelCase_ , size=UpperCAmelCase_) if do_rescale: lowerCamelCase__: List[str] =self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ , offset=UpperCAmelCase_) if do_normalize: lowerCamelCase__: Dict =self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) lowerCamelCase__: Any =to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) return image def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ) ->PIL.Image.Image: '''simple docstring''' lowerCamelCase__: Union[str, Any] =do_resize if do_resize is not None else self.do_resize lowerCamelCase__: Optional[int] =resample if resample is not None else self.resample lowerCamelCase__: Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__: List[str] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: Dict =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: Union[str, Any] =offset if offset is not None else self.offset lowerCamelCase__: Dict =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__: Optional[int] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__: List[Any] =image_std if image_std is not None else self.image_std lowerCamelCase__: List[Any] =size if size is not None else self.size lowerCamelCase__: Optional[int] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) lowerCamelCase__: str =crop_size if crop_size is not None else self.crop_size lowerCamelCase__: Optional[Any] =get_size_dict(UpperCAmelCase_ , param_name="crop_size") if not valid_images(UpperCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") lowerCamelCase__: str =make_batched(UpperCAmelCase_) lowerCamelCase__: Any =[ [ self._preprocess_image( image=UpperCAmelCase_ , do_resize=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , do_center_crop=UpperCAmelCase_ , crop_size=UpperCAmelCase_ , do_rescale=UpperCAmelCase_ , rescale_factor=UpperCAmelCase_ , offset=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , ) for img in video ] for video in videos ] lowerCamelCase__: int ={"pixel_values": videos} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
437
1