code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __snake_case : List[Any] =logging.get_logger(__name__) __snake_case : Dict ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[int] =[ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] __snake_case : Optional[Any] ={ 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } __snake_case : Tuple ={f"""funnel-transformer/{name}""": 5_1_2 for name in _model_names} __snake_case : List[str] ={f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_INIT_CONFIGURATION snake_case_ =FunnelTokenizer snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =2 def __init__(self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<sep>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase="<cls>" ,__lowerCamelCase="<mask>" ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase="##" ,**__lowerCamelCase ,) -> int: """simple docstring""" super().__init__( __lowerCamelCase ,tokenizer_file=__lowerCamelCase ,do_lower_case=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,clean_text=__lowerCamelCase ,tokenize_chinese_chars=__lowerCamelCase ,strip_accents=__lowerCamelCase ,wordpieces_prefix=__lowerCamelCase ,**__lowerCamelCase ,) lowerCAmelCase__ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ : Union[str, Any] = getattr(__lowerCamelCase ,normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : Union[str, Any] = strip_accents lowerCAmelCase__ : Optional[int] = tokenize_chinese_chars lowerCAmelCase__ : Any = normalizer_class(**__lowerCamelCase ) lowerCAmelCase__ : Any = do_lower_case def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase__ : List[str] = self._tokenizer.model.save(__lowerCamelCase ,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
647
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =KandinskyVaaPipeline snake_case_ =[ """image_embeds""", """negative_image_embeds""", ] snake_case_ =["""image_embeds""", """negative_image_embeds"""] snake_case_ =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ =False @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" return 32 @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return 32 @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return 1_00 @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase__ : int = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.dummy_unet lowerCAmelCase__ : int = self.dummy_movq lowerCAmelCase__ : str = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule='''linear''' ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=__lowerCamelCase ,set_alpha_to_one=__lowerCamelCase ,steps_offset=1 ,prediction_type='''epsilon''' ,thresholding=__lowerCamelCase ,) lowerCAmelCase__ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Dict = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Any = '''cpu''' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = self.pipeline_class(**__lowerCamelCase ) lowerCAmelCase__ : str = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : int = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : List[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) ,return_dict=__lowerCamelCase ,)[0] lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowerCAmelCase__ : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' ,torch_dtype=torch.floataa ) lowerCAmelCase__ : List[Any] = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : str = '''red cat, 4k photo''' lowerCAmelCase__ : Dict = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = pipe_prior( __lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() lowerCAmelCase__ : int = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase__ : Any = pipeline( image_embeds=__lowerCamelCase ,negative_image_embeds=__lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=1_00 ,output_type='''np''' ,) lowerCAmelCase__ : List[str] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__lowerCamelCase ,__lowerCamelCase )
647
1
'''simple docstring''' def __lowercase (_lowercase ) -> list: """simple docstring""" # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence __lowerCamelCase : Optional[Any] = gray_code_sequence_string(_lowercase ) # # convert them to integers for i in range(len(_lowercase ) ): __lowerCamelCase : List[str] = int(sequence[i], 2 ) return sequence def __lowercase (_lowercase ) -> list: """simple docstring""" # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowerCamelCase : str = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowerCamelCase : Union[str, Any] = gray_code_sequence_string(bit_count - 1 ) __lowerCamelCase : Optional[int] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowerCamelCase : Union[str, Any] = """0""" + smaller_sequence[i] sequence.append(_lowercase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowerCamelCase : Optional[Any] = """1""" + smaller_sequence[i] sequence.append(_lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase () -> str: """simple docstring""" __lowerCamelCase : Any = HfArgumentParser(_lowercase ) __lowerCamelCase : List[str] = parser.parse_args_into_dataclasses()[0] __lowerCamelCase : Dict = TensorFlowBenchmark(args=_lowercase ) try: __lowerCamelCase : List[str] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowerCamelCase : Tuple = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" __lowerCamelCase : List[Any] = """ """.join(str(_lowercase ).split(""" """ )[:-1] ) __lowerCamelCase : Tuple = """""" __lowerCamelCase : List[str] = eval(str(_lowercase ).split(""" """ )[-1] ) __lowerCamelCase : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowercase ) if len(_lowercase ) > 0: __lowerCamelCase : Tuple = full_error_msg + begin_error_msg + str(_lowercase ) raise ValueError(_lowercase ) benchmark.run() if __name__ == "__main__": main()
483
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __UpperCamelCase ( lowercase__ ): def __init__( self :Union[str, Any] ): snake_case_ : List[Any] = [] def a__ ( self :Any ,_UpperCamelCase :Dict ,_UpperCamelCase :str ,_UpperCamelCase :int ,**_UpperCamelCase :List[Any] ): self.events.append("""on_init_end""" ) def a__ ( self :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :List[Any] ,**_UpperCamelCase :Optional[Any] ): self.events.append("""on_train_begin""" ) def a__ ( self :Dict ,_UpperCamelCase :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :List[str] ,**_UpperCamelCase :int ): self.events.append("""on_train_end""" ) def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :Tuple ,_UpperCamelCase :Any ,**_UpperCamelCase :Optional[Any] ): self.events.append("""on_epoch_begin""" ) def a__ ( self :Dict ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, Any] ,**_UpperCamelCase :Union[str, Any] ): self.events.append("""on_epoch_end""" ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :List[Any] ,**_UpperCamelCase :Optional[Any] ): self.events.append("""on_step_begin""" ) def a__ ( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :Dict ,_UpperCamelCase :List[Any] ,**_UpperCamelCase :List[str] ): self.events.append("""on_step_end""" ) def a__ ( self :List[str] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :str ,**_UpperCamelCase :str ): self.events.append("""on_evaluate""" ) def a__ ( self :str ,_UpperCamelCase :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Dict ,**_UpperCamelCase :Optional[int] ): self.events.append("""on_predict""" ) def a__ ( self :List[str] ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :Tuple ,**_UpperCamelCase :int ): self.events.append("""on_save""" ) def a__ ( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :Dict ,_UpperCamelCase :Optional[int] ,**_UpperCamelCase :List[Any] ): self.events.append("""on_log""" ) def a__ ( self :str ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[str] ,**_UpperCamelCase :Optional[Any] ): self.events.append("""on_prediction_step""" ) @require_torch class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = tempfile.mkdtemp() def a__ ( self :Dict ): shutil.rmtree(self.output_dir ) def a__ ( self :Optional[Any] ,_UpperCamelCase :List[Any]=0 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :Optional[int]=6_4 ,_UpperCamelCase :int=6_4 ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Optional[int]=False ,**_UpperCamelCase :int ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case_ : List[str] = RegressionDataset(length=_UpperCamelCase ) snake_case_ : int = RegressionDataset(length=_UpperCamelCase ) snake_case_ : Optional[int] = RegressionModelConfig(a=_UpperCamelCase ,b=_UpperCamelCase ) snake_case_ : List[str] = RegressionPreTrainedModel(_UpperCamelCase ) snake_case_ : Tuple = TrainingArguments(self.output_dir ,disable_tqdm=_UpperCamelCase ,report_to=[] ,**_UpperCamelCase ) return Trainer( _UpperCamelCase ,_UpperCamelCase ,train_dataset=_UpperCamelCase ,eval_dataset=_UpperCamelCase ,callbacks=_UpperCamelCase ,) def a__ ( self :List[str] ,_UpperCamelCase :str ,_UpperCamelCase :Dict ): self.assertEqual(len(_UpperCamelCase ) ,len(_UpperCamelCase ) ) # Order doesn't matter snake_case_ : Union[str, Any] = sorted(_UpperCamelCase ,key=lambda _UpperCamelCase : cb.__name__ if isinstance(_UpperCamelCase ,_UpperCamelCase ) else cb.__class__.__name__ ) snake_case_ : Dict = sorted(_UpperCamelCase ,key=lambda _UpperCamelCase : cb.__name__ if isinstance(_UpperCamelCase ,_UpperCamelCase ) else cb.__class__.__name__ ) for cba, cba in zip(_UpperCamelCase ,_UpperCamelCase ): if isinstance(_UpperCamelCase ,_UpperCamelCase ) and isinstance(_UpperCamelCase ,_UpperCamelCase ): self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) elif isinstance(_UpperCamelCase ,_UpperCamelCase ) and not isinstance(_UpperCamelCase ,_UpperCamelCase ): self.assertEqual(_UpperCamelCase ,cba.__class__ ) elif not isinstance(_UpperCamelCase ,_UpperCamelCase ) and isinstance(_UpperCamelCase ,_UpperCamelCase ): self.assertEqual(cba.__class__ ,_UpperCamelCase ) else: self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): snake_case_ : int = ["""on_init_end""", """on_train_begin"""] snake_case_ : int = 0 snake_case_ : Tuple = len(trainer.get_eval_dataloader() ) snake_case_ : List[str] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(_UpperCamelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = self.get_trainer() snake_case_ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) # Callbacks passed at init are added to the default callbacks snake_case_ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case_ : Optional[Any] = self.get_trainer(disable_tqdm=_UpperCamelCase ) snake_case_ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) def a__ ( self :Optional[int] ): snake_case_ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case_ : Optional[int] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_UpperCamelCase ) expected_callbacks.remove(_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) snake_case_ : Any = self.get_trainer() snake_case_ : List[Any] = trainer.pop_callback(_UpperCamelCase ) self.assertEqual(cb.__class__ ,_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) trainer.add_callback(_UpperCamelCase ) expected_callbacks.insert(0 ,_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) # We can also add, pop, or remove by instance snake_case_ : Optional[Any] = self.get_trainer() snake_case_ : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(_UpperCamelCase ) expected_callbacks.remove(_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) snake_case_ : Tuple = self.get_trainer() snake_case_ : Union[str, Any] = trainer.callback_handler.callbacks[0] snake_case_ : str = trainer.pop_callback(_UpperCamelCase ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) trainer.add_callback(_UpperCamelCase ) expected_callbacks.insert(0 ,_UpperCamelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCamelCase ) def a__ ( self :List[str] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" ,category=_UpperCamelCase ) snake_case_ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case_ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCamelCase ,self.get_expected_events(_UpperCamelCase ) ) # Independent log/save/eval snake_case_ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() snake_case_ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCamelCase ,self.get_expected_events(_UpperCamelCase ) ) snake_case_ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() snake_case_ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCamelCase ,self.get_expected_events(_UpperCamelCase ) ) snake_case_ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy="""steps""" ) trainer.train() snake_case_ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCamelCase ,self.get_expected_events(_UpperCamelCase ) ) snake_case_ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy="""epoch""" ) trainer.train() snake_case_ : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCamelCase ,self.get_expected_events(_UpperCamelCase ) ) # A bit of everything snake_case_ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy="""steps""" ,) trainer.train() snake_case_ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCamelCase ,self.get_expected_events(_UpperCamelCase ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case_ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(_UpperCamelCase ) in warn_mock.call_args[0][0]
334
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : str = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None ): '''simple docstring''' snake_case_ : Tuple = True while ask_again: snake_case_ : Any = input(lowerCamelCase_ ) try: if default is not None and len(lowerCamelCase_ ) == 0: return default return convert_value(lowerCamelCase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any]=[] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :Union[str, Any]=0 ): '''simple docstring''' snake_case_ : List[str] = BulletMenu(lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : int = menu.run(default_choice=lowerCamelCase_ ) return convert_value(lowerCamelCase_ ) if convert_value is not None else result def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : str = int(lowerCamelCase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = int(lowerCamelCase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = int(lowerCamelCase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = int(lowerCamelCase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : str = int(lowerCamelCase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def a__ ( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Any ): snake_case_ : List[Any] = super()._format_usage(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = usage.replace("""<command> [<args>] """ ,"""""" ) return usage
334
1
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Color current vertex A_ = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ): return True # Backtrack A_ = -1 return False def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [-1] * len(SCREAMING_SNAKE_CASE ) if util_color(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 ): return colored_vertices return []
712
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __lowercase = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A_ = '''lm_head''' A_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: A_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A_ = True if "*" in mapped_key: A_ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] A_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: A_ = '''weight_g''' elif "weight_v" in name: A_ = '''weight_v''' elif "bias" in name: A_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ = '''weight''' else: A_ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = full_name.split('''conv_layers.''' )[-1] A_ = name.split('''.''' ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if config_path is not None: A_ = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: A_ = UniSpeechConfig() if is_finetuned: if dict_path: A_ = Dictionary.load_from_json(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) A_ = target_dict.indices # fairseq has the <pad> and <s> switched A_ = 42 A_ = 43 with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) A_ = True if config.feat_extract_norm == '''layer''' else False A_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) A_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) A_ = UniSpeechForCTC(SCREAMING_SNAKE_CASE ) else: A_ = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE ) if is_finetuned: A_ ,A_ ,A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: A_ ,A_ ,A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowercase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
563
0
_lowercase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowercase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list[int]: '''simple docstring''' lowerCamelCase__: Optional[int] = True lowerCamelCase__: Union[str, Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) order.append(_UpperCamelCase ) return order def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] = True lowerCamelCase__: Optional[int] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return component def __lowerCAmelCase ( _UpperCamelCase ) -> list[list[int]]: '''simple docstring''' lowerCamelCase__: List[Any] = len(_UpperCamelCase ) * [False] lowerCamelCase__: dict[int, list[int]] = {vert: [] for vert in range(len(_UpperCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCamelCase ) lowerCamelCase__: Tuple = [] for i, was_visited in enumerate(_UpperCamelCase ): if not was_visited: order += topology_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: Tuple = [] lowerCamelCase__: Optional[Any] = len(_UpperCamelCase ) * [False] for i in range(len(_UpperCamelCase ) ): lowerCamelCase__: Optional[Any] = order[len(_UpperCamelCase ) - i - 1] if not visited[vert]: lowerCamelCase__: Optional[Any] = find_components(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) components_list.append(_UpperCamelCase ) return components_list
306
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> Any: '''simple docstring''' if attention_mask is None: lowerCamelCase__: List[str] = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase__ : __lowerCamelCase = OPTConfig __lowerCamelCase = {} __lowerCamelCase = """gelu""" def __init__( self : Union[str, Any] , __a : List[Any] , __a : Dict=13 , __a : Dict=7 , __a : Optional[Any]=True , __a : Any=False , __a : Tuple=99 , __a : Optional[int]=16 , __a : Any=2 , __a : Optional[Any]=4 , __a : Union[str, Any]=4 , __a : Tuple="gelu" , __a : Optional[int]=0.1 , __a : int=0.1 , __a : List[Any]=20 , __a : Tuple=2 , __a : str=1 , __a : str=0 , __a : List[Any]=16 , __a : Optional[Any]=16 , ): '''simple docstring''' lowerCamelCase__: List[str] = parent lowerCamelCase__: List[str] = batch_size lowerCamelCase__: Dict = seq_length lowerCamelCase__: List[str] = is_training lowerCamelCase__: Dict = use_labels lowerCamelCase__: Union[str, Any] = vocab_size lowerCamelCase__: Union[str, Any] = hidden_size lowerCamelCase__: Any = num_hidden_layers lowerCamelCase__: Union[str, Any] = num_attention_heads lowerCamelCase__: Tuple = intermediate_size lowerCamelCase__: Optional[int] = hidden_act lowerCamelCase__: Union[str, Any] = hidden_dropout_prob lowerCamelCase__: str = attention_probs_dropout_prob lowerCamelCase__: List[str] = max_position_embeddings lowerCamelCase__: Tuple = eos_token_id lowerCamelCase__: Any = pad_token_id lowerCamelCase__: str = bos_token_id lowerCamelCase__: Optional[int] = embed_dim lowerCamelCase__: Union[str, Any] = word_embed_proj_dim lowerCamelCase__: List[Any] = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__: Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__: Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__: Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) lowerCamelCase__: Optional[Any] = prepare_opt_inputs_dict(__a , __a ) return config, inputs_dict def lowerCamelCase_ ( self : str , __a : Optional[Any] , __a : Optional[int] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = TFOPTModel(config=__a ) lowerCamelCase__: Optional[Any] = inputs_dict["""input_ids"""] lowerCamelCase__: Dict = input_ids[:1, :] lowerCamelCase__: Any = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase__: Any = 1 # first forward pass lowerCamelCase__: str = model(__a , attention_mask=__a , use_cache=__a ) lowerCamelCase__ , lowerCamelCase__: Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__: Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__: str = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__: Any = model(__a , attention_mask=__a )[0] lowerCamelCase__: Any = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__: Optional[int] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__: List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) @require_tf class lowerCamelCase__ ( A__ , A__ , unittest.TestCase ): __lowerCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowerCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = 10 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: int = TFOPTModelTester(self ) lowerCamelCase__: Tuple = ConfigTester(self , config_class=__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__a : Optional[int] , __a : Dict ): if hasattr(__a , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase__: int = model_class(config=__a ) lowerCamelCase__: Tuple = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCamelCase__: Optional[int] = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__a ) lowerCamelCase__: str = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCamelCase__: List[str] = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase__: Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a ) # check that weights remain the same after resizing lowerCamelCase__: Optional[Any] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__: Any = False self.assertTrue(__a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a ) lowerCamelCase__: List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__: List[Any] = False self.assertTrue(__a ) def __lowerCAmelCase ( _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return tf.constant(_UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase__ ( unittest.TestCase ): __lowerCamelCase = 99 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: int = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase__: Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase__: Any = input_ids.shape[0] lowerCamelCase__: List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: int = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase__: List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCamelCase__: Optional[Any] = tf.not_equal(__a , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase__: str = model(input_ids=__a , attention_mask=__a ).last_hidden_state lowerCamelCase__: str = (1, 11, 512) self.assertEqual(output.shape , __a ) lowerCamelCase__: str = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-3 ) ) lowerCamelCase__: Optional[int] = tf.function(__a , jit_compile=__a ) lowerCamelCase__: List[Any] = xla_generate(__a , __a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] = """facebook/opt-350m""" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: Dict = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase__: Dict = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase__: Union[str, Any] = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase__: Union[str, Any] = tokenizer(__a , return_tensors="""tf""" , padding=__a , add_special_tokens=__a ) lowerCamelCase__: Union[str, Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase__: Dict = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) lowerCamelCase__: Any = tf.function(__a , jit_compile=__a ) lowerCamelCase__: List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase__ ( unittest.TestCase ): @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = """facebook/opt-125m""" lowerCamelCase__: Dict = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase__: Any = [] lowerCamelCase__: Optional[Any] = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: str = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCamelCase__: Dict = tokenizer(__a , return_tensors="""tf""" ).input_ids lowerCamelCase__: Any = model.generate(__a , max_length=10 ) lowerCamelCase__: Optional[int] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = """facebook/opt-350m""" lowerCamelCase__: Tuple = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: Any = TFOPTForCausalLM.from_pretrained(__a ) lowerCamelCase__: Tuple = """left""" # use different length sentences to test batching lowerCamelCase__: Tuple = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase__: List[Any] = tokenizer(__a , return_tensors="""tf""" , padding=__a ) lowerCamelCase__: Any = inputs["""input_ids"""] lowerCamelCase__: int = model.generate(input_ids=__a , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase__: Optional[int] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase__: Optional[Any] = model.generate(input_ids=__a ) lowerCamelCase__: int = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase__: Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase__: str = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) lowerCamelCase__: List[str] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) lowerCamelCase__: Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) lowerCamelCase__: Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) lowerCamelCase__: Tuple = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: Dict = """facebook/opt-350m""" lowerCamelCase__: Tuple = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase__: Dict = [] lowerCamelCase__: int = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: List[Any] = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCamelCase__: str = tokenizer(__a , return_tensors="""tf""" ).input_ids lowerCamelCase__: Optional[int] = model.generate(__a , max_length=10 ) lowerCamelCase__: Any = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
306
1
from __future__ import annotations from fractions import Fraction def _snake_case ( __snake_case , __snake_case ) -> bool: '''simple docstring''' return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def _snake_case ( __snake_case ) -> list[str]: '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[str] = 1_1 UpperCAmelCase_ : Union[str, Any] = int("1" + "0" * digit_len ) for num in range(a_ , a_ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 UpperCAmelCase_ : Optional[Any] = 1_0 return solutions def _snake_case ( __snake_case = 2 ) -> int: '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): UpperCAmelCase_ : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
718
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters __lowerCamelCase = False __lowerCamelCase = False def _snake_case ( __snake_case ) -> Any: '''simple docstring''' return TrainCommand(__snake_case ) class snake_case_ (lowercase__ ): """simple docstring""" @staticmethod def A_ ( lowercase): """simple docstring""" UpperCAmelCase_ : str = parser.add_parser("train" ,help="CLI tool to train a model on a task.") train_parser.add_argument( "--train_data" ,type=lowercase ,required=lowercase ,help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." ,) train_parser.add_argument( "--column_label" ,type=lowercase ,default=0 ,help="Column of the dataset csv file with example labels.") train_parser.add_argument( "--column_text" ,type=lowercase ,default=1 ,help="Column of the dataset csv file with example texts.") train_parser.add_argument( "--column_id" ,type=lowercase ,default=2 ,help="Column of the dataset csv file with example ids.") train_parser.add_argument( "--skip_first_row" ,action="store_true" ,help="Skip the first row of the csv file (headers).") train_parser.add_argument("--validation_data" ,type=lowercase ,default="" ,help="path to validation dataset.") train_parser.add_argument( "--validation_split" ,type=lowercase ,default=0.1 ,help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." ,) train_parser.add_argument("--output" ,type=lowercase ,default="./" ,help="path to saved the trained model.") train_parser.add_argument( "--task" ,type=lowercase ,default="text_classification" ,help="Task to train the model on.") train_parser.add_argument( "--model" ,type=lowercase ,default="bert-base-uncased" ,help="Model's name or path to stored model.") train_parser.add_argument("--train_batch_size" ,type=lowercase ,default=32 ,help="Batch size for training.") train_parser.add_argument("--valid_batch_size" ,type=lowercase ,default=64 ,help="Batch size for validation.") train_parser.add_argument("--learning_rate" ,type=lowercase ,default=3E-5 ,help="Learning rate.") train_parser.add_argument("--adam_epsilon" ,type=lowercase ,default=1E-08 ,help="Epsilon for Adam optimizer.") train_parser.set_defaults(func=lowercase) def __init__( self ,lowercase): """simple docstring""" UpperCAmelCase_ : Optional[Any] = logging.get_logger("transformers-cli/training") UpperCAmelCase_ : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output ,exist_ok=lowercase) UpperCAmelCase_ : Union[str, Any] = args.output UpperCAmelCase_ : Optional[int] = args.column_label UpperCAmelCase_ : Dict = args.column_text UpperCAmelCase_ : Optional[Any] = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""") if args.task == "text_classification": UpperCAmelCase_ : List[Any] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""") UpperCAmelCase_ : str = Processor.create_from_csv( args.train_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,) UpperCAmelCase_ : str = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""") UpperCAmelCase_ : Union[str, Any] = Processor.create_from_csv( args.validation_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,) UpperCAmelCase_ : List[str] = args.validation_split UpperCAmelCase_ : Tuple = args.train_batch_size UpperCAmelCase_ : Optional[int] = args.valid_batch_size UpperCAmelCase_ : Dict = args.learning_rate UpperCAmelCase_ : List[str] = args.adam_epsilon def A_ ( self): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def A_ ( self): """simple docstring""" raise NotImplementedError def A_ ( self): """simple docstring""" self.pipeline.fit( self.train_dataset ,validation_data=self.valid_dataset ,validation_split=self.validation_split ,learning_rate=self.learning_rate ,adam_epsilon=self.adam_epsilon ,train_batch_size=self.train_batch_size ,valid_batch_size=self.valid_batch_size ,) # Save trained pipeline self.pipeline.save_pretrained(self.output)
455
0
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , _lowercase : int) -> None: A_ = size A_ = [0] * size A_ = [0] * size @staticmethod def __snake_case ( _lowercase : int) -> int: return index | (index + 1) @staticmethod def __snake_case ( _lowercase : int) -> int: return (index & (index + 1)) - 1 def __snake_case ( self : int , _lowercase : int , _lowercase : int) -> None: A_ = value while index < self.size: A_ = self.get_prev(_lowercase) + 1 if current_left_border == index: A_ = value else: A_ = max(_lowercase , _lowercase , _lowercase) A_ = self.get_next(_lowercase) def __snake_case ( self : Tuple , _lowercase : int , _lowercase : int) -> int: right -= 1 # Because of right is exclusive A_ = 0 while left <= right: A_ = self.get_prev(_lowercase) if left <= current_left: A_ = max(_lowercase , self.tree[right]) A_ = current_left else: A_ = max(_lowercase , self.arr[right]) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , **_lowercase : List[Any]) -> Union[str, Any]: super().__init__(**_lowercase) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self : Optional[Any] , _lowercase : Union[str, List[str], "Image", List["Image"]] , **_lowercase : List[Any]) -> Any: return super().__call__(_lowercase , **_lowercase) def __snake_case ( self : int , **_lowercase : Union[str, Any]) -> Any: A_ = {} if "candidate_labels" in kwargs: A_ = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: A_ = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __snake_case ( self : List[str] , _lowercase : Tuple , _lowercase : Any=None , _lowercase : Optional[int]="This is a photo of {}.") -> Union[str, Any]: A_ = load_image(_lowercase) A_ = self.image_processor(images=[image] , return_tensors=self.framework) A_ = candidate_labels A_ = [hypothesis_template.format(_lowercase) for x in candidate_labels] A_ = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase) A_ = [text_inputs] return inputs def __snake_case ( self : Optional[int] , _lowercase : Tuple) -> Optional[int]: A_ = model_inputs.pop('candidate_labels') A_ = model_inputs.pop('text_inputs') if isinstance(text_inputs[0] , _lowercase): A_ = text_inputs[0] else: # Batching case. A_ = text_inputs[0][0] A_ = self.model(**_lowercase , **_lowercase) A_ = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __snake_case ( self : List[str] , _lowercase : int) -> Optional[int]: A_ = model_outputs.pop('candidate_labels') A_ = model_outputs['logits'][0] if self.framework == "pt": A_ = logits.softmax(dim=-1).squeeze(-1) A_ = probs.tolist() if not isinstance(_lowercase , _lowercase): A_ = [scores] elif self.framework == "tf": A_ = stable_softmax(_lowercase , axis=-1) A_ = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') A_ = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase) , key=lambda _lowercase: -x[0]) ] return result
366
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> str: a : Dict = inspect.getfile(accelerate.test_utils ) a : str = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a : str = test_metrics @require_cpu def __a ( self ) -> Tuple: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __a ( self ) -> Union[str, Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def __a ( self ) -> int: self.test_metrics.main() @require_multi_gpu def __a ( self ) -> int: print(f"""Found {torch.cuda.device_count()} devices.""" ) a : Any = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
31
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 10 , _lowercase : int = 1000 , _lowercase : bool = True ) ->int: '''simple docstring''' assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->int: '''simple docstring''' return int((number_a + number_a) / 2 ) def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : int ) ->None: '''simple docstring''' assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(_lowercase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) a : Optional[Any] = lower a : List[Any] = higher a : Tuple = [] while True: a : List[Any] = get_avg(_lowercase , _lowercase ) last_numbers.append(_lowercase ) if answer(_lowercase ) == "low": a : Optional[int] = number elif answer(_lowercase ) == "high": a : Tuple = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : Tuple = int(input("Enter lower value : " ).strip() ) a : Dict = int(input("Enter high value : " ).strip() ) a : Optional[int] = int(input("Enter value to guess : " ).strip() ) guess_the_number(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
31
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A__ ( snake_case_ : Any ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= image.size SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__: Tuple= image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) SCREAMING_SNAKE_CASE__: List[Any]= np.array(snake_case_ ).astype(np.floataa ) / 2_55.0 SCREAMING_SNAKE_CASE__: Optional[int]= image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__: Dict= torch.from_numpy(snake_case_ ) return 2.0 * image - 1.0 class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> List[Any]: super().__init__() self.register_modules(vqvae=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 100 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: str= 1 elif isinstance(lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__: int= image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase )}' ) if isinstance(lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: Union[str, Any]= preprocess(lowerCAmelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE__: Union[str, Any]= (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE__: Optional[Any]= next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE__: Optional[int]= randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= image.to(device=self.device , dtype=lowerCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) SCREAMING_SNAKE_CASE__: Any= self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__: List[Any]= latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__: Dict= '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__: str= {} if accepts_eta: SCREAMING_SNAKE_CASE__: List[Any]= eta for t in self.progress_bar(lowerCAmelCase ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE__: Optional[Any]= torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE__: Dict= self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__: Any= self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE__: Tuple= self.vqvae.decode(lowerCAmelCase ).sample SCREAMING_SNAKE_CASE__: Optional[int]= torch.clamp(lowerCAmelCase , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= image / 2 + 0.5 SCREAMING_SNAKE_CASE__: List[Any]= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__: Tuple= self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
64
'''simple docstring''' def a ( _UpperCAmelCase ) -> int: """simple docstring""" assert column_title.isupper() a_ = 0 a_ = len(_UpperCAmelCase ) - 1 a_ = 0 while index >= 0: a_ = (ord(column_title[index] ) - 6_4) * pow(2_6 , _UpperCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
697
0
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: _SCREAMING_SNAKE_CASE : int = 1 for i in range(1, num + 1 ): fact *= i return fact def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: _SCREAMING_SNAKE_CASE : int = 0 while number > 0: _SCREAMING_SNAKE_CASE : List[str] = number % 1_0 sum_of_digits += last_digit _SCREAMING_SNAKE_CASE : List[str] = number // 1_0 # Removing the last_digit from the given number return sum_of_digits def _lowerCAmelCase ( lowerCamelCase__ : int = 1_0_0 ) -> int: _SCREAMING_SNAKE_CASE : Union[str, Any] = factorial(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = split_and_add(lowerCamelCase__ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
705
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : str ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=4_2, ), ], ) def _lowerCAmelCase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : DatasetInfo ) -> List[Any]: _SCREAMING_SNAKE_CASE : Dict = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__, "dataset_info.json" ) ) def _lowerCAmelCase ( ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 4_2}], download_checksums={}, download_size=1_3_3_7, post_processing_size=4_4_2, dataset_size=1_2_3_4, size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4, ) _SCREAMING_SNAKE_CASE : List[str] = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _SCREAMING_SNAKE_CASE : Optional[Any] = yaml.safe_dump(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[Any] = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def _lowerCAmelCase ( ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = DatasetInfo() _SCREAMING_SNAKE_CASE : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=4_2, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=4_2 ), "v2": DatasetInfo(dataset_size=1_3_3_7 ), } ), ], ) def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : DatasetInfosDict ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _SCREAMING_SNAKE_CASE : List[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _SCREAMING_SNAKE_CASE : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__, "README.md" ) )
295
0
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCAmelCase_ : List[Any] = 'pytorch_model.bin' lowerCAmelCase_ : str = 'pytorch_model.bin.index.json' lowerCAmelCase_ : Union[str, Any] = 'adapter_config.json' lowerCAmelCase_ : Optional[Any] = 'adapter_model.bin' lowerCAmelCase_ : Dict = 'adapter_model.safetensors' lowerCAmelCase_ : List[str] = 'tf_model.h5' lowerCAmelCase_ : Dict = 'tf_model.h5.index.json' lowerCAmelCase_ : Optional[Any] = 'model.ckpt' lowerCAmelCase_ : str = 'flax_model.msgpack' lowerCAmelCase_ : int = 'flax_model.msgpack.index.json' lowerCAmelCase_ : Tuple = 'model.safetensors' lowerCAmelCase_ : Tuple = 'model.safetensors.index.json' lowerCAmelCase_ : str = 'config.json' lowerCAmelCase_ : List[str] = 'preprocessor_config.json' lowerCAmelCase_ : Union[str, Any] = FEATURE_EXTRACTOR_NAME lowerCAmelCase_ : Optional[Any] = 'generation_config.json' lowerCAmelCase_ : Any = 'modelcard.json' lowerCAmelCase_ : Union[str, Any] = '▁' lowerCAmelCase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCAmelCase_ : Dict = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCAmelCase_ : str = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCAmelCase_ : str = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : str ): """simple docstring""" if version.parse(UpperCamelCase__ ) < version.parse(UpperCamelCase__ ): if "dev" in min_version: a_ : Tuple = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: a_ : Dict = F"This example requires a minimum version of {min_version}," error_message += F" but the version found is {__version__}.\n" raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
442
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
442
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowercase : """simple docstring""" lowercase__ = None lowercase__ = None lowercase__ = None # sigma(t_i) @classmethod def UpperCAmelCase_ ( cls : Tuple ) -> List[str]: '''simple docstring''' return cls() @dataclass class _lowercase ( __A ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 class _lowercase ( __A , __A ): """simple docstring""" @property def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' return True @register_to_config def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] = 0.02 , UpperCamelCase__ : Optional[Any] = 100 , UpperCamelCase__ : Dict = 1.0_07 , UpperCamelCase__ : Optional[Any] = 80 , UpperCamelCase__ : Union[str, Any] = 0.05 , UpperCamelCase__ : Tuple = 50 , ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return KarrasVeSchedulerState.create() def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : int = () ) -> str: '''simple docstring''' __UpperCamelCase =jnp.arange(0 , UpperCamelCase__ )[::-1].copy() __UpperCamelCase =[ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCamelCase__ , schedule=jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) , timesteps=UpperCamelCase__ , ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , ) -> List[str]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: __UpperCamelCase =min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __UpperCamelCase =0 # sample eps ~ N(0, S_noise^2 * I) __UpperCamelCase =random.split(UpperCamelCase__ , num=1 ) __UpperCamelCase =self.config.s_noise * random.normal(key=UpperCamelCase__ , shape=sample.shape ) __UpperCamelCase =sigma + gamma * sigma __UpperCamelCase =sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any = True , ) -> Tuple: '''simple docstring''' __UpperCamelCase =sample_hat + sigma_hat * model_output __UpperCamelCase =(sample_hat - pred_original_sample) / sigma_hat __UpperCamelCase =sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , state=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] = True , ) -> Tuple: '''simple docstring''' __UpperCamelCase =sample_prev + sigma_prev * model_output __UpperCamelCase =(sample_prev - pred_original_sample) / sigma_prev __UpperCamelCase =sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , state=UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' raise NotImplementedError()
704
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowerCAmelCase (__UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCamelCase =[1_4_4, 1_9_2, 2_4_0] __UpperCamelCase =[1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: __UpperCamelCase =[9_6, 1_2_0, 1_4_4] __UpperCamelCase =[1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: __UpperCamelCase =[6_4, 8_0, 9_6] __UpperCamelCase =[1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] __UpperCamelCase =0.0_5 __UpperCamelCase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): __UpperCamelCase =5_1_2 __UpperCamelCase =1_6 __UpperCamelCase =2_1 __UpperCamelCase ='''pascal-voc-id2label.json''' else: __UpperCamelCase =1_0_0_0 __UpperCamelCase ='''imagenet-1k-id2label.json''' __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[str]=False ): """simple docstring""" for i in range(1 , 6 ): if F"""layer_{i}.""" in name: __UpperCamelCase =name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: __UpperCamelCase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: __UpperCamelCase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: __UpperCamelCase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: __UpperCamelCase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: __UpperCamelCase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: __UpperCamelCase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: __UpperCamelCase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: __UpperCamelCase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: __UpperCamelCase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: __UpperCamelCase =name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: __UpperCamelCase =name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: __UpperCamelCase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: __UpperCamelCase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: __UpperCamelCase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: __UpperCamelCase =name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: __UpperCamelCase =name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: __UpperCamelCase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: __UpperCamelCase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: __UpperCamelCase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: __UpperCamelCase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: __UpperCamelCase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: __UpperCamelCase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: __UpperCamelCase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: __UpperCamelCase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: __UpperCamelCase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: __UpperCamelCase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: __UpperCamelCase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: __UpperCamelCase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): __UpperCamelCase ='''mobilevit.''' + name return name def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=False ): """simple docstring""" if base_model: __UpperCamelCase ='''''' else: __UpperCamelCase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(__UpperCamelCase ) if key[:8] == "encoder.": __UpperCamelCase =key[8:] if "qkv" in key: __UpperCamelCase =key.split('''.''' ) __UpperCamelCase =int(key_split[0][6:] ) - 1 __UpperCamelCase =int(key_split[3] ) __UpperCamelCase =model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) __UpperCamelCase =layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCamelCase =( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: __UpperCamelCase =val[:dim, :] __UpperCamelCase =val[dim : dim * 2, :] __UpperCamelCase =val[-dim:, :] else: __UpperCamelCase =val[:dim] __UpperCamelCase =val[dim : dim * 2] __UpperCamelCase =val[-dim:] else: __UpperCamelCase =val return orig_state_dict def lowerCAmelCase (): """simple docstring""" __UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : str=False ): """simple docstring""" __UpperCamelCase =get_mobilevit_config(__UpperCamelCase ) # load original state_dict __UpperCamelCase =torch.load(__UpperCamelCase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): __UpperCamelCase =MobileViTForSemanticSegmentation(__UpperCamelCase ).eval() else: __UpperCamelCase =MobileViTForImageClassification(__UpperCamelCase ).eval() __UpperCamelCase =convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCamelCase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCamelCase =model(**__UpperCamelCase ) __UpperCamelCase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCamelCase =torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCamelCase =torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCamelCase =torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": __UpperCamelCase =torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": __UpperCamelCase =torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": __UpperCamelCase =torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: __UpperCamelCase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) __UpperCamelCase =model_mapping[mobilevit_name] image_processor.push_to_hub(__UpperCamelCase , organization='''apple''' ) model.push_to_hub(__UpperCamelCase , organization='''apple''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
296
0
"""simple docstring""" import math import qiskit def lowerCamelCase_ (UpperCamelCase__ : Optional[int] = 1 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[int] = 1 ): if ( isinstance(__a , __a ) or isinstance(__a , __a ) or isinstance(__a , __a ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__a ) != input_a) or (math.floor(__a ) != input_a) or (math.floor(__a ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _UpperCAmelCase : Union[str, Any] = qiskit.QuantumRegister(4 , '''qr''' ) _UpperCAmelCase : Optional[Any] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _UpperCAmelCase : int = [input_a, input_a, carry_in] _UpperCAmelCase : str = qiskit.QuantumCircuit(__a , __a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits _UpperCAmelCase : Any = qiskit.Aer.get_backend('''aer_simulator''' ) _UpperCAmelCase : List[Any] = qiskit.execute(__a , __a , shots=1000 ) return job.result().get_counts(__a ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
506
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase = 3 , _UpperCAmelCase = 7 , _UpperCAmelCase = 1000000 ): """simple docstring""" A_ : Union[str, Any] = 0 A_ : Optional[Any] = 1 for current_denominator in range(1 , limit + 1 ): A_ : List[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A_ : List[str] = current_numerator A_ : Optional[Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
715
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _UpperCAmelCase : '''simple docstring''' # setable values lowercase_ : Optional[int] = None lowercase_ : Optional[jnp.ndarray] = None lowercase_ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def lowerCamelCase_ ( cls ): """simple docstring""" return cls() @dataclass class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray lowercase_ : KarrasVeSchedulerState class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase_ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case_ = 0.02 , snake_case_ = 1_0_0 , snake_case_ = 1.0_07 , snake_case_ = 8_0 , snake_case_ = 0.05 , snake_case_ = 5_0 , ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" return KarrasVeSchedulerState.create() def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ = () ): """simple docstring""" A_ : int = jnp.arange(0 , snake_case_ )[::-1].copy() A_ : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=snake_case_ , schedule=jnp.array(snake_case_ , dtype=jnp.floataa ) , timesteps=snake_case_ , ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: A_ : str = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Any = random.split(snake_case_ , num=1 ) A_ : Union[str, Any] = self.config.s_noise * random.normal(key=snake_case_ , shape=sample.shape ) A_ : str = sigma + gamma * sigma A_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): """simple docstring""" A_ : Any = sample_hat + sigma_hat * model_output A_ : str = (sample_hat - pred_original_sample) / sigma_hat A_ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=snake_case_ , derivative=snake_case_ , state=snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): """simple docstring""" A_ : List[Any] = sample_prev + sigma_prev * model_output A_ : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev A_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=snake_case_ , derivative=snake_case_ , state=snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError()
302
0
import datasets from .evaluate import evaluate _lowercase = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _lowercase = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _lowercase = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase_ ( self : List[Any] , __a : List[Any] , __a : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Dict = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowerCamelCase__: Tuple = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowerCamelCase__: Optional[Any] = evaluate(dataset=__a , predictions=__a ) return score
306
import os import jsonlines import numpy as np from tqdm import tqdm _lowercase = 2_048 _lowercase = 4_096 _lowercase = 42 _lowercase = os.environ.pop('PROCESS_TRAIN', 'false') _lowercase = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def __lowerCAmelCase ( _UpperCamelCase ) -> List[Any]: '''simple docstring''' def choose_first(_UpperCamelCase , _UpperCamelCase=False ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) == 1: lowerCamelCase__: List[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCamelCase__: List[str] = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a lowerCamelCase__: Any = {"""id""": example["""id"""]} lowerCamelCase__: Union[str, Any] = example["""annotations"""] lowerCamelCase__: Union[str, Any] = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCamelCase__: Tuple = ["""yes"""] if 1 in yes_no_answer else ["""no"""] lowerCamelCase__: int = [] lowerCamelCase__: Optional[Any] = [] lowerCamelCase__: str = ["""<cls>"""] else: lowerCamelCase__: Dict = ["""short"""] lowerCamelCase__: Tuple = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available lowerCamelCase__: Union[str, Any] = ["""long"""] lowerCamelCase__: List[Any] = choose_first(annotation["""long_answer"""] , is_long_answer=_UpperCamelCase ) lowerCamelCase__: Tuple = [] answer.update(_UpperCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: lowerCamelCase__: Optional[int] = True else: lowerCamelCase__: str = False lowerCamelCase__: Union[str, Any] = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _UpperCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=False ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] = _get_single_answer(_UpperCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCamelCase__: str = example["""document"""]["""tokens"""] lowerCamelCase__: Dict = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCamelCase__: Union[str, Any] = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowerCamelCase__: List[Any] = example["""document"""]["""tokens"""] lowerCamelCase__: Optional[int] = answer["""start_token"""] lowerCamelCase__: int = answer["""end_token"""] lowerCamelCase__: Any = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCamelCase__: Optional[Any] = """ """.join(context[start_token:end_token] ) # checking above code if assertion: lowerCamelCase__: Dict = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] lowerCamelCase__: int = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] lowerCamelCase__: Optional[Any] = """ """.join([old[i] for i in range(len(_UpperCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , _UpperCamelCase , end="""\n""" ) print("""Old:""" , _UpperCamelCase , end="""\n\n""" ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=2048 , _UpperCamelCase=4096 , _UpperCamelCase=True ) -> str: '''simple docstring''' lowerCamelCase__: List[str] = get_context_and_ans(_UpperCamelCase , assertion=_UpperCamelCase ) lowerCamelCase__: Any = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCamelCase__: Tuple = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids lowerCamelCase__: int = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCamelCase__: Any = [] lowerCamelCase__: List[Any] = [] lowerCamelCase__: Union[str, Any] = input_ids[:q_len] lowerCamelCase__: Optional[int] = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: lowerCamelCase__: Optional[int] = i + max_length - q_len lowerCamelCase__: Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_UpperCamelCase ), "end_token": [-100] * len(_UpperCamelCase ), "category": category, }, } lowerCamelCase__: Optional[Any] = out["""context"""].split() lowerCamelCase__: List[str] = splitted_context[answer["""end_token"""]] lowerCamelCase__: str = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_UpperCamelCase , ).input_ids ) lowerCamelCase__: List[str] = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_UpperCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCamelCase__: List[Any] = len(tokenizer(_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCamelCase__: Tuple = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive lowerCamelCase__: List[Any] = answer["""start_token"""] lowerCamelCase__: Optional[int] = answer["""end_token"""] if assertion: lowerCamelCase__: str = tokenizer.decode(_UpperCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , _UpperCamelCase , end="""\n\n""" ) if len(_UpperCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCamelCase__: Dict = input_ids[:q_len] lowerCamelCase__: Dict = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) lowerCamelCase__: Tuple = [] lowerCamelCase__: Optional[int] = [] lowerCamelCase__: Any = [] lowerCamelCase__: Optional[int] = [] # null, yes, no, long, short for i in doc_start_indices: lowerCamelCase__: str = i + max_length - q_len lowerCamelCase__: Any = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCamelCase__: Union[str, Any] = start_token - i + q_len lowerCamelCase__: Dict = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: lowerCamelCase__: List[Any] = -100 lowerCamelCase__: str = -100 answers_category.append("""null""" ) lowerCamelCase__: Union[str, Any] = inputs[-1][start_token : end_token + 1] answers_start_token.append(_UpperCamelCase ) answers_end_token.append(_UpperCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(_UpperCamelCase ) ) print("""Old:""" , tokenizer.decode(_UpperCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=2048 , _UpperCamelCase=4096 , _UpperCamelCase=False ) -> Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] = get_strided_contexts_and_ans( _UpperCamelCase , _UpperCamelCase , doc_stride=_UpperCamelCase , max_length=_UpperCamelCase , assertion=_UpperCamelCase , ) return example def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' with jsonlines.open(_UpperCamelCase , """a""" ) as writer: for example in tqdm(_UpperCamelCase , total=len(_UpperCamelCase ) , desc="""Saving samples ... """ ): lowerCamelCase__: int = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _lowercase = load_dataset('natural_questions') _lowercase = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') _lowercase = data['train' if PROCESS_TRAIN == 'true' else 'validation'] _lowercase = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } _lowercase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _lowercase = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) _lowercase = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ : int = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a ( lowercase__ : int ): '''simple docstring''' if is_torch_version('<' , '2.0.0' ) or not hasattr(lowercase__ , '_dynamo' ): return False return isinstance(lowercase__ , torch._dynamo.eval_frame.OptimizedModule ) def _a ( lowercase__ : Optional[Any] , lowercase__ : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE__ : Dict = is_compiled_module(lowercase__ ) if is_compiled: SCREAMING_SNAKE_CASE__ : Tuple = model SCREAMING_SNAKE_CASE__ : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE__ : List[Any] = getattr(lowercase__ , 'forward' ) SCREAMING_SNAKE_CASE__ : str = model.__dict__.pop('_original_forward' , lowercase__ ) if original_forward is not None: while hasattr(lowercase__ , '__wrapped__' ): SCREAMING_SNAKE_CASE__ : Dict = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE__ : Dict = forward if getattr(lowercase__ , '_converted_to_transformer_engine' , lowercase__ ): convert_model(lowercase__ , to_transformer_engine=lowercase__ ) if is_compiled: SCREAMING_SNAKE_CASE__ : List[Any] = model SCREAMING_SNAKE_CASE__ : Optional[Any] = compiled_model return model def _a ( ): '''simple docstring''' PartialState().wait_for_everyone() def _a ( lowercase__ : str , lowercase__ : Optional[Any] ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase__ , lowercase__ ) elif PartialState().local_process_index == 0: torch.save(lowercase__ , lowercase__ ) @contextmanager def _a ( **lowercase__ : str ): '''simple docstring''' for key, value in kwargs.items(): SCREAMING_SNAKE_CASE__ : int = str(lowercase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a ( lowercase__ : Optional[Any] ): '''simple docstring''' if not hasattr(lowercase__ , '__qualname__' ) and not hasattr(lowercase__ , '__name__' ): SCREAMING_SNAKE_CASE__ : Any = getattr(lowercase__ , '__class__' , lowercase__ ) if hasattr(lowercase__ , '__qualname__' ): return obj.__qualname__ if hasattr(lowercase__ , '__name__' ): return obj.__name__ return str(lowercase__ ) def _a ( lowercase__ : List[str] , lowercase__ : List[Any] ): '''simple docstring''' for key, value in source.items(): if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : List[str] = destination.setdefault(lowercase__ , {} ) merge_dicts(lowercase__ , lowercase__ ) else: SCREAMING_SNAKE_CASE__ : List[Any] = value return destination def _a ( lowercase__ : int = None ): '''simple docstring''' if port is None: SCREAMING_SNAKE_CASE__ : int = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
636
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _lowerCAmelCase ( a_ ): """simple docstring""" __magic_name__ :Optional[Any] = "xmod" def __init__( self , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=("en_XX",) , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ :Optional[Any] = vocab_size lowerCAmelCase__ :List[str] = hidden_size lowerCAmelCase__ :int = num_hidden_layers lowerCAmelCase__ :List[Any] = num_attention_heads lowerCAmelCase__ :Any = hidden_act lowerCAmelCase__ :str = intermediate_size lowerCAmelCase__ :List[str] = hidden_dropout_prob lowerCAmelCase__ :Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ :Any = max_position_embeddings lowerCAmelCase__ :List[Any] = type_vocab_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :Tuple = layer_norm_eps lowerCAmelCase__ :Any = position_embedding_type lowerCAmelCase__ :Any = use_cache lowerCAmelCase__ :Dict = classifier_dropout lowerCAmelCase__ :Any = pre_norm lowerCAmelCase__ :Tuple = adapter_reduction_factor lowerCAmelCase__ :List[Any] = adapter_layer_norm lowerCAmelCase__ :str = adapter_reuse_layer_norm lowerCAmelCase__ :int = ln_before_adapter lowerCAmelCase__ :Union[str, Any] = list(lowerCamelCase_ ) lowerCAmelCase__ :Tuple = default_language class _lowerCAmelCase ( a_ ): """simple docstring""" @property def snake_case ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ :Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
93
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = "openai/whisper-base" _UpperCamelCase : List[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) _UpperCamelCase : Union[str, Any] = "transcriber" _UpperCamelCase : Tuple = WhisperProcessor _UpperCamelCase : Optional[Any] = WhisperForConditionalGeneration _UpperCamelCase : Union[str, Any] = ["audio"] _UpperCamelCase : Any = ["text"] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase_ , return_tensors='pt' ).input_features def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Tuple ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )[0]
304
0
from PIL import Image def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def brightness(SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 __lowercase = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
720
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 0 while b > 0: if b & 1: A_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
563
0
def snake_case (UpperCAmelCase__ ) -> list[int]: UpperCamelCase_: int = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": A_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() A_ : Optional[int] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
57
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : int = Dict[str, Any] UpperCamelCase__ : Optional[Any] = List[Prediction] @add_end_docstrings(_lowerCamelCase) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , **A__ ) -> List[Any]: super().__init__(*A__ , **A__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase ( self , **A__ ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self , *A__ , **A__ ) -> Union[Predictions, List[Prediction]]: return super().__call__(*A__ , **A__ ) def UpperCamelCase ( self , A__ ) -> Optional[int]: _SCREAMING_SNAKE_CASE = load_image(A__ ) _SCREAMING_SNAKE_CASE = torch.IntTensor([[image.height, image.width]] ) _SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = target_size return inputs def UpperCamelCase ( self , A__ ) -> List[Any]: _SCREAMING_SNAKE_CASE = model_inputs.pop("""target_size""" ) _SCREAMING_SNAKE_CASE = self.model(**A__ ) _SCREAMING_SNAKE_CASE = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: _SCREAMING_SNAKE_CASE = model_inputs["""bbox"""] return model_outputs def UpperCamelCase ( self , A__ , A__=0.9 ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = target_size[0].tolist() def unnormalize(A__ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _SCREAMING_SNAKE_CASE = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _SCREAMING_SNAKE_CASE = [unnormalize(A__ ) for bbox in model_outputs["""bbox"""].squeeze(0 )] _SCREAMING_SNAKE_CASE = ["""score""", """label""", """box"""] _SCREAMING_SNAKE_CASE = [dict(zip(A__ , A__ ) ) for vals in zip(scores.tolist() , A__ , A__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection(A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = raw_annotations[0] _SCREAMING_SNAKE_CASE = raw_annotation["""scores"""] _SCREAMING_SNAKE_CASE = raw_annotation["""labels"""] _SCREAMING_SNAKE_CASE = raw_annotation["""boxes"""] _SCREAMING_SNAKE_CASE = scores.tolist() _SCREAMING_SNAKE_CASE = [self.model.config.idalabel[label.item()] for label in labels] _SCREAMING_SNAKE_CASE = [self._get_bounding_box(A__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _SCREAMING_SNAKE_CASE = ["""score""", """label""", """box"""] _SCREAMING_SNAKE_CASE = [ dict(zip(A__ , A__ ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase ( self , A__ ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = box.int().tolist() _SCREAMING_SNAKE_CASE = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
591
0
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ =str(bin(lowercase__ ) )[2:] # remove the leading "0b" UpperCAmelCase_ =str(bin(lowercase__ ) )[2:] UpperCAmelCase_ =max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
550
import sys import turtle def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowercase__ , get_mid(lowercase__ , lowercase__ ) , get_mid(lowercase__ , lowercase__ ) , depth - 1 ) triangle(lowercase__ , get_mid(lowercase__ , lowercase__ ) , get_mid(lowercase__ , lowercase__ ) , depth - 1 ) triangle(lowercase__ , get_mid(lowercase__ , lowercase__ ) , get_mid(lowercase__ , lowercase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase : Any =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase : str =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
550
1
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase_ : Tuple = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' UpperCAmelCase_ : Optional[Any] = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' UpperCAmelCase_ : int = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] )-> str: '''simple docstring''' return float((preds == labels).mean() ) def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : List[str] )-> Tuple: '''simple docstring''' __snake_case = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) __snake_case = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' __snake_case = np.array(_lowerCamelCase ) __snake_case = np.array(_lowerCamelCase ) __snake_case = en_sentvecs.shape[0] # mean centering __snake_case = en_sentvecs - np.mean(_lowerCamelCase , axis=0 ) __snake_case = in_sentvecs - np.mean(_lowerCamelCase , axis=0 ) __snake_case = cdist(_lowerCamelCase , _lowerCamelCase , '''cosine''' ) __snake_case = np.array(range(_lowerCamelCase ) ) __snake_case = sim.argsort(axis=1 )[:, :10] __snake_case = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase ( datasets.Metric): def lowerCAmelCase ( self ) -> str: '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
24
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Dict = 3 class lowerCAmelCase_ (a__ ): """simple docstring""" pass def lowercase_ ( _snake_case ): for shard in shards: for i in range(_snake_case ): yield {"i": i, "shard": shard} def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = int(os.environ["""RANK"""] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(os.environ["""WORLD_SIZE"""] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ArgumentParser() parser.add_argument("""--streaming""" ,type=_snake_case ) parser.add_argument("""--local_rank""" ,type=_snake_case ) parser.add_argument("""--num_workers""" ,type=_snake_case ,default=0 ) SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = args.streaming SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.num_workers SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""shards""": [f'''shard_{shard_idx}''' for shard_idx in range(_snake_case )]} SCREAMING_SNAKE_CASE__ : str = IterableDataset.from_generator(_snake_case ,gen_kwargs=_snake_case ) if not streaming: SCREAMING_SNAKE_CASE__ : str = Dataset.from_list(list(_snake_case ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = split_dataset_by_node(_snake_case ,rank=_snake_case ,world_size=_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = torch.utils.data.DataLoader(_snake_case ,num_workers=_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
223
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = load_iris() UpperCAmelCase_, UpperCAmelCase_ : Any = data_handling(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = train_test_split( _lowercase , _lowercase , test_size=0.25 ) UpperCAmelCase_ : Dict = iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase_ : int = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
300
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : List[str] = logging.get_logger(__name__) lowercase : Dict = {"""tokenizer_file""": """tokenizer.json"""} lowercase : Optional[Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __snake_case ( lowerCAmelCase ): _a : str= VOCAB_FILES_NAMES _a : Any= PRETRAINED_VOCAB_FILES_MAP _a : int= ["input_ids", "attention_mask"] _a : Optional[Any]= None def __init__( self ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case="<unk>" ,snake_case="<s>" ,snake_case="</s>" ,snake_case="<pad>" ,snake_case=False ,snake_case=False ,**snake_case ,): '''simple docstring''' super().__init__( snake_case ,snake_case ,tokenizer_file=snake_case ,unk_token=snake_case ,bos_token=snake_case ,eos_token=snake_case ,pad_token=snake_case ,add_prefix_space=snake_case ,clean_up_tokenization_spaces=snake_case ,**snake_case ,) lowercase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,snake_case ) != add_prefix_space: lowercase : Tuple = getattr(snake_case ,pre_tok_state.pop("""type""" ) ) lowercase : Tuple = add_prefix_space lowercase : Optional[Any] = pre_tok_class(**snake_case ) lowercase : Union[str, Any] = add_prefix_space def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Optional[Any] = kwargs.get("""is_split_into_words""" ,snake_case ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = kwargs.get("""is_split_into_words""" ,snake_case ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._encode_plus(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Any = self._tokenizer.model.save(snake_case ,name=snake_case ) return tuple(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case ,add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: lowercase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
336
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowercase : Dict = logging.get_logger(__name__) lowercase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowercase : Optional[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowercase : Tuple = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class __snake_case ( lowerCAmelCase ): _a : Tuple= VOCAB_FILES_NAMES _a : Any= PRETRAINED_VOCAB_FILES_MAP _a : Union[str, Any]= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[str]= ["input_ids", "attention_mask"] _a : List[Any]= BartTokenizer def __init__( self ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case="replace" ,snake_case="<s>" ,snake_case="</s>" ,snake_case="</s>" ,snake_case="<s>" ,snake_case="<unk>" ,snake_case="<pad>" ,snake_case="<mask>" ,snake_case=False ,snake_case=True ,**snake_case ,): '''simple docstring''' super().__init__( snake_case ,snake_case ,tokenizer_file=snake_case ,errors=snake_case ,bos_token=snake_case ,eos_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,add_prefix_space=snake_case ,trim_offsets=snake_case ,**snake_case ,) lowercase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,snake_case ) != add_prefix_space: lowercase : Union[str, Any] = getattr(snake_case ,pre_tok_state.pop("""type""" ) ) lowercase : Dict = add_prefix_space lowercase : List[str] = pre_tok_class(**snake_case ) lowercase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase : int = """post_processor""" lowercase : List[Any] = getattr(self.backend_tokenizer ,snake_case ,snake_case ) if tokenizer_component_instance: lowercase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Dict = tuple(state["""sep"""] ) if "cls" in state: lowercase : Dict = tuple(state["""cls"""] ) lowercase : Union[str, Any] = False if state.get("""add_prefix_space""" ,snake_case ) != add_prefix_space: lowercase : List[Any] = add_prefix_space lowercase : List[str] = True if state.get("""trim_offsets""" ,snake_case ) != trim_offsets: lowercase : Optional[int] = trim_offsets lowercase : Dict = True if changes_to_apply: lowercase : int = getattr(snake_case ,state.pop("""type""" ) ) lowercase : Any = component_class(**snake_case ) setattr(self.backend_tokenizer ,snake_case ,snake_case ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : str = AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else value lowercase : Optional[Any] = value def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = kwargs.get("""is_split_into_words""" ,snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = kwargs.get("""is_split_into_words""" ,snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._encode_plus(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Union[str, Any] = self._tokenizer.model.save(snake_case ,name=snake_case ) return tuple(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Union[str, Any] = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
336
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : Any , _lowercase : Dict , _lowercase : Any=7 , _lowercase : int=3 , _lowercase : List[Any]=1_8 , _lowercase : str=3_0 , _lowercase : Tuple=4_0_0 , _lowercase : Optional[Any]=True , _lowercase : str=None , _lowercase : str=True , _lowercase : List[str]=None , _lowercase : int=True , ) -> List[str]: _lowercase = size if size is not None else {"shortest_edge": 2_0} _lowercase = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_flip_channel_order def _lowerCamelCase ( self : Any ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( snake_case__, unittest.TestCase ): snake_case_ = MobileViTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : int ) -> Dict: _lowercase = MobileViTImageProcessingTester(self ) @property def _lowerCamelCase ( self : str ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : int ) -> Union[str, Any]: _lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_flip_channel_order" ) ) def _lowerCamelCase ( self : Any ) -> int: _lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) _lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowerCamelCase ( self : Union[str, Any] ) -> Dict: pass def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _lowercase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self : Tuple ) -> int: _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _lowercase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self : str ) -> str: _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _lowercase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
702
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCamelCase : Union[str, Any] = 1_6 __UpperCamelCase : Optional[int] = 3_2 def __UpperCAmelCase ( _snake_case : Accelerator, _snake_case : int = 1_6, _snake_case : str = "bert-base-cased" ): _lowercase = AutoTokenizer.from_pretrained(_snake_case ) _lowercase = load_dataset("glue", "mrpc" ) def tokenize_function(_snake_case : List[str] ): # max_length=None => use the model max length (it's actually the default) _lowercase = tokenizer(examples["sentence1"], examples["sentence2"], truncation=_snake_case, max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase = datasets.map( _snake_case, batched=_snake_case, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=_snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(_snake_case : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_snake_case, padding="max_length", max_length=1_2_8, return_tensors="pt" ) return tokenizer.pad(_snake_case, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _lowercase = DataLoader( tokenized_datasets["train"], shuffle=_snake_case, collate_fn=_snake_case, batch_size=_snake_case ) _lowercase = DataLoader( tokenized_datasets["validation"], shuffle=_snake_case, collate_fn=_snake_case, batch_size=_snake_case ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( _snake_case : Union[str, Any], _snake_case : Tuple ): # Initialize accelerator _lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase = config["lr"] _lowercase = int(config["num_epochs"] ) _lowercase = int(config["seed"] ) _lowercase = int(config["batch_size"] ) _lowercase = args.model_name_or_path set_seed(_snake_case ) _lowercase , _lowercase = get_dataloaders(_snake_case, _snake_case, _snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase = AutoModelForSequenceClassification.from_pretrained(_snake_case, return_dict=_snake_case ) # Instantiate optimizer _lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase = optimizer_cls(params=model.parameters(), lr=_snake_case ) if accelerator.state.deepspeed_plugin is not None: _lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _lowercase = 1 _lowercase = (len(_snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase = get_linear_schedule_with_warmup( optimizer=_snake_case, num_warmup_steps=0, num_training_steps=_snake_case, ) else: _lowercase = DummyScheduler(_snake_case, total_num_steps=_snake_case, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = accelerator.prepare( _snake_case, _snake_case, _snake_case, _snake_case, _snake_case ) # We need to keep track of how many total steps we have iterated over _lowercase = 0 # We also need to keep track of the stating epoch so files are named properly _lowercase = 0 # Now we train the model _lowercase = evaluate.load("glue", "mrpc" ) _lowercase = 0 _lowercase = {} for epoch in range(_snake_case, _snake_case ): model.train() for step, batch in enumerate(_snake_case ): _lowercase = model(**_snake_case ) _lowercase = outputs.loss _lowercase = loss / gradient_accumulation_steps accelerator.backward(_snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _lowercase = 0 for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase = model(**_snake_case ) _lowercase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_snake_case ) - 1: _lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_snake_case, references=_snake_case, ) _lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", _snake_case ) _lowercase = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _lowercase = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(_snake_case, _snake_case ) def __UpperCAmelCase ( ): _lowercase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=_snake_case, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=_snake_case, ) parser.add_argument( "--output_dir", type=_snake_case, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=_snake_case, default=_snake_case, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=_snake_case, default=3, help="Number of train epochs.", ) _lowercase = parser.parse_args() _lowercase = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(_snake_case, _snake_case ) if __name__ == "__main__": main()
227
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : Optional[Any] = 32 def A_ ( a , a = 1_6 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(a ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a , max_length=a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : List[Any] = datasets.map( a , batched=a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : Optional[int] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : Any = 8 else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = None return tokenizer.pad( a , padding='longest' , max_length=a , pad_to_multiple_of=a , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : int = DataLoader( tokenized_datasets['train'] , shuffle=a , collate_fn=a , batch_size=a ) SCREAMING_SNAKE_CASE_ : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=a , collate_fn=a , batch_size=a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : List[Any] = mocked_dataloaders # noqa: F811 def A_ ( a , a ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , a ) == "1": SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # Initialize accelerator SCREAMING_SNAKE_CASE_ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : List[str] = config['lr'] SCREAMING_SNAKE_CASE_ : str = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE_ : Any = int(config['seed'] ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(config['batch_size'] ) SCREAMING_SNAKE_CASE_ : str = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = get_dataloaders(a , a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : List[str] = AdamW(params=model.parameters() , lr=a ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=a , num_warmup_steps=1_0_0 , num_training_steps=(len(a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare( a , a , a , a , a ) # Now we train the model for epoch in range(a ): model.train() for step, batch in enumerate(a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ : List[Any] = model(**a ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() SCREAMING_SNAKE_CASE_ : Any = 0 for step, batch in enumerate(a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(**a ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(a ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples SCREAMING_SNAKE_CASE_ : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_ : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=a , references=a , ) SCREAMING_SNAKE_CASE_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , a ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a , default=a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(a , a ) if __name__ == "__main__": main()
511
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
511
1
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True UpperCamelCase__ : Any = 4 UpperCamelCase__ : Any = (1 << p) - 1 for _ in range(p - 2 ): UpperCamelCase__ : str = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
369
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=2, __magic_name__=56, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=99, __magic_name__=32, __magic_name__=2, __magic_name__=2, __magic_name__=7, __magic_name__="gelu_new", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=512, __magic_name__=16, __magic_name__=2, __magic_name__=0.02, __magic_name__=4, __magic_name__="block_sparse", __magic_name__=True, __magic_name__=False, __magic_name__=2, __magic_name__=3, ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : List[Any] = batch_size UpperCamelCase__ : str = seq_length UpperCamelCase__ : List[str] = is_training UpperCamelCase__ : List[Any] = use_attention_mask UpperCamelCase__ : Any = use_token_type_ids UpperCamelCase__ : Tuple = use_labels UpperCamelCase__ : Any = vocab_size UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Dict = num_choices UpperCamelCase__ : Dict = rescale_embeddings UpperCamelCase__ : Tuple = attention_type UpperCamelCase__ : Union[str, Any] = use_bias UpperCamelCase__ : Union[str, Any] = block_size UpperCamelCase__ : Optional[int] = num_random_blocks def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ : int = None if self.use_attention_mask: UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ : str = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__magic_name__, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = config_and_inputs UpperCamelCase__ : Union[str, Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Any = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a : List[str] = False a : str = False def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_hidden_states_output() @slow def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase__ : List[str] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ : Union[str, Any] = self._prepare_for_class(__magic_name__, __magic_name__ ) UpperCamelCase__ : Tuple = model_class(__magic_name__ ) @jax.jit def model_jitted(__magic_name__, __magic_name__=None, **__magic_name__ ): return model(input_ids=__magic_name__, attention_mask=__magic_name__, **__magic_name__ ) with self.subTest('''JIT Enabled''' ): UpperCamelCase__ : str = model_jitted(**__magic_name__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCamelCase__ : Dict = model_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ), len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__, __magic_name__ ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__=1E-5, __magic_name__="outputs", __magic_name__=None ) -> List[Any]: """simple docstring""" # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ )
369
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase__ : List[str] = TypeVar("T") class __lowercase ( Generic[T] ): def __init__( self , lowercase_) -> List[Any]: __snake_case = data __snake_case = None def __str__( self) -> str: return F"{self.data}" class __lowercase ( Generic[T] ): def __init__( self) -> None: __snake_case = None def __iter__( self) -> Iterator[T]: __snake_case = self.top while node: yield node.data __snake_case = node.next def __str__( self) -> str: return "->".join([str(lowercase_) for item in self]) def __len__( self) -> int: return len(tuple(iter(self))) def _a ( self) -> bool: return self.top is None def _a ( self , lowercase_) -> None: __snake_case = Node(lowercase_) if not self.is_empty(): __snake_case = self.top __snake_case = node def _a ( self) -> T: if self.is_empty(): raise IndexError('pop from empty stack') assert isinstance(self.top , lowercase_) __snake_case = self.top __snake_case = self.top.next return pop_node.data def _a ( self) -> T: if self.is_empty(): raise IndexError('peek from empty stack') assert self.top is not None return self.top.data def _a ( self) -> None: __snake_case = None if __name__ == "__main__": from doctest import testmod testmod()
313
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[Any]: super().__init__( lowercase_ , question_encoder_tokenizer=lowercase_ , generator_tokenizer=lowercase_ , index=lowercase_ , init_retrieval=lowercase_ , ) __snake_case = None def _a ( self , lowercase_) -> Union[str, Any]: logger.info('initializing retrieval') # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized') # needs to be set manually __snake_case = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case = str(distributed_port + 1) __snake_case = dist.new_group(ranks=lowercase_ , backend='gloo') # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main') self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _a ( self) -> int: return dist.get_rank(group=self.process_group) == 0 def _a ( self , lowercase_ , lowercase_ , lowercase_=torch.floataa) -> Dict: __snake_case = torch.empty(lowercase_ , dtype=lowercase_) dist.scatter(lowercase_ , src=0 , scatter_list=lowercase_ , group=self.process_group) return target_tensor def _a ( self) -> str: __snake_case = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case = next((addr for addr in addrs if addr.startswith('e')) , lowercase_) return ifname def _a ( self , lowercase_ , lowercase_) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): __snake_case , __snake_case = self._main_retrieve(lowercase_ , lowercase_) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase_) # distributed training __snake_case = dist.get_world_size(group=self.process_group) # gather logic __snake_case = None if self._is_main(): __snake_case = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowercase_)] dist.gather(torch.tensor(lowercase_) , dst=0 , gather_list=lowercase_ , group=self.process_group) # scatter logic __snake_case = question_hidden_states.shape[0] __snake_case = [] __snake_case = [] if self._is_main(): assert len(lowercase_) == world_size __snake_case , __snake_case = self._main_retrieve(torch.cat(lowercase_).numpy() , lowercase_) __snake_case , __snake_case = torch.tensor(lowercase_), torch.tensor(lowercase_) __snake_case = self._chunk_tensor(lowercase_ , lowercase_) __snake_case = self._chunk_tensor(lowercase_ , lowercase_) __snake_case = self._scattered(lowercase_ , [n_queries, n_docs] , target_type=torch.intaa) __snake_case = self._scattered(lowercase_ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowercase_)
313
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( UpperCAmelCase__ ): lowercase_ : int = ['''image_processor''', '''tokenizer'''] lowercase_ : Dict = '''AutoImageProcessor''' lowercase_ : Dict = '''AutoTokenizer''' def __init__( self : int , __lowerCAmelCase : Any=None , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : List[Any] ): __snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) __snake_case = kwargs.pop('feature_extractor' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = self.image_processor __snake_case = False def __call__( self : Dict , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[str] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = kwargs.pop('images' , __lowerCAmelCase ) __snake_case = kwargs.pop('text' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __snake_case = args[0] __snake_case = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __snake_case = self.image_processor(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: __snake_case = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: __snake_case = encodings['input_ids'] return inputs def lowercase__ ( self : str , *__lowerCAmelCase : str , **__lowerCAmelCase : Tuple ): return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Any ): return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def lowercase__ ( self : Any ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __snake_case = True __snake_case = self.tokenizer yield __snake_case = self.image_processor __snake_case = False def lowercase__ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : List[Any]=None ): if added_vocab is None: __snake_case = self.tokenizer.get_added_vocab() __snake_case = {} while tokens: __snake_case = re.search(r'<s_(.*?)>' , __lowerCAmelCase , re.IGNORECASE ) if start_token is None: break __snake_case = start_token.group(1 ) __snake_case = re.search(rF'</s_{key}>' , __lowerCAmelCase , re.IGNORECASE ) __snake_case = start_token.group() if end_token is None: __snake_case = tokens.replace(__lowerCAmelCase , '' ) else: __snake_case = end_token.group() __snake_case = re.escape(__lowerCAmelCase ) __snake_case = re.escape(__lowerCAmelCase ) __snake_case = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , __lowerCAmelCase , re.IGNORECASE ) if content is not None: __snake_case = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __snake_case = self.tokenajson(__lowerCAmelCase , is_inner_value=__lowerCAmelCase , added_vocab=__lowerCAmelCase ) if value: if len(__lowerCAmelCase ) == 1: __snake_case = value[0] __snake_case = value else: # leaf nodes __snake_case = [] for leaf in content.split(r'<sep/>' ): __snake_case = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __snake_case = leaf[1:-2] # for categorical special tokens output[key].append(__lowerCAmelCase ) if len(output[key] ) == 1: __snake_case = output[key][0] __snake_case = tokens[tokens.find(__lowerCAmelCase ) + len(__lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__lowerCAmelCase , added_vocab=__lowerCAmelCase ) if len(__lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
427
0
def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 100 ) -> int: _A = set() _A = 0 _A = n + 1 # maximum limit for a in range(2 , _snake_case ): for b in range(2 , _snake_case ): _A = a**b # calculates the current power collect_powers.add(_snake_case ) # adds the result to the set return len(_snake_case ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
2
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
1
def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
721
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _A (lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int]=0 ) -> Optional[int]: '''simple docstring''' if name is None: _a = None else: _a = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _a = fmt.format(lowerCAmelCase__ ) # Print and recurse (if needed). if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if msg is not None: print(lowerCAmelCase__ ) for k in val.keys(): recursive_print(lowerCAmelCase__ , val[k] , spaces + 2 ) elif isinstance(lowerCAmelCase__ , torch.Tensor ): print(lowerCAmelCase__ , ':' , val.size() ) else: print(lowerCAmelCase__ , ':' , lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] ) -> Any: '''simple docstring''' _a = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _a = (num_heads, hidden_size, num_splits) + input_shape[1:] _a = param.view(*lowerCAmelCase__ ) _a = param.transpose(0 , 2 ) _a = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _a = (num_heads, num_splits, hidden_size) + input_shape[1:] _a = param.view(*lowerCAmelCase__ ) _a = param.transpose(0 , 1 ).contiguous() _a = param.view(*lowerCAmelCase__ ) return param def _A (lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] ) -> Tuple: '''simple docstring''' _a = {} # old versions did not store training args _a = input_state_dict.get('args' , lowerCAmelCase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _a = ds_args.padded_vocab_size _a = ds_args.max_position_embeddings _a = ds_args.hidden_size _a = ds_args.num_layers _a = ds_args.num_attention_heads _a = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _a = config.n_head # The hidden_size per head. _a = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _a = input_state_dict['checkpoint_version'] else: _a = 0.0 # The model. _a = input_state_dict['model'] # The language model. _a = model['language_model'] # The embeddings. _a = lm['embedding'] # The word embeddings. _a = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _a = word_embeddings[: config.vocab_size, :] _a = word_embeddings # The position embeddings. _a = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _a = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. _a = pos_embeddings # The transformer. _a = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _a = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _a = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _a = layer_re.match(lowerCAmelCase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. _a = int(m.group(1 ) ) # The name of the operation. _a = m.group(2 ) # Is it a weight or a bias? _a = m.group(3 ) # The name of the layer. _a = f'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _a = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _a = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _a = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCAmelCase__ , lowerCAmelCase__ ) _a = causal_mask # Insert a "dummy" tensor for masked_bias. _a = torch.tensor(-1E4 , dtype=torch.floataa ) _a = masked_bias _a = fix_query_key_value_ordering(lowerCAmelCase__ , lowerCAmelCase__ , 3 , lowerCAmelCase__ , lowerCAmelCase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _a = out_val.transpose(0 , 1 ).contiguous() # Store. _a = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _a = fix_query_key_value_ordering(lowerCAmelCase__ , lowerCAmelCase__ , 3 , lowerCAmelCase__ , lowerCAmelCase__ ) # Store. No change of shape. _a = out_val # Transpose the weights. elif weight_or_bias == "weight": _a = megatron_to_transformers[op_name] _a = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _a = megatron_to_transformers[op_name] _a = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _a = transformer['final_layernorm.weight'] _a = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _a = word_embeddings # It should be done! return output_state_dict def _A () -> Any: '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCAmelCase__ , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCAmelCase__ , help='An optional config json file describing the pre-trained model.' , ) _a = parser.parse_args() # Extract the basename. _a = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _a = torch.load(lowerCAmelCase__ , map_location='cpu' ) else: _a = torch.load(args.path_to_checkpoint , map_location='cpu' ) _a = input_state_dict.get('args' , lowerCAmelCase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _a = 'gelu_fast' elif ds_args.openai_gelu: _a = 'gelu_new' else: _a = 'gelu' else: # in the very early days this used to be "gelu_new" _a = 'gelu_new' # Spell out all parameters in case the defaults change. _a = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=lowerCAmelCase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type='cls_index' , summary_use_proj=lowerCAmelCase__ , summary_activation=lowerCAmelCase__ , summary_proj_to_labels=lowerCAmelCase__ , summary_first_dropout=0.1 , scale_attn_weights=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: _a = GPTaConfig.from_json_file(args.config_file ) _a = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _a = convert_megatron_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCAmelCase__ , lowerCAmelCase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _a = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _a = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _a = ds_args.tokenizer_name_or_path else: raise ValueError(f'Unrecognized tokenizer_type {tokenizer_type}' ) else: _a = 'gpt2' _a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _a = type(lowerCAmelCase__ ).__name__ _a = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCAmelCase__ ) # Save tokenizer based on args print(f'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(lowerCAmelCase__ ) # Store the state_dict to file. _a = os.path.join(lowerCAmelCase__ , 'pytorch_model.bin' ) print(f'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
532
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase_ = '''CLIPImageProcessor''' lowerCAmelCase_ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , _A : List[Any]=None , _A : List[str]=None , **_A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __SCREAMING_SNAKE_CASE : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__A , __A ) def __call__( self : List[Any] , _A : List[Any]=None , _A : Dict=None , _A : Any=None , **_A : str ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: __SCREAMING_SNAKE_CASE : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCAmelCase__ ( self : Tuple , *_A : Optional[int] , **_A : int ): """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def UpperCAmelCase__ ( self : Union[str, Any] , *_A : List[str] , **_A : Dict ): """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __A , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __A , ) return self.image_processor
74
def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = (boundary[1] - boundary[0]) / steps _A = boundary[0] _A = boundary[1] _A = make_points(_lowercase , _lowercase , _lowercase ) _A = 0.0 y += (h / 2.0) * f(_lowercase ) for i in x_i: # print(i) y += h * f(_lowercase ) y += (h / 2.0) * f(_lowercase ) return y def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = a + h while x < (b - h): yield x _A = x + h def __A ( _lowercase ): # enter your function here '''simple docstring''' _A = (x - 0) * (x - 0) return y def __A ( ): '''simple docstring''' _A = 0.0 # Lower bound of integration _A = 1.0 # Upper bound of integration _A = 10.0 # define number of steps or resolution _A = [a, b] # define boundary of integration _A = method_a(_lowercase , _lowercase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
484
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _a : List[str] = logging.get_logger(__name__) _a : Union[str, Any] = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( _A ): """simple docstring""" A = '''dpt''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=384 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=[2, 5, 8, 11] , _lowerCAmelCase="project" , _lowerCAmelCase=[4, 2, 1, 0.5] , _lowerCAmelCase=[96, 192, 384, 768] , _lowerCAmelCase=256 , _lowerCAmelCase=-1 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0.4 , _lowerCAmelCase=255 , _lowerCAmelCase=0.1 , _lowerCAmelCase=[1, 1_024, 24, 24] , _lowerCAmelCase=[0, 1] , _lowerCAmelCase=None , **_lowerCAmelCase , ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowerCAmelCase__ :Dict = hidden_size lowerCAmelCase__ :Dict = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) lowerCAmelCase__ :int = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowerCAmelCase__ :Dict = BitConfig(**_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): logger.info("Initializing the config with a `BiT` backbone." ) lowerCAmelCase__ :str = BitConfig(**_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowerCAmelCase__ :int = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase__ :Union[str, Any] = backbone_featmap_shape lowerCAmelCase__ :Any = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Dict = [] lowerCAmelCase__ :Union[str, Any] = num_hidden_layers lowerCAmelCase__ :List[Any] = num_attention_heads lowerCAmelCase__ :Optional[Any] = intermediate_size lowerCAmelCase__ :Any = hidden_act lowerCAmelCase__ :int = hidden_dropout_prob lowerCAmelCase__ :Dict = attention_probs_dropout_prob lowerCAmelCase__ :int = initializer_range lowerCAmelCase__ :Union[str, Any] = layer_norm_eps lowerCAmelCase__ :Dict = image_size lowerCAmelCase__ :Tuple = patch_size lowerCAmelCase__ :Optional[int] = num_channels lowerCAmelCase__ :Any = qkv_bias lowerCAmelCase__ :Optional[int] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) lowerCAmelCase__ :Any = readout_type lowerCAmelCase__ :Any = reassemble_factors lowerCAmelCase__ :List[Any] = neck_hidden_sizes lowerCAmelCase__ :Dict = fusion_hidden_size lowerCAmelCase__ :Optional[Any] = head_in_index lowerCAmelCase__ :str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ :Dict = use_auxiliary_head lowerCAmelCase__ :Union[str, Any] = auxiliary_loss_weight lowerCAmelCase__ :Optional[int] = semantic_loss_ignore_index lowerCAmelCase__ :Optional[Any] = semantic_classifier_dropout def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ :str = self.backbone_config.to_dict() lowerCAmelCase__ :str = self.__class__.model_type return output
111
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = KandinskyVaaPipeline A = [ '''image_embeds''', '''negative_image_embeds''', ] A = ['''image_embeds''', '''negative_image_embeds'''] A = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A = False @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return 32 @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ): '''simple docstring''' return 100 @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ :List[str] = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def snake_case_ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.dummy_unet lowerCAmelCase__ :List[str] = self.dummy_movq lowerCAmelCase__ :List[Any] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_lowerCAmelCase , ) lowerCAmelCase__ :Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) if str(_lowerCAmelCase ).startswith("mps" ): lowerCAmelCase__ :List[Any] = torch.manual_seed(_lowerCAmelCase ) else: lowerCAmelCase__ :Optional[int] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = "cpu" lowerCAmelCase__ :Dict = self.get_dummy_components() lowerCAmelCase__ :Tuple = self.pipeline_class(**_lowerCAmelCase ) lowerCAmelCase__ :List[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :str = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCAmelCase__ :Dict = output.images lowerCAmelCase__ :str = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] lowerCAmelCase__ :Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ :Tuple = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) lowerCAmelCase__ :str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCAmelCase__ :str = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCAmelCase__ :Union[str, Any] = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = "red cat, 4k photo" lowerCAmelCase__ :Tuple = torch.Generator(device="cuda" ).manual_seed(0 ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ :List[Any] = torch.Generator(device="cuda" ).manual_seed(0 ) lowerCAmelCase__ :List[str] = pipeline( image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , output_type="np" , ) lowerCAmelCase__ :int = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
111
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class _a : """simple docstring""" A_ = 42 A_ = 42 A_ = None A_ = None A_ = None @dataclass(frozen=UpperCAmelCase__ ) class _a : """simple docstring""" A_ = 42 A_ = None A_ = None A_ = None A_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> Optional[Any]: UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = os.path.join( _UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCamelCase_ = torch.load(_UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCamelCase_ = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('Training examples: %s' , len(_UpperCAmelCase ) ) UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('Saving features into cached file %s' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ) -> int: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> List[Any]: return self.label_list if is_tf_available(): import tensorflow as tf class _a : """simple docstring""" A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 128 , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> Dict: UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list UpperCamelCase_ = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase_ = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _UpperCAmelCase ( self ) -> List[Any]: return self.dataset def __len__( self ) -> str: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> List[str]: return self.label_list class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]: return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def _UpperCAmelCase ( self ) -> List[str]: return ["contradiction", "entailment", "neutral"] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue UpperCamelCase_ = '%s-%s' % (set_type, line[0]) UpperCamelCase_ = line[5] UpperCamelCase_ = line[6] UpperCamelCase_ = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCamelCase_ = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , ): UpperCamelCase_ = {label: i for i, label in enumerate(__lowercase)} UpperCamelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(__lowercase) , desc='convert examples to features'): if ex_index % 10000 == 0: logger.info('Writing example %d' % (ex_index)) UpperCamelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__lowercase , max_length=__lowercase , padding='max_length' , truncation=__lowercase , return_overflowing_tokens=__lowercase , ) UpperCamelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCamelCase_ = int(example.pairID) features.append(InputFeatures(**__lowercase , label=__lowercase , pairID=__lowercase)) for i, example in enumerate(examples[:5]): logger.info('*** Example ***') logger.info(f"""guid: {example}""") logger.info(f"""features: {features[i]}""") return features snake_case__ : str = { """hans""": 3, } snake_case__ : Optional[Any] = { """hans""": HansProcessor, }
23
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
1
from queue import PriorityQueue from typing import Any import numpy as np def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase_ : List[str] = cst_fwd.get(lowerCAmelCase_ , np.inf) lowerCamelCase_ : Dict = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt)) lowerCamelCase_ : Optional[int] = new_cost_f lowerCamelCase_ : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase_ : Tuple = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[Any] = -1 lowerCamelCase_ : Tuple = set() lowerCamelCase_ : Dict = set() lowerCamelCase_ : int = {source: 0} lowerCamelCase_ : str = {destination: 0} lowerCamelCase_ : Tuple = {source: None} lowerCamelCase_ : Dict = {destination: None} lowerCamelCase_ : PriorityQueue[Any] = PriorityQueue() lowerCamelCase_ : PriorityQueue[Any] = PriorityQueue() lowerCamelCase_ : List[str] = np.inf queue_forward.put((0, source)) queue_backward.put((0, destination)) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase_ ,lowerCamelCase_ : List[Any] = queue_forward.get() visited_forward.add(lowerCAmelCase_) lowerCamelCase_ ,lowerCamelCase_ : str = queue_backward.get() visited_backward.add(lowerCAmelCase_) lowerCamelCase_ : Any = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) lowerCamelCase_ : Dict = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase_ : Union[str, Any] = shortest_distance return shortest_path_distance __magic_name__ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __magic_name__ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
73
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=400 , a_=True , a_=None , a_=True , ): lowerCamelCase_ : int = size if size is not None else {"height": 18, "width": 18} lowerCamelCase_ : str = parent lowerCamelCase_ : str = batch_size lowerCamelCase_ : Tuple = num_channels lowerCamelCase_ : Optional[int] = image_size lowerCamelCase_ : List[str] = min_resolution lowerCamelCase_ : Tuple = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : List[str] = apply_ocr def _UpperCamelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = LayoutLMvaImageProcessingTester(self ) @property def _UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "apply_ocr" ) ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCamelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input lowerCamelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched lowerCamelCase_ : int = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input lowerCamelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase_ : Any = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase_ : Union[str, Any] = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # with apply_OCR = True lowerCamelCase_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase_ : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowerCamelCase_ : Optional[Any] = Image.open(ds[0]["file"] ).convert("RGB" ) lowerCamelCase_ : List[Any] = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase_ : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowerCamelCase_ : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False lowerCamelCase_ : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) lowerCamelCase_ : List[str] = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
73
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A_ ( lowerCAmelCase__ ): lowerCAmelCase__ = 'blenderbot-small' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: int ,__lowerCAmelCase: List[str]=50_265 ,__lowerCAmelCase: List[str]=512 ,__lowerCAmelCase: int=8 ,__lowerCAmelCase: Tuple=2_048 ,__lowerCAmelCase: Dict=16 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[Any]=2_048 ,__lowerCAmelCase: Tuple=16 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: int="gelu" ,__lowerCAmelCase: Any=512 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: Optional[Any]=1 ,__lowerCAmelCase: List[str]=False ,__lowerCAmelCase: Optional[Any]=0 ,__lowerCAmelCase: int=1 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: int=2 ,**__lowerCAmelCase: str ,): '''simple docstring''' _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Tuple = d_model _lowerCamelCase : List[str] = encoder_ffn_dim _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : Union[str, Any] = encoder_attention_heads _lowerCamelCase : Union[str, Any] = decoder_ffn_dim _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Optional[int] = decoder_attention_heads _lowerCamelCase : List[Any] = dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Tuple = activation_dropout _lowerCamelCase : Any = activation_function _lowerCamelCase : List[str] = init_std _lowerCamelCase : List[Any] = encoder_layerdrop _lowerCamelCase : str = decoder_layerdrop _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Optional[Any] = encoder_layers _lowerCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,is_encoder_decoder=_lowerCamelCase ,decoder_start_token_id=_lowerCamelCase ,forced_eos_token_id=_lowerCamelCase ,**_lowerCamelCase ,) class A_ ( lowerCAmelCase__ ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCamelCase : Any = {0: """batch"""} _lowerCamelCase : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowerCamelCase : List[Any] = {0: """batch""", 1: """decoder_sequence"""} _lowerCamelCase : Tuple = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase ,direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCamelCase : str = self.num_layers for i in range(_lowerCamelCase ): _lowerCamelCase : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCamelCase : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} else: _lowerCamelCase : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowercase ( self: Dict ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Optional[Any] = super().outputs else: _lowerCamelCase : Any = super(_lowerCamelCase ,self ).outputs if self.use_past: _lowerCamelCase : Dict = self.num_layers for i in range(_lowerCamelCase ): _lowerCamelCase : Dict = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCamelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int] = -1 ,__lowerCAmelCase: List[Any] = -1 ,__lowerCAmelCase: str = False ,__lowerCAmelCase: Dict = None ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Generate decoder inputs _lowerCamelCase : Optional[int] = seq_length if not self.use_past else 1 _lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCamelCase : int = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : List[str] = dict(**_lowerCamelCase ,**_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase : List[str] = common_inputs["""input_ids"""].shape _lowerCamelCase : int = common_inputs["""decoder_input_ids"""].shape[1] _lowerCamelCase : List[Any] = self.num_attention_heads _lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : str = decoder_seq_length + 3 _lowerCamelCase : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCamelCase ,_lowerCamelCase )] ,dim=1 ) _lowerCamelCase : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase : str = self.num_layers _lowerCamelCase : List[Any] = min(_lowerCamelCase ,_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = max(_lowerCamelCase ,_lowerCamelCase ) - min_num_layers _lowerCamelCase : List[Any] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. _lowerCamelCase : Optional[int] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCamelCase ,_lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Any = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: List[str] = False ,__lowerCAmelCase: int = None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCamelCase : Optional[int] = seqlen + 2 _lowerCamelCase : List[Any] = self.num_layers _lowerCamelCase : int = self.num_attention_heads _lowerCamelCase : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Optional[int] = common_inputs["""attention_mask"""].dtype _lowerCamelCase : Tuple = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCamelCase ,_lowerCamelCase ,dtype=_lowerCamelCase )] ,dim=1 ) _lowerCamelCase : Optional[int] = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] = -1 ,__lowerCAmelCase: str = -1 ,__lowerCAmelCase: Dict = False ,__lowerCAmelCase: Tuple = None ,): '''simple docstring''' _lowerCamelCase : Tuple = compute_effective_axis_dimension( _lowerCamelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Optional[Any] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) _lowerCamelCase : Any = compute_effective_axis_dimension( _lowerCamelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : List[str] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : Optional[int] = dict(tokenizer(_lowerCamelCase ,return_tensors=_lowerCamelCase ) ) return common_inputs def _lowercase ( self: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] = -1 ,__lowerCAmelCase: Tuple = -1 ,__lowerCAmelCase: List[str] = False ,__lowerCAmelCase: Optional[Any] = None ,): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase ,batch_size=_lowerCamelCase ,seq_length=_lowerCamelCase ,is_pair=_lowerCamelCase ,framework=_lowerCamelCase ) elif self.task == "causal-lm": _lowerCamelCase : Any = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase ,batch_size=_lowerCamelCase ,seq_length=_lowerCamelCase ,is_pair=_lowerCamelCase ,framework=_lowerCamelCase ) else: _lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase ,batch_size=_lowerCamelCase ,seq_length=_lowerCamelCase ,is_pair=_lowerCamelCase ,framework=_lowerCamelCase ) return common_inputs def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Union[str, Any] = super()._flatten_past_key_values_(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else: _lowerCamelCase : Dict = super(_lowerCamelCase ,self )._flatten_past_key_values_( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
46
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _A = logging.get_logger(__name__) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: UpperCAmelCase__ : Tuple = os.path.abspath(lowerCAmelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase__ : Any = torch.load(lowerCAmelCase , map_location="""cpu""" ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase__ : str = convert_pytorch_state_dict_to_flax(lowerCAmelCase , lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase__ : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(lowerCAmelCase , lowerCAmelCase ) return flax_state_dict def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(lowerCAmelCase ) -> bool: return len(set(lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : List[str] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : int = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): UpperCAmelCase__ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : List[str] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase__ : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase__ : int = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase__ : Optional[int] = pt_tuple_key[-2] + """_v""" if name is not None: UpperCAmelCase__ : List[str] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Dict: # convert pytorch tensor to numpy UpperCAmelCase__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase__ : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase__ : Any = flax_model.params["""params"""] else: UpperCAmelCase__ : Optional[Any] = flax_model.params UpperCAmelCase__ : Tuple = flatten_dict(lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase__ : Dict = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(lowerCAmelCase ) UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase__ : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCAmelCase__ : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ : Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : int = rename_key_and_reshape_tensor( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase__ : str = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase__ : Any = jnp.asarray(lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase__ : Union[str, Any] = jnp.asarray(lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase__ : Any = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: import torch # Load the index UpperCAmelCase__ : List[str] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase__ : Tuple = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase__ : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase__ : List[Any] = flax_model.params["""params"""] UpperCAmelCase__ : int = flatten_dict(lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: UpperCAmelCase__ : Any = flax_model.params UpperCAmelCase__ : List[Any] = flatten_dict(lowerCAmelCase ) UpperCAmelCase__ : int = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase__ : str = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[int] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCAmelCase__ : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ : Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = rename_key_and_reshape_tensor( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase__ : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ : Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase__ : Any = jnp.asarray(lowerCAmelCase ) continue if "var" in flax_key[-1]: UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase__ : Optional[int] = jnp.asarray(lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = os.path.abspath(lowerCAmelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase__ : Dict = getattr(lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(lowerCAmelCase , """rb""" ) as state_f: try: UpperCAmelCase__ : Any = from_bytes(lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCAmelCase__ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase : x.dtype == jnp.bfloataa , lowerCAmelCase ) ).values() if any(lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCAmelCase__ : Union[str, Any] = jax.tree_util.tree_map( lambda lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase ) UpperCAmelCase__ : int = flatten_dict(lowerCAmelCase ) UpperCAmelCase__ : str = pt_model.state_dict() UpperCAmelCase__ : Optional[int] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase__ : str = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase__ : Dict = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase__ : List[str] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ : int = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowerCAmelCase ) not in pt_model_dict: # conv layer UpperCAmelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : str = jnp.transpose(lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase ) not in pt_model_dict: # linear layer UpperCAmelCase__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase__ : Any = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase__ : Any = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase__ : Dict = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: UpperCAmelCase__ : int = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase__ : Optional[Any] = """.""".join(lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase__ : str = key.split(""".""" ) UpperCAmelCase__ : Optional[int] = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase__ : Dict = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase__ : Dict = key_components[-2] + """_v""" if name is not None: UpperCAmelCase__ : Optional[Any] = key_components[:-3] + [name] UpperCAmelCase__ : Any = """.""".join(lowerCAmelCase ) UpperCAmelCase__ : List[str] = key if flax_key in special_pt_names: UpperCAmelCase__ : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase__ : Dict = np.asarray(lowerCAmelCase ) if not isinstance(lowerCAmelCase , np.ndarray ) else flax_tensor UpperCAmelCase__ : Optional[int] = torch.from_numpy(lowerCAmelCase ) # remove from missing keys missing_keys.remove(lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase ) pt_model.load_state_dict(lowerCAmelCase ) # re-transform missing_keys to list UpperCAmelCase__ : Optional[Any] = list(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(lowerCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
182
0
'''simple docstring''' def _snake_case ( A ) -> bool: if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True lowerCAmelCase__ = 4 lowerCAmelCase__ = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase__ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
98
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __UpperCAmelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class a__ ( unittest.TestCase ): '''simple docstring''' @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Any: lowerCAmelCase__ = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase__ = FlaxBertModel(lowerCamelCase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1e-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase_ , repo_id='''test-model-flax''' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1e-3 , msg=F"""{key} not identical""" ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase__ = FlaxBertModel(lowerCamelCase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1e-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) lowerCAmelCase__ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCAmelCase__ = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1e-3 , msg=F"""{key} not identical""" ) def _snake_case ( A , A ) -> Optional[int]: lowerCAmelCase__ = True lowerCAmelCase__ = flatten_dict(modela.params ) lowerCAmelCase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: lowerCAmelCase__ = False return models_are_equal @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCAmelCase__ = FlaxBertModel(lowerCamelCase_ ) lowerCAmelCase__ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertTrue(check_models_equal(lowerCamelCase_ , lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCAmelCase__ = FlaxBertModel(lowerCamelCase_ ) lowerCAmelCase__ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertTrue(check_models_equal(lowerCamelCase_ , lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = '''bert''' lowerCAmelCase__ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = '''bert''' lowerCAmelCase__ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
98
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Optional[Any] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : Tuple = { 'google/rembert': 256, } UpperCAmelCase_ : Optional[int] = '▁' class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : List[str] = RemBertTokenizer def __init__( self : int , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Optional[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : List[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE__ : Any="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : Any="[MASK]" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it a_ : List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Any = do_lower_case a_ : List[str] = remove_space a_ : Union[str, Any] = keep_accents a_ : str = vocab_file a_ : Optional[Any] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: a_ : List[Any] = [self.sep_token_id] a_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: a_ : Union[str, Any] = [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error('Vocabulary path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE__ ) ) return a_ : int = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
570
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : List[str] = ['''onnx'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Any: requires_backends(self , ['onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: requires_backends(cls , ['onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['onnx'] )
570
1
'''simple docstring''' import math def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> str: UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : str = 0 while num > 0: UpperCAmelCase_ : Union[str, Any] = num % 8 UpperCAmelCase_ : List[Any] = octal + (remainder * math.floor(math.pow(1_0 ,UpperCamelCase ) )) counter += 1 UpperCAmelCase_ : Dict = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(UpperCamelCase )}""" def SCREAMING_SNAKE_CASE( ) -> None: print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(6_5 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_1_6 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
471
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( a_ ): _lowerCamelCase : torch.FloatTensor class lowercase ( a_, a_ ): @register_to_config def __init__( self , _snake_case = 6_5536 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ) -> List[str]: super().__init__() UpperCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ : List[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ : Dict = block_out_channels[0] * 4 UpperCAmelCase_ : List[Any] = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ : int = nn.ModuleList([]) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = nn.ModuleList([]) UpperCAmelCase_ : Any = None # down UpperCAmelCase_ : Dict = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ : int = output_channel UpperCAmelCase_ : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ : int = i == len(_snake_case) - 1 UpperCAmelCase_ : Any = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ : Optional[int] = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ : Union[str, Any] = list(reversed(_snake_case)) UpperCAmelCase_ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ : Tuple = out_channels else: UpperCAmelCase_ : int = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ : Dict = output_channel UpperCAmelCase_ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ : str = i == len(_snake_case) - 1 UpperCAmelCase_ : Union[str, Any] = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ : Dict = output_channel # out UpperCAmelCase_ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ : Any = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case = True , ) -> Union[UNetaDOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ : Tuple = timesteps[None].to(sample.device) UpperCAmelCase_ : Any = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ : int = self.time_mlp(_snake_case) else: UpperCAmelCase_ : int = timestep_embed[..., None] UpperCAmelCase_ : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ : List[Any] = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ : int = down_block_res_samples[-1:] UpperCAmelCase_ : Tuple = down_block_res_samples[:-1] UpperCAmelCase_ : List[Any] = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ : Optional[Any] = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
471
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a__ ( lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = 384 _UpperCamelCase = 7 if "tiny" in model_name: _UpperCamelCase = 96 _UpperCamelCase = (2, 2, 6, 2) _UpperCamelCase = (3, 6, 12, 24) elif "small" in model_name: _UpperCamelCase = 96 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (3, 6, 12, 24) elif "base" in model_name: _UpperCamelCase = 128 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (4, 8, 16, 32) _UpperCamelCase = 12 _UpperCamelCase = 512 elif "large" in model_name: _UpperCamelCase = 192 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (6, 12, 24, 48) _UpperCamelCase = 12 _UpperCamelCase = 768 # set label information _UpperCamelCase = 150 _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''ade20k-id2label.json''' _UpperCamelCase = json.load(open(hf_hub_download(lowercase_, lowercase_, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = SwinConfig( embed_dim=lowercase_, depths=lowercase_, num_heads=lowercase_, window_size=lowercase_, out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''], ) _UpperCamelCase = UperNetConfig( backbone_config=lowercase_, auxiliary_in_channels=lowercase_, num_labels=lowercase_, idalabel=lowercase_, labelaid=lowercase_, ) return config def a__ ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCamelCase = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a__ ( lowercase : Optional[Any], lowercase : List[str], lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = dct.pop(lowercase_ ) _UpperCamelCase = val def a__ ( lowercase : Tuple, lowercase : List[Any] ) -> List[Any]: """simple docstring""" _UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) _UpperCamelCase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[:dim, :] _UpperCamelCase = in_proj_bias[: dim] _UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase = in_proj_weight[ -dim :, : ] _UpperCamelCase = in_proj_bias[-dim :] # fmt: on def a__ ( lowercase : int ) -> Optional[int]: """simple docstring""" _UpperCamelCase = x.shape _UpperCamelCase = x.reshape(lowercase_, 4, in_channel // 4 ) _UpperCamelCase = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(lowercase_, lowercase_ ) return x def a__ ( lowercase : Tuple ) -> int: """simple docstring""" _UpperCamelCase = x.shape _UpperCamelCase = x.reshape(lowercase_, in_channel // 4, 4 ) _UpperCamelCase = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(lowercase_, lowercase_ ) return x def a__ ( lowercase : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCamelCase = x.shape[0] _UpperCamelCase = x.reshape(4, in_channel // 4 ) _UpperCamelCase = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(lowercase_ ) return x def a__ ( lowercase : Dict ) -> Tuple: """simple docstring""" _UpperCamelCase = x.shape[0] _UpperCamelCase = x.reshape(in_channel // 4, 4 ) _UpperCamelCase = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(lowercase_ ) return x def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : str ) -> List[str]: """simple docstring""" _UpperCamelCase = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } _UpperCamelCase = model_name_to_url[model_name] _UpperCamelCase = torch.hub.load_state_dict_from_url(lowercase_, map_location='''cpu''', file_name=lowercase_ )[ '''state_dict''' ] for name, param in state_dict.items(): print(lowercase_, param.shape ) _UpperCamelCase = get_upernet_config(lowercase_ ) _UpperCamelCase = UperNetForSemanticSegmentation(lowercase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCamelCase = state_dict.pop(lowercase_ ) if "bn" in key: _UpperCamelCase = key.replace('''bn''', '''batch_norm''' ) _UpperCamelCase = val # rename keys _UpperCamelCase = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_, lowercase_, lowercase_ ) read_in_q_k_v(lowercase_, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _UpperCamelCase = reverse_correct_unfold_reduction_order(lowercase_ ) if "norm" in key: _UpperCamelCase = reverse_correct_unfold_norm_order(lowercase_ ) model.load_state_dict(lowercase_ ) # verify on image _UpperCamelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' _UpperCamelCase = Image.open(requests.get(lowercase_, stream=lowercase_ ).raw ).convert('''RGB''' ) _UpperCamelCase = SegformerImageProcessor() _UpperCamelCase = processor(lowercase_, return_tensors='''pt''' ).pixel_values with torch.no_grad(): _UpperCamelCase = model(lowercase_ ) _UpperCamelCase = outputs.logits print(logits.shape ) print('''First values of logits:''', logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _UpperCamelCase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": _UpperCamelCase = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": _UpperCamelCase = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": _UpperCamelCase = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], lowercase_, atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase__ : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
98
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A (__UpperCAmelCase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE = MgpstrTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = False def __a ( self ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off _snake_case : int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _snake_case : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) _snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) def __a ( self , **lowercase_ ) -> Optional[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __a ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : Optional[Any] = '''tester''' _snake_case : List[str] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __a ( self ) -> Any: '''simple docstring''' pass def __a ( self ) -> Optional[int]: '''simple docstring''' _snake_case : List[str] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _snake_case : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _snake_case : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=lowercase_ ) self.assertEqual(len(lowercase_ ) , 1 ) _snake_case : Union[str, Any] = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertTrue(special_token not in decoded ) def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _snake_case , _snake_case : int = self.get_input_output_texts(lowercase_ ) _snake_case : Optional[Any] = tokenizer.tokenize(lowercase_ ) _snake_case : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) _snake_case : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertNotEqual(len(lowercase_ ) , 0 ) _snake_case : str = tokenizer.decode(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , lowercase_ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __a ( self ) -> str: '''simple docstring''' pass
326
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Any = logging.get_logger(__name__) UpperCamelCase_ : Dict = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowerCamelCase__ ( snake_case__ ): """simple docstring""" UpperCamelCase__ = '''mra''' def __init__( self : Any ,a__ : Union[str, Any]=5_02_65 ,a__ : List[Any]=7_68 ,a__ : Tuple=12 ,a__ : Any=12 ,a__ : Any=30_72 ,a__ : Optional[int]="gelu" ,a__ : Optional[Any]=0.1 ,a__ : List[str]=0.1 ,a__ : int=5_12 ,a__ : str=1 ,a__ : str=0.02 ,a__ : Optional[int]=1e-5 ,a__ : str="absolute" ,a__ : List[Any]=4 ,a__ : int="full" ,a__ : Any=0 ,a__ : str=0 ,a__ : Any=1 ,a__ : List[Any]=0 ,a__ : Tuple=2 ,**a__ : Dict ,): super().__init__(pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,**_A ) a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = type_vocab_size a__ = layer_norm_eps a__ = position_embedding_type a__ = block_per_row a__ = approx_mode a__ = initial_prior_first_n_blocks a__ = initial_prior_diagonal_n_blocks
711
'''simple docstring''' from math import factorial def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(_lowercase , _lowercase ) or not isinstance(_lowercase , _lowercase ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) a__ = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a__ = float(factorial(_lowercase ) ) coefficient /= factorial(_lowercase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
394
0
"""simple docstring""" def __magic_name__ ( UpperCamelCase : int = 1000 ) -> int: a__ = 1, 1 a__ = [] for i in range(1 , n + 1 ): a__ = prev_numerator + 2 * prev_denominator a__ = prev_numerator + prev_denominator if len(str(UpperCamelCase__ ) ) > len(str(UpperCamelCase__ ) ): result.append(UpperCamelCase__ ) a__ = numerator a__ = denominator return len(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
273
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A__ : """simple docstring""" def __init__( self: Union[str, Any] )-> List[str]: lowerCamelCase : Optional[int] = {} def a__ ( self: Any , __a: int , __a: List[Any] , __a: Optional[int]=1 )-> Optional[Any]: if self.graph.get(__a ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase : Tuple = [[w, v]] if not self.graph.get(__a ): lowerCamelCase : Optional[Any] = [] def a__ ( self: str )-> str: return list(self.graph ) def a__ ( self: Any , __a: int , __a: Any )-> int: if self.graph.get(__a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a ) def a__ ( self: Optional[int] , __a: str=-2 , __a: Optional[Any]=-1 )-> int: if s == d: return [] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : str = [] if s == -2: lowerCamelCase : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a ) != 0: lowerCamelCase : int = stack[len(__a ) - 1] else: lowerCamelCase : Dict = ss # check if se have reached the starting point if len(__a ) == 0: return visited def a__ ( self: str , __a: str=-1 )-> Optional[Any]: if c == -1: lowerCamelCase : List[str] = floor(random() * 10_000 ) + 10 for i in range(__a ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(__a , __a , 1 ) def a__ ( self: Any , __a: int=-2 )-> List[str]: lowerCamelCase : List[Any] = deque() lowerCamelCase : List[str] = [] if s == -2: lowerCamelCase : str = list(self.graph )[0] d.append(__a ) visited.append(__a ) while d: lowerCamelCase : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ ( self: Tuple , __a: Union[str, Any] )-> Union[str, Any]: lowerCamelCase : Optional[int] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def a__ ( self: Optional[Any] , __a: Any )-> Optional[int]: return len(self.graph[u] ) def a__ ( self: Optional[int] , __a: Tuple=-2 )-> List[Any]: lowerCamelCase : Any = [] lowerCamelCase : Optional[Any] = [] if s == -2: lowerCamelCase : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Tuple = s lowerCamelCase : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__a ) != 0: lowerCamelCase : Dict = stack[len(__a ) - 1] else: lowerCamelCase : Tuple = ss # check if se have reached the starting point if len(__a ) == 0: return sorted_nodes def a__ ( self: Dict )-> Tuple: lowerCamelCase : Any = [] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : List[str] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Union[str, Any] = -2 lowerCamelCase : Optional[int] = [] lowerCamelCase : Optional[int] = s lowerCamelCase : str = False lowerCamelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : List[Any] = len(__a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : Optional[int] = True if len(__a ) != 0: lowerCamelCase : Tuple = stack[len(__a ) - 1] else: lowerCamelCase : List[str] = False indirect_parents.append(__a ) lowerCamelCase : Any = s lowerCamelCase : int = ss # check if se have reached the starting point if len(__a ) == 0: return list(__a ) def a__ ( self: Any )-> int: lowerCamelCase : str = [] lowerCamelCase : Any = [] lowerCamelCase : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Any = -2 lowerCamelCase : Optional[int] = [] lowerCamelCase : Tuple = s lowerCamelCase : Tuple = False lowerCamelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : str = len(__a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : List[Any] = True if len(__a ) != 0: lowerCamelCase : List[str] = stack[len(__a ) - 1] else: lowerCamelCase : str = False indirect_parents.append(__a ) lowerCamelCase : Any = s lowerCamelCase : List[str] = ss # check if se have reached the starting point if len(__a ) == 0: return False def a__ ( self: Optional[int] , __a: Tuple=-2 , __a: List[Any]=-1 )-> Optional[Any]: lowerCamelCase : Union[str, Any] = time() self.dfs(__a , __a ) lowerCamelCase : Tuple = time() return end - begin def a__ ( self: List[str] , __a: Optional[Any]=-2 )-> List[Any]: lowerCamelCase : str = time() self.bfs(__a ) lowerCamelCase : Tuple = time() return end - begin class A__ : """simple docstring""" def __init__( self: Any )-> Tuple: lowerCamelCase : List[Any] = {} def a__ ( self: Tuple , __a: Any , __a: int , __a: List[Any]=1 )-> Union[str, Any]: # check if the u exists if self.graph.get(__a ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase : Any = [[w, v]] # add the other way if self.graph.get(__a ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase : Dict = [[w, u]] def a__ ( self: Tuple , __a: List[str] , __a: List[str] )-> Any: if self.graph.get(__a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a ) # the other way round if self.graph.get(__a ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__a ) def a__ ( self: Any , __a: str=-2 , __a: str=-1 )-> Tuple: if s == d: return [] lowerCamelCase : Dict = [] lowerCamelCase : List[Any] = [] if s == -2: lowerCamelCase : Tuple = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a ) != 0: lowerCamelCase : List[str] = stack[len(__a ) - 1] else: lowerCamelCase : Union[str, Any] = ss # check if se have reached the starting point if len(__a ) == 0: return visited def a__ ( self: Any , __a: Tuple=-1 )-> List[Any]: if c == -1: lowerCamelCase : Any = floor(random() * 10_000 ) + 10 for i in range(__a ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(__a , __a , 1 ) def a__ ( self: Tuple , __a: int=-2 )-> str: lowerCamelCase : Dict = deque() lowerCamelCase : int = [] if s == -2: lowerCamelCase : str = list(self.graph )[0] d.append(__a ) visited.append(__a ) while d: lowerCamelCase : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ ( self: str , __a: str )-> Any: return len(self.graph[u] ) def a__ ( self: Any )-> List[str]: lowerCamelCase : int = [] lowerCamelCase : Tuple = [] lowerCamelCase : str = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : List[str] = -2 lowerCamelCase : Optional[Any] = [] lowerCamelCase : Optional[Any] = s lowerCamelCase : List[Any] = False lowerCamelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : Any = len(__a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : Any = True if len(__a ) != 0: lowerCamelCase : Tuple = stack[len(__a ) - 1] else: lowerCamelCase : Dict = False indirect_parents.append(__a ) lowerCamelCase : str = s lowerCamelCase : Any = ss # check if se have reached the starting point if len(__a ) == 0: return list(__a ) def a__ ( self: Any )-> Union[str, Any]: lowerCamelCase : str = [] lowerCamelCase : str = [] lowerCamelCase : str = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : List[str] = -2 lowerCamelCase : List[str] = [] lowerCamelCase : Optional[int] = s lowerCamelCase : Tuple = False lowerCamelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : Tuple = len(__a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : str = True if len(__a ) != 0: lowerCamelCase : Optional[int] = stack[len(__a ) - 1] else: lowerCamelCase : Tuple = False indirect_parents.append(__a ) lowerCamelCase : List[str] = s lowerCamelCase : List[Any] = ss # check if se have reached the starting point if len(__a ) == 0: return False def a__ ( self: Tuple )-> Optional[int]: return list(self.graph ) def a__ ( self: Optional[Any] , __a: Dict=-2 , __a: Optional[Any]=-1 )-> Optional[int]: lowerCamelCase : List[str] = time() self.dfs(__a , __a ) lowerCamelCase : Optional[int] = time() return end - begin def a__ ( self: Union[str, Any] , __a: Optional[Any]=-2 )-> Any: lowerCamelCase : Tuple = time() self.bfs(__a ) lowerCamelCase : Optional[int] = time() return end - begin
222
0
'''simple docstring''' import math import qiskit def A_ ( _lowerCAmelCase : Tuple = 1 , _lowerCAmelCase : str = 1 , _lowerCAmelCase : List[Any] = 1 ): """simple docstring""" if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) or isinstance(_lowerCAmelCase , _lowerCAmelCase ) or isinstance(_lowerCAmelCase , _lowerCAmelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(_lowerCAmelCase ) != input_a) or (math.floor(_lowerCAmelCase ) != input_a) or (math.floor(_lowerCAmelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _lowerCamelCase : Any = qiskit.QuantumRegister(4 , "qr" ) _lowerCamelCase : List[str] = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _lowerCamelCase : Optional[int] = [input_a, input_a, carry_in] _lowerCamelCase : Union[str, Any] = qiskit.QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowerCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowerCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowerCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowerCAmelCase ) # measure the last two qbits _lowerCamelCase : int = qiskit.Aer.get_backend("aer_simulator" ) _lowerCamelCase : Optional[Any] = qiskit.execute(_lowerCAmelCase , _lowerCAmelCase , shots=1000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: return F'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase_) for s in shape])}.npy' def UpperCAmelCase__ ( self) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self , lowerCamelCase_=0 , lowerCamelCase_=(4, 4, 6_4, 6_4) , lowerCamelCase_=False) -> Union[str, Any]: UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_)) , dtype=lowerCamelCase_) return image def UpperCAmelCase__ ( self , lowerCamelCase_=False , lowerCamelCase_="CompVis/stable-diffusion-v1-4") -> Tuple: UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase = '''bf16''' if fpaa else None UpperCamelCase , UpperCamelCase = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase_ , subfolder='''unet''' , dtype=lowerCamelCase_ , revision=lowerCamelCase_) return model, params def UpperCAmelCase__ ( self , lowerCamelCase_=0 , lowerCamelCase_=(4, 7_7, 7_6_8) , lowerCamelCase_=False) -> Dict: UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_)) , dtype=lowerCamelCase_) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ]) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase , UpperCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCamelCase_) UpperCamelCase = self.get_latents(lowerCamelCase_ , fpaa=lowerCamelCase_) UpperCamelCase = self.get_encoder_hidden_states(lowerCamelCase_ , fpaa=lowerCamelCase_) UpperCamelCase = model.apply( {'''params''': params} , lowerCamelCase_ , jnp.array(lowerCamelCase_ , dtype=jnp.intaa) , encoder_hidden_states=lowerCamelCase_ , ).sample assert sample.shape == latents.shape UpperCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) UpperCamelCase = jnp.array(lowerCamelCase_ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ]) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase , UpperCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCamelCase_) UpperCamelCase = self.get_latents(lowerCamelCase_ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCamelCase_) UpperCamelCase = self.get_encoder_hidden_states(lowerCamelCase_ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCamelCase_) UpperCamelCase = model.apply( {'''params''': params} , lowerCamelCase_ , jnp.array(lowerCamelCase_ , dtype=jnp.intaa) , encoder_hidden_states=lowerCamelCase_ , ).sample assert sample.shape == latents.shape UpperCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) UpperCamelCase = jnp.array(lowerCamelCase_ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2)
34
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): a :int = parent a :List[Any] = batch_size a :Optional[int] = seq_length a :List[Any] = is_training a :Union[str, Any] = use_input_mask a :Tuple = use_token_type_ids a :Tuple = use_labels a :int = vocab_size a :int = hidden_size a :Optional[Any] = num_hidden_layers a :List[str] = num_attention_heads a :str = intermediate_size a :Union[str, Any] = hidden_act a :Tuple = hidden_dropout_prob a :Dict = attention_probs_dropout_prob a :Tuple = max_position_embeddings a :int = type_vocab_size a :Union[str, Any] = type_sequence_label_size a :List[Any] = initializer_range a :Any = num_labels a :int = num_choices a :Optional[Any] = scope def SCREAMING_SNAKE_CASE__ ( self ): a :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Dict = None if self.use_input_mask: a :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a :Dict = None if self.use_token_type_ids: a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a :Tuple = None a :List[Any] = None a :Any = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a :Any = ids_tensor([self.batch_size] , self.num_choices ) a :List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = NystromformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) a :Union[str, Any] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = NystromformerForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Dict = NystromformerForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[str] = self.num_labels a :Any = NystromformerForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[str] = self.num_labels a :str = NystromformerForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = self.num_choices a :Optional[Any] = NystromformerForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() a :Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a :List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a :int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a :List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) :Any = config_and_inputs a :Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :Any = NystromformerModelTester(self ) a :Tuple = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a :Union[str, Any] = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :str = NystromformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) a :Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): a :Optional[int] = model(_lowerCamelCase )[0] a :Optional[Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) a :Dict = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = '''the [MASK] of Belgium is Brussels''' a :Dict = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) a :str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) a :Dict = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) with torch.no_grad(): a :Union[str, Any] = model(encoding.input_ids ).logits a :Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_lowerCamelCase ) , '''capital''' )
445
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class _UpperCamelCase( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : int="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : List[str]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : List[str]=False , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a : int = kwargs.pop('add_bos_token' , SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: __a : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop('type' ) ) __a : Tuple = add_prefix_space __a : Any = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) __a : List[Any] = add_prefix_space def __lowerCAmelCase ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : List[str] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a : Union[str, Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple = None ): '''simple docstring''' __a : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length: __a : int = input_ids[-self.model_max_length :] return input_ids
701
from __future__ import annotations def UpperCAmelCase__ ( lowerCamelCase_ : list[int] ): if not nums: return 0 __a : Any = nums[0] __a : List[Any] = 0 for num in nums[1:]: __a , __a : List[Any] = ( max_excluding + num, max(lowerCamelCase_ , lowerCamelCase_ ), ) return max(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
577
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A : __snake_case = MBartConfig __snake_case = {} __snake_case = 'gelu' def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=7, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__=99, UpperCamelCase__=32, UpperCamelCase__=2, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=20, UpperCamelCase__=2, UpperCamelCase__=1, UpperCamelCase__=0, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor], axis=1 ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCAmelCase_ = prepare_mbart_inputs_dict(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = TFMBartModel(config=UpperCamelCase__ ).get_decoder() lowerCAmelCase_ = inputs_dict['''input_ids'''] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase_ = inputs_dict['''head_mask'''] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__, use_cache=UpperCamelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() lowerCAmelCase_ = past_key_values[1] def __UpperCamelCase ( _A , _A , _A , _A=None , _A=None , _A=None , _A=None , _A=None , ): if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __snake_case = (TFMBartForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFMBartModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class A ( unittest.TestCase ): __snake_case = [ ' UN Chief Says There Is No Military Solution in Syria', ] __snake_case = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __snake_case = 'facebook/mbart-large-en-ro' @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.translate_src_text(**UpperCamelCase__ ) self.assertListEqual(self.expected_text, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.tokenizer(self.src_text, **UpperCamelCase__, return_tensors='''tf''' ) lowerCAmelCase_ = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2 ) lowerCAmelCase_ = self.tokenizer.batch_decode(UpperCamelCase__, skip_special_tokens=UpperCamelCase__ ) return generated_words @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self._assert_generated_batch_equal_expected()
431
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def A__ ( self ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def A__ ( self ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) def snake_case__ ( ) -> Tuple: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def snake_case__ ( ) -> Any: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCamelCase ( lowercase__ ): '''simple docstring''' @require_beam def A__ ( self ): UpperCAmelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self ): import apache_beam as beam UpperCAmelCase_ = beam.io.parquetio.WriteToParquet UpperCAmelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase_ = partial(lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A__ ( self ): UpperCAmelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = NestedBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __lowercase : def __init__( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = '''''' __lowerCAmelCase : List[Any] = '''''' __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Dict = 256 __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : Optional[int] = 0 def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = cva.imread(A_ , 0 ) __lowerCAmelCase : List[str] = copy.deepcopy(self.img ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Tuple = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) __lowerCAmelCase : List[Any] = np.sum(A_ ) for i in range(len(A_ ) ): __lowerCAmelCase : List[Any] = x[i] / self.k self.sk += prk __lowerCAmelCase : Optional[int] = (self.L - 1) * self.sk if self.rem != 0: __lowerCAmelCase : int = int(last % last ) __lowerCAmelCase : List[Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) __lowerCAmelCase : int = int(np.ma.count(self.img ) / self.img[1].size ) __lowerCAmelCase : List[Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __lowerCAmelCase : int = self.img[j][i] if num != self.last_list[num]: __lowerCAmelCase : Tuple = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), "image_data/input.jpg") _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
492
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = 42 class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = (16, 32, 96, 256) _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : int = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCAmelCase : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): __lowerCAmelCase : List[Any] = self.block_out_channels[i] __lowerCAmelCase : Dict = self.block_out_channels[i + 1] __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) __lowerCAmelCase : List[str] = blocks __lowerCAmelCase : str = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = self.conv_in(A_ ) __lowerCAmelCase : int = nn.silu(A_ ) for block in self.blocks: __lowerCAmelCase : int = block(A_ ) __lowerCAmelCase : Union[str, Any] = nn.silu(A_ ) __lowerCAmelCase : List[Any] = self.conv_out(A_ ) return embedding @flax_register_to_config class __lowercase (nn.Module , _UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase = False _UpperCamelCase = (320, 640, 1280, 1280) _UpperCamelCase = 2 _UpperCamelCase = 8 _UpperCamelCase = None _UpperCamelCase = 1280 _UpperCamelCase = 0.0 _UpperCamelCase = False _UpperCamelCase = jnp.floataa _UpperCamelCase = True _UpperCamelCase = 0 _UpperCamelCase = "rgb" _UpperCamelCase = (16, 32, 96, 256) def UpperCamelCase__ ( self , A_ ) ->FrozenDict: '''simple docstring''' __lowerCAmelCase : Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) __lowerCAmelCase : str = jnp.zeros(A_ , dtype=jnp.floataa ) __lowerCAmelCase : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) __lowerCAmelCase : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowerCAmelCase : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowerCAmelCase : Optional[Any] = jnp.zeros(A_ , dtype=jnp.floataa ) __lowerCAmelCase, __lowerCAmelCase : Any = jax.random.split(A_ ) __lowerCAmelCase : int = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A_ , A_ , A_ , A_ , A_ )["params"] def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.block_out_channels __lowerCAmelCase : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowerCAmelCase : Optional[int] = self.num_attention_heads or self.attention_head_dim # input __lowerCAmelCase : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowerCAmelCase : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowerCAmelCase : str = FlaxTimestepEmbedding(A_ , dtype=self.dtype ) __lowerCAmelCase : Optional[int] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __lowerCAmelCase : Union[str, Any] = self.only_cross_attention if isinstance(A_ , A_ ): __lowerCAmelCase : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A_ , A_ ): __lowerCAmelCase : str = (num_attention_heads,) * len(self.down_block_types ) # down __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = block_out_channels[0] __lowerCAmelCase : List[str] = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) for i, down_block_type in enumerate(self.down_block_types ): __lowerCAmelCase : List[Any] = output_channel __lowerCAmelCase : Optional[int] = block_out_channels[i] __lowerCAmelCase : str = i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowerCAmelCase : List[str] = FlaxCrossAttnDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __lowerCAmelCase : List[Any] = FlaxDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A_ ) for _ in range(self.layers_per_block ): __lowerCAmelCase : str = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) if not is_final_block: __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) __lowerCAmelCase : int = down_blocks __lowerCAmelCase : Optional[int] = controlnet_down_blocks # mid __lowerCAmelCase : List[str] = block_out_channels[-1] __lowerCAmelCase : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=A_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , A_ , A_ , A_ , A_ , A_ = 1.0 , A_ = True , A_ = False , ) ->Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowerCAmelCase : List[Any] = jnp.flip(A_ , axis=1 ) # 1. time if not isinstance(A_ , jnp.ndarray ): __lowerCAmelCase : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A_ , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowerCAmelCase : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __lowerCAmelCase : Optional[Any] = jnp.expand_dims(A_ , 0 ) __lowerCAmelCase : Optional[int] = self.time_proj(A_ ) __lowerCAmelCase : str = self.time_embedding(A_ ) # 2. pre-process __lowerCAmelCase : List[str] = jnp.transpose(A_ , (0, 2, 3, 1) ) __lowerCAmelCase : Union[str, Any] = self.conv_in(A_ ) __lowerCAmelCase : Tuple = jnp.transpose(A_ , (0, 2, 3, 1) ) __lowerCAmelCase : int = self.controlnet_cond_embedding(A_ ) sample += controlnet_cond # 3. down __lowerCAmelCase : Tuple = (sample,) for down_block in self.down_blocks: if isinstance(A_ , A_ ): __lowerCAmelCase, __lowerCAmelCase : Dict = down_block(A_ , A_ , A_ , deterministic=not train ) else: __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = down_block(A_ , A_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowerCAmelCase : Union[str, Any] = self.mid_block(A_ , A_ , A_ , deterministic=not train ) # 5. contronet blocks __lowerCAmelCase : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(A_ , self.controlnet_down_blocks ): __lowerCAmelCase : List[Any] = controlnet_block(A_ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowerCAmelCase : Dict = controlnet_down_block_res_samples __lowerCAmelCase : int = self.controlnet_mid_block(A_ ) # 6. scaling __lowerCAmelCase : Tuple = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A_ , mid_block_res_sample=A_ )
492
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a__ ( enum.Enum ): A__ : Dict = 0 A__ : str = 1 A__ : Optional[Any] = 2 @add_end_docstrings(__snake_case ) class a__ ( __snake_case ): A__ : Optional[int] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __a = None if self.model.config.prefix is not None: __a = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __a = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __a , __a , __a = self._sanitize_parameters(prefix=UpperCAmelCase , **self._forward_params ) __a = {**self._preprocess_params, **preprocess_params} __a = {**self._forward_params, **forward_params} def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> List[Any]: __a = {} if prefix is not None: __a = prefix if prefix: __a = self.tokenizer( UpperCAmelCase , padding=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=self.framework ) __a = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) __a = handle_long_generation preprocess_params.update(UpperCAmelCase ) __a = generate_kwargs __a = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __a = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __a = ReturnType.TENSORS if return_type is not None: __a = return_type if clean_up_tokenization_spaces is not None: __a = clean_up_tokenization_spaces if stop_sequence is not None: __a = self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) if len(UpperCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*UpperCAmelCase , **UpperCAmelCase ) def __call__( self , UpperCAmelCase , **UpperCAmelCase ) -> Dict: return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase="" , UpperCAmelCase=None , **UpperCAmelCase ) -> Tuple: __a = self.tokenizer( prefix + prompt_text , padding=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=self.framework ) __a = prompt_text if handle_long_generation == "hole": __a = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __a = generate_kwargs['max_new_tokens'] else: __a = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __a = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __a = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __a = inputs['attention_mask'][:, -keep_length:] return inputs def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , **UpperCAmelCase ) -> int: __a = model_inputs['input_ids'] __a = model_inputs.get('attention_mask' , UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __a = None __a = None __a = 1 else: __a = input_ids.shape[0] __a = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __a = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __a = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __a = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __a = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __a = self.model.generate(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) __a = generated_sequence.shape[0] if self.framework == "pt": __a = generated_sequence.reshape(UpperCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __a = tf.reshape(UpperCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=ReturnType.FULL_TEXT , UpperCAmelCase=True ) -> str: __a = model_outputs['generated_sequence'][0] __a = model_outputs['input_ids'] __a = model_outputs['prompt_text'] __a = generated_sequence.numpy().tolist() __a = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __a = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __a = self.tokenizer.decode( UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __a = 0 else: __a = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: __a = prompt_text + text[prompt_length:] else: __a = text[prompt_length:] __a = {'generated_text': all_text} records.append(UpperCAmelCase ) return records
717
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a__ ( __snake_case , unittest.TestCase ): A__ : List[str] = TextToVideoSDPipeline A__ : Dict = TEXT_TO_IMAGE_PARAMS A__ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. A__ : int = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) __a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __a = CLIPTextModel(UpperCAmelCase ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Optional[int]: if str(UpperCAmelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCAmelCase ) else: __a = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __a = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = TextToVideoSDPipeline(**UpperCAmelCase ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = 'np' __a = sd_pipe(**UpperCAmelCase ).frames __a = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __a = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> int: return super().test_progress_bar() @slow @skip_mps class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) __a = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a = pipe.to('cuda' ) __a = 'Spiderman is surfing' __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2_5 , output_type='pt' ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) __a = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) __a = pipe.to('cuda' ) __a = 'Spiderman is surfing' __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type='pt' ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
246
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase_ = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict=None ): """simple docstring""" SCREAMING_SNAKE_CASE : str = XLNetConfig.from_json_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) SCREAMING_SNAKE_CASE : Optional[int] = finetuning_task SCREAMING_SNAKE_CASE : Optional[int] = GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE : int = XLNetForSequenceClassification(__lowerCAmelCase ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE : Union[str, Any] = finetuning_task SCREAMING_SNAKE_CASE : Optional[int] = XLNetForQuestionAnswering(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = XLNetLMHeadModel(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # Save pytorch-model SCREAMING_SNAKE_CASE : str = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) print(f"Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}" ) torch.save(model.state_dict() ,__lowerCAmelCase ) print(f"Save configuration file to {os.path.abspath(__lowerCAmelCase )}" ) with open(__lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) UpperCamelCase_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
28
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = " " ) -> list: """simple docstring""" snake_case__ : str = [] snake_case__ : int = 0 for index, char in enumerate(__lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) snake_case__ : Dict = index + 1 elif index + 1 == len(__lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
252
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
lowercase_ = {str(digit): digit**5 for digit in range(10)} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(solution())
390
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a = logging.get_logger(__name__) class __a ( _snake_case ): def __init__( self : str ,*lowerCamelCase : List[str] ,**lowerCamelCase : Dict ): '''simple docstring''' warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" ,lowerCamelCase ,) super().__init__(*lowerCamelCase ,**lowerCamelCase )
109
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Union[str, Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): """simple docstring""" snake_case__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ): try: hide_cursor() yield finally: show_cursor()
632
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __magic_name__: Optional[int] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase ( _A, _A=None, _A=None, _A=None ): """simple docstring""" __magic_name__ : List[Any] = True while ask_again: __magic_name__ : Any = input(_A ) try: if default is not None and len(_A ) == 0: return default return convert_value(_A ) if convert_value is not None else result except Exception: if error_message is not None: print(_A ) def UpperCamelCase ( _A, _A=[], _A=None, _A=0 ): """simple docstring""" __magic_name__ : List[Any] = BulletMenu(_A, _A ) __magic_name__ : Any = menu.run(default_choice=_A ) return convert_value(_A ) if convert_value is not None else result def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Optional[int] = int(_A ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = int(_A ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Optional[int] = int(_A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : int = int(_A ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = int(_A ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( _A ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class snake_case__ ( argparse.RawDescriptionHelpFormatter ): def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Any = super()._format_usage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Dict = usage.replace("""<command> [<args>] """ , """""" ) return usage
324
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = StableDiffusionPanoramaPipeline lowercase__ : str = TEXT_TO_IMAGE_PARAMS lowercase__ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __magic_name__ : Union[str, Any] = DDIMScheduler() torch.manual_seed(0 ) __magic_name__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __magic_name__ : int = CLIPTextModel(lowerCAmelCase__ ) __magic_name__ : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __magic_name__ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> str: __magic_name__ : Any = torch.manual_seed(lowerCAmelCase__ ) __magic_name__ : Tuple = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __magic_name__ ( self ) -> List[str]: __magic_name__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Union[str, Any] = self.get_dummy_components() __magic_name__ : List[str] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) __magic_name__ : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : Tuple = sd_pipe(**lowerCAmelCase__ ).images __magic_name__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : Any = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> List[Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self ) -> str: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def __magic_name__ ( self ) -> str: __magic_name__ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Tuple = self.get_dummy_components() __magic_name__ : Dict = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) __magic_name__ : int = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = """french fries""" __magic_name__ : int = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __magic_name__ : Dict = output.images __magic_name__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : Dict = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> str: __magic_name__ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Any = self.get_dummy_components() __magic_name__ : Tuple = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) __magic_name__ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : List[Any] = sd_pipe(**lowerCAmelCase__ , view_batch_size=2 ) __magic_name__ : List[Any] = output.images __magic_name__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : List[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : str = self.get_dummy_components() __magic_name__ : int = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" ) __magic_name__ : str = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) __magic_name__ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = sd_pipe(**lowerCAmelCase__ ).images __magic_name__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : int = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Tuple: __magic_name__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Tuple = self.get_dummy_components() __magic_name__ : int = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , skip_prk_steps=lowerCAmelCase__ ) __magic_name__ : List[Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) __magic_name__ : Dict = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __magic_name__ : Dict = sd_pipe(**lowerCAmelCase__ ).images __magic_name__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ : str = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , lowerCAmelCase__=0 ) -> List[Any]: __magic_name__ : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ ) __magic_name__ : str = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = """stabilityai/stable-diffusion-2-base""" __magic_name__ : Optional[int] = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="""scheduler""" ) __magic_name__ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __magic_name__ : List[str] = self.get_inputs() __magic_name__ : Tuple = pipe(**lowerCAmelCase__ ).images __magic_name__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __magic_name__ : Tuple = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __magic_name__ : List[str] = self.get_inputs() __magic_name__ : int = pipe(**lowerCAmelCase__ ).images __magic_name__ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __magic_name__ : Any = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self ) -> str: __magic_name__ : List[str] = 0 def callback_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __magic_name__ : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __magic_name__ : int = latents[0, -3:, -3:, -1] __magic_name__ : Optional[Any] = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __magic_name__ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __magic_name__ : List[str] = latents[0, -3:, -3:, -1] __magic_name__ : Dict = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __magic_name__ : List[Any] = False __magic_name__ : Union[str, Any] = """stabilityai/stable-diffusion-2-base""" __magic_name__ : int = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="""scheduler""" ) __magic_name__ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __magic_name__ : List[Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__ ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ : List[Any] = """stabilityai/stable-diffusion-2-base""" __magic_name__ : List[str] = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="""scheduler""" ) __magic_name__ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) __magic_name__ : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __magic_name__ : List[Any] = self.get_inputs() __magic_name__ : Union[str, Any] = pipe(**lowerCAmelCase__ ) __magic_name__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
324
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file lowercase__ = TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter lowercase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowercase__ = TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams lowercase__ = 4 lowercase__ = True # hparam_utils.py hparams lowercase__ = 0.66_46_94 lowercase__ = 0.20_79_51 lowercase__ = 0.12_11_94 lowercase__ = True lowercase__ = True lowercase__ = False lowercase__ = 0.0_35_25_13 lowercase__ = TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowercase__ = 4 lowercase__ = False # hparam_utils.py hparams lowercase__ = 36.45_19 lowercase__ = 0.90_34_21 lowercase__ = 2_22.0_88 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 0.76_31_41 lowercase__ = TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": lowercase__ = TapasForSequenceClassification(config=A__ ) elif task == "MLM": lowercase__ = TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": lowercase__ = TapasModel(config=A__ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__ , A__ , A__ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A__ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) lowercase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(A__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase=2_8123 ) -> int: '''simple docstring''' lowerCamelCase__ =[1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowerCamelCase__ =set() lowerCamelCase__ =0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowerCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
530
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(__lowerCAmelCase ), magnitude * sin(__lowerCAmelCase )] return [magnitude * cos(radians(__lowerCAmelCase ) ), magnitude * sin(radians(__lowerCAmelCase ) )] def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-1 ) -> bool: '''simple docstring''' lowerCamelCase__ =cross(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =sum(__lowerCAmelCase ) return abs(__lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works a =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) a =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
530
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : Any , A : Dict , A : str , A : Optional[Any]=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCAmelCase = os.path.abspath(A ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase = torch.load(A , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase = convert_pytorch_state_dict_to_flax(A , A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase = convert_pytorch_sharded_state_dict_to_flax(A , A ) return flax_state_dict def lowerCamelCase__ ( A : Tuple[str] , A : np.ndarray , A : Dict[str, jnp.ndarray] , A : str , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(A : Tuple[str] ) -> bool: return len(set(A ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(A ): UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(A ): UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase = pt_tuple_key[-2] + '''_v''' if name is not None: UpperCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase = flax_model.params['''params'''] else: UpperCAmelCase = flax_model.params UpperCAmelCase = flatten_dict(A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(A ) UpperCAmelCase = {} UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor( A , A , A , A ) # add model prefix if necessary UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A , A ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A ) def lowerCamelCase__ ( A : Optional[int] , A : str ): '''simple docstring''' import torch # Load the index UpperCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase = torch.load(A ) UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase = flax_model.params['''params'''] UpperCAmelCase = flatten_dict(A ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCAmelCase = flax_model.params UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor( A , A , A , A ) # add model prefix if necessary UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue if "var" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A , A ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A ) def lowerCamelCase__ ( A : List[str] , A : List[Any] ): '''simple docstring''' UpperCAmelCase = os.path.abspath(A ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase = getattr(A , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(A , '''rb''' ) as state_f: try: UpperCAmelCase = from_bytes(A , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(A , A ) def lowerCamelCase__ ( A : Tuple , A : List[Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda A : x.dtype == jnp.bfloataa , A ) ).values() if any(A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase = jax.tree_util.tree_map( lambda A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A ) UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = pt_model.state_dict() UpperCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase = [] UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(A ) not in pt_model_dict: # conv layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = jnp.transpose(A , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A ) not in pt_model_dict: # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: UpperCAmelCase = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: UpperCAmelCase = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase = '''.'''.join(A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase = key_components[-2] + '''_v''' if name is not None: UpperCAmelCase = key_components[:-3] + [name] UpperCAmelCase = '''.'''.join(A ) UpperCAmelCase = key if flax_key in special_pt_names: UpperCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase = np.asarray(A ) if not isinstance(A , np.ndarray ) else flax_tensor UpperCAmelCase = torch.from_numpy(A ) # remove from missing keys missing_keys.remove(A ) else: # weight is not expected by PyTorch model unexpected_keys.append(A ) pt_model.load_state_dict(A ) # re-transform missing_keys to list UpperCAmelCase = list(A ) if len(A ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(A ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self ,snake_case ,snake_case=3 ,snake_case=32 ,snake_case=3 ,snake_case=10 ,snake_case=[10, 20, 30, 40] ,snake_case=[1, 1, 2, 1] ,snake_case=True ,snake_case=True ,snake_case="relu" ,snake_case=3 ,snake_case=None ,): '''simple docstring''' lowercase : Tuple = parent lowercase : int = batch_size lowercase : str = image_size lowercase : Tuple = num_channels lowercase : List[Any] = embeddings_size lowercase : List[Any] = hidden_sizes lowercase : List[Any] = depths lowercase : Optional[Any] = is_training lowercase : Optional[Any] = use_labels lowercase : Tuple = hidden_act lowercase : Optional[int] = num_labels lowercase : Optional[Any] = scope lowercase : Dict = len(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Tuple = None if self.use_labels: lowercase : Any = ids_tensor([self.batch_size] ,self.num_labels ) lowercase : List[str] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = TFResNetModel(config=snake_case ) lowercase : str = model(snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = self.num_labels lowercase : int = TFResNetForImageClassification(snake_case ) lowercase : List[Any] = model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : int = config_and_inputs lowercase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Optional[Any]= (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _a : Dict= ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _a : List[Any]= False _a : List[str]= False _a : Union[str, Any]= False _a : int= False _a : Optional[int]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = TFResNetModelTester(self ) lowercase : Optional[int] = ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(snake_case ) lowercase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Optional[int] = [*signature.parameters.keys()] lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' def check_hidden_states_output(snake_case ,snake_case ,snake_case ): lowercase : str = model_class(snake_case ) lowercase : Optional[Any] = model(**self._prepare_for_class(snake_case ,snake_case ) ) lowercase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[int] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase : Dict = layer_type lowercase : int = True check_hidden_states_output(snake_case ,snake_case ,snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Optional[Any] = True check_hidden_states_output(snake_case ,snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[Any] = TFResNetModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _snake_case( ) -> int: lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase : List[Any] = self.default_image_processor lowercase : int = prepare_img() lowercase : Union[str, Any] = image_processor(images=snake_case ,return_tensors="""tf""" ) # forward pass lowercase : str = model(**snake_case ) # verify the logits lowercase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,snake_case ) lowercase : List[Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,snake_case ,atol=1e-4 ) )
336
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = ["""CLIPFeatureExtractor"""] lowercase : Tuple = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
1
lowerCAmelCase : List[Any] = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
720
def A_ ( a ): """simple docstring""" if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) SCREAMING_SNAKE_CASE_ : List[str] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_ : Any = 1 if upper_limit > 0: SCREAMING_SNAKE_CASE_ : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: lowerCAmelCase : Union[str, Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
353
0
"""simple docstring""" import argparse import json import subprocess def _SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): A__ = [] A__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) A__ = subprocess.run(UpperCamelCase , shell=UpperCamelCase , stdout=subprocess.PIPE ) A__ = output.stdout.decode("""utf-8""" ) A__ = json.loads(UpperCamelCase ) A__ = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(UpperCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(UpperCamelCase ) ) if len(UpperCamelCase ) > 0: A__ = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ): return values.split(""",""" ) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) lowerCamelCase__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
574
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __A ( A_ ): UpperCamelCase :Union[str, Any] = '''gpt_neo''' UpperCamelCase :List[str] = ['''past_key_values'''] UpperCamelCase :List[Any] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__(self , __magic_name__=50257 , __magic_name__=2048 , __magic_name__=2048 , __magic_name__=24 , __magic_name__=[[["global", "local"], 12]] , __magic_name__=16 , __magic_name__=None , __magic_name__=256 , __magic_name__="gelu_new" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__=1E-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=50256 , __magic_name__=50256 , **__magic_name__ , ): lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Dict = num_layers lowerCamelCase__ : Optional[Any] = num_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Optional[Any] = window_size lowerCamelCase__ : Union[str, Any] = activation_function lowerCamelCase__ : Union[str, Any] = resid_dropout lowerCamelCase__ : int = embed_dropout lowerCamelCase__ : List[str] = attention_dropout lowerCamelCase__ : Optional[Any] = classifier_dropout lowerCamelCase__ : Any = layer_norm_epsilon lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : Optional[Any] = bos_token_id lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : Union[str, Any] = attention_types lowerCamelCase__ : str = self.expand_attention_types_params(__magic_name__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @staticmethod def _snake_case (__magic_name__ ): lowerCamelCase__ : Tuple = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A (UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ) ->str: '''simple docstring''' import torch lowerCamelCase__ : Union[str, Any] = input.size() lowerCamelCase__ : Any = len(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = shape[dimension] lowerCamelCase__ : Tuple = torch.arange(0 , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = torch.div(sizedim - size , UpperCamelCase , rounding_mode="""floor""" ) + 1 lowerCamelCase__ : Optional[int] = torch.arange(UpperCamelCase ) + low_indices[:min_length][:, None] lowerCamelCase__ : List[Any] = [slice(UpperCamelCase )] * rank lowerCamelCase__ : Optional[Any] = indices lowerCamelCase__ : Dict = input[s] lowerCamelCase__ : List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase ) def _A (UpperCamelCase : Dict , UpperCamelCase : Any ) ->Any: '''simple docstring''' import torch lowerCamelCase__ : Any = torch.arange(1 , UpperCamelCase ) lowerCamelCase__ : Dict = torch.remainder(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = remainders == 0 lowerCamelCase__ : Any = candidates[divisor_indices] lowerCamelCase__ : Union[str, Any] = torch.max(UpperCamelCase ) return largest_divisor, torch.div(UpperCamelCase , UpperCamelCase , rounding_mode="""floor""" ) class __A ( A_ ): @property def _snake_case (self ): lowerCamelCase__ : List[Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) lowerCamelCase__ : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ : Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def _snake_case (self ): return self._config.num_heads def _snake_case (self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ): lowerCamelCase__ : List[str] = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ ,lowerCamelCase__ : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ : Optional[Any] = seqlen + 2 lowerCamelCase__ : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ : Dict = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] lowerCamelCase__ : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ : List[Any] = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def _snake_case (self ): return 13
96
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) class __A ( A_ ): UpperCamelCase :Union[str, Any] = ['''pixel_values'''] def __init__(self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = PIL.Image.BICUBIC , __magic_name__ = True , __magic_name__ = None , __magic_name__ = 1 / 255 , __magic_name__ = True , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase__ : str = size if size is not None else {"""height""": 256, """width""": 256} lowerCamelCase__ : Optional[int] = get_size_dict(__magic_name__ ) lowerCamelCase__ : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCamelCase__ : Optional[int] = get_size_dict(__magic_name__ , param_name="""crop_size""" ) lowerCamelCase__ : str = do_resize lowerCamelCase__ : Any = size lowerCamelCase__ : Tuple = resample lowerCamelCase__ : Union[str, Any] = do_center_crop lowerCamelCase__ : List[str] = crop_size lowerCamelCase__ : int = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : Dict = do_normalize lowerCamelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ = PIL.Image.BICUBIC , __magic_name__ = None , **__magic_name__ , ): lowerCamelCase__ : Optional[int] = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( __magic_name__ , size=(size["""height"""], size["""width"""]) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): lowerCamelCase__ : Tuple = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__=None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): lowerCamelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : str = resample if resample is not None else self.resample lowerCamelCase__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : List[Any] = image_std if image_std is not None else self.image_std lowerCamelCase__ : str = size if size is not None else self.size lowerCamelCase__ : List[str] = get_size_dict(__magic_name__ ) lowerCamelCase__ : Tuple = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : Optional[Any] = get_size_dict(__magic_name__ , param_name="""crop_size""" ) lowerCamelCase__ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase__ : Optional[int] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCamelCase__ : int = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: lowerCamelCase__ : List[Any] = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: lowerCamelCase__ : Dict = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCamelCase__ : Optional[Any] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCamelCase__ : List[str] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCamelCase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
96
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowercase_ = StableUnCLIPPipeline lowercase_ = TEXT_TO_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowercase_ = False def __UpperCamelCase ( self ): '''simple docstring''' __A =3_2 __A =embedder_hidden_size # prior components torch.manual_seed(0 ) __A =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __A =CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=_a , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) __A =PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=_a , num_layers=1 , ) torch.manual_seed(0 ) __A =DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=_a , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __A =StableUnCLIPImageNormalizer(embedding_dim=_a ) __A =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __A =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __A =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) __A =UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_a , layers_per_block=1 , upcast_attention=_a , use_linear_projection=_a , ) torch.manual_seed(0 ) __A =DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_a , steps_offset=1 , ) torch.manual_seed(0 ) __A =AutoencoderKL() __A ={ # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __UpperCamelCase ( self , lowercase__ , lowercase__=0 ): '''simple docstring''' if str(_a ).startswith('''mps''' ): __A =torch.manual_seed(_a ) else: __A =torch.Generator(device=_a ).manual_seed(_a ) __A ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self ): '''simple docstring''' __A =torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_a ) def __UpperCamelCase ( self ): '''simple docstring''' __A =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_a ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): '''simple docstring''' __A =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __A =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A =torch.Generator(device='''cpu''' ).manual_seed(0 ) __A =pipe('''anime turle''' , generator=_a , output_type='''np''' ) __A =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a ) def __UpperCamelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __A =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A =pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __A =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
184
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( UpperCamelCase , unittest.TestCase ): __A : List[Any] = CLIPTokenizer __A : List[str] = CLIPTokenizerFast __A : str = True __A : Optional[Any] = {} __A : List[str] = False def _lowercase ( self : List[str]): super().setUp() # fmt: off A__ : Dict = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A__ : Any = dict(zip(_A , range(len(_A)))) A__ : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] A__ : Any = {"unk_token": "<unk>"} A__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) A__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(_A) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(_A)) def _lowercase ( self : Optional[int] , **_A : Dict): kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_A) def _lowercase ( self : Any , **_A : List[Any]): kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_A) def _lowercase ( self : str , _A : List[str]): A__ : Any = "lower newer" A__ : Dict = "lower newer" return input_text, output_text def _lowercase ( self : List[Any]): A__ : Any = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) A__ : Optional[Any] = "lower newer" A__ : int = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] A__ : Any = tokenizer.tokenize(_A) self.assertListEqual(_A , _A) A__ : List[str] = tokens + [tokenizer.unk_token] A__ : Any = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A) , _A) @require_ftfy def _lowercase ( self : Optional[int]): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): A__ : Optional[Any] = self.tokenizer_class.from_pretrained(_A , **_A) A__ : str = self.rust_tokenizer_class.from_pretrained(_A , **_A) A__ : List[str] = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." A__ : Optional[Any] = tokenizer_s.tokenize(_A) A__ : List[Any] = tokenizer_r.tokenize(_A) self.assertListEqual(_A , _A) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways A__ : Optional[int] = "xa\u0303y" + " " + "x\xe3y" A__ : Dict = tokenizer_s.tokenize(_A) A__ : Optional[Any] = tokenizer_r.tokenize(_A) self.assertListEqual(_A , _A) # Test that the tokenization is identical on unicode of space type A__ : Any = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: A__ : Union[str, Any] = tokenizer_s.tokenize(_A) A__ : Optional[Any] = tokenizer_r.tokenize(_A) self.assertListEqual(_A , _A) # Test that the tokenization is identical on unicode of line break type A__ : Optional[int] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: A__ : Optional[int] = tokenizer_s.tokenize(_A) A__ : Union[str, Any] = tokenizer_r.tokenize(_A) self.assertListEqual(_A , _A) def _lowercase ( self : Tuple): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): A__ : List[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` A__ : int = F'{text_of_1_token} {text_of_1_token}' A__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _A , use_fast=_A , ) A__ : Any = tokenizer_r(_A , return_offsets_mapping=_A , add_special_tokens=_A) self.assertEqual(encoding.offset_mapping[0] , (0, len(_A))) self.assertEqual( encoding.offset_mapping[1] , (len(_A) + 1, len(_A) + 1 + len(_A)) , ) A__ : Optional[int] = F' {text}' A__ : List[str] = self.rust_tokenizer_class.from_pretrained( _A , use_fast=_A , ) A__ : Union[str, Any] = tokenizer_r(_A , return_offsets_mapping=_A , add_special_tokens=_A) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_A))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_A) + 1, 1 + len(_A) + 1 + len(_A)) , ) def _lowercase ( self : List[Any]): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_A) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer") self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format.")) @require_ftfy def _lowercase ( self : int): super().test_tokenization_python_rust_equals() def _lowercase ( self : Optional[Any]): # CLIP always lower cases letters pass
182
snake_case : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def snake_case__ ( ) -> None: """simple docstring""" A__ : Union[str, Any] = input("Enter message: " ) A__ : Tuple = input("Enter key [alphanumeric]: " ) A__ : Optional[Any] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): A__ : Tuple = "encrypt" A__ : str = encrypt_message(__lowercase , __lowercase ) elif mode.lower().startswith("d" ): A__ : Optional[Any] = "decrypt" A__ : Union[str, Any] = decrypt_message(__lowercase , __lowercase ) print(F'\n{mode.title()}ed message:' ) print(__lowercase ) def snake_case__ ( __lowercase , __lowercase ) -> str: """simple docstring""" return translate_message(__lowercase , __lowercase , "encrypt" ) def snake_case__ ( __lowercase , __lowercase ) -> str: """simple docstring""" return translate_message(__lowercase , __lowercase , "decrypt" ) def snake_case__ ( __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" A__ : Dict = [] A__ : Union[str, Any] = 0 A__ : List[Any] = key.upper() for symbol in message: A__ : List[str] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowercase ): A__ : Optional[int] = 0 else: translated.append(__lowercase ) return "".join(__lowercase ) if __name__ == "__main__": main()
182
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Tuple = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __magic_name__ :int = int(re.match(R'''.*layer_(\d*).*''', _lowerCamelCase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def __lowercase ( snake_case ): """simple docstring""" if dtype == torch.bool: return 1 / 8 __magic_name__ :List[Any] = re.search(R'''[^\d](\d+)$''', str(_lowerCamelCase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) __magic_name__ :str = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case ): """simple docstring""" if bloom_config_file == "": __magic_name__ :Optional[Any] = BloomConfig() else: __magic_name__ :List[str] = BloomConfig.from_json_file(_lowerCamelCase ) if shard_model: __magic_name__ :Tuple = os.listdir(_lowerCamelCase ) __magic_name__ :Any = sorted(filter(lambda snake_case : s.startswith('''layer''' ) and "model_00" in s, _lowerCamelCase ) ) __magic_name__ :Optional[Any] = {'''weight_map''': {}, '''metadata''': {}} __magic_name__ :Dict = 0 __magic_name__ :Optional[int] = None __magic_name__ :Dict = BloomConfig() for j, file in enumerate(_lowerCamelCase ): print('''Processing file: {}'''.format(_lowerCamelCase ) ) __magic_name__ :Optional[Any] = None for i in range(_lowerCamelCase ): # load all TP files __magic_name__ :Union[str, Any] = file.replace('''model_00''', f'''model_0{i}''' ) __magic_name__ :Any = torch.load(os.path.join(_lowerCamelCase, _lowerCamelCase ), map_location='''cpu''' ) # Rename keys in the transformers names __magic_name__ :Optional[int] = list(temp.keys() ) for key in keys: __magic_name__ :Optional[Any] = temp.pop(_lowerCamelCase ) if tensors is None: __magic_name__ :List[Any] = temp else: for key in tensors.keys(): if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__ :List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__ :List[Any] = torch.cat([tensors[key], temp[key]], dim=_lowerCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__ :Dict = tensors[key] / pretraining_tp torch.save( _lowerCamelCase, os.path.join( _lowerCamelCase, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ), str(len(_lowerCamelCase ) ).zfill(5 ) ), ), ) for key in tensors.keys(): __magic_name__ :List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __magic_name__ :List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ), str(len(_lowerCamelCase ) ).zfill(5 ) ) __magic_name__ :Tuple = BloomConfig() __magic_name__ :Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __magic_name__ :Tuple = total_size with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_lowerCamelCase, WEIGHTS_NAME + '''.index.json''' ), '''w''', encoding='''utf-8''' ) as f: __magic_name__ :Optional[int] = json.dumps(_lowerCamelCase, indent=2, sort_keys=_lowerCamelCase ) + '''\n''' f.write(_lowerCamelCase ) else: __magic_name__ :str = BloomModel(_lowerCamelCase ) __magic_name__ :Dict = os.listdir(_lowerCamelCase ) __magic_name__ :Optional[int] = sorted(filter(lambda snake_case : s.startswith('''layer''' ) and "model_00" in s, _lowerCamelCase ) ) __magic_name__ :Union[str, Any] = None for i, file in enumerate(_lowerCamelCase ): __magic_name__ :Any = None for i in range(_lowerCamelCase ): # load all TP files __magic_name__ :Optional[Any] = file.replace('''model_00''', f'''model_0{i}''' ) __magic_name__ :Dict = torch.load(os.path.join(_lowerCamelCase, _lowerCamelCase ), map_location='''cpu''' ) # Rename keys in the transformers names __magic_name__ :List[str] = list(temp.keys() ) for key in keys: __magic_name__ :str = temp.pop(_lowerCamelCase ) if tensors is None: __magic_name__ :Any = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__ :str = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__ :int = torch.cat([tensors[key], temp[key]], dim=_lowerCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__ :Any = tensors[key] / pretraining_tp __magic_name__ :Any = model.load_state_dict(_lowerCamelCase, strict=_lowerCamelCase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: __magic_name__ :List[str] = set(other_keys.missing_keys ) else: __magic_name__ :str = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(_lowerCamelCase, exist_ok=_lowerCamelCase ) __magic_name__ :Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __magic_name__ :Optional[int] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: __magic_name__ :Any = model.to(config.torch_dtype ) torch.save(model.state_dict(), _lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = """summarization""" SCREAMING_SNAKE_CASE : Any = ["""loss"""] SCREAMING_SNAKE_CASE : Optional[int] = ROUGE_KEYS SCREAMING_SNAKE_CASE : Optional[int] = """rouge2""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: lowerCamelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , mode=self.mode , **__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) lowerCamelCase_ = Path(self.output_dir ) / 'metrics.json' lowerCamelCase_ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) lowerCamelCase_ = 0 lowerCamelCase_ = defaultdict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.config.model_type lowerCamelCase_ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size lowerCamelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCamelCase_ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } lowerCamelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCamelCase_ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCamelCase_ = get_git_info()['repo_sha'] lowerCamelCase_ = hparams.num_workers lowerCamelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCamelCase_ = self.decoder_start_token_id lowerCamelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) lowerCamelCase_ = False lowerCamelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCamelCase_ = self.hparams.eval_max_gen_length else: lowerCamelCase_ = self.model.config.max_length lowerCamelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: lowerCamelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) lowerCamelCase_ = True return readable_batch def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: return self.model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] ) -> int: lowerCamelCase_ = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : dict ) -> Tuple: lowerCamelCase_ = self.tokenizer.pad_token_id lowerCamelCase_ , lowerCamelCase_ = batch['input_ids'], batch['attention_mask'] lowerCamelCase_ = batch['labels'] if isinstance(self.model , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = shift_tokens_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCamelCase_ = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCamelCase_ = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size lowerCamelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCamelCase_ = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return self.tokenizer.pad_token_id def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) # tokens per batch lowerCamelCase_ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].shape[0] lowerCamelCase_ = batch['input_ids'].eq(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Dict: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="val" ) -> Dict: self.step_count += 1 lowerCamelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCamelCase_ = losses['loss'] lowerCamelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } lowerCamelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCamelCase_ = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} lowerCamelCase_ = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path lowerCamelCase_ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: return calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : dict ) -> dict: lowerCamelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCamelCase_ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCamelCase_ = (time.time() - ta) / batch['input_ids'].shape[0] lowerCamelCase_ = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.ids_to_clean_text(batch['labels'] ) lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = np.mean(lmap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE , gen_len=__SCREAMING_SNAKE_CASE , preds=__SCREAMING_SNAKE_CASE , target=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return base_metrics def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ) -> Any: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: return self.validation_epoch_end(__SCREAMING_SNAKE_CASE , prefix='test' ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> SeqaSeqDataset: lowerCamelCase_ = self.n_obs[type_path] lowerCamelCase_ = self.target_lens[type_path] lowerCamelCase_ = self.dataset_class( self.tokenizer , type_path=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> DataLoader: lowerCamelCase_ = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) def UpperCamelCase ( self : Dict ) -> DataLoader: lowerCamelCase_ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( '--max_source_length' , default=1024 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--max_tokens_per_batch' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--logger_name' , type=__SCREAMING_SNAKE_CASE , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=__SCREAMING_SNAKE_CASE , default=500 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=__SCREAMING_SNAKE_CASE , default='summarization' , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=__SCREAMING_SNAKE_CASE , default=0.0 , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--src_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--tgt_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--eval_beams' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--val_metric' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=__SCREAMING_SNAKE_CASE , default=1 , required=__SCREAMING_SNAKE_CASE , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class a ( __snake_case ): SCREAMING_SNAKE_CASE : Union[str, Any] = """translation""" SCREAMING_SNAKE_CASE : List[str] = ["""loss"""] SCREAMING_SNAKE_CASE : str = ["""bleu"""] SCREAMING_SNAKE_CASE : Optional[int] = """bleu""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = hparams.src_lang lowerCamelCase_ = hparams.tgt_lang def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> dict: return calculate_bleu(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCamelCase_ = SummarizationModule(_lowerCamelCase ) else: lowerCamelCase_ = TranslationModule(_lowerCamelCase ) lowerCamelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): lowerCamelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = os.environ.get('WANDB_PROJECT' , _lowerCamelCase ) lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: lowerCamelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCamelCase_ = False lowerCamelCase_ = args.val_metric == 'loss' lowerCamelCase_ = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model lowerCamelCase_ = '' lowerCamelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_lowerCamelCase ) ) if checkpoints: lowerCamelCase_ = checkpoints[-1] lowerCamelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE : Any = pl.Trainer.add_argparse_args(parser) _SCREAMING_SNAKE_CASE : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
549
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __magic_name__ ( UpperCAmelCase__): _UpperCAmelCase : int = 'openai-gpt' _UpperCAmelCase : Any = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict ,__SCREAMING_SNAKE_CASE : Dict=4_0_4_7_8 ,__SCREAMING_SNAKE_CASE : Optional[int]=5_1_2 ,__SCREAMING_SNAKE_CASE : int=7_6_8 ,__SCREAMING_SNAKE_CASE : int=1_2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=1_2 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : List[str]=0.1 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : str=1e-5 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]="cls_index" ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=None ,__SCREAMING_SNAKE_CASE : Any=True ,__SCREAMING_SNAKE_CASE : str=0.1 ,**__SCREAMING_SNAKE_CASE : Dict ,): UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
710
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __lowerCAmelCase =None __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } __lowerCAmelCase ={ "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } __lowerCAmelCase ="▁" class __magic_name__ ( _a): _UpperCAmelCase : List[str] = VOCAB_FILES_NAMES _UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = AlbertTokenizer def __init__( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : Tuple=None ,__SCREAMING_SNAKE_CASE : int=None ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : str=True ,__SCREAMING_SNAKE_CASE : Optional[int]=False ,__SCREAMING_SNAKE_CASE : Union[str, Any]="[CLS]" ,__SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" ,__SCREAMING_SNAKE_CASE : Any="<unk>" ,__SCREAMING_SNAKE_CASE : int="[SEP]" ,__SCREAMING_SNAKE_CASE : Union[str, Any]="<pad>" ,__SCREAMING_SNAKE_CASE : str="[CLS]" ,__SCREAMING_SNAKE_CASE : Tuple="[MASK]" ,**__SCREAMING_SNAKE_CASE : Union[str, Any] ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase = ( AddedToken(__SCREAMING_SNAKE_CASE ,lstrip=__SCREAMING_SNAKE_CASE ,rstrip=__SCREAMING_SNAKE_CASE ,normalized=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) else mask_token ) super().__init__( __SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,do_lower_case=__SCREAMING_SNAKE_CASE ,remove_space=__SCREAMING_SNAKE_CASE ,keep_accents=__SCREAMING_SNAKE_CASE ,bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def _UpperCAmelCase ( self : Any ,__SCREAMING_SNAKE_CASE : List[int] ,__SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : List[int] ,__SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file ,__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
405
0
import sys def UpperCamelCase_( _A :Optional[Any] )-> Tuple: UpperCamelCase__ = len(_A ) UpperCamelCase__ = [[0 for x in range(_A )] for x in range(_A )] UpperCamelCase__ = [[0 for x in range(_A )] for x in range(_A )] for chain_length in range(2 , _A ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase__ = a + chain_length - 1 UpperCamelCase__ = sys.maxsize for c in range(_A , _A ): UpperCamelCase__ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase__ = cost UpperCamelCase__ = c return matrix, sol def UpperCamelCase_( _A :Tuple , _A :Union[str, Any] , _A :str )-> int: if i == j: print("A" + str(_A ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(_A , _A , optimal_solution[i][j] ) print_optiomal_solution(_A , optimal_solution[i][j] + 1 , _A ) print(")" , end=" " ) def UpperCamelCase_( )-> str: UpperCamelCase__ = [30, 35, 15, 5, 10, 20, 25] UpperCamelCase__ = len(_A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase__, UpperCamelCase__ = matrix_chain_order(_A ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(_A , 1 , n - 1 ) if __name__ == "__main__": main()
551
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
551
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCamelCase__ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( ) -> Optional[Any]: __lowercase = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase = get_sagemaker_input() else: __lowercase = get_cluster_input() return config def UpperCAmelCase__ ( lowercase__=None ) -> Dict: if subparsers is not None: __lowercase = subparsers.add_parser("""config""" , description=__UpperCamelCase ) else: __lowercase = argparse.ArgumentParser("""Accelerate config command""" , description=__UpperCamelCase ) parser.add_argument( """--config_file""" , default=__UpperCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def UpperCAmelCase__ ( lowercase__ ) -> str: __lowercase = get_user_input() if args.config_file is not None: __lowercase = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) __lowercase = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F"accelerate configuration saved at {config_file}" ) def UpperCAmelCase__ ( ) -> List[str]: __lowercase = config_command_parser() __lowercase = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
634
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A ( snake_case__ : List[Any] ) -> Optional[int]: '''simple docstring''' def wrapper(*snake_case__ : Any , **snake_case__ : List[str] ): __snake_case = timeit.default_timer() __snake_case = func(*lowerCamelCase_ , **lowerCamelCase_ ) __snake_case = timeit.default_timer() - starttime return delta __snake_case = func.__name__ return wrapper def A ( snake_case__ : dict , snake_case__ : Tuple=100 , snake_case__ : Tuple=None ) -> Tuple: '''simple docstring''' __snake_case = [] __snake_case = seq_shapes or {} for i in range(lowerCamelCase_ ): __snake_case = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase_ , _ArrayXD ): __snake_case = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase_ , datasets.Value ): if v.dtype == "string": __snake_case = '''The small grey turtle was surprisingly fast when challenged.''' else: __snake_case = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase_ , datasets.Sequence ): while isinstance(lowerCamelCase_ , datasets.Sequence ): __snake_case = v.feature __snake_case = seq_shapes[k] __snake_case = np.random.rand(*lowerCamelCase_ ).astype(v.dtype ) __snake_case = data dummy_data.append((i, example) ) return dummy_data def A ( snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=100 , snake_case__ : Any=None ) -> Dict: '''simple docstring''' __snake_case = generate_examples(lowerCamelCase_ , num_examples=lowerCamelCase_ , seq_shapes=lowerCamelCase_ ) with ArrowWriter(features=lowerCamelCase_ , path=lowerCamelCase_ ) as writer: for key, record in dummy_data: __snake_case = features.encode_example(lowerCamelCase_ ) writer.write(lowerCamelCase_ ) __snake_case = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) __snake_case = datasets.Dataset.from_file(filename=lowerCamelCase_ , info=datasets.DatasetInfo(features=lowerCamelCase_ ) ) return dataset
313
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ =( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=False ) -> Any: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = super()._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCAmelCase__ : int = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) return inputs_dict class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=13 ,__lowerCamelCase=7 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=99 ,__lowerCamelCase=32 ,__lowerCamelCase=32 ,__lowerCamelCase=2 ,__lowerCamelCase=4 ,__lowerCamelCase=37 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_12 ,__lowerCamelCase=16 ,__lowerCamelCase=2 ,__lowerCamelCase=0.02 ,__lowerCamelCase=3 ,__lowerCamelCase=4 ,__lowerCamelCase=None ,) -> Any: """simple docstring""" lowerCAmelCase__ : int = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : str = seq_length lowerCAmelCase__ : Optional[int] = is_training lowerCAmelCase__ : List[str] = use_input_mask lowerCAmelCase__ : Tuple = use_token_type_ids lowerCAmelCase__ : Any = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : List[Any] = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Tuple = num_labels lowerCAmelCase__ : Union[str, Any] = num_choices lowerCAmelCase__ : str = scope lowerCAmelCase__ : Optional[int] = embedding_size def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Optional[Any] = None if self.use_input_mask: lowerCAmelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : int = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[Any] = None if self.use_labels: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : Optional[int] = MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,embedding_size=self.embedding_size ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = TFMobileBertModel(config=__lowerCamelCase ) lowerCAmelCase__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : int = model(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = [input_ids, input_mask] lowerCAmelCase__ : Union[str, Any] = model(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) lowerCAmelCase__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : Optional[Any] = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = self.num_choices lowerCAmelCase__ : Any = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) lowerCAmelCase__ : Dict = tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase__ : Any = tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase__ : Tuple = tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase__ : int = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCAmelCase__ : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Union[str, Any] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) lowerCAmelCase__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: lowerCAmelCase__ : List[Any] = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowerCAmelCase__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Dict = model(__lowerCamelCase )[0] lowerCAmelCase__ : Optional[int] = [1, 6, 3_05_22] self.assertEqual(output.shape ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCamelCase ,atol=1e-4 )
647
0
'''simple docstring''' def snake_case__ ( _A: int = 1000 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
713
'''simple docstring''' from math import ceil, sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
605
0
import numpy as np from transformers import Pipeline def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: _UpperCAmelCase = np.max(__snake_case , axis=-1 , keepdims=__snake_case ) _UpperCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__snake_case ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def lowerCamelCase ( self : List[Any] , **lowerCamelCase : Any ) -> Any: """simple docstring""" _UpperCAmelCase = {} if "second_text" in kwargs: _UpperCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Any=None ) -> Dict: """simple docstring""" return self.tokenizer(lowerCamelCase , text_pair=lowerCamelCase , return_tensors=self.framework ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Any ) -> Dict: """simple docstring""" return self.model(**lowerCamelCase ) def lowerCamelCase ( self : List[str] , lowerCamelCase : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = model_outputs.logits[0].numpy() _UpperCAmelCase = softmax(lowerCamelCase ) _UpperCAmelCase = np.argmax(lowerCamelCase ) _UpperCAmelCase = self.model.config.idalabel[best_class] _UpperCAmelCase = probabilities[best_class].item() _UpperCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
108
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
def lowerCAmelCase_ ( __lowerCamelCase = 5_0_0_0_0_0_0_0 ): __snake_case : str = set() __snake_case : Optional[int] = int((limit - 2_4) ** (1 / 2) ) __snake_case : List[str] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_ ) ) ) for primea in primes: __snake_case : int = primea * primea for primea in primes: __snake_case : Tuple = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: __snake_case : Optional[Any] = primea * primea * primea * primea __snake_case : List[str] = square + cube + tetr if total >= limit: break ret.add(a_ ) return len(a_ ) if __name__ == "__main__": print(f'''{solution() = }''')
713
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Optional[int] = "▁" _snake_case : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = BertGenerationTokenizer __UpperCAmelCase : List[Any] = False __UpperCAmelCase : List[Any] = True def __snake_case ( self : Optional[int] ) -> Optional[int]: super().setUp() __snake_case : Tuple = BertGenerationTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Dict ) -> int: __snake_case : str = "<s>" __snake_case : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : str ) -> Optional[Any]: __snake_case : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(lowerCamelCase ) , 1002 ) def __snake_case ( self : List[str] ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __snake_case ( self : List[str] ) -> Union[str, Any]: __snake_case : List[Any] = BertGenerationTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) __snake_case : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [285, 46, 10, 170, 382] , ) __snake_case : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __snake_case : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __snake_case ( self : str ) -> List[Any]: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def __snake_case ( self : Tuple ) -> Union[str, Any]: __snake_case : Union[str, Any] = "Hello World!" __snake_case : List[str] = [18536, 2260, 101] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def __snake_case ( self : str ) -> Optional[int]: __snake_case : List[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) __snake_case : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def __snake_case ( self : Optional[Any] ) -> str: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __snake_case : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __snake_case : Union[str, Any] = " ".join(lowerCamelCase ) __snake_case : Optional[int] = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" , return_token_type_ids=lowerCamelCase ) __snake_case : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCamelCase ) __snake_case : List[Any] = BertGenerationConfig() __snake_case : Dict = BertGenerationEncoder(lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def __snake_case ( self : List[Any] ) -> List[Any]: # fmt: off __snake_case : Optional[Any] = {"input_ids": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
203
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" lowerCamelCase__: List[Any] =split_dict._to_yaml_list() assert len(__a ) == len(__a ) lowerCamelCase__: List[str] =SplitDict._from_yaml_list(__a ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase__: Any =None # the split name of split_dict takes over the name of the split info object lowerCamelCase__: str =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__a ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
59
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowercase_ = 'pytorch_model.bin' lowercase_ = 'pytorch_model.bin.index.json' lowercase_ = 'adapter_config.json' lowercase_ = 'adapter_model.bin' lowercase_ = 'adapter_model.safetensors' lowercase_ = 'tf_model.h5' lowercase_ = 'tf_model.h5.index.json' lowercase_ = 'model.ckpt' lowercase_ = 'flax_model.msgpack' lowercase_ = 'flax_model.msgpack.index.json' lowercase_ = 'model.safetensors' lowercase_ = 'model.safetensors.index.json' lowercase_ = 'config.json' lowercase_ = 'preprocessor_config.json' lowercase_ = FEATURE_EXTRACTOR_NAME lowercase_ = 'generation_config.json' lowercase_ = 'modelcard.json' lowercase_ = '▁' lowercase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowercase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowercase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowercase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def a ( A__ : List[str] ) -> str: """simple docstring""" if version.parse(A__ ) < version.parse(A__ ): if "dev" in min_version: _lowercase =( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: _lowercase =F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
291
0
def snake_case__ ( lowerCamelCase_ ): return 10 - x * x def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase_ ) * equation(lowerCamelCase_ ) >= 0: raise ValueError('''Wrong space!''' ) A : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point A : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase_ ) * equation(lowerCamelCase_ ) < 0: A : str = c else: A : Dict = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
423
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = TextToVideoSDPipeline UpperCAmelCase_ : str = TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCAmelCase_ : Dict = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ) -> int: torch.manual_seed(0 ) A : Any = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) A : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) A : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) A : int = CLIPTextModel(__UpperCAmelCase ) A : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[Any]: if str(__UpperCAmelCase ).startswith('''mps''' ): A : List[str] = torch.manual_seed(__UpperCAmelCase ) else: A : Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def snake_case ( self ) -> List[str]: A : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : Dict = self.get_dummy_components() A : Any = TextToVideoSDPipeline(**__UpperCAmelCase ) A : Union[str, Any] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) A : Optional[int] = '''np''' A : Dict = sd_pipe(**__UpperCAmelCase ).frames A : Tuple = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) A : Any = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ) -> Dict: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def snake_case ( self ) -> Any: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def snake_case ( self ) -> Tuple: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def snake_case ( self ) -> List[str]: pass def snake_case ( self ) -> Dict: return super().test_progress_bar() @slow @skip_mps class __lowercase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ) -> int: A : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) A : List[Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) A : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) A : Optional[int] = pipe.to('''cuda''' ) A : List[Any] = '''Spiderman is surfing''' A : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) A : List[Any] = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=25 , output_type='''pt''' ).frames A : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case ( self ) -> Union[str, Any]: A : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) A : Tuple = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) A : Any = pipe.to('''cuda''' ) A : int = '''Spiderman is surfing''' A : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) A : List[Any] = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''pt''' ).frames A : List[str] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
423
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCAmelCase : '''simple docstring''' @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.get_dummy_input() @property def UpperCamelCase( self ) -> int: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , ) -> int: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 32 lowerCamelCase_ = (32, 32) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = torch.device(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = (batch_size, num_channels) + sizes lowerCamelCase_ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {'hidden_states': hidden_states} if include_temb: lowerCamelCase_ = 128 lowerCamelCase_ = randn_tensor((batch_size, temb_channels) , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) if include_res_hidden_states_tuple: lowerCamelCase_ = torch.manual_seed(1 ) lowerCamelCase_ = (randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ),) if include_encoder_hidden_states: lowerCamelCase_ = floats_tensor((batch_size, 32, 32) ).to(SCREAMING_SNAKE_CASE_ ) if include_skip_sample: lowerCamelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) return dummy_input def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": lowerCamelCase_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCamelCase_ = self.block_class(**SCREAMING_SNAKE_CASE_ ) unet_block.to(SCREAMING_SNAKE_CASE_ ) unet_block.eval() with torch.no_grad(): lowerCamelCase_ = unet_block(**SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCamelCase_ = output[0, -1, -3:, -3:] lowerCamelCase_ = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(output_slice.flatten() , SCREAMING_SNAKE_CASE_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCamelCase_ = self.block_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = output[0] lowerCamelCase_ = torch.device(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = randn_tensor(output.shape , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) loss.backward()
42
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets A = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' A = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' A = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]): return float((preds == labels).mean()) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any]): lowerCamelCase : Union[str, Any] = simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__) lowerCamelCase : List[Any] = float(fa_score(y_true=UpperCAmelCase__ , y_pred=UpperCAmelCase__)) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict): lowerCamelCase : Tuple = np.array(UpperCAmelCase__) lowerCamelCase : str = np.array(UpperCAmelCase__) lowerCamelCase : Union[str, Any] = en_sentvecs.shape[0] # mean centering lowerCamelCase : Optional[int] = en_sentvecs - np.mean(UpperCAmelCase__ , axis=0) lowerCamelCase : Union[str, Any] = in_sentvecs - np.mean(UpperCAmelCase__ , axis=0) lowerCamelCase : Any = cdist(UpperCAmelCase__ , UpperCAmelCase__ , 'cosine') lowerCamelCase : Optional[Any] = np.array(range(UpperCAmelCase__)) lowerCamelCase : Optional[int] = sim.argsort(axis=1)[:, :10] lowerCamelCase : Dict = np.any(preds == actual[:, None] , axis=1) return float(matches.mean()) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): def UpperCAmelCase_ ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ), codebase_urls=[], reference_urls=[], format='numpy' if self.config_name != 'cvit-mkb-clsr' else None, ) def UpperCAmelCase_ ( self, A, A ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(A, A )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(A, A ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(A, A )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
320
0
from datetime import datetime import requests def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> bytes: _UpperCAmelCase : Any = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" _UpperCAmelCase : Tuple = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase ).content if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter Video/IGTV url: ').strip() SCREAMING_SNAKE_CASE_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
467
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class a ( UpperCAmelCase ): _lowercase = "openai-gpt" _lowercase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A_=40478 , A_=512 , A_=768 , A_=12 , A_=12 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=1e-5 , A_=0.02 , A_="cls_index" , A_=True , A_=None , A_=True , A_=0.1 , **A_ , ): '''simple docstring''' _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : str = n_positions _UpperCAmelCase : List[Any] = n_embd _UpperCAmelCase : Dict = n_layer _UpperCAmelCase : Any = n_head _UpperCAmelCase : int = afn _UpperCAmelCase : int = resid_pdrop _UpperCAmelCase : Tuple = embd_pdrop _UpperCAmelCase : Optional[Any] = attn_pdrop _UpperCAmelCase : Any = layer_norm_epsilon _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Union[str, Any] = summary_type _UpperCAmelCase : List[Any] = summary_use_proj _UpperCAmelCase : Optional[Any] = summary_activation _UpperCAmelCase : int = summary_first_dropout _UpperCAmelCase : List[str] = summary_proj_to_labels super().__init__(**A_ )
467
1
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ): """simple docstring""" pass @is_pipeline_test @require_vision class __snake_case ( unittest.TestCase): @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _lowerCamelCase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCamelCase : List[Any] = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}], [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}], ] , ) _lowerCamelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _lowerCamelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCamelCase : List[str] = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , ) _lowerCamelCase : str = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.3_33, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCamelCase : Union[str, Any] = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) _lowerCamelCase : Tuple = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : List[str] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCamelCase : Dict = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) _lowerCamelCase : List[str] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , )
83
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Optional[Any] = '''▁''' __SCREAMING_SNAKE_CASE :Any = {'''vocab_file''': '''sentencepiece.bpe.model'''} __SCREAMING_SNAKE_CASE :List[str] = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off __SCREAMING_SNAKE_CASE :Dict = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] _lowerCamelCase : List[int] = [] def __init__( self : Dict , snake_case_ : Optional[int] , snake_case_ : Dict="<s>" , snake_case_ : Dict="</s>" , snake_case_ : Optional[int]="</s>" , snake_case_ : Optional[int]="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Union[str, Any]="<pad>" , snake_case_ : Dict="<mask>" , snake_case_ : Optional[int]=None , snake_case_ : Any=None , snake_case_ : Dict=None , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : List[str]=None , **snake_case_ : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , tokenizer_file=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case_ ) } _UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCAmelCase = src_lang if src_lang is not None else "en_XX" _UpperCAmelCase = self.lang_code_to_id[self._src_lang] _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , snake_case_ : List[Any] ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase ( self : Union[str, Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase ( self : Union[str, Any] ): return self._src_lang @src_lang.setter def lowercase ( self : Optional[Any] , snake_case_ : str ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : List[Any] , snake_case_ : Dict , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) _UpperCAmelCase = self.convert_tokens_to_ids(snake_case_ ) _UpperCAmelCase = tgt_lang_id return inputs def lowercase ( self : Any ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : Union[str, Any] , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase ( self : Union[str, Any] , snake_case_ : List[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self : Optional[Any] , snake_case_ : Union[str, Any] ): _UpperCAmelCase = "".join(snake_case_ ).replace(snake_case_ , " " ).strip() return out_string def lowercase ( self : List[str] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def lowercase ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : str = "en_XX" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "ro_RO" , **snake_case_ : int , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : str ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self : Optional[int] , snake_case_ : Optional[Any] ): _UpperCAmelCase = self.lang_code_to_id[src_lang] _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] def lowercase ( self : int , snake_case_ : str ): _UpperCAmelCase = self.lang_code_to_id[lang] _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code]
236
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = ['model.decoder.embed_positions.weights'] def _snake_case ( UpperCAmelCase_ : Optional[int] ): if "emb" in name: A__ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: A__ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: A__ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: A__ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: A__ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: A__ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: A__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: A__ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: A__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: A__ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: A__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _snake_case ( UpperCAmelCase_ : OrderedDict , UpperCAmelCase_ : int ): A__ = list(state_dict.keys() ) A__ = {} for key in keys: A__ = state_dict.pop(UpperCAmelCase_ ) A__ = rename_keys(UpperCAmelCase_ ) if "in_proj_weight" in key: # split fused qkv proj A__ = val[:hidden_size, :] A__ = val[hidden_size : 2 * hidden_size, :] A__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A__ = val else: A__ = val return state_dict, enc_dec_proj_state_dict def _snake_case ( UpperCAmelCase_ : str ): if checkpoint == "small": # default config values A__ = 1024 A__ = 24 A__ = 16 elif checkpoint == "medium": A__ = 1536 A__ = 48 A__ = 24 elif checkpoint == "large": A__ = 2048 A__ = 48 A__ = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) A__ = MusicgenDecoderConfig( hidden_size=UpperCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCAmelCase_ , num_attention_heads=UpperCAmelCase_ , ) return config @torch.no_grad() def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any="cpu" ): A__ = MusicGen.get_pretrained(UpperCAmelCase_ , device=UpperCAmelCase_ ) A__ = decoder_config_from_checkpoint(UpperCAmelCase_ ) A__ = fairseq_model.lm.state_dict() A__ , A__ = rename_state_dict( UpperCAmelCase_ , hidden_size=decoder_config.hidden_size ) A__ = TaEncoderModel.from_pretrained("""t5-base""" ) A__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) A__ = MusicgenForCausalLM(UpperCAmelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A__ , A__ = decoder.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCAmelCase_ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model A__ = MusicgenForConditionalGeneration(text_encoder=UpperCAmelCase_ , audio_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCAmelCase_ ) # check we can do a forward pass A__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A__ = model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor A__ = AutoTokenizer.from_pretrained("""t5-base""" ) A__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) A__ = MusicgenProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) # set the appropriate bos/pad token ids A__ = 2048 A__ = 2048 # set other default generation config params A__ = int(30 * audio_encoder.config.frame_rate ) A__ = True A__ = 3.0 if pytorch_dump_folder is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCAmelCase_ ) processor.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
500
"""simple docstring""" import baseaa def _snake_case ( UpperCAmelCase_ : str ): return baseaa.aaaencode(string.encode("""utf-8""" ) ) def _snake_case ( UpperCAmelCase_ : bytes ): return baseaa.aaadecode(UpperCAmelCase_ ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
500
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) for i in range(1 , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = collection[i] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = i - 1 while low <= high: SCREAMING_SNAKE_CASE__ = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE__ = mid - 1 else: SCREAMING_SNAKE_CASE__ = mid + 1 for j in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): SCREAMING_SNAKE_CASE__ = collection[j - 1] SCREAMING_SNAKE_CASE__ = val return collection if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
6
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Tuple ="""The Nymphenburg Palace is a beautiful palace in Munich!""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> int: '''simple docstring''' lowercase = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1_0_2_4, """hidden_size""": 7_6_8, """max_length""": 5_1_2, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1_0_2_4, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowercase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowercase = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCAmelCase__ , output_all_encodings=lowerCAmelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCAmelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowercase = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowercase = os.path.join(get_home_dir() , """models""" ) lowercase = _load_vocab(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , cls=lowerCAmelCase__ ) lowercase = nlp.model.BERTModel( lowerCAmelCase__ , len(lowerCAmelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCAmelCase__ , use_token_type_embed=lowerCAmelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCAmelCase__ , use_decoder=lowerCAmelCase__ , ) original_bort.load_parameters(lowerCAmelCase__ , cast_dtype=lowerCAmelCase__ , ignore_extra=lowerCAmelCase__ ) lowercase = original_bort._collect_params_with_prefix() # Build our config 🤗 lowercase = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCAmelCase__ ), } lowercase = BertConfig.from_dict(lowerCAmelCase__ ) lowercase = BertForMaskedLM(lowerCAmelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase__ :Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] ): lowercase = hf_param.shape lowercase = to_torch(params[gluon_param] ) lowercase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param lowercase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowercase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowercase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowercase = hf_bort_model.bert.encoder.layer[i] # self attention lowercase = layer.attention.self lowercase = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) lowercase = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) lowercase = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) lowercase = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) lowercase = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) lowercase = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output lowercase = layer.attention.output lowercase = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) lowercase = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) lowercase = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) lowercase = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate lowercase = layer.intermediate lowercase = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) lowercase = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output lowercase = layer.output lowercase = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) lowercase = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) lowercase = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) lowercase = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowercase = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowercase = tokenizer.encode_plus(lowerCAmelCase__ )["""input_ids"""] # Get gluon output lowercase = mx.nd.array([input_ids] ) lowercase = original_bort(inputs=lowerCAmelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase__ ) lowercase = BertModel.from_pretrained(lowerCAmelCase__ ) hf_bort_model.eval() lowercase = tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" ) lowercase = hf_bort_model(**lowerCAmelCase__ )[0] lowercase = output_gluon[0].asnumpy() lowercase = output_hf[0].detach().numpy() lowercase = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowercase = np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
197
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowerCAmelCase : Optional[Any] =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowerCAmelCase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowerCAmelCase : Optional[int] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowerCAmelCase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowerCAmelCase : Optional[int] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowerCAmelCase : int =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowerCAmelCase : List[str] =( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' lowercase , lowercase = randrange(len(lowerCAmelCase__ ) ), randrange(len(lowerCAmelCase__ ) ) lowercase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] lowercase , lowercase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0 ) -> Optional[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(lowerCAmelCase__ )) @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple ) -> int: '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ) -> Optional[int]: '''simple docstring''' lowercase = PokerHand(lowerCAmelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any ) -> List[str]: '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' assert PokerHand(lowerCAmelCase__ ).compare_with(PokerHand(lowerCAmelCase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' assert PokerHand(lowerCAmelCase__ ).compare_with(PokerHand(lowerCAmelCase__ ) ) == expected def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = [PokerHand(lowerCAmelCase__ ) for hand in SORTED_HANDS] lowercase = poker_hands.copy() shuffle(lowerCAmelCase__ ) lowercase = chain(sorted(lowerCAmelCase__ ) ) for index, hand in enumerate(lowerCAmelCase__ ): assert hand == poker_hands[index] def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowerCAmelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = PokerHand("""2C 4S AS 3D 5C""" ) lowercase = True lowercase = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = 0 lowercase = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) lowercase = os.path.join(lowerCAmelCase__ , """poker_hands.txt""" ) with open(lowerCAmelCase__ ) as file_hand: for line in file_hand: lowercase = line[:1_4].strip() lowercase = line[1_5:].strip() lowercase , lowercase = PokerHand(lowerCAmelCase__ ), PokerHand(lowerCAmelCase__ ) lowercase = player.compare_with(lowerCAmelCase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
197
1
from manim import * class __UpperCamelCase ( _lowercase ): """simple docstring""" def _UpperCAmelCase ( self ) -> int: a__ = Rectangle(height=0.5 , width=0.5 ) a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = VGroup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = Text('''CPU''' , font_size=2_4 ) a__ = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE ) a__ = [mem.copy() for i in range(1 )] a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = Text('''GPU''' , font_size=2_4 ) a__ = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) gpu.align_to(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = Text('''Model''' , font_size=2_4 ) a__ = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE , run_time=1 ) , Create(SCREAMING_SNAKE_CASE , run_time=1 ) , Create(SCREAMING_SNAKE_CASE , run_time=1 ) , ) a__ = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(SCREAMING_SNAKE_CASE ) , Write(SCREAMING_SNAKE_CASE ) ) self.add(SCREAMING_SNAKE_CASE ) a__ = [] a__ = [] a__ = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE ): a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE ) cpu_target.generate_target() a__ = 0.46 / 4 a__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE ) self.play(*SCREAMING_SNAKE_CASE ) self.wait()
194
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_3 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=9_9 , SCREAMING_SNAKE_CASE=1_6 , SCREAMING_SNAKE_CASE=3_6 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=3_7 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_1_2 , SCREAMING_SNAKE_CASE=1_6 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = embedding_size a__ = hidden_size a__ = num_hidden_layers a__ = num_hidden_groups a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope def _UpperCAmelCase ( self ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Any: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: a__ = AlbertModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: a__ = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , sentence_order_label=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: a__ = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: a__ = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a__ = self.num_labels a__ = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: a__ = self.num_labels a__ = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: a__ = self.num_choices a__ = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Tuple: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowercase : List[str] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : List[str] = True def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: a__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE ): a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) return inputs_dict def _UpperCAmelCase ( self ) -> Dict: a__ = AlbertModelTester(self ) a__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self ) -> List[str]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> Optional[Any]: a__ = AlbertModel.from_pretrained('''albert-base-v2''' ) a__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) a__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )[0] a__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) a__ = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
194
1
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> str: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: snake_case_ : Union[str, Any] = TOKENIZER_CLASSES else: snake_case_ : Optional[Any] = {tokenizer_name: getattr(__UpperCAmelCase ,tokenizer_name + "Fast" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: snake_case_ : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] snake_case_ : Optional[Any] = True if checkpoint_name is None: snake_case_ : Any = list(tokenizer_class.max_model_input_sizes.keys() ) else: snake_case_ : int = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer snake_case_ : List[Any] = tokenizer_class.from_pretrained(__UpperCAmelCase ,force_download=__UpperCAmelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: snake_case_, snake_case_ : Optional[Any] = checkpoint.split("/" ) snake_case_ : Union[str, Any] = os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) elif add_prefix: snake_case_ : Optional[int] = checkpoint snake_case_ : Dict = dump_path else: snake_case_ : Dict = None snake_case_ : int = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: snake_case_ : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] snake_case_ : List[Any] = file_path.split(__UpperCAmelCase )[-1][0] if next_char == "/": snake_case_ : Optional[Any] = os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) snake_case_ : List[Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) snake_case_ : str = tokenizer.save_pretrained( __UpperCAmelCase ,legacy_format=__UpperCAmelCase ,filename_prefix=__UpperCAmelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__UpperCAmelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __lowerCamelCase : List[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
713
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Any = "ZinengTang/tvlt-base" __UpperCAmelCase : str = tempfile.mkdtemp() def _snake_case ( self , **UpperCamelCase_ ): return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def _snake_case ( self , **UpperCamelCase_ ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def _snake_case ( self ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_feature_extractor() __UpperCAmelCase : List[str] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase__ ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_feature_extractor() __UpperCAmelCase : Union[str, Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = np.ones([1_20_00] ) __UpperCAmelCase : Optional[int] = feature_extractor(lowerCamelCase__ , return_tensors="np" ) __UpperCAmelCase : Union[str, Any] = processor(audio=lowerCamelCase__ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self ): __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_feature_extractor() __UpperCAmelCase : Optional[Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) __UpperCAmelCase : List[str] = np.ones([3, 2_24, 2_24] ) __UpperCAmelCase : str = image_processor(lowerCamelCase__ , return_tensors="np" ) __UpperCAmelCase : str = processor(images=lowerCamelCase__ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : str = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) __UpperCAmelCase : str = np.ones([1_20_00] ) __UpperCAmelCase : str = np.ones([3, 2_24, 2_24] ) __UpperCAmelCase : Optional[Any] = processor(audio=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _snake_case ( self ): __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : Union[str, Any] = TvltProcessor(image_processor=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
168
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _A ( lowercase__ = "isbn/0140328726" ): lowercase__ = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowercase__ = f'''{olid} is not a valid Open Library olid''' raise ValueError(lowercase__ ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def _A ( lowercase__ ): lowercase__ = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowercase__ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase__ = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowercase__ = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowercase__ , lowercase__ ): lowercase__ = """, """.join(lowercase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __A = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __A = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
325
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : str = "linear" _UpperCamelCase : Tuple = "cosine" _UpperCamelCase : List[Any] = "cosine_with_restarts" _UpperCamelCase : Dict = "polynomial" _UpperCamelCase : Optional[Any] = "constant" _UpperCamelCase : Optional[int] = "constant_with_warmup" _UpperCamelCase : List[str] = "piecewise_constant" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> str: return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[str]: def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: _lowercase : Union[str, Any] = {} _lowercase : Union[str, Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: _lowercase , _lowercase : Any = rule_str.split(':' ) _lowercase : Any = int(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = float(SCREAMING_SNAKE_CASE ) _lowercase : Any = value _lowercase : Optional[Any] = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: _lowercase : Any = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowercase : Any = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[int]: def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) _lowercase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> int: def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) _lowercase : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1E-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> Dict: _lowercase : List[Any] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowercase : Optional[int] = lr_init - lr_end _lowercase : List[str] = num_training_steps - num_warmup_steps _lowercase : Any = 1 - (current_step - num_warmup_steps) / decay_steps _lowercase : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Any: _lowercase : Union[str, Any] = SchedulerType(SCREAMING_SNAKE_CASE ) _lowercase : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__ : int = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: List[Any] ): inspect_dataset(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = path + """.py""" assert script_name in os.listdir(_lowerCamelCase ) assert "__pycache__" not in os.listdir(_lowerCamelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: int ): inspect_metric(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = path + """.py""" assert script_name in os.listdir(_lowerCamelCase ) assert "__pycache__" not in os.listdir(_lowerCamelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : Tuple = get_dataset_config_info(_lowerCamelCase , config_name=_lowerCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[int] ): with pytest.raises(_lowerCamelCase ): get_dataset_config_info(_lowerCamelCase , config_name=_lowerCamelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Optional[Any] = get_dataset_config_names(_lowerCamelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : str = get_dataset_infos(_lowerCamelCase ) assert list(infos.keys() ) == expected_configs __SCREAMING_SNAKE_CASE : List[Any] = expected_configs[0] assert expected_config in infos __SCREAMING_SNAKE_CASE : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: List[str] , _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : Tuple = get_dataset_infos(_lowerCamelCase ) assert expected_config in infos __SCREAMING_SNAKE_CASE : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: List[Any] , _lowerCamelCase: Dict ): with pytest.raises(_lowerCamelCase ): get_dataset_split_names(_lowerCamelCase , config_name=_lowerCamelCase )
578
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Tuple = '''''' _A : Dict = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : List[Any] , lowerCAmelCase__ : Optional[DatasetInfo] = None , lowerCAmelCase__ : Optional[str] = None , **lowerCAmelCase__ : str , ): """simple docstring""" super().__init__(self , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = repo_info __SCREAMING_SNAKE_CASE : Dict = token __SCREAMING_SNAKE_CASE : Dict = None def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" if self.dir_cache is None: __SCREAMING_SNAKE_CASE : Optional[int] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __SCREAMING_SNAKE_CASE : str = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(lowerCAmelCase__ ): {"""name""": str(lowerCAmelCase__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str = "rb" , **lowerCAmelCase__ : Optional[Any] , ): """simple docstring""" if not isinstance(self.repo_info , lowerCAmelCase__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) __SCREAMING_SNAKE_CASE : Tuple = hf_hub_url(self.repo_info.id , lowerCAmelCase__ , revision=self.repo_info.sha ) return fsspec.open( lowerCAmelCase__ , mode=lowerCAmelCase__ , headers=get_authentication_headers_for_url(lowerCAmelCase__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ): """simple docstring""" self._get_dirs() __SCREAMING_SNAKE_CASE : Dict = self._strip_protocol(lowerCAmelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase__ ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]=False , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" self._get_dirs() __SCREAMING_SNAKE_CASE : Union[str, Any] = PurePosixPath(path.strip("""/""" ) ) __SCREAMING_SNAKE_CASE : Dict = {} for p, f in self.dir_cache.items(): __SCREAMING_SNAKE_CASE : str = PurePosixPath(p.strip("""/""" ) ) __SCREAMING_SNAKE_CASE : Dict = p.parent if root == path: __SCREAMING_SNAKE_CASE : int = f __SCREAMING_SNAKE_CASE : int = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
578
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowercase ( _a , _a ): snake_case_ : Optional[int] = [] for part_id in partition_order: snake_case_ : Any = df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(_a ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ): snake_case_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case_ : Optional[Any] = spark.range(100 ).repartition(1 ) snake_case_ : Tuple = Spark(_a ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ): snake_case_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case_ : str = spark.range(10 ).repartition(2 ) snake_case_ : int = [1, 0] snake_case_ : List[Any] = _generate_iterable_examples(_a , _a ) # Reverse the partitions. snake_case_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , _a ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case_, snake_case_ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ): snake_case_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case_ : List[Any] = spark.range(10 ).repartition(1 ) snake_case_ : List[Any] = SparkExamplesIterable(_a ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_a ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ): snake_case_ : str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case_ : Any = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case_ : Dict = lambda _a : x.reverse() snake_case_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [2, 1, 0] ) snake_case_ : Tuple = SparkExamplesIterable(_a ).shuffle_data_sources(_a ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_a ): snake_case_, snake_case_ : Dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ): snake_case_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case_ : Any = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case_ : Any = SparkExamplesIterable(_a ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [0, 2] ) for i, (row_id, row_dict) in enumerate(_a ): snake_case_, snake_case_ : List[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case_ : int = SparkExamplesIterable(_a ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case_ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [1, 3] ) for i, (row_id, row_dict) in enumerate(_a ): snake_case_, snake_case_ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ): snake_case_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case_ : Tuple = spark.range(100 ).repartition(1 ) snake_case_ : Dict = Spark(_a ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
485
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowercase__ : List[str] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __lowercase ( _a ): snake_case_ : List[str] = {} state_dict.pop('''pixel_mean''' , _a ) state_dict.pop('''pixel_std''' , _a ) snake_case_ : Union[str, Any] = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ : Optional[int] = key.replace(_a , _a ) if re.match(_a , _a ): snake_case_ : Union[str, Any] = int(re.match(_a , _a ).group(2 ) ) if layer_nb == 0: snake_case_ : Optional[int] = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: snake_case_ : Union[str, Any] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: snake_case_ : List[Any] = key.replace('''layers.2''' , '''proj_out''' ) snake_case_ : Optional[Any] = value snake_case_ : Tuple = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase ( _a , _a , _a , _a="ybelkada/segment-anything" ): snake_case_ : Optional[Any] = hf_hub_download(_a , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: snake_case_ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case_ : Optional[Any] = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case_ : Union[str, Any] = SamConfig( vision_config=_a , ) elif "sam_vit_h" in model_name: snake_case_ : Tuple = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case_ : List[str] = SamConfig( vision_config=_a , ) snake_case_ : Tuple = torch.load(_a , map_location='''cpu''' ) snake_case_ : Optional[Any] = replace_keys(_a ) snake_case_ : Any = SamImageProcessor() snake_case_ : Optional[Any] = SamProcessor(image_processor=_a ) snake_case_ : Tuple = SamModel(_a ) hf_model.load_state_dict(_a ) snake_case_ : Tuple = hf_model.to('''cuda''' ) snake_case_ : Union[str, Any] = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' snake_case_ : Union[str, Any] = Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) snake_case_ : Tuple = [[[400, 650]]] snake_case_ : List[str] = [[1]] snake_case_ : Optional[int] = processor(images=np.array(_a ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case_ : Optional[Any] = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case_ : Tuple = ((75, 275, 1_725, 850),) snake_case_ : Optional[Any] = processor(images=np.array(_a ) , input_boxes=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case_ : Union[str, Any] = [[[400, 650], [800, 650]]] snake_case_ : Optional[int] = [[1, 1]] snake_case_ : Tuple = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() lowercase__ : Any = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) lowercase__ : Tuple = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
485
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __UpperCAmelCase = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def snake_case_ (__A : List[str] , __A : Optional[Any] , __A : Dict=None ) -> Union[str, Any]: if rng is None: __lowerCAmelCase : Union[str, Any] = random.Random() __lowerCAmelCase : Tuple = 1 for dim in shape: total_dims *= dim __lowerCAmelCase : Optional[Any] = [] for _ in range(__A ): values.append(rng.randint(0 , vocab_size - 1 ) ) __lowerCAmelCase : Dict = np.array(__A , dtype=jnp.intaa ).reshape(__A ) return output def snake_case_ (__A : Union[str, Any] , __A : str=None ) -> Union[str, Any]: __lowerCAmelCase : Tuple = ids_tensor(__A , vocab_size=2 , rng=__A ) # make sure that at least one token is attended to for each batch __lowerCAmelCase : int = 1 return attn_mask @require_flax class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[Any] =None lowerCamelCase : Optional[int] =() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : List[str] = inputs["""input_ids"""].shape[-1] // 2 __lowerCAmelCase : Dict = inputs["""input_ids"""][:max_batch_size, :sequence_length] __lowerCAmelCase : Optional[Any] = jnp.ones_like(lowerCAmelCase ) __lowerCAmelCase : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCAmelCase : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCAmelCase : Tuple = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : str = False __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase : Optional[Any] = getattr(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = pt_model_class(lowerCAmelCase ).eval() __lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(lowerCAmelCase , flax_model.params ) __lowerCAmelCase : Dict = flax_model.generate(lowerCAmelCase ).sequences __lowerCAmelCase : Tuple = pt_model.generate(torch.tensor(lowerCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCAmelCase : List[str] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCAmelCase : List[str] = False __lowerCAmelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : str = model_class(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = jit(model.generate ) __lowerCAmelCase : int = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = self._get_input_ids_and_config() __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : str = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Any = model_class(lowerCAmelCase ) __lowerCAmelCase : Any = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = jit(model.generate ) __lowerCAmelCase : Dict = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = self._get_input_ids_and_config() __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(lowerCAmelCase ) __lowerCAmelCase : List[str] = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : Dict = jit(model.generate ) __lowerCAmelCase : Tuple = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() __lowerCAmelCase : Dict = False __lowerCAmelCase : Dict = max_length __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : List[str] = 2 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Optional[Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : List[Any] = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = max_length __lowerCAmelCase : int = 0.8 __lowerCAmelCase : Union[str, Any] = 10 __lowerCAmelCase : Optional[Any] = 0.3 __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : List[Any] = 8 __lowerCAmelCase : str = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = jit(model.generate ) __lowerCAmelCase : Any = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[Any] = self._get_input_ids_and_config() __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : str = 1 __lowerCAmelCase : str = 8 __lowerCAmelCase : Dict = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = jit(model.generate ) __lowerCAmelCase : Any = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Dict = self._get_input_ids_and_config() __lowerCAmelCase : Dict = max_length __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : Optional[Any] = 8 __lowerCAmelCase : List[str] = 9 for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : str = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : Any = jit(model.generate ) __lowerCAmelCase : str = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Dict = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Optional[Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : List[Any] = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : str = jit(model.generate ) __lowerCAmelCase : Union[str, Any] = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : Any = attention_mask.at[(0, 0)].set(0 ) __lowerCAmelCase : Any = True __lowerCAmelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : List[str] = jit(model.generate ) __lowerCAmelCase : List[str] = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : int = self._get_input_ids_and_config() # pad attention mask on the left __lowerCAmelCase : Optional[int] = attention_mask.at[(0, 0)].set(0 ) __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: __lowerCAmelCase : Tuple = model_class(lowerCAmelCase ) __lowerCAmelCase : str = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) __lowerCAmelCase : int = jit(model.generate ) __lowerCAmelCase : Tuple = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) __lowerCAmelCase : Tuple = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __lowerCAmelCase : Optional[int] = """Hello world""" __lowerCAmelCase : List[Any] = tokenizer(lowerCAmelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase , """do_samples""" ): model.generate(lowerCAmelCase , do_samples=lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase , """foo""" ): __lowerCAmelCase : int = {"""foo""": """bar"""} model.generate(lowerCAmelCase , **lowerCAmelCase )
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def snake_case_ () -> Optional[Any]: __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""-f""" ) __lowerCAmelCase : Dict = parser.parse_args() return args.f def snake_case_ (__A : Dict , __A : List[str]="eval" ) -> int: __lowerCAmelCase : int = os.path.join(__A , f'''{split}_results.json''' ) if os.path.exists(__A ): with open(__A , """r""" ) as f: return json.load(__A ) raise ValueError(f'''can\'t find {path}''' ) __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : Optional[Any] = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_flax_glue.main() __lowerCAmelCase : Dict = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : Any = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_clm_flax.main() __lowerCAmelCase : int = get_results(lowerCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : int = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_summarization_flax.main() __lowerCAmelCase : Union[str, Any] = get_results(lowerCAmelCase , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[str] = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_mlm_flax.main() __lowerCAmelCase : List[Any] = get_results(lowerCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[str] = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_ta_mlm_flax.main() __lowerCAmelCase : Union[str, Any] = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = 7 if get_gpu_count() > 1 else 2 __lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[Any] = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_flax_ner.main() __lowerCAmelCase : Dict = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[str] = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_qa.main() __lowerCAmelCase : Union[str, Any] = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
651
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCAmelCase__ : def __init__( self : Any , _lowerCamelCase : Tuple ): if isinstance(_lowerCamelCase , _lowerCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _snake_case = deepcopy(_lowerCamelCase ) elif os.path.exists(_lowerCamelCase ): with io.open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: _snake_case = json.load(_lowerCamelCase ) else: try: _snake_case = baseaa.urlsafe_baadecode(_lowerCamelCase ).decode('''utf-8''' ) _snake_case = json.loads(_lowerCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) _snake_case = config self.set_stage_and_offload() def lowercase ( self : Union[str, Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. _snake_case = self.get_value('''zero_optimization.stage''' , -1 ) # offload _snake_case = False if self.is_zeroa() or self.is_zeroa(): _snake_case = set(['''cpu''', '''nvme'''] ) _snake_case = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: _snake_case = True def lowercase ( self : Union[str, Any] , _lowerCamelCase : Tuple ): _snake_case = self.config # find the config node of interest if it exists _snake_case = ds_key_long.split('''.''' ) _snake_case = nodes.pop() for node in nodes: _snake_case = config.get(_lowerCamelCase ) if config is None: return None, ds_key return config, ds_key def lowercase ( self : int , _lowerCamelCase : int , _lowerCamelCase : List[Any]=None ): _snake_case , _snake_case = self.find_config_node(_lowerCamelCase ) if config is None: return default return config.get(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=False ): _snake_case = self.config # find the config node of interest if it exists _snake_case = ds_key_long.split('''.''' ) for node in nodes: _snake_case = config _snake_case = config.get(_lowerCamelCase ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(_lowerCamelCase ) def lowercase ( self : List[Any] , _lowerCamelCase : List[str] ): _snake_case = self.get_value(_lowerCamelCase ) return False if value is None else bool(_lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : str ): _snake_case = self.get_value(_lowerCamelCase ) return False if value is None else not bool(_lowerCamelCase ) def lowercase ( self : Optional[int] ): return self._stage == 2 def lowercase ( self : Optional[int] ): return self._stage == 3 def lowercase ( self : Union[str, Any] ): return self._offload class lowerCAmelCase__ : def __init__( self : Any , _lowerCamelCase : Tuple ): _snake_case = engine def lowercase ( self : Union[str, Any] , _lowerCamelCase : Dict , **_lowerCamelCase : Dict ): # runs backpropagation and handles mixed precision self.engine.backward(_lowerCamelCase , **_lowerCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCAmelCase__ ( A_ ): def __init__( self : str , _lowerCamelCase : str ): super().__init__(_lowerCamelCase , device_placement=_lowerCamelCase , scaler=_lowerCamelCase ) _snake_case = hasattr(self.optimizer , '''overflow''' ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any]=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowercase ( self : Tuple ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowercase ( self : Dict ): if self.__has_overflow__: return self.optimizer.overflow return False class lowerCAmelCase__ ( A_ ): def __init__( self : Any , _lowerCamelCase : Dict , _lowerCamelCase : Tuple ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Any ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=0.0_0_1 , _lowerCamelCase : List[str]=0 , **_lowerCamelCase : List[Any] ): _snake_case = params _snake_case = lr _snake_case = weight_decay _snake_case = kwargs class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Any=0 , **_lowerCamelCase : str ): _snake_case = optimizer _snake_case = total_num_steps _snake_case = warmup_num_steps _snake_case = kwargs
430
"""simple docstring""" from __future__ import annotations UpperCAmelCase__ = '#' class lowerCAmelCase__ : def __init__( self : List[Any] ): _snake_case = {} def lowercase ( self : str , _lowerCamelCase : str ): _snake_case = self._trie for char in text: if char not in trie: _snake_case = {} _snake_case = trie[char] _snake_case = True def lowercase ( self : Dict , _lowerCamelCase : str ): _snake_case = self._trie for char in prefix: if char in trie: _snake_case = trie[char] else: return [] return self._elements(_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : dict ): _snake_case = [] for c, v in d.items(): _snake_case = [''' '''] if c == END else [(c + s) for s in self._elements(_lowerCamelCase )] result.extend(_lowerCamelCase ) return tuple(_lowerCamelCase ) UpperCAmelCase__ = Trie() UpperCAmelCase__ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _UpperCAmelCase ( __lowerCamelCase : str ) -> tuple: _snake_case = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def _UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
430
1
def A__ ( lowerCamelCase , lowerCamelCase ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCamelCase_: Tuple = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCamelCase_: Any = str(bin(lowerCamelCase ) )[2:] UpperCamelCase_: str = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
548
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A__ ( lowerCamelCase , lowerCamelCase=() , lowerCamelCase=None , lowerCamelCase="no" , lowerCamelCase="29500" ) -> List[Any]: UpperCamelCase_: Any = False UpperCamelCase_: int = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): UpperCamelCase_: str = True elif "IPython" in sys.modules: UpperCamelCase_: Tuple = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: UpperCamelCase_: Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , lowerCamelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: UpperCamelCase_: str = 8 UpperCamelCase_: int = PrepareForLaunch(lowerCamelCase , distributed_type="""TPU""" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(lowerCamelCase , args=lowerCamelCase , nprocs=lowerCamelCase , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*lowerCamelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase , master_addr="""127.0.01""" , master_port=lowerCamelCase , mixed_precision=lowerCamelCase ): UpperCamelCase_: Optional[int] = PrepareForLaunch(lowerCamelCase , distributed_type="""MULTI_GPU""" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(lowerCamelCase , args=lowerCamelCase , nprocs=lowerCamelCase , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase_: List[Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase=() , lowerCamelCase=2 ) -> List[str]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): UpperCamelCase_: str = PrepareForLaunch(lowerCamelCase , debug=lowerCamelCase ) start_processes(lowerCamelCase , args=lowerCamelCase , nprocs=lowerCamelCase , start_method="""fork""" )
548
1
'''simple docstring''' from ....utils import logging A : str = logging.get_logger(__name__) class lowerCAmelCase_ ( a_ ): def __init__( self : int, _snake_case : Dict, _snake_case : Optional[int]=None, _snake_case : str=2_048 ): '''simple docstring''' snake_case : int =config.__dict__ snake_case : Dict =modal_hidden_size if num_labels: snake_case : List[str] =num_labels
136
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Optional[Any] = {} class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'llama' __UpperCAmelCase = ['past_key_values'] def __init__( self : Dict, _snake_case : Union[str, Any]=32_000, _snake_case : int=4_096, _snake_case : Dict=11_008, _snake_case : Union[str, Any]=32, _snake_case : int=32, _snake_case : List[Any]=None, _snake_case : Union[str, Any]="silu", _snake_case : Dict=2_048, _snake_case : List[str]=0.02, _snake_case : int=1E-6, _snake_case : Any=True, _snake_case : Tuple=0, _snake_case : Tuple=1, _snake_case : List[Any]=2, _snake_case : int=1, _snake_case : Optional[int]=False, _snake_case : Union[str, Any]=None, **_snake_case : List[str], ): '''simple docstring''' snake_case : List[Any] =vocab_size snake_case : Union[str, Any] =max_position_embeddings snake_case : Union[str, Any] =hidden_size snake_case : Optional[Any] =intermediate_size snake_case : List[str] =num_hidden_layers snake_case : Optional[int] =num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case : Optional[Any] =num_attention_heads snake_case : List[Any] =num_key_value_heads snake_case : Any =hidden_act snake_case : Optional[Any] =initializer_range snake_case : List[str] =rms_norm_eps snake_case : Optional[Any] =pretraining_tp snake_case : Dict =use_cache snake_case : Union[str, Any] =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case, bos_token_id=_snake_case, eos_token_id=_snake_case, tie_word_embeddings=_snake_case, **_snake_case, ) def __snake_case ( self : Optional[int] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling, _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) snake_case : Tuple =self.rope_scaling.get('''type''', _snake_case ) snake_case : str =self.rope_scaling.get('''factor''', _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_snake_case, _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
136
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
164
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = (IPNDMScheduler,) lowerCAmelCase = (('num_inference_steps', 5_0),) def _UpperCAmelCase ( self , **a__ ) -> List[str]: A = {"""num_train_timesteps""": 1000} config.update(**a__ ) return config def _UpperCAmelCase ( self , a__=0 , **a__ ) -> Tuple: A = dict(self.forward_default_kwargs ) A = kwargs.pop("""num_inference_steps""" , a__ ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config(**a__ ) A = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals A = dummy_past_residuals[:] if time_step is None: A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) A = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals A = dummy_past_residuals[:] A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self , a__=0 , **a__ ) -> int: A = dict(self.forward_default_kwargs ) A = kwargs.pop("""num_inference_steps""" , a__ ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) A = dummy_past_residuals[:] if time_step is None: A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) A = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) A = dummy_past_residuals[:] A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self , **a__ ) -> List[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config(**a__ ) A = scheduler_class(**a__ ) A = 10 A = self.dummy_model() A = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): A = model(a__ , a__ ) A = scheduler.step(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A = model(a__ , a__ ) A = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def _UpperCAmelCase ( self ) -> Any: A = dict(self.forward_default_kwargs ) A = kwargs.pop("""num_inference_steps""" , a__ ) for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**a__ ) A = self.dummy_sample A = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , """set_timesteps""" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , """set_timesteps""" ): A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A = dummy_past_residuals[:] A = scheduler.timesteps[5] A = scheduler.timesteps[6] A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self ) -> Tuple: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=a__ , time_step=a__ ) def _UpperCAmelCase ( self ) -> Any: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a__ , time_step=a__ ) def _UpperCAmelCase ( self ) -> int: A = self.full_loop() A = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
641
0
'''simple docstring''' def _lowercase ( lowercase__ = 1_0_0_0 ): __lowerCAmelCase : Tuple = 1, 1 __lowerCAmelCase : Optional[int] = 2 while True: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Tuple = fa + fa __lowerCAmelCase : List[Any] = fa, f index += 1 for _ in str(lowercase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
702
from math import factorial def _lowercase ( lowercase__ , lowercase__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(lowercase__ ) // (factorial(lowercase__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F"fifty-two card deck is: {combinations(52, 5)}\n", ) print( "If a class of 40 students must be arranged into groups of", F"4 for group projects, there are {combinations(40, 4)} ways", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F"are {combinations(10, 3)} ways that first, second and", "third place can be awarded.", )
583
0
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = 1 for i in range(1, num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = 0 while number > 0: a = number % 1_0 sum_of_digits += last_digit a = number // 1_0 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0 ) -> int: """simple docstring""" a = factorial(snake_case_ ) a = split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
387
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int]=7 ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : Any=18 ,__lowerCamelCase : List[Any]=30 ,__lowerCamelCase : Optional[Any]=4_00 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : int=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] ,__lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size if size is not None else {'''height''': 18, '''width''': 20} a = do_thumbnail a = do_align_axis a = do_pad a = do_normalize a = image_mean a = image_std def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) a = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order a = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
387
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } UpperCAmelCase : Optional[Any] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } UpperCAmelCase : Optional[Any] = '''</w>''' UpperCAmelCase : Union[str, Any] = '''@@ ''' def _SCREAMING_SNAKE_CASE ( a ) -> Any: __A : Tuple = set() __A : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : List[str] = char return pairs # Speech2Text2 has no max input length UpperCAmelCase : int = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class _A( __a ): """simple docstring""" UpperCamelCase : str = VOCAB_FILES_NAMES UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : str = ['''input_ids''', '''attention_mask'''] def __init__( self , _A , _A="<s>" , _A="<pad>" , _A="</s>" , _A="<unk>" , _A=False , _A=None , **_A , ): super().__init__( unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , do_lower_case=snake_case__ , **snake_case__ , ) __A : Optional[int] = do_lower_case with open(snake_case__ , encoding='utf-8' ) as vocab_handle: __A : Optional[Any] = json.load(snake_case__ ) __A : int = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) __A : Union[str, Any] = None __A : Any = None else: with open(snake_case__ , encoding='utf-8' ) as merges_handle: __A : List[str] = merges_handle.read().split('\n' )[:-1] __A : List[str] = [tuple(merge.split()[:2] ) for merge in merges] __A : Optional[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) __A : int = {} @property def UpperCAmelCase_ ( self ): return len(self.decoder ) def UpperCAmelCase_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , _A ): __A : Tuple = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __A : Dict = get_pairs(snake_case__ ) if not pairs: return token while True: __A : List[Any] = min(snake_case__ , key=lambda _A : self.bpe_ranks.get(snake_case__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __A , __A : List[Any] = bigram __A : Union[str, Any] = [] __A : List[str] = 0 while i < len(snake_case__ ): try: __A : List[Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __A : str = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A : Dict = tuple(snake_case__ ) __A : Union[str, Any] = new_word if len(snake_case__ ) == 1: break else: __A : List[Any] = get_pairs(snake_case__ ) __A : List[Any] = ' '.join(snake_case__ ) if word == "\n " + BPE_TOKEN_MERGES: __A : Optional[Any] = '\n' + BPE_TOKEN_MERGES if word.endswith(snake_case__ ): __A : Tuple = word.replace(snake_case__ , '' ) __A : Tuple = word.replace(' ' , snake_case__ ) __A : Union[str, Any] = word return word def UpperCAmelCase_ ( self , _A ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: __A : int = text.lower() __A : Tuple = text.split() __A : List[Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(snake_case__ ).split(' ' ) ) ) return split_tokens def UpperCAmelCase_ ( self , _A ): return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self , _A ): __A : List[Any] = self.decoder.get(snake_case__ , self.unk_token ) return result def UpperCAmelCase_ ( self , _A ): __A : Union[str, Any] = ' '.join(snake_case__ ) # make sure @@ tokens are concatenated __A : Optional[int] = ''.join(string.split(snake_case__ ) ) return string def UpperCAmelCase_ ( self , _A , _A = None ): if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : Optional[int] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __A : Any = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '\n' ) __A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(snake_case__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __A : Optional[int] = token_index writer.write(' '.join(snake_case__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
706
import numpy as np from PIL import Image def _SCREAMING_SNAKE_CASE ( a , a , a ) -> np.ndarray: __A : Union[str, Any] = np.array(a ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __A : List[Any] = 0 __A : Optional[Any] = 0 __A : List[Any] = 0 __A : Dict = 0 # compute the shape of the output matrix __A : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __A : Optional[int] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __A : Tuple = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A : List[str] = 0 __A : Union[str, Any] = 0 return updated_arr def _SCREAMING_SNAKE_CASE ( a , a , a ) -> np.ndarray: __A : List[Any] = np.array(a ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __A : Dict = 0 __A : str = 0 __A : Tuple = 0 __A : Optional[int] = 0 # compute the shape of the output matrix __A : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __A : Any = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __A : Tuple = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __A : Dict = 0 __A : int = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image UpperCAmelCase : int = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
77
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["CLIPFeatureExtractor"] __UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Union[str, Any] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowerCAmelCase__ ( _lowerCAmelCase ): A = 42 class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Dict , UpperCamelCase_ : PriorTransformer , UpperCamelCase_ : CLIPVisionModel , UpperCamelCase_ : CLIPImageProcessor , UpperCamelCase_ : HeunDiscreteScheduler , UpperCamelCase_ : ShapERenderer , ) -> str: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def __UpperCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ) -> Dict: """simple docstring""" if latents is None: lowerCamelCase_ : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase_ : List[str] = latents.to(UpperCamelCase_ ) lowerCamelCase_ : int = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : List[str]=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) lowerCamelCase_ : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , ) -> int: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ : Any = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowerCamelCase_ : Any = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ : str = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowerCamelCase_ : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ : List[str] = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ : Dict = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ : Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 25 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : float = 4.0 , UpperCamelCase_ : int = 64 , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ) -> Optional[Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowerCamelCase_ : List[Any] = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowerCamelCase_ : Union[str, Any] = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ : str = len(UpperCamelCase_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}""" ) lowerCamelCase_ : List[Any] = self._execution_device lowerCamelCase_ : Optional[Any] = batch_size * num_images_per_prompt lowerCamelCase_ : Optional[int] = guidance_scale > 1.0 lowerCamelCase_ : Any = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowerCamelCase_ : Dict = self.scheduler.timesteps lowerCamelCase_ : List[Any] = self.prior.config.num_embeddings lowerCamelCase_ : Optional[int] = self.prior.config.embedding_dim lowerCamelCase_ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ : Tuple = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ : List[Any] = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Tuple = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ : List[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ : Optional[int] = noise_pred.chunk(2 ) lowerCamelCase_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ : str = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowerCamelCase_ : Dict = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowerCamelCase_ : Optional[int] = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowerCamelCase_ : Union[str, Any] = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ : str = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
501
0
'''simple docstring''' import warnings from .generation import TFGenerationMixin class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , lowerCamelCase , )
717
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __lowerCamelCase ( _UpperCamelCase : np.ndarray , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : bool , ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=_UpperCamelCase ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(_UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(_UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCamelCase ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCamelCase , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
43
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowerCamelCase : Any = logging.getLogger(__name__) _lowerCamelCase : Optional[int] = 50 # max width of layer names _lowerCamelCase : Tuple = 70 # max width of quantizer names def __a ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def __a ( __lowerCAmelCase ) -> Optional[Any]: if args.calibrator == "max": SCREAMING_SNAKE_CASE : Dict = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) SCREAMING_SNAKE_CASE : List[Any] = 'histogram' elif args.calibrator == "mse": SCREAMING_SNAKE_CASE : Tuple = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) SCREAMING_SNAKE_CASE : Optional[int] = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ) -> List[str]: logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ['embeddings'] , which='weight' , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [''] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def __a ( __lowerCAmelCase ) -> List[str]: logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: def fusea(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return SCREAMING_SNAKE_CASE : Union[str, Any] = qq._amax.detach().item() SCREAMING_SNAKE_CASE : str = qk._amax.detach().item() SCREAMING_SNAKE_CASE : str = qv._amax.detach().item() SCREAMING_SNAKE_CASE : Dict = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): SCREAMING_SNAKE_CASE : Dict = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def __a ( __lowerCAmelCase ) -> Union[str, Any]: for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: SCREAMING_SNAKE_CASE : str = mod.weight.shape[0] SCREAMING_SNAKE_CASE : int = mod._weight_quantizer._amax.detach() SCREAMING_SNAKE_CASE : List[str] = torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def __a ( __lowerCAmelCase ) -> Dict: for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) SCREAMING_SNAKE_CASE : Union[str, Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) SCREAMING_SNAKE_CASE : str = set(range(len(mod.weight.size() ) ) ) - axis_set SCREAMING_SNAKE_CASE : List[str] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) SCREAMING_SNAKE_CASE : Any = amax def __a ( __lowerCAmelCase , __lowerCAmelCase=25 , __lowerCAmelCase=180 , __lowerCAmelCase=None ) -> List[Any]: if ignore is None: SCREAMING_SNAKE_CASE : List[str] = [] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE : int = [ignore] SCREAMING_SNAKE_CASE : Any = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , 'weight' ): continue SCREAMING_SNAKE_CASE : Any = max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): SCREAMING_SNAKE_CASE : Any = getattr(__lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = getattr(__lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , 'weight' ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue SCREAMING_SNAKE_CASE : List[str] = F'''Act:{input_q.extra_repr()}''' SCREAMING_SNAKE_CASE : Any = F'''Wgt:{weight_q.extra_repr()}''' SCREAMING_SNAKE_CASE : Tuple = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def __a ( __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE : str = 0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="both" , **__lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE : Tuple = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def __a ( __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Optional[int]: for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_input_quantizer' ) or hasattr(__lowerCAmelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE : int = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
352
def __a ( __lowerCAmelCase , __lowerCAmelCase = 0 ) -> list: SCREAMING_SNAKE_CASE : int = length or len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Any = True return list_data if not swapped else bubble_sort(__lowerCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
352
1
"""simple docstring""" from collections.abc import Callable class a_ : def __init__( self : Dict , __UpperCamelCase : Callable | None = None ) ->None: '''simple docstring''' _UpperCAmelCase = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase = {} # Stores current size of heap. _UpperCAmelCase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase = key or (lambda __UpperCamelCase : x) def _snake_case ( self : Optional[int] , __UpperCamelCase : int ) ->int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def _snake_case ( self : Optional[int] , __UpperCamelCase : int ) ->int | None: '''simple docstring''' _UpperCAmelCase = int(2 * i + 1 ) return left if 0 < left < self.size else None def _snake_case ( self : List[str] , __UpperCamelCase : int ) ->int | None: '''simple docstring''' _UpperCAmelCase = int(2 * i + 2 ) return right if 0 < right < self.size else None def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int ) ->None: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase ,_UpperCAmelCase = self.arr[j], self.arr[i] def _snake_case ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def _snake_case ( self : Optional[Any] , __UpperCamelCase : int ) ->int: '''simple docstring''' _UpperCAmelCase = self._left(lowercase_ ) _UpperCAmelCase = self._right(lowercase_ ) _UpperCAmelCase = i if left is not None and not self._cmp(lowercase_ , lowercase_ ): _UpperCAmelCase = left if right is not None and not self._cmp(lowercase_ , lowercase_ ): _UpperCAmelCase = right return valid_parent def _snake_case ( self : Tuple , __UpperCamelCase : int ) ->None: '''simple docstring''' _UpperCAmelCase = self._parent(lowercase_ ) while parent is not None and not self._cmp(lowercase_ , lowercase_ ): self._swap(lowercase_ , lowercase_ ) _UpperCAmelCase ,_UpperCAmelCase = parent, self._parent(lowercase_ ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : int ) ->None: '''simple docstring''' _UpperCAmelCase = self._get_valid_parent(lowercase_ ) while valid_parent != index: self._swap(lowercase_ , lowercase_ ) _UpperCAmelCase ,_UpperCAmelCase = valid_parent, self._get_valid_parent(lowercase_ ) def _snake_case ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : int ) ->None: '''simple docstring''' if item not in self.pos_map: return _UpperCAmelCase = self.pos_map[item] _UpperCAmelCase = [item, self.key(lowercase_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase_ ) self._heapify_down(lowercase_ ) def _snake_case ( self : str , __UpperCamelCase : int ) ->None: '''simple docstring''' if item not in self.pos_map: return _UpperCAmelCase = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase = self.arr[self.size - 1] _UpperCAmelCase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase_ ) self._heapify_down(lowercase_ ) def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->None: '''simple docstring''' _UpperCAmelCase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase_ )] ) else: _UpperCAmelCase = [item, self.key(lowercase_ )] _UpperCAmelCase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def _snake_case ( self : Optional[Any] ) ->tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def _snake_case ( self : List[Any] ) ->tuple | None: '''simple docstring''' _UpperCAmelCase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _UpperCamelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : List[Any] = get_logger() a : Optional[dict] = None class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple: '''simple docstring''' super().__init__(features=__UpperCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) _UpperCAmelCase = str(jax.devices()[0] ) _UpperCAmelCase = jnp_array_kwargs @staticmethod def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(__UpperCamelCase ): device for device in jax.devices()} def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , __UpperCamelCase ) and column: if all( isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCamelCase , axis=0 ) return column def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ): return value elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCAmelCase = {} if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase = {"""dtype""": jnp.intaa} else: _UpperCAmelCase = {"""dtype""": jnp.intaa} elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCAmelCase = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCamelCase , PIL.Image.Image ): _UpperCAmelCase = np.asarray(__UpperCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ): _UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) elif isinstance(__UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int: '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase ) def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase ) return self.recursive_tensorize(__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array": '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) _UpperCAmelCase = self._consolidate(__UpperCamelCase ) return column def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) for column_name in batch: _UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
19
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowercase_: Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( UpperCAmelCase_): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCAmelCase_): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}') def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) snake_case__ : Tuple = try_infer_format_from_ext(args.input) if args.format == """infer""" else args.format snake_case__ : Any = PipelineDataFormat.from_str( format=UpperCAmelCase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCAmelCase_ , UpperCAmelCase_) class lowercase__ (__snake_case ): """simple docstring""" def __init__( self : Any , __a : Pipeline , __a : PipelineDataFormat ): snake_case__ : Optional[int] = nlp snake_case__ : List[str] = reader @staticmethod def lowercase ( __a : ArgumentParser ): snake_case__ : Any = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=__a , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=__a , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=__a , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=__a , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=__a , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=__a , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=__a , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=__a , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=__a ) def lowercase ( self : List[Any] ): snake_case__ , snake_case__ : Optional[Any] = self._nlp, [] for entry in self._reader: snake_case__ : List[Any] = nlp(**__a ) if self._reader.is_multi_columns else nlp(__a ) if isinstance(__a , __a ): outputs.append(__a ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case__ : str = self._reader.save_binary(__a ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(__a )
648
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase_: Tuple = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_) lowercase_: Dict = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Tuple = list(s_dict.keys()) for key in keys: snake_case__ : str = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case__ : Union[str, Any] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_) print(F'{key} -> {new_key}') snake_case__ : Dict = s_dict.pop(UpperCAmelCase_) return s_dict def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ , snake_case__ : Any = emb.weight.shape snake_case__ : List[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_) snake_case__ : int = emb.weight.data return lin_layer def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) snake_case__ : Dict = os.path.basename(UpperCAmelCase_) snake_case__ : Tuple = url.split("""/""")[-2] snake_case__ : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if os.path.exists(UpperCAmelCase_) and not os.path.isfile(UpperCAmelCase_): raise RuntimeError(F'{download_target} exists and is not a regular file') if os.path.isfile(UpperCAmelCase_): snake_case__ : Optional[int] = open(UpperCAmelCase_ , """rb""").read() if hashlib.shaaaa(UpperCAmelCase_).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file') with urllib.request.urlopen(UpperCAmelCase_) as source, open(UpperCAmelCase_ , """wb""") as output: with tqdm( total=int(source.info().get("""Content-Length""")) , ncols=80 , unit="""iB""" , unit_scale=UpperCAmelCase_ , unit_divisor=1_024) as loop: while True: snake_case__ : Union[str, Any] = source.read(8_192) if not buffer: break output.write(UpperCAmelCase_) loop.update(len(UpperCAmelCase_)) snake_case__ : Optional[int] = open(UpperCAmelCase_ , """rb""").read() if hashlib.shaaaa(UpperCAmelCase_).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""") return model_bytes def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if ".pt" not in checkpoint_path: snake_case__ : List[Any] = _download(_MODELS[checkpoint_path]) else: snake_case__ : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location="""cpu""") snake_case__ : Union[str, Any] = original_checkpoint["""dims"""] snake_case__ : Optional[int] = original_checkpoint["""model_state_dict"""] snake_case__ : int = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCAmelCase_) rename_keys(UpperCAmelCase_) snake_case__ : List[Any] = True snake_case__ : Dict = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] snake_case__ : List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCAmelCase_ , decoder_ffn_dim=UpperCAmelCase_ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) snake_case__ : int = WhisperForConditionalGeneration(UpperCAmelCase_) snake_case__ , snake_case__ : Tuple = model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_) if len(UpperCAmelCase_) > 0 and not set(UpperCAmelCase_) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}') if tie_embeds: snake_case__ : Dict = make_linear_from_emb(model.model.decoder.embed_tokens) else: snake_case__ : Optional[int] = proj_out_weights model.save_pretrained(UpperCAmelCase_) if __name__ == "__main__": lowercase_: int = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase_: int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
648
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionControlNetImgaImgPipeline __SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) __SCREAMING_SNAKE_CASE : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) snake_case_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) snake_case_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ = CLIPTextModel(snake_case ) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case_ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a ( self , snake_case , snake_case=0 ): if str(snake_case ).startswith('mps' ): snake_case_ = torch.manual_seed(snake_case ) else: snake_case_ = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ = 2 snake_case_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ) snake_case_ = floats_tensor(control_image.shape , rng=random.Random(snake_case ) ).to(snake_case ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def a ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def a ( self ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionControlNetImgaImgPipeline __SCREAMING_SNAKE_CASE : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def a ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(snake_case ): if isinstance(snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) snake_case_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case ) torch.manual_seed(0 ) snake_case_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case ) torch.manual_seed(0 ) snake_case_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ = CLIPTextModel(snake_case ) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case_ = MultiControlNetModel([controlneta, controlneta] ) snake_case_ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a ( self , snake_case , snake_case=0 ): if str(snake_case ).startswith('mps' ): snake_case_ = torch.manual_seed(snake_case ) else: snake_case_ = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ = 2 snake_case_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ), ] snake_case_ = floats_tensor(control_image[0].shape , rng=random.Random(snake_case ) ).to(snake_case ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def a ( self ): snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**snake_case ) pipe.to(snake_case ) snake_case_ = 10.0 snake_case_ = 4 snake_case_ = self.get_dummy_inputs(snake_case ) snake_case_ = steps snake_case_ = scale snake_case_ = pipe(**snake_case )[0] snake_case_ = self.get_dummy_inputs(snake_case ) snake_case_ = steps snake_case_ = scale snake_case_ = pipe(**snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] snake_case_ = self.get_dummy_inputs(snake_case ) snake_case_ = steps snake_case_ = scale snake_case_ = pipe(**snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] snake_case_ = self.get_dummy_inputs(snake_case ) snake_case_ = steps snake_case_ = scale snake_case_ = pipe(**snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def a ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def a ( self ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def a ( self ): snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): snake_case_ = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) snake_case_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=snake_case , controlnet=snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ = 'evil space-punk bird' snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) snake_case_ = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) snake_case_ = pipe( snake_case , snake_case , control_image=snake_case , generator=snake_case , output_type='np' , num_inference_steps=50 , strength=0.6 , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
702
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=1 / 255 , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_pad def a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self , snake_case , snake_case=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(snake_case , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(snake_case , key=lambda snake_case : item[0] )[0] snake_case_ = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = DetrImageProcessor if is_vision_available() else None def a ( self ): snake_case_ = DetrImageProcessingTester(self ) @property def a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'rescale_factor' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) def a ( self ): snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def a ( self ): pass def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ): # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def a ( self ): # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
108
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> Tuple: '''simple docstring''' a__ : str = checkpoint a__ : List[Any] = {} a__ : List[str] = vae_state_dict["encoder.conv_in.weight"] a__ : List[str] = vae_state_dict["encoder.conv_in.bias"] a__ : Union[str, Any] = vae_state_dict["encoder.conv_out.weight"] a__ : str = vae_state_dict["encoder.conv_out.bias"] a__ : Dict = vae_state_dict["encoder.norm_out.weight"] a__ : Optional[int] = vae_state_dict["encoder.norm_out.bias"] a__ : Union[str, Any] = vae_state_dict["decoder.conv_in.weight"] a__ : Optional[int] = vae_state_dict["decoder.conv_in.bias"] a__ : Any = vae_state_dict["decoder.conv_out.weight"] a__ : Optional[Any] = vae_state_dict["decoder.conv_out.bias"] a__ : Dict = vae_state_dict["decoder.norm_out.weight"] a__ : int = vae_state_dict["decoder.norm_out.bias"] a__ : Optional[Any] = vae_state_dict["quant_conv.weight"] a__ : List[Any] = vae_state_dict["quant_conv.bias"] a__ : Optional[Any] = vae_state_dict["post_quant_conv.weight"] a__ : Any = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only a__ : int = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) a__ : Tuple = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only a__ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) a__ : Any = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): a__ : Optional[int] = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: a__ : Optional[Any] = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) a__ : str = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) a__ : Optional[Any] = renew_vae_resnet_paths(lowerCAmelCase__ ) a__ : Union[str, Any] = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) a__ : List[str] = [key for key in vae_state_dict if "encoder.mid.block" in key] a__ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): a__ : Union[str, Any] = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] a__ : str = renew_vae_resnet_paths(lowerCAmelCase__ ) a__ : List[str] = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) a__ : Union[str, Any] = [key for key in vae_state_dict if "encoder.mid.attn" in key] a__ : str = renew_vae_attention_paths(lowerCAmelCase__ ) a__ : Optional[int] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): a__ : List[Any] = num_up_blocks - 1 - i a__ : str = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: a__ : Dict = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] a__ : Any = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] a__ : Optional[int] = renew_vae_resnet_paths(lowerCAmelCase__ ) a__ : List[Any] = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) a__ : str = [key for key in vae_state_dict if "decoder.mid.block" in key] a__ : int = 2 for i in range(1 , num_mid_res_blocks + 1 ): a__ : List[str] = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] a__ : Optional[int] = renew_vae_resnet_paths(lowerCAmelCase__ ) a__ : Any = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) a__ : List[Any] = [key for key in vae_state_dict if "decoder.mid.attn" in key] a__ : Optional[int] = renew_vae_attention_paths(lowerCAmelCase__ ) a__ : Optional[int] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , ) -> Tuple: '''simple docstring''' # Only support V1 a__ : Optional[Any] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) a__ : Dict = io.BytesIO(r.content ) a__ : Union[str, Any] = OmegaConf.load(lowerCAmelCase__ ) a__ : List[Any] = 5_1_2 a__ : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open a__ : List[str] = {} with safe_open(lowerCAmelCase__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): a__ : Union[str, Any] = f.get_tensor(lowerCAmelCase__ ) else: a__ : Dict = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )["state_dict"] # Convert the VAE model. a__ : Dict = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) a__ : str = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Union[str, Any] = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') __UpperCAmelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
642
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCAmelCase = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } __UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def lowercase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=False ) -> List[str]: '''simple docstring''' a__ , a__ : Optional[int] = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowercase__ ( lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' a__ : Any = {} a__ : Tuple = R".*sequential.(\d+).*" a__ : Tuple = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: a__ : str = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list a__ : Optional[Any] = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) a__ : int = key.replace(F"sequential.{sequential_layer}." , F"layers.{int(lowerCAmelCase__ )//3}.linear." ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Tuple = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... a__ : List[Any] = 1 if projecton_layer == 0 else 2 a__ : Dict = key.replace(F"_projection.{projecton_layer}." , F"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value a__ : List[Any] = value a__ : List[Any] = mixed_qkv.size(0 ) // 3 a__ : Optional[int] = mixed_qkv[:qkv_dim] a__ : List[str] = mixed_qkv[qkv_dim : qkv_dim * 2] a__ : Optional[Any] = mixed_qkv[qkv_dim * 2 :] a__ : Tuple = query_layer a__ : int = key_layer a__ : Optional[int] = value_layer else: a__ : List[str] = value return model_state_dict def lowercase__ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=False ) -> Tuple: '''simple docstring''' a__ , a__ : Tuple = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() a__ : Optional[int] = clap_model.state_dict() a__ : Optional[Any] = rename_state_dict(lowerCAmelCase__ ) a__ : Union[str, Any] = ClapConfig() a__ : Dict = enable_fusion a__ : Any = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') __UpperCAmelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
642
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( __snake_case ): a: Optional[int] = "naver-clova-ix/donut-base-finetuned-docvqa" a: Optional[int] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) a: Dict = "document_qa" a: Dict = AutoProcessor a: Optional[int] = VisionEncoderDecoderModel a: str = ["image", "text"] a: Any = ["text"] def __init__( self: Optional[int] , *__UpperCamelCase: str , **__UpperCamelCase: Union[str, Any] ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def _A ( self: Dict , __UpperCamelCase: "Image" , __UpperCamelCase: str ): _a = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _a = task_prompt.replace('''{user_input}''' , __UpperCamelCase ) _a = self.pre_processor.tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors='''pt''' ).input_ids _a = self.pre_processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _A ( self: Union[str, Any] , __UpperCamelCase: Optional[int] ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCamelCase , ).sequences def _A ( self: List[Any] , __UpperCamelCase: List[str] ): _a = self.pre_processor.batch_decode(__UpperCamelCase )[0] _a = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _a = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _a = re.sub(R'''<.*?>''' , '''''' , __UpperCamelCase , count=1 ).strip() # remove first task start token _a = self.pre_processor.tokenajson(__UpperCamelCase ) return sequence["answer"]
715
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCamelCase :Tuple = Lock() def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_UpperCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _a = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _a = min(_UpperCamelCase , _UpperCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_UpperCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _a = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _a = max(_UpperCamelCase , _UpperCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> str: _a = [] _a = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _a = Pipe() _a = Pipe() process_array_.append( Process( target=_UpperCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _a = temp_rs _a = temp_rr for i in range(1 , len(_UpperCamelCase ) - 1 ): _a = Pipe() _a = Pipe() process_array_.append( Process( target=_UpperCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _a = temp_rs _a = temp_rr process_array_.append( Process( target=_UpperCamelCase , args=( len(_UpperCamelCase ) - 1, arr[len(_UpperCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_UpperCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_UpperCamelCase ) ): _a = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> int: _a = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_UpperCamelCase ) _a = odd_even_transposition(_UpperCamelCase ) print('''Sorted List\n''' ) print(*_UpperCamelCase ) if __name__ == "__main__": main()
346
0