code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer SCREAMING_SNAKE_CASE__ : int = ['gpt2'] SCREAMING_SNAKE_CASE__ : str = 'gpt2' if is_tf_available(): class UpperCamelCase__ (tf.Module ): '''simple docstring''' def __init__( self , UpperCamelCase__ ) -> Union[str, Any]: super().__init__() lowerCamelCase : Any = tokenizer lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase : Any = TFGPTaLMHeadModel.from_config(__lowerCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _lowercase ( self , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : Dict = self.tokenizer(__lowerCAmelCase ) lowerCamelCase : Union[str, Any] = tokenized["input_ids"].to_tensor() lowerCamelCase : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCamelCase : Union[str, Any] = self.model(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> List[str]: super().setUp() lowerCamelCase : Union[str, Any] = [GPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCamelCase : Optional[int] = [TFGPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase : int = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] lowerCamelCase : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase ( self ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCamelCase : Union[str, Any] = tokenizer([test_inputs] , return_tensors="tf" ) lowerCamelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCamelCase : Optional[int] = python_outputs[key].numpy() lowerCamelCase : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowerCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase ( self ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : Dict = tf.function(__lowerCAmelCase ) for test_inputs in self.test_sentences: lowerCamelCase : List[Any] = tf.constant(__lowerCAmelCase ) lowerCamelCase : Optional[Any] = compiled_tokenizer(__lowerCAmelCase ) lowerCamelCase : List[str] = tf_tokenizer(__lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : int = ModelToSave(tokenizer=__lowerCAmelCase ) lowerCamelCase : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase : List[str] = model.serving(__lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase : Any = Path(__lowerCAmelCase ) / "saved.model" tf.saved_model.save(__lowerCAmelCase , __lowerCAmelCase , signatures={"serving_default": model.serving} ) lowerCamelCase : Dict = tf.saved_model.load(__lowerCAmelCase ) lowerCamelCase : Dict = loaded_model.signatures["serving_default"](__lowerCAmelCase )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase ( self ) -> Any: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase : Optional[Any] = tf_tokenizer(__lowerCAmelCase ) # Build model with some sample inputs lowerCamelCase : int = tf_tokenizer.get_config() lowerCamelCase : str = TFGPTaTokenizer.from_config(__lowerCAmelCase ) lowerCamelCase : Tuple = model_from_config(__lowerCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase ( self ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCamelCase : Dict = 12_3123 for max_length in [3, 5, 1024]: lowerCamelCase : str = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase : List[str] = tf_tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase ) lowerCamelCase : List[str] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
from __future__ import annotations from math import pi def _UpperCamelCase (a__ :float , a__ :float , a__ :float ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
619
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = 1_0 lowercase = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) lowercase = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(lowerCAmelCase__ ) ), } , features=lowerCAmelCase__ , ) return dataset @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowerCAmelCase__ ) return filename # FILE_CONTENT + files __lowerCAmelCase : Tuple ="""\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> str: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt""" lowercase = FILE_CONTENT with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return filename @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Dict: '''simple docstring''' import bza lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) with bza.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' import gzip lowercase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) with gzip.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) with lza.frame.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCAmelCase__ , """w""" ) as archive: archive.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) -> Tuple: '''simple docstring''' import tarfile lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowerCAmelCase__ , """w""" ) as f: f.add(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> List[Any]: '''simple docstring''' import lzma lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) with lzma.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' import zipfile lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Optional[Any]: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) with zstd.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """file.xml""" lowercase = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return filename __lowerCAmelCase : int =[ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] __lowerCAmelCase : str =[ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] __lowerCAmelCase : Optional[Any] ={ """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : List[Any] =[ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] __lowerCAmelCase : Dict =[ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Optional[Any]: '''simple docstring''' lowercase = datasets.Dataset.from_dict(lowerCAmelCase__ ) lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> str: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowerCAmelCase__ ) ) as con: lowercase = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> str: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowerCAmelCase__ , """w""" , newline="""""" ) as f: lowercase = csv.DictWriter(lowerCAmelCase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> List[str]: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowerCAmelCase__ , """w""" , newline="""""" ) as f: lowercase = csv.DictWriter(lowerCAmelCase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] ) -> Any: '''simple docstring''' import bza lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowerCAmelCase__ , """rb""" ) as f: lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple ) -> int: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowerCAmelCase__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] ) -> int: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase__ ) ) ) f.write(lowerCAmelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Any: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) lowercase = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowerCAmelCase__ , """wb""" ) as f: lowercase = pq.ParquetWriter(lowerCAmelCase__ , schema=lowerCAmelCase__ ) lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase__ ) )] for k in DATA[0]} , schema=lowerCAmelCase__ ) writer.write_table(lowerCAmelCase__ ) writer.close() return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowercase = {"""data""": DATA} with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> int: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowercase = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowerCAmelCase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> int: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowerCAmelCase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowerCAmelCase__ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Any: '''simple docstring''' lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowerCAmelCase__ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' import gzip lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowerCAmelCase__ , """rb""" ) as orig_file: with gzip.open(lowerCAmelCase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) -> List[Any]: '''simple docstring''' import gzip lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowerCAmelCase__ , """rb""" ) as orig_file: with gzip.open(lowerCAmelCase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.join("""nested""" , os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase__ ) ) ) f.write(lowerCAmelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) -> str: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCAmelCase__ , """w""" ) as f: f.add(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) f.add(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCAmelCase__ , """w""" ) as f: f.add(lowerCAmelCase__ , arcname=os.path.join("""nested""" , os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Dict: '''simple docstring''' lowercase = ["""0""", """1""", """2""", """3"""] lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowerCAmelCase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Dict: '''simple docstring''' lowercase = ["""0""", """1""", """2""", """3"""] lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowerCAmelCase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' lowercase = ["""0""", """1""", """2""", """3"""] lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowerCAmelCase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase__ ) ) ) f.write(lowerCAmelCase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] ) -> str: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowerCAmelCase__ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> List[str]: '''simple docstring''' lowercase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ , arcname=os.path.basename(lowerCAmelCase__ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
197
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : Union[str, Any] =subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowerCAmelCase : List[str] =subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() __lowerCAmelCase : List[str] ="""|""".join(sys.argv[1:]) __lowerCAmelCase : Dict =re.compile(RF"""^({joined_dirs}).*?\.py$""") __lowerCAmelCase : int =[x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
197
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int ): UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = BlipImageProcessor() UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) UpperCAmelCase = BlipProcessor(a__ , a__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Dict , **a__ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).tokenizer def __snake_case ( self : Dict , **a__ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Tuple ): UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : List[str] ): UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) UpperCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(images=a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self : Any ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = processor(text=a__ ) UpperCAmelCase = tokenizer(a__ , return_token_type_ids=a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : str ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def __snake_case ( self : List[str] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(a__ ) UpperCAmelCase = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def __snake_case ( self : int ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=a__ , images=a__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
51
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowercase ( lowercase__): """simple docstring""" A__ = ["pixel_values"] def __init__( self : str , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ : int = size if size is not None else {"shortest_edge": 224} lowerCamelCase__ : Optional[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) lowerCamelCase__ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="crop_size" ) lowerCamelCase__ : List[str] = do_resize lowerCamelCase__ : int = size lowerCamelCase__ : Optional[int] = resample lowerCamelCase__ : List[str] = do_center_crop lowerCamelCase__ : Dict = crop_size lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : Optional[int] = rescale_factor lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__ : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__ : Optional[Any] = do_convert_rgb def lowerCAmelCase ( self : Tuple , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ): '''simple docstring''' lowerCamelCase__ : int = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCamelCase__ : Any = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' lowerCamelCase__ : Any = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[str] , ): '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ): '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Dict = size if size is not None else self.size lowerCamelCase__ : str = get_size_dict(__lowerCamelCase , param_name="size" , default_to_square=__lowerCamelCase ) lowerCamelCase__ : Dict = resample if resample is not None else self.resample lowerCamelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : int = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : List[str] = get_size_dict(__lowerCamelCase , param_name="crop_size" , default_to_square=__lowerCamelCase ) lowerCamelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : Optional[int] = image_std if image_std is not None else self.image_std lowerCamelCase__ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase__ : Tuple = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowerCamelCase__ : int = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: lowerCamelCase__ : Any = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase__ : List[str] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: lowerCamelCase__ : Any = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] lowerCamelCase__ : Dict = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
5
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
1
"""simple docstring""" def snake_case ( ): return [list(range(10_00 - i ,-10_00 - i ,-1 ) ) for i in range(10_00 )] lowerCamelCase_ = generate_large_matrix() lowerCamelCase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def snake_case ( A__ ): assert all(row == sorted(UpperCAmelCase__ ,reverse=UpperCAmelCase__ ) for row in grid ) assert all(list(UpperCAmelCase__ ) == sorted(UpperCAmelCase__ ,reverse=UpperCAmelCase__ ) for col in zip(*UpperCAmelCase__ ) ) def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = len(UpperCAmelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase_ : Optional[int] = (left + right) // 2 UpperCAmelCase_ : Any = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase_ : int = mid + 1 else: UpperCAmelCase_ : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase__ ) def snake_case ( A__ ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = len(grid[0] ) for i in range(len(UpperCAmelCase__ ) ): UpperCAmelCase_ : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase__ ) * len(grid[0] )) - total def snake_case ( A__ ): return len([number for row in grid for number in row if number < 0] ) def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = 0 for row in grid: for i, number in enumerate(UpperCAmelCase__ ): if number < 0: total += len(UpperCAmelCase__ ) - i break return total def snake_case ( ): from timeit import timeit print("Running benchmarks" ) UpperCAmelCase_ : Tuple = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase_ : Tuple = timeit(F"""{func}(grid=grid)""" ,setup=UpperCAmelCase__ ,number=5_00 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
95
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : int = 'unispeech' def __init__( self : int , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=768 , UpperCamelCase__ : str=12 , UpperCamelCase__ : str=12 , UpperCamelCase__ : Optional[Any]=3_072 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-5 , UpperCamelCase__ : Optional[int]="group" , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : List[str]=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : str=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[Any]=128 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=0.05 , UpperCamelCase__ : int=10 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : List[Any]=10 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : int=320 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Dict=100 , UpperCamelCase__ : str=256 , UpperCamelCase__ : Any=256 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[Any]="mean" , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Any=256 , UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Optional[Any]=0.5 , **UpperCamelCase__ : Any , ): '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowercase_ = hidden_size lowercase_ = feat_extract_norm lowercase_ = feat_extract_activation lowercase_ = list(UpperCamelCase__ ) lowercase_ = list(UpperCamelCase__ ) lowercase_ = list(UpperCamelCase__ ) lowercase_ = conv_bias lowercase_ = num_conv_pos_embeddings lowercase_ = num_conv_pos_embedding_groups lowercase_ = len(self.conv_dim ) lowercase_ = num_hidden_layers lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = num_attention_heads lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = feat_proj_dropout lowercase_ = final_dropout lowercase_ = layerdrop lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = num_ctc_classes lowercase_ = vocab_size lowercase_ = do_stable_layer_norm lowercase_ = use_weighted_layer_sum lowercase_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ = apply_spec_augment lowercase_ = mask_time_prob lowercase_ = mask_time_length lowercase_ = mask_time_min_masks lowercase_ = mask_feature_prob lowercase_ = mask_feature_length lowercase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase_ = num_codevectors_per_group lowercase_ = num_codevector_groups lowercase_ = contrastive_logits_temperature lowercase_ = feat_quantizer_dropout lowercase_ = num_negatives lowercase_ = codevector_dim lowercase_ = proj_codevector_dim lowercase_ = diversity_loss_weight # ctc loss lowercase_ = ctc_loss_reduction lowercase_ = ctc_zero_infinity # pretraining loss lowercase_ = replace_prob @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
412
0
import baseaa def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode("""utf-8""" ) ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(__magic_name__ ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
590
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Any = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str=None , __magic_name__ : Any=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=__magic_name__ ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : float snake_case__ : str snake_case__ : bool @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int = 4_2 snake_case__ : str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : bool = False snake_case__ : bool = True snake_case__ : Optional[bool] = None class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = """titi""" snake_case__ : Optional[Any] = """toto""" class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = """titi""" snake_case__ : Tuple = """toto""" snake_case__ : Tuple = 4_2 @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : BasicEnum = "toto" def _A ( self : str ): UpperCamelCase :List[Any] = BasicEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : MixedTypeEnum = "toto" def _A ( self : str ): UpperCamelCase :List[str] = MixedTypeEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Optional[int] = None snake_case__ : Optional[float] = field(default=_a , metadata={"""help""": """help message"""} ) snake_case__ : Optional[str] = None snake_case__ : Optional[List[str]] = list_field(default=[] ) snake_case__ : Optional[List[int]] = list_field(default=[] ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : List[int] = list_field(default=[] ) snake_case__ : List[int] = list_field(default=[1, 2, 3] ) snake_case__ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) snake_case__ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : List[int] = field() snake_case__ : str = field() snake_case__ : BasicEnum = field() def _A ( self : Dict ): UpperCamelCase :List[str] = BasicEnum(self.required_enum ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : "BasicEnum" = field() snake_case__ : "Optional[bool]" = None snake_case__ : "str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) snake_case__ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : bool = False snake_case__ : bool = True snake_case__ : bool | None = None @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int | None = None snake_case__ : float | None = field(default=_a , metadata={"""help""": """help message"""} ) snake_case__ : str | None = None snake_case__ : list[str] | None = list_field(default=[] ) snake_case__ : list[int] | None = list_field(default=[] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Dict , __lowerCamelCase : argparse.ArgumentParser , __lowerCamelCase : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase :List[Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != """container"""} UpperCamelCase :Union[str, Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __lowerCamelCase ) and yy.get("""choices""" , __lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__lowerCamelCase ) , yy["""type"""](__lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :List[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--bar""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--baz""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--flag""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :str = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((UpperCamelCase) , ) :List[Any] = parser.parse_args_into_dataclasses(__lowerCamelCase , look_for_args_file=__lowerCamelCase ) self.assertFalse(example.flag ) def _A ( self : str ): UpperCamelCase :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=__lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__lowerCamelCase , help="""help message""" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__lowerCamelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=__lowerCamelCase , default=__lowerCamelCase ) UpperCamelCase :Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: UpperCamelCase :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Any = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :List[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) def _A ( self : Any ): UpperCamelCase :Optional[int] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCamelCase :str = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase :str = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCamelCase :Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCamelCase :List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _A ( self : List[str] ): @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Literal["titi", "toto", 4_2] = "toto" UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCamelCase :int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCamelCase :List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _A ( self : Tuple ): UpperCamelCase :Any = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :int = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__lowerCamelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__lowerCamelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = parser.parse_args([] ) self.assertEqual( __lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase :Tuple = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _A ( self : Optional[Any] ): UpperCamelCase :Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("""--bar""" , default=__lowerCamelCase , type=__lowerCamelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) UpperCamelCase :List[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: UpperCamelCase :List[Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , bar=__lowerCamelCase , baz=__lowerCamelCase , ces=[] , des=[] ) ) UpperCamelCase :List[str] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _A ( self : Any ): UpperCamelCase :Any = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Dict = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--required_str""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__lowerCamelCase , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Dict = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__lowerCamelCase , ) expected.add_argument("""--opt""" , type=__lowerCamelCase , default=__lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__lowerCamelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Any ): UpperCamelCase :Optional[int] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Optional[int] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } UpperCamelCase :List[str] = parser.parse_dict(__lowerCamelCase )[0] UpperCamelCase :Union[str, Any] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__lowerCamelCase , parser.parse_dict , __lowerCamelCase , allow_extra_keys=__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Tuple = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :int = os.path.join(__lowerCamelCase , """temp_json""" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCamelCase :Dict = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Tuple = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Any = os.path.join(__lowerCamelCase , """temp_yaml""" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCamelCase :List[str] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase )
590
1
from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ : list[int | float] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if len(UpperCAmelCase_ ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(UpperCAmelCase_ ) or left < -len(UpperCAmelCase_ ) or right >= len(UpperCAmelCase_ ) or right < -len(UpperCAmelCase_ ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] lowercase : Dict = (left + right) >> 1 # the middle lowercase : str = find_max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # find max in range[left, mid] lowercase : Union[str, Any] = find_max(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
583
snake_case__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def lowerCamelCase_ ( ): lowercase : Optional[Any] = input('''Enter message: ''' ) lowercase : Optional[Any] = input('''Enter key [alphanumeric]: ''' ) lowercase : Union[str, Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase : str = '''encrypt''' lowercase : Optional[Any] = encrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) elif mode.lower().startswith('''d''' ): lowercase : str = '''decrypt''' lowercase : Optional[int] = decrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) print(f'''\n{mode.title()}ed message:''' ) print(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''encrypt''' ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''decrypt''' ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowercase : Optional[Any] = [] lowercase : Tuple = 0 lowercase : str = key.upper() for symbol in message: lowercase : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase_ ): lowercase : List[str] = 0 else: translated.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": main()
583
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( __A , __A , __A ): '''simple docstring''' # Construct model if gpta_config_file == "": _lowerCamelCase : Tuple = GPTaConfig() else: _lowerCamelCase : str = GPTaConfig.from_json_file(__A ) _lowerCamelCase : int = GPTaModel(__A ) # Load weights from numpy load_tf_weights_in_gpta(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _lowerCamelCase : Tuple = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) lowerCAmelCase : Dict =parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = ["image_processor", "tokenizer"] UpperCAmelCase__ : Optional[Any] = "BlipImageProcessor" UpperCAmelCase__ : Optional[Any] = "AutoTokenizer" def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : List[Any] = False super().__init__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.image_processor def __call__( self, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCamelCase : Union[str, Any] = self.tokenizer UpperCamelCase : Optional[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, stride=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, return_overflowing_tokens=SCREAMING_SNAKE_CASE_, return_special_tokens_mask=SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_, return_length=SCREAMING_SNAKE_CASE_, verbose=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) return text_encoding # add pixel_values UpperCamelCase : Dict = self.image_processor(SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_ ) if text is not None: UpperCamelCase : Any = self.tokenizer( text=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, stride=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, return_overflowing_tokens=SCREAMING_SNAKE_CASE_, return_special_tokens_mask=SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_, return_length=SCREAMING_SNAKE_CASE_, verbose=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) else: UpperCamelCase : Dict = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE_ ) return encoding_image_processor def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[Any] = self.tokenizer.model_input_names UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
40
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCAmelCase_ : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Union[str, Any] = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : str = { "unc-nlp/lxmert-base-uncased": 512, } UpperCAmelCase_ : Optional[int] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = LxmertTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[int]: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) _a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars ): _a : str = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) ) _a : Tuple = do_lower_case _a : str = strip_accents _a : Optional[Any] = tokenize_chinese_chars _a : Dict = normalizer_class(**lowerCamelCase_ ) _a : Optional[int] = do_lower_case def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Optional[Any]: _a : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: _a : Optional[Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
120
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowercase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : Optional[Any] = 2_56 class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = ["""melgan"""] def __init__( self : Optional[int] , _lowercase : SpectrogramNotesEncoder , _lowercase : SpectrogramContEncoder , _lowercase : TaFilmDecoder , _lowercase : DDPMScheduler , _lowercase : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN __UpperCAmelCase = math.log(1E-5 ) # Matches MelGAN training. __UpperCAmelCase = 4.0 # Largest value for most examples __UpperCAmelCase = 1_28 self.register_modules( notes_encoder=_lowercase , continuous_encoder=_lowercase , decoder=_lowercase , scheduler=_lowercase , melgan=_lowercase , ) def a ( self : str , _lowercase : Tuple , _lowercase : Dict=(-1.0, 1.0) , _lowercase : Dict=False ): __UpperCAmelCase , __UpperCAmelCase = output_range if clip: __UpperCAmelCase = torch.clip(_lowercase , self.min_value , self.max_value ) # Scale to [0, 1]. __UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def a ( self : str , _lowercase : Optional[Any] , _lowercase : int=(-1.0, 1.0) , _lowercase : Optional[Any]=False ): __UpperCAmelCase , __UpperCAmelCase = input_range __UpperCAmelCase = torch.clip(_lowercase , _lowercase , _lowercase ) if clip else outputs # Scale to [0, 1]. __UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def a ( self : Any , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = input_tokens > 0 __UpperCAmelCase , __UpperCAmelCase = self.notes_encoder( encoder_input_tokens=_lowercase , encoder_inputs_mask=_lowercase ) __UpperCAmelCase , __UpperCAmelCase = self.continuous_encoder( encoder_inputs=_lowercase , encoder_inputs_mask=_lowercase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def a ( self : str , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = noise_time if not torch.is_tensor(_lowercase ): __UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase = self.decoder( encodings_and_masks=_lowercase , decoder_input_tokens=_lowercase , decoder_noise_time=_lowercase ) return logits @torch.no_grad() def __call__( self : Tuple , _lowercase : List[List[int]] , _lowercase : Optional[torch.Generator] = None , _lowercase : int = 1_00 , _lowercase : bool = True , _lowercase : str = "numpy" , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_lowercase )}.''' ) __UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __UpperCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) __UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowercase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowercase ): if i == 0: __UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowercase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCAmelCase = ones __UpperCAmelCase = self.scale_features( _lowercase , output_range=[-1.0, 1.0] , clip=_lowercase ) __UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowercase , continuous_mask=_lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowercase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase = self.decode( encodings_and_masks=_lowercase , input_tokens=_lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample __UpperCAmelCase = self.scale_to_features(_lowercase , input_range=[-1.0, 1.0] ) __UpperCAmelCase = mel[:1] __UpperCAmelCase = mel.cpu().float().numpy() __UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase ) logger.info('''Generated segment''' , _lowercase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowercase )
721
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase : int = logging.get_logger(__name__) _lowercase : List[str] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a__ : str = field( default=_lowerCAmelCase , metadata={"help": "Model type selected in the list: " + ", ".join(_lowerCAmelCase )} ) a__ : str = field( default=_lowerCAmelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) a__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ : int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) a__ : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) a__ : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) a__ : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) a__ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = "train" a__ : List[Any] = "dev" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__( self : Optional[Any] , _lowercase : SquadDataTrainingArguments , _lowercase : PreTrainedTokenizer , _lowercase : Optional[int] = None , _lowercase : Union[str, Split] = Split.train , _lowercase : Optional[bool] = False , _lowercase : Optional[str] = None , _lowercase : Optional[str] = "pt" , ): __UpperCAmelCase = args __UpperCAmelCase = is_language_sensitive __UpperCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: __UpperCAmelCase = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __UpperCAmelCase = mode # Load data features from cache or dataset file __UpperCAmelCase = '''v2''' if args.version_2_with_negative else '''v1''' __UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: __UpperCAmelCase = time.time() __UpperCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase = self.old_features['''features'''] __UpperCAmelCase = self.old_features.get('''dataset''' , _lowercase ) __UpperCAmelCase = self.old_features.get('''examples''' , _lowercase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: __UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) __UpperCAmelCase , __UpperCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) __UpperCAmelCase = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Any , _lowercase : Optional[int] ): # Convert to Tensors and build dataset __UpperCAmelCase = self.features[i] __UpperCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __UpperCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __UpperCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
397
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __a ( A__ : str ): SCREAMING_SNAKE_CASE = int(A__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = t // 3600, (t // 60) % 60, t % 60 return F"{h}:{m:02d}:{s:02d}" if h != 0 else F"{m:02d}:{s:02d}" def __a ( A__ : Dict , A__ : Union[str, Any] , A__ : Dict , A__ : Tuple , A__ : Union[str, Any]=300 ): # docstyle-ignore return F"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def __a ( A__ : str ): SCREAMING_SNAKE_CASE = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE = F"{elt:.6f}" if isinstance(A__ , A__ ) else str(A__ ) html_code += F" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = 5 lowerCamelCase__ = 0.2 def __init__( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Optional["NotebookTrainingTracker"] = None , __lowerCamelCase : int = 300 , ): SCREAMING_SNAKE_CASE = total SCREAMING_SNAKE_CASE = "" if prefix is None else prefix SCREAMING_SNAKE_CASE = leave SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = width SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : bool = False , __lowerCamelCase : str = None ): SCREAMING_SNAKE_CASE = value if comment is not None: SCREAMING_SNAKE_CASE = comment if self.last_value is None: SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.warmup SCREAMING_SNAKE_CASE = 1 self.update_bar(__lowerCamelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE = None if value >= self.total: SCREAMING_SNAKE_CASE = self.total SCREAMING_SNAKE_CASE = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE = self.average_time_per_item * (self.total - value) self.update_bar(__lowerCamelCase ) SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE = 1 else: SCREAMING_SNAKE_CASE = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _snake_case ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=None ): SCREAMING_SNAKE_CASE = " " * (len(str(self.total ) ) - len(str(__lowerCamelCase ) )) + str(__lowerCamelCase ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: SCREAMING_SNAKE_CASE = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" f" {format_time(self.predicted_remaining )}" ) self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f", {self.comment}]" self.display() def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE = disp.display(disp.HTML(self.html_code ) , display_id=__lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self : Union[str, Any] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=None ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE = None def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE = disp.display(disp.HTML(self.html_code ) , display_id=__lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ): if self.inner_table is None: SCREAMING_SNAKE_CASE = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = columns self.inner_table.append([values[c] for c in columns] ) def _snake_case ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[str]=None , __lowerCamelCase : str=300 ): SCREAMING_SNAKE_CASE = NotebookProgressBar(__lowerCamelCase , prefix=__lowerCamelCase , parent=self , width=__lowerCamelCase ) return self.child_bar def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = None self.display() class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Dict ): SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : str , **__lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) SCREAMING_SNAKE_CASE = NotebookTrainingTracker(state.max_steps , __lowerCamelCase ) def _snake_case ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , **__lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = int(state.epoch ) if int(state.epoch ) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=f"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE = False def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any=None , **__lowerCamelCase : int ): if not has_length(__lowerCamelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE = self.training_tracker.add_child(len(__lowerCamelCase ) ) else: SCREAMING_SNAKE_CASE = NotebookProgressBar(len(__lowerCamelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ): if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE = None def _snake_case ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=None , **__lowerCamelCase : Dict ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE = state.global_step self.training_tracker.write_line(__lowerCamelCase ) def _snake_case ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : int ): if self.training_tracker is not None: SCREAMING_SNAKE_CASE = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE = log["loss"] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE = int(state.epoch ) else: SCREAMING_SNAKE_CASE = state.global_step SCREAMING_SNAKE_CASE = "eval" for k in metrics: if k.endswith("_loss" ): SCREAMING_SNAKE_CASE = re.sub(r"\_loss$" , "" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = metrics.pop("total_flos" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = metrics.pop("epoch" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = metrics.pop(f"{metric_key_prefix}_runtime" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = metrics.pop(f"{metric_key_prefix}_samples_per_second" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = metrics.pop(f"{metric_key_prefix}_steps_per_second" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = metrics.pop(f"{metric_key_prefix}_jit_compilation_time" , __lowerCamelCase ) for k, v in metrics.items(): if k == f"{metric_key_prefix}_loss": SCREAMING_SNAKE_CASE = v else: SCREAMING_SNAKE_CASE = k.split("_" ) SCREAMING_SNAKE_CASE = " ".join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE = v self.training_tracker.write_line(__lowerCamelCase ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE = True def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict , **__lowerCamelCase : Any ): self.training_tracker.update( state.global_step , comment=f"Epoch {int(state.epoch )}/{state.num_train_epochs}" , force_update=__lowerCamelCase ) SCREAMING_SNAKE_CASE = None
16
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __a ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str )-> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> int: """simple docstring""" UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[str]: """simple docstring""" UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" CustomConfig.register_for_auto_class() UpperCamelCase = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) UpperCamelCase = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" UpperCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase = c.n_embd + 1 # int UpperCamelCase = c.resid_pdrop + 1.0 # float UpperCamelCase = not c.scale_attn_weights # bool UpperCamelCase = c.summary_type + "foo" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE ( self : Any )-> List[str]: """simple docstring""" UpperCamelCase = PretrainedConfig() UpperCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) UpperCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f" {', '.join(UpperCAmelCase_ )}." ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[Any]: """simple docstring""" with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Tuple )-> int: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained("bert-base-cased" ) UpperCamelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) UpperCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase = ["config.42.0.0.json"] UpperCamelCase = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase_ , "config.42.0.0.json" ) ) UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Dict: """simple docstring""" # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. UpperCamelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers UpperCamelCase = "v4.0.0" UpperCamelCase , UpperCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase = "v3.0.0" UpperCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
554
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = StableDiffusionInpaintPipeline UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase : str = frozenset([] ) def __snake_case ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A_ , ) lowerCAmelCase = PNDMScheduler(skip_prk_steps=A_ ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase = CLIPTextModel(A_ ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __snake_case ( self , A_ , A_=0 ) -> Tuple: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(A_ ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(A_ ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(A_ ) else: lowerCAmelCase = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __snake_case ( self ) -> Tuple: lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = StableDiffusionInpaintPipeline(**A_ ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = self.get_dummy_inputs(A_ ) lowerCAmelCase = sd_pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ) -> int: lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowerCAmelCase = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(A_ , safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , generator=A_ , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __snake_case ( self ) -> Tuple: lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowerCAmelCase = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( A_ , torch_dtype=torch.floataa , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , generator=A_ , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __snake_case ( self ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase = PNDMScheduler.from_pretrained(A_ , subfolder="""scheduler""" ) lowerCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( A_ , safety_checker=A_ , scheduler=A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=A_ , image=A_ , mask_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
433
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase = None UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off UpperCAmelCase = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = VOCAB_FILES_NAMES UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Optional[int] = ["input_ids", "attention_mask"] UpperCAmelCase : List[str] = NllbTokenizer UpperCAmelCase : List[int] = [] UpperCAmelCase : List[int] = [] def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=None , A_=None , A_=None , A_=False , **A_ , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token lowerCAmelCase = legacy_behaviour super().__init__( vocab_file=A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , legacy_behaviour=A_ , **A_ , ) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(A_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __snake_case ( self ) -> str: return self._src_lang @src_lang.setter def __snake_case ( self , A_ ) -> None: lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __snake_case ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __snake_case ( self , A_ , A_ = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self , A_ , A_ , A_ , A_ , **A_ ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase = src_lang lowerCAmelCase = self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) lowerCAmelCase = self.convert_tokens_to_ids(A_ ) lowerCAmelCase = tgt_lang_id return inputs def __snake_case ( self , A_ , A_ = "eng_Latn" , A_ = None , A_ = "fra_Latn" , **A_ , ) -> BatchEncoding: lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def __snake_case ( self ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def __snake_case ( self ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self.convert_tokens_to_ids(A_ ) if self.legacy_behaviour: lowerCAmelCase = [] lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase = [self.cur_lang_code] lowerCAmelCase = [self.eos_token_id] lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self.convert_tokens_to_ids(A_ ) if self.legacy_behaviour: lowerCAmelCase = [] lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase = [self.cur_lang_code] lowerCAmelCase = [self.eos_token_id] lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __snake_case ( self , A_ , A_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCAmelCase = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
433
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : List[str] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : int = 'tf' def A_ ( self : str , __a : Any ) -> Tuple: '''simple docstring''' __snake_case : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : List[Any] , __a : List[Any] ) -> str: '''simple docstring''' __snake_case : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Any: '''simple docstring''' __snake_case : Any = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Dict = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : int ) -> List[str]: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Any = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[str] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : List[str] = FeaturesManager.determine_framework(__a ) def A_ ( self : List[str] ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : int = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Tuple = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : int = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Any = FeaturesManager.determine_framework(self.test_model )
708
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case__ : def __init__( self : str , __a : Dict , __a : Optional[Any]=13 , __a : Tuple=7 , __a : Any=True , __a : int=True , __a : List[str]=True , __a : Any=True , __a : Optional[Any]=99 , __a : Any=64 , __a : str=5 , __a : List[Any]=4 , __a : Optional[Any]=37 , __a : List[Any]="gelu" , __a : Optional[Any]=0.1 , __a : Union[str, Any]=0.1 , __a : List[str]=512 , __a : int=16 , __a : Union[str, Any]=2 , __a : Tuple=0.0_2 , __a : List[Any]=3 , __a : Dict=4 , __a : Dict=None , ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = parent __snake_case : Union[str, Any] = batch_size __snake_case : Tuple = seq_length __snake_case : Union[str, Any] = is_training __snake_case : Dict = use_input_mask __snake_case : Dict = use_token_type_ids __snake_case : Any = use_labels __snake_case : Optional[int] = vocab_size __snake_case : int = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : int = intermediate_size __snake_case : Any = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : str = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Optional[int] = num_labels __snake_case : Dict = num_choices __snake_case : int = scope __snake_case : List[str] = vocab_size - 1 def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Any = self.get_config() return config, input_ids, input_mask, token_labels def A_ ( self : Dict ) -> int: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.prepare_config_and_inputs() __snake_case : Optional[Any] = True return config, input_ids, input_mask, token_labels def A_ ( self : Union[str, Any] , __a : Optional[int] , __a : Any , __a : int ) -> Any: '''simple docstring''' __snake_case : int = GPTNeoXModel(config=__a ) model.to(__a ) model.eval() __snake_case : List[Any] = model(__a , attention_mask=__a ) __snake_case : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Optional[Any] , __a : Union[str, Any] , __a : List[str] , __a : int ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[Any] = True __snake_case : Tuple = GPTNeoXModel(__a ) model.to(__a ) model.eval() __snake_case : Optional[int] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Dict , __a : Optional[int] , __a : Dict , __a : Optional[Any] , __a : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() __snake_case : str = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Union[str, Any] , __a : List[str] , __a : Optional[int] , __a : Optional[int] , __a : List[Any] ) -> int: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : List[str] = GPTNeoXForQuestionAnswering(__a ) model.to(__a ) model.eval() __snake_case : List[Any] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any , __a : Optional[int] , __a : Tuple , __a : Any , __a : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Any = GPTNeoXForSequenceClassification(__a ) model.to(__a ) model.eval() __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Tuple = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] , __a : str , __a : List[str] , __a : Dict , __a : List[Any] ) -> int: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : List[Any] = GPTNeoXForTokenClassification(__a ) model.to(__a ) model.eval() __snake_case : Dict = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : int , __a : List[str] , __a : str , __a : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case : Any = True __snake_case : List[Any] = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass __snake_case : Dict = model(__a , attention_mask=__a , use_cache=__a ) __snake_case : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : Tuple = model(__a , attention_mask=__a , output_hidden_states=__a ) __snake_case : str = output_from_no_past['hidden_states'][0] __snake_case : Optional[int] = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )['hidden_states'][0] # select random slice __snake_case : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : int = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case : Dict = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) A__ = (GPTNeoXForCausalLM,) if is_torch_available() else () A__ = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def A_ ( self : Any ) -> List[str]: '''simple docstring''' __snake_case : Tuple = GPTNeoXModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 ) def A_ ( self : Any ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self : str ) -> int: '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def A_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 __snake_case , __snake_case , __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case : Dict = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case , __snake_case , __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def A_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) def A_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def A_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def A_ ( self : str ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def A_ ( self : Union[str, Any] , __a : Tuple ) -> List[Any]: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __snake_case : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : List[str] = GPTNeoXModel(__a ) original_model.to(__a ) original_model.eval() __snake_case : Optional[Any] = original_model(__a ).last_hidden_state __snake_case : str = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : int = {'type': scaling_type, 'factor': 1_0.0} __snake_case : Optional[Any] = GPTNeoXModel(__a ) scaled_model.to(__a ) scaled_model.eval() __snake_case : Union[str, Any] = scaled_model(__a ).last_hidden_state __snake_case : Any = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: __snake_case : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__a ) __snake_case : List[str] = tokenizer('My favorite food is' , return_tensors='pt' ).to(__a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __snake_case : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __snake_case : List[Any] = model.generate(**__a , do_sample=__a , max_new_tokens=20 ) __snake_case : str = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a )
124
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __a : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCAmelCase ( lowercase__ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , ) -> Dict: """simple docstring""" if audio_length_in_s is None: UpperCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) UpperCamelCase = int(SCREAMING_SNAKE_CASE ) if sample_size % down_scale_factor != 0: UpperCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' " process." ) UpperCamelCase = int(SCREAMING_SNAKE_CASE ) UpperCamelCase = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=SCREAMING_SNAKE_CASE ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=audio.device ) UpperCamelCase = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE )
606
'''simple docstring''' import argparse from collections import defaultdict def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = F"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(__magic_name__ , "r" ) as f: UpperCAmelCase : Tuple = f.readlines() UpperCAmelCase : Tuple = F"class {class_name}(" UpperCAmelCase : str = F"{4 * ' '}def {test_name}(" UpperCAmelCase : Dict = F"{8 * ' '}{correct_line.split()[0]}" UpperCAmelCase : Tuple = F"{16 * ' '}{correct_line.split()[0]}" UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[str] = False UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Tuple = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = [] for line in lines: if line.startswith(__magic_name__ ): UpperCAmelCase : int = True elif in_class and line.startswith(__magic_name__ ): UpperCAmelCase : Dict = True elif in_class and in_func and (line.startswith(__magic_name__ ) or line.startswith(__magic_name__ )): UpperCAmelCase : List[str] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase : List[str] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase : List[str] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"{spaces * ' '}{correct_line}" ) UpperCAmelCase : List[str] = False else: new_lines.append(__magic_name__ ) with open(__magic_name__ , "w" ) as f: for line in new_lines: f.write(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__=None ): '''simple docstring''' if fail is not None: with open(__magic_name__ , "r" ) as f: UpperCAmelCase : Optional[int] = {l.strip() for l in f.readlines()} else: UpperCAmelCase : Any = None with open(__magic_name__ , "r" ) as f: UpperCAmelCase : Tuple = f.readlines() UpperCAmelCase : int = defaultdict(__magic_name__ ) for line in correct_lines: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if __name__ == "__main__": a : str = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) a : List[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
679
0
'''simple docstring''' import argparse lowerCAmelCase_ = '''docs/source/_static/js/custom.js''' def A__ ( A : Dict): '''simple docstring''' with open(_UpperCAmelCase , encoding="utf-8" , newline="\n") as f: UpperCamelCase : Dict = f.readlines() UpperCamelCase : str = 0 # First let's put the right version while not lines[index].startswith("const stableVersion ="): index += 1 UpperCamelCase : Optional[Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {"): index += 1 # We go until the end while not lines[index].startswith("}"): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_UpperCAmelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_UpperCAmelCase) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase_ = parser.parse_args() update_custom_js(args.version)
716
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''timesformer''' def __init__( self , lowerCamelCase=2_24 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=8 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-6 , lowerCamelCase=True , lowerCamelCase="divided_space_time" , lowerCamelCase=0 , **lowerCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase ) UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : Dict = num_channels UpperCamelCase : int = num_frames UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Any = qkv_bias UpperCamelCase : int = attention_type UpperCamelCase : int = drop_path_rate
435
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase_ : str , lowercase_ : Any ): """simple docstring""" a_ = b.T a_ = np.sum(np.square(__a ) , axis=1 ) a_ = np.sum(np.square(__a ) , axis=0 ) a_ = np.matmul(__a , __a ) a_ = aa[:, None] - 2 * ab + ba[None, :] return d def __UpperCamelCase ( lowercase_ : List[str] , lowercase_ : str ): """simple docstring""" a_ = x.reshape(-1 , 3 ) a_ = squared_euclidean_distance(__a , __a ) return np.argmin(__a , axis=1 ) class __SCREAMING_SNAKE_CASE (lowercase__ ): """simple docstring""" _a : Any = ['''pixel_values'''] def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = True , **UpperCamelCase__ , ): """simple docstring""" super().__init__(**_a ) a_ = size if size is not None else {'height': 256, 'width': 256} a_ = get_size_dict(_a ) a_ = np.array(_a ) if clusters is not None else None a_ = do_resize a_ = size a_ = resample a_ = do_normalize a_ = do_color_quantize def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" a_ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( _a , size=(size['height'], size['width']) , resample=_a , data_format=_a , **_a ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ = None , ): """simple docstring""" a_ = rescale(image=_a , scale=1 / 127.5 , data_format=_a ) a_ = image - 1 return image def _a ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ): """simple docstring""" a_ = do_resize if do_resize is not None else self.do_resize a_ = size if size is not None else self.size a_ = get_size_dict(_a ) a_ = resample if resample is not None else self.resample a_ = do_normalize if do_normalize is not None else self.do_normalize a_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a_ = clusters if clusters is not None else self.clusters a_ = np.array(_a ) a_ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. a_ = [to_numpy_array(_a ) for image in images] if do_resize: a_ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_normalize: a_ = [self.normalize(image=_a ) for image in images] if do_color_quantize: a_ = [to_channel_dimension_format(_a , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a_ = np.array(_a ) a_ = color_quantize(_a , _a ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a_ = images.shape[0] a_ = images.reshape(_a , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a_ = list(_a ) else: a_ = [to_channel_dimension_format(_a , _a ) for image in images] a_ = {'input_ids': images} return BatchFeature(data=_a , tensor_type=_a )
536
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = '''gpt_neo''' __UpperCAmelCase : Optional[int] = ['''past_key_values'''] __UpperCAmelCase : Optional[int] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,_a : Optional[int]=5_0257 ,_a : Tuple=2048 ,_a : Optional[int]=2048 ,_a : Any=24 ,_a : Tuple=[[["global", "local"], 12]] ,_a : Union[str, Any]=16 ,_a : List[Any]=None ,_a : Optional[int]=256 ,_a : Optional[Any]="gelu_new" ,_a : List[Any]=0.0 ,_a : Optional[int]=0.0 ,_a : List[Any]=0.0 ,_a : Union[str, Any]=0.1 ,_a : Optional[Any]=1E-5 ,_a : Optional[Any]=0.02 ,_a : str=True ,_a : Any=5_0256 ,_a : Tuple=5_0256 ,**_a : List[str] ,): '''simple docstring''' _a : Dict = vocab_size _a : Union[str, Any] = max_position_embeddings _a : List[str] = hidden_size _a : Optional[Any] = num_layers _a : Optional[Any] = num_heads _a : Dict = intermediate_size _a : Any = window_size _a : List[str] = activation_function _a : int = resid_dropout _a : Tuple = embed_dropout _a : int = attention_dropout _a : Dict = classifier_dropout _a : Tuple = layer_norm_epsilon _a : List[str] = initializer_range _a : str = use_cache _a : List[str] = bos_token_id _a : Optional[Any] = eos_token_id _a : Tuple = attention_types _a : Union[str, Any] = self.expand_attention_types_params(_a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=_a ,eos_token_id=_a ,**_a ) @staticmethod def __lowercase ( _a : Dict ): '''simple docstring''' _a : Dict = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCAmelCase_ (__a : str , __a : Optional[int] , __a : Tuple , __a : Dict ): """simple docstring""" import torch _a : Tuple = input.size() _a : Union[str, Any] = len(__a ) _a : Union[str, Any] = shape[dimension] _a : str = torch.arange(0 , __a , __a ) _a : Optional[Any] = torch.div(sizedim - size , __a , rounding_mode='floor' ) + 1 _a : str = torch.arange(__a ) + low_indices[:min_length][:, None] _a : Optional[Any] = [slice(__a )] * rank _a : Dict = indices _a : List[str] = input[s] _a : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__a ) def UpperCAmelCase_ (__a : str , __a : Optional[int] ): """simple docstring""" import torch _a : List[str] = torch.arange(1 , __a ) _a : int = torch.remainder(__a , __a ) _a : Tuple = remainders == 0 _a : Optional[Any] = candidates[divisor_indices] _a : List[Any] = torch.max(__a ) return largest_divisor, torch.div(__a , __a , rounding_mode='floor' ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_a ,direction='inputs' ) _a : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def __lowercase ( self : List[str] ): '''simple docstring''' return self._config.num_heads def __lowercase ( self : Any ,_a : PreTrainedTokenizer ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional[TensorType] = None ,): '''simple docstring''' _a : Dict = super(_a ,self ).generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) # We need to order the input in the way they appears in the forward() _a : Union[str, Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a, _a : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a : Any = seqlen + 2 _a : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Tuple = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] _a : List[str] = common_inputs['attention_mask'] if self.use_past: _a : Optional[int] = ordered_inputs['attention_mask'].dtype _a : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_a ,_a ,dtype=_a )] ,dim=1 ) return ordered_inputs @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return 13
229
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowercase__ =TypeVar('T') lowercase__ =TypeVar('U') class a_ ( Generic[T, U] ): def __init__( self , UpperCAmelCase , UpperCAmelCase ): a_ = key a_ = val a_ = None a_ = None def __repr__( self ): return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class a_ ( Generic[T, U] ): def __init__( self ): a_ = DoubleLinkedListNode(UpperCAmelCase , UpperCAmelCase ) a_ = DoubleLinkedListNode(UpperCAmelCase , UpperCAmelCase ) a_ , a_ = self.rear, self.head def __repr__( self ): a_ = ["""DoubleLinkedList"""] a_ = self.head while node.next is not None: rep.append(str(UpperCAmelCase ) ) a_ = node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None a_ = node a_ = previous a_ = node a_ = self.rear def lowerCAmelCase__ ( self , UpperCAmelCase ): if node.prev is None or node.next is None: return None a_ = node.next a_ = node.prev a_ = None a_ = None return node class a_ ( Generic[T, U] ): lowerCamelCase__ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , UpperCAmelCase ): a_ = DoubleLinkedList() a_ = capacity a_ = 0 a_ = 0 a_ = 0 a_ = {} def __repr__( self ): return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , UpperCAmelCase ): return key in self.cache def lowerCAmelCase__ ( self , UpperCAmelCase ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 a_ = self.cache[key] a_ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCAmelCase ) return node.val self.miss += 1 return None def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity a_ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 a_ = DoubleLinkedListNode(UpperCAmelCase , UpperCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value a_ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list a_ = value self.list.add(UpperCAmelCase ) @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase = 1_28 ): def cache_decorator_inner(UpperCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: a_ = LRUCache(UpperCAmelCase ) a_ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: a_ = func(*UpperCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCAmelCase , """cache_info""" , UpperCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
511
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowercase__ ={ 'roberta-base': 5_12, 'roberta-large': 5_12, 'roberta-large-mnli': 5_12, 'distilroberta-base': 5_12, 'roberta-base-openai-detector': 5_12, 'roberta-large-openai-detector': 5_12, } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase__ : Any = RobertaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) a_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) a_ = add_prefix_space a_ = pre_tok_class(**UpperCAmelCase ) a_ = add_prefix_space a_ = """post_processor""" a_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: a_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a_ = tuple(state["""sep"""] ) if "cls" in state: a_ = tuple(state["""cls"""] ) a_ = False if state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = add_prefix_space a_ = True if state.get("""trim_offsets""" , UpperCAmelCase ) != trim_offsets: a_ = trim_offsets a_ = True if changes_to_apply: a_ = getattr(UpperCAmelCase , state.pop("""type""" ) ) a_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def lowerCAmelCase__ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value a_ = value def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ): a_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
511
1
from cva import destroyAllWindows, imread, imshow, waitKey def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image a_ :List[str] = imread('image_data/lena.jpg', 1) # convert to its negative a_ :Optional[Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
35
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase = pytest.mark.integration @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : Optional[int] =Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() lowerCamelCase__ : int =dset.map( lambda lowerCamelCase_ , lowerCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ) lowerCamelCase__ : Any =dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : int =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : List[str] =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : Tuple =dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowerCamelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset =self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any ={'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : List[Any] ={'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : Dict =Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] =dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Optional[int] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : Any =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict =1 lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =index.search(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : int =np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search_batch , queries[0] ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : str =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Optional[int] =FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Union[str, Any] =FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : List[Any] =FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" import faiss lowerCamelCase__ : Any =faiss.IndexFlat(5 ) lowerCamelCase__ : Any =FaissIndex(custom_index=lowerCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : int =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : Any =FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : Any =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : str =1 lowerCamelCase__ , lowerCamelCase__ : Dict =index.search(lowerCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCAmelCase_ ( snake_case_ : Dict ) ->int: import faiss lowerCamelCase__ : List[str] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] ='index.faiss' lowerCamelCase__ : Optional[Any] =f"""mock://{index_name}""" index.save(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : Dict =FaissIndex.load(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : List[Any] =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Union[str, Any] =1 lowerCamelCase__ , lowerCamelCase__ : List[str] =index.search(snake_case_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Union[str, Any] =Elasticsearch() lowerCamelCase__ : int ={'acknowledged': True} lowerCamelCase__ : Optional[Any] =ElasticSearchIndex(es_client=lowerCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Union[str, Any] ='foo' lowerCamelCase__ : Optional[Any] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(lowerCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : List[str] ='foo' lowerCamelCase__ : Union[str, Any] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(lowerCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] =['foo', 'bar', 'foobar'] lowerCamelCase__ : str ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =index.search_batch(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =[scores[0] for scores in total_scores] lowerCamelCase__ : Dict =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ ) # batched queries with timeout lowerCamelCase__ : str =['foo', 'bar', 'foobar'] lowerCamelCase__ : Any ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ , request_timeout=30 ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : int =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ )
174
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '' else: lowercase__ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = dct.pop(_SCREAMING_SNAKE_CASE ) lowercase__ = val def __UpperCamelCase () -> str: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: lowercase__ = ViTConfig() lowercase__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase__ = True lowercase__ = int(vit_name[-12:-10] ) lowercase__ = int(vit_name[-9:-6] ) else: lowercase__ = 1000 lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = int(vit_name[-6:-4] ) lowercase__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): lowercase__ = 192 lowercase__ = 768 lowercase__ = 12 lowercase__ = 3 elif vit_name[9:].startswith('small' ): lowercase__ = 384 lowercase__ = 1536 lowercase__ = 12 lowercase__ = 6 else: pass else: if vit_name[4:].startswith('small' ): lowercase__ = 768 lowercase__ = 2304 lowercase__ = 8 lowercase__ = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 24 lowercase__ = 16 elif vit_name[4:].startswith('huge' ): lowercase__ = 1280 lowercase__ = 5120 lowercase__ = 32 lowercase__ = 16 # load original model from timm lowercase__ = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(_SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTModel(_SCREAMING_SNAKE_CASE ).eval() else: lowercase__ = ViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase__ = DeiTImageProcessor(size=config.image_size ) else: lowercase__ = ViTImageProcessor(size=config.image_size ) lowercase__ = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__ = encoding['pixel_values'] lowercase__ = model(_SCREAMING_SNAKE_CASE ) if base_model: lowercase__ = timm_model.forward_features(_SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: lowercase__ = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
'''simple docstring''' import numpy as np import datasets UpperCamelCase_ = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" UpperCamelCase_ = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" UpperCamelCase_ = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float', id='sequence' ), id='X' ), } ), ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = np.array(A ) SCREAMING_SNAKE_CASE : Tuple = np.array(A ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction SCREAMING_SNAKE_CASE : Any = X - np.mean(A ) SCREAMING_SNAKE_CASE : str = np.cov(reference_distribution.T ) try: SCREAMING_SNAKE_CASE : str = np.linalg.inv(A ) except np.linalg.LinAlgError: SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.pinv(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.dot(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.dot(A, X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
28
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = RoCBertTokenizer _snake_case : int = None _snake_case : Optional[Any] = False _snake_case : Tuple = True _snake_case : Union[str, Any] = filter_non_english def A ( self : List[str] )-> Dict: super().setUp() __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __UpperCamelCase = {} __UpperCamelCase = {} for i, value in enumerate(A_ ): __UpperCamelCase = i __UpperCamelCase = i __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def A ( self : Dict )-> Optional[Any]: __UpperCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(A_ , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def A ( self : List[Any] )-> Dict: __UpperCamelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def A ( self : str )-> Dict: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : Union[str, Any] )-> Optional[Any]: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def A ( self : Any )-> Optional[Any]: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : int )-> Optional[Any]: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : List[Any] )-> int: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Optional[Any] )-> str: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Any )-> int: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : List[str] )-> Dict: __UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=A_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def A ( self : int )-> int: __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __UpperCamelCase = {} for i, token in enumerate(A_ ): __UpperCamelCase = i __UpperCamelCase = RoCBertWordpieceTokenizer(vocab=A_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def A ( self : int )-> Tuple: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def A ( self : Optional[int] )-> Union[str, Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def A ( self : str )-> str: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def A ( self : List[str] )-> Dict: __UpperCamelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: __UpperCamelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def A ( self : str )-> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __UpperCamelCase = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase = tokenizer_r.do_lower_case if hasattr(A_ , "do_lower_case" ) else False __UpperCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def A ( self : Tuple )-> Union[str, Any]: __UpperCamelCase = ["的", "人", "有"] __UpperCamelCase = "".join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase = True __UpperCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase = False __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase = tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def A ( self : List[Any] )-> int: __UpperCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase = tokenizer.encode("你好" , add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode("你是谁" , add_special_tokens=A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A ( self : Optional[Any] )-> Tuple: __UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __UpperCamelCase = "你好,你是谁" __UpperCamelCase = tokenizer.tokenize(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase = tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase = tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase = tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
505
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( snake_case__ ): _A : List[str] = ["""image_processor""", """tokenizer"""] _A : List[Any] = """BlipImageProcessor""" _A : Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCamelCase , lowerCamelCase ): snake_case__ = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ = self.image_processor def __call__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: snake_case__ = self.tokenizer snake_case__ = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding # add pixel_values snake_case__ = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) if text is not None: snake_case__ = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: snake_case__ = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def A_ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def A_ ( self ): snake_case__ = self.tokenizer.model_input_names snake_case__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
702
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ , snake_case__ = set(__lowerCAmelCase ), [start] while stack: snake_case__ = stack.pop() explored.add(__lowerCAmelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCAmelCase ) return explored __magic_name__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
530
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : List[str] = logging.get_logger(__name__) __magic_name__ : Tuple = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class __snake_case (lowerCamelCase ): __a = '''encodec''' def __init__( self: Union[str, Any] , A_: Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , A_: Any=2_40_00 , A_: List[Any]=1 , A_: Optional[Any]=False , A_: Optional[int]=None , A_: int=None , A_: List[str]=1_28 , A_: Union[str, Any]=32 , A_: List[str]=1 , A_: Dict=[8, 5, 4, 2] , A_: List[Any]="weight_norm" , A_: Any=7 , A_: List[Any]=7 , A_: Tuple=3 , A_: List[str]=2 , A_: Optional[Any]=True , A_: Optional[int]="reflect" , A_: Dict=2 , A_: Union[str, Any]=2 , A_: Union[str, Any]=1.0 , A_: List[str]=10_24 , A_: str=None , A_: List[str]=True , **A_: int , ): __lowerCamelCase = target_bandwidths __lowerCamelCase = sampling_rate __lowerCamelCase = audio_channels __lowerCamelCase = normalize __lowerCamelCase = chunk_length_s __lowerCamelCase = overlap __lowerCamelCase = hidden_size __lowerCamelCase = num_filters __lowerCamelCase = num_residual_layers __lowerCamelCase = upsampling_ratios __lowerCamelCase = norm_type __lowerCamelCase = kernel_size __lowerCamelCase = last_kernel_size __lowerCamelCase = residual_kernel_size __lowerCamelCase = dilation_growth_rate __lowerCamelCase = use_causal_conv __lowerCamelCase = pad_mode __lowerCamelCase = compress __lowerCamelCase = num_lstm_layers __lowerCamelCase = trim_right_ratio __lowerCamelCase = codebook_size __lowerCamelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**A_ ) @property def __a ( self: Union[str, Any] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __a ( self: List[Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __a ( self: List[Any] ): __lowerCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __a ( self: List[Any] ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
281
0
from functools import lru_cache @lru_cache def lowerCamelCase__ ( a : int ) -> int: """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
373
import os import time import numpy as np import onnxruntime as ort snake_case__ = '''1''' snake_case__ = '''0''' snake_case__ = '''1''' snake_case__ = ort.SessionOptions() snake_case__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') snake_case__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] snake_case__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) snake_case__ = ort.RunOptions() snake_case__ = 128 snake_case__ = 1 snake_case__ = np.ones((batch, sequence), dtype=np.intaa) snake_case__ = np.ones((batch, sequence), dtype=np.intaa) snake_case__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') snake_case__ = time.time() snake_case__ = 2000 snake_case__ = {} for iter in range(max_iters): snake_case__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
373
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowercase__ : def __init__( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : Union[str, Any]=7 , snake_case__ : List[Any]=True , snake_case__ : Dict=True , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=99 , snake_case__ : Optional[Any]=32 , snake_case__ : Dict=5 , snake_case__ : Any=4 , snake_case__ : List[str]=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Dict=512 , snake_case__ : Dict=16 , snake_case__ : str=2 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : str=3 , snake_case__ : str=4 , snake_case__ : Union[str, Any]=None , ): lowerCamelCase_ : Tuple =parent lowerCamelCase_ : Tuple =batch_size lowerCamelCase_ : Dict =seq_length lowerCamelCase_ : int =is_training lowerCamelCase_ : int =use_input_mask lowerCamelCase_ : Union[str, Any] =use_token_type_ids lowerCamelCase_ : str =use_labels lowerCamelCase_ : List[Any] =vocab_size lowerCamelCase_ : List[str] =hidden_size lowerCamelCase_ : Tuple =num_hidden_layers lowerCamelCase_ : Any =num_attention_heads lowerCamelCase_ : Optional[Any] =intermediate_size lowerCamelCase_ : int =hidden_act lowerCamelCase_ : List[Any] =hidden_dropout_prob lowerCamelCase_ : List[str] =attention_probs_dropout_prob lowerCamelCase_ : List[Any] =max_position_embeddings lowerCamelCase_ : int =type_vocab_size lowerCamelCase_ : int =type_sequence_label_size lowerCamelCase_ : str =initializer_range lowerCamelCase_ : Tuple =num_labels lowerCamelCase_ : Tuple =num_choices lowerCamelCase_ : Optional[Any] =scope def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Optional[Any] =None if self.use_input_mask: lowerCamelCase_ : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Dict =None if self.use_token_type_ids: lowerCamelCase_ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Optional[Any] =None lowerCamelCase_ : int =None lowerCamelCase_ : Any =None if self.use_labels: lowerCamelCase_ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Any =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[str] ): lowerCamelCase_ : int =OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : Union[str, Any] =model(snake_case__ , attention_mask=snake_case__ ) lowerCamelCase_ : Any =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : str , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str , ): lowerCamelCase_ : Optional[int] =True lowerCamelCase_ : Optional[int] =OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : List[Any] =model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) lowerCamelCase_ : int =model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) lowerCamelCase_ : int =model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : int , snake_case__ : Any , snake_case__ : Dict , snake_case__ : str , ): lowerCamelCase_ : List[str] =OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : Any =model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Tuple , ): lowerCamelCase_ : int =True lowerCamelCase_ : Tuple =True lowerCamelCase_ : List[str] =OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass lowerCamelCase_ : str =model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) lowerCamelCase_ : str =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ : Dict =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ : Union[str, Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ : str =torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ : List[str] =torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ : Optional[int] =model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] lowerCamelCase_ : Optional[Any] =model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] # select random slice lowerCamelCase_ : str =ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ : Any =output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ : Union[str, Any] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Dict =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : Tuple =config_and_inputs lowerCamelCase_ : List[Any] ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( snake_case__, snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase :Optional[int] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :str = False _UpperCAmelCase :Union[str, Any] = False def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Union[str, Any] =OpenLlamaModelTester(self ) lowerCamelCase_ : Tuple =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ : Optional[int] =type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Union[str, Any] =3 lowerCamelCase_ : List[Any] =input_dict["input_ids"] lowerCamelCase_ : Tuple =input_ids.ne(1 ).to(snake_case__ ) lowerCamelCase_ : Tuple =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ : Dict =OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : Dict =model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Dict =3 lowerCamelCase_ : int ="single_label_classification" lowerCamelCase_ : Optional[int] =input_dict["input_ids"] lowerCamelCase_ : Optional[Any] =input_ids.ne(1 ).to(snake_case__ ) lowerCamelCase_ : Dict =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ : Optional[int] =OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : Dict =model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ , lowerCamelCase_ : int =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Union[str, Any] =3 lowerCamelCase_ : List[str] ="multi_label_classification" lowerCamelCase_ : str =input_dict["input_ids"] lowerCamelCase_ : str =input_ids.ne(1 ).to(snake_case__ ) lowerCamelCase_ : List[Any] =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ : int =OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ : List[str] =model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def UpperCAmelCase__ ( self : Any ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ): lowerCamelCase_ , lowerCamelCase_ : int =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : int =ids_tensor([1, 10] , config.vocab_size ) lowerCamelCase_ : str =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : Any =OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() lowerCamelCase_ : Optional[int] =original_model(snake_case__ ).last_hidden_state lowerCamelCase_ : Union[str, Any] =original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : Optional[int] ={"type": scaling_type, "factor": 10.0} lowerCamelCase_ : Optional[int] =OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() lowerCamelCase_ : str =scaled_model(snake_case__ ).last_hidden_state lowerCamelCase_ : Union[str, Any] =scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) )
153
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list[list[int | float]] ) -> int: lowerCamelCase_ : Optional[Any] =len(lowerCamelCase__ ) lowerCamelCase_ : int =len(matrix[0] ) lowerCamelCase_ : Dict =min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): lowerCamelCase_ : Any =matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCamelCase_ : Optional[Any] =True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: lowerCamelCase_ , lowerCamelCase_ : Tuple =matrix[i], matrix[row] lowerCamelCase_ : Any =False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): lowerCamelCase_ : Optional[int] =matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
153
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Dict =logging.get_logger(__name__) _UpperCamelCase : Dict ={ "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'pix2struct_text_model' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _snake_case=5_02_44 , _snake_case=7_68 , _snake_case=64 , _snake_case=20_48 , _snake_case=12 , _snake_case=12 , _snake_case=32 , _snake_case=1_28 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=1.0 , _snake_case="gelu_new" , _snake_case=0 , _snake_case=False , _snake_case=0 , _snake_case=1 , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = d_kv __lowerCamelCase = d_ff __lowerCamelCase = num_layers __lowerCamelCase = num_heads __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_factor __lowerCamelCase = use_cache __lowerCamelCase = eos_token_id __lowerCamelCase = decoder_start_token_id # for backwards compatibility __lowerCamelCase = dense_act_fn super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , tie_word_embeddings=_snake_case , is_decoder=_snake_case , **_snake_case , ) @classmethod def _lowerCamelCase ( cls , _snake_case , **_snake_case ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowerCamelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'pix2struct_vision_model' def __init__( self , _snake_case=7_68 , _snake_case=7_68 , _snake_case=20_48 , _snake_case=64 , _snake_case=12 , _snake_case=12 , _snake_case="gelu_new" , _snake_case=1E-6 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=1E-10 , _snake_case=1.0 , _snake_case=40_96 , _snake_case=32 , _snake_case=1_28 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) __lowerCamelCase = hidden_size __lowerCamelCase = patch_embed_hidden_size __lowerCamelCase = d_ff __lowerCamelCase = dropout_rate __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = initializer_range __lowerCamelCase = initializer_factor __lowerCamelCase = attention_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = dense_act_fn __lowerCamelCase = seq_len __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = d_kv @classmethod def _lowerCamelCase ( cls , _snake_case , **_snake_case ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowerCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'pix2struct' SCREAMING_SNAKE_CASE_ = True def __init__( self , _snake_case=None , _snake_case=None , _snake_case=1.0 , _snake_case=0.0_2 , _snake_case=False , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(tie_word_embeddings=_snake_case , is_encoder_decoder=_snake_case , **_snake_case ) if text_config is None: __lowerCamelCase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __lowerCamelCase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __lowerCamelCase = PixaStructTextConfig(**_snake_case ) __lowerCamelCase = PixaStructVisionConfig(**_snake_case ) __lowerCamelCase = self.text_config.decoder_start_token_id __lowerCamelCase = self.text_config.pad_token_id __lowerCamelCase = self.text_config.eos_token_id __lowerCamelCase = initializer_factor __lowerCamelCase = initializer_range __lowerCamelCase = self.initializer_range __lowerCamelCase = self.initializer_range __lowerCamelCase = is_vqa @classmethod def _lowerCamelCase ( cls , _snake_case , _snake_case , **_snake_case ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.text_config.to_dict() __lowerCamelCase = self.vision_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
575
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase : List[Any] =logging.get_logger(__name__) def lowerCamelCase_ ( A_ ): if isinstance(A_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A_ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['pixel_values'] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_56} __lowerCamelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(_snake_case , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = resample __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = offset __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BILINEAR , _snake_case = None , **_snake_case , ): """simple docstring""" __lowerCamelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(_snake_case , size['''shortest_edge'''] , default_to_square=_snake_case ) elif "height" in size and "width" in size: __lowerCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" __lowerCamelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case = True , _snake_case = None , **_snake_case , ): """simple docstring""" __lowerCamelCase = image.astype(np.floataa ) if offset: __lowerCamelCase = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _lowerCamelCase ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = to_numpy_array(_snake_case ) if do_resize: __lowerCamelCase = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) if do_center_crop: __lowerCamelCase = self.center_crop(_snake_case , size=_snake_case ) if do_rescale: __lowerCamelCase = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case ) if do_normalize: __lowerCamelCase = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) __lowerCamelCase = to_channel_dimension_format(_snake_case , _snake_case ) return image def _lowerCamelCase ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = offset if offset is not None else self.offset __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(_snake_case , param_name='''crop_size''' ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) __lowerCamelCase = make_batched(_snake_case ) __lowerCamelCase = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] __lowerCamelCase = {'''pixel_values''': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
575
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _a ( SCREAMING_SNAKE_CASE__): def __init__( self : List[str] , _lowercase : str = "▁" , _lowercase : bool = True , _lowercase : Union[str, AddedToken] = "<unk>" , _lowercase : Union[str, AddedToken] = "</s>" , _lowercase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: snake_case : Optional[int] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } snake_case : Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case : int = token_dict["token"] snake_case : Union[str, Any] = Tokenizer(Unigram() ) snake_case : List[Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) snake_case : int = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowercase , add_prefix_space=_lowercase ), pre_tokenizers.Digits(individual_digits=_lowercase ), pre_tokenizers.Punctuation(), ] ) snake_case : str = decoders.Metaspace(replacement=_lowercase , add_prefix_space=_lowercase ) snake_case : List[Any] = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) snake_case : Optional[Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_lowercase , _lowercase ) def __lowercase ( self : Union[str, Any] , _lowercase : Union[str, List[str]] , _lowercase : int = 8000 , _lowercase : bool = True , ) -> Any: snake_case : Any = trainers.UnigramTrainer( vocab_size=_lowercase , special_tokens=self.special_tokens_list , show_progress=_lowercase , ) if isinstance(_lowercase , _lowercase ): snake_case : Tuple = [files] self._tokenizer.train(_lowercase , trainer=_lowercase ) self.add_unk_id() def __lowercase ( self : Optional[Any] , _lowercase : Union[Iterator[str], Iterator[Iterator[str]]] , _lowercase : int = 8000 , _lowercase : bool = True , ) -> str: snake_case : Optional[Any] = trainers.UnigramTrainer( vocab_size=_lowercase , special_tokens=self.special_tokens_list , show_progress=_lowercase , ) self._tokenizer.train_from_iterator(_lowercase , trainer=_lowercase ) self.add_unk_id() def __lowercase ( self : Optional[int] ) -> Any: snake_case : Dict = json.loads(self._tokenizer.to_str() ) snake_case : Tuple = self.special_tokens["unk"]["id"] snake_case : Dict = Tokenizer.from_str(json.dumps(_lowercase ) )
449
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: List[Any] ): """simple docstring""" snake_case : Optional[Any] = set() snake_case : Optional[int] = [] def parse_line(lowerCamelCase_: Union[str, Any] ): for line in fp: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[Any] = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase_ ) > 0: snake_case : str = "\n".join(lowerCamelCase_ ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(lowerCamelCase_ ) buffer.clear() continue else: snake_case : Dict = line.strip() buffer.append(lowerCamelCase_ ) if from_gh: for filename in os.listdir(lowerCamelCase_ ): snake_case : Tuple = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) else: try: with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Union[str, Any] , lowerCamelCase_: Any ): """simple docstring""" snake_case : Dict = set() snake_case : str = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase_ , lowerCamelCase_ ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" return values.split("," ) A = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) A = parser.parse_args() A = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A = extract_warnings(args.output_dir, args.targets) A = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
449
1
from __future__ import annotations from typing import Generic, TypeVar _snake_case : Any = TypeVar('T') class _UpperCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : T ) -> None: __lowerCAmelCase = data __lowerCAmelCase = self __lowerCAmelCase = 0 class _UpperCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : Any ) -> None: # map from node name to the node object __lowerCAmelCase = {} def lowercase ( self : Dict , lowerCAmelCase_ : T ) -> None: # create a new set with x as its member __lowerCAmelCase = DisjointSetTreeNode(lowerCAmelCase_ ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : T ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) __lowerCAmelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCAmelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowercase ( self : List[Any] , lowerCAmelCase_ : DisjointSetTreeNode[T] , lowerCAmelCase_ : DisjointSetTreeNode[T] ) -> None: # helper function for union operation if nodea.rank > nodea.rank: __lowerCAmelCase = nodea else: __lowerCAmelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowercase ( self : Optional[int] , lowerCAmelCase_ : T , lowerCAmelCase_ : T ) -> None: # merge 2 disjoint sets self.link(self.find_set(lowerCAmelCase_ ) , self.find_set(lowerCAmelCase_ ) ) class _UpperCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : int ) -> None: # connections: map from the node to the neighbouring nodes (with weights) __lowerCAmelCase = {} def lowercase ( self : str , lowerCAmelCase_ : T ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCAmelCase = {} def lowercase ( self : Dict , lowerCAmelCase_ : T , lowerCAmelCase_ : T , lowerCAmelCase_ : int ) -> None: # add an edge with the given weight self.add_node(lowerCAmelCase_ ) self.add_node(lowerCAmelCase_ ) __lowerCAmelCase = weight __lowerCAmelCase = weight def lowercase ( self : Optional[Any] ) -> GraphUndirectedWeighted[T]: __lowerCAmelCase = [] __lowerCAmelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda lowerCAmelCase_ : x[2] ) # creating the disjoint set __lowerCAmelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowerCAmelCase_ ) # MST generation __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edges[index] index += 1 __lowerCAmelCase = disjoint_set.find_set(lowerCAmelCase_ ) __lowerCAmelCase = disjoint_set.find_set(lowerCAmelCase_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) disjoint_set.union(lowerCAmelCase_ , lowerCAmelCase_ ) return graph
421
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Any = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _snake_case : Union[str, Any] = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _snake_case : List[str] = 0 _snake_case : int = 0XE000 _snake_case : Optional[int] = 0XE001 _snake_case : Dict = 0XE002 _snake_case : str = 0XE003 _snake_case : Optional[int] = 0XE004 # Maps special codepoints to human-readable names. _snake_case : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _snake_case : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , lowerCAmelCase_ : Dict=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Optional[Any]=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : str=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Union[str, Any]=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Dict=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : int=chr(lowerCAmelCase_ ) , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=2_0_4_8 , **lowerCAmelCase_ : Optional[int] , ) -> Optional[Any]: __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , model_max_length=lowerCAmelCase_ , **lowerCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. __lowerCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __lowerCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __lowerCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } __lowerCAmelCase = UNICODE_VOCAB_SIZE __lowerCAmelCase = len(self._special_codepoints ) @property def lowercase ( self : str ) -> int: return self._unicode_vocab_size def lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> List[str]: return list(lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : str ) -> int: try: return ord(lowerCAmelCase_ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def lowercase ( self : List[str] , lowerCAmelCase_ : int ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCAmelCase_ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: return "".join(lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = [1] + ([0] * len(lowerCAmelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCAmelCase_ )) + [1] return result def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> int: return ()
421
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowercase_ : str = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def A__( __lowerCAmelCase = "dhaka" , __lowerCAmelCase = 5 ): _snake_case : Optional[int] = min(__lowerCAmelCase , 50 ) # Prevent abuse! _snake_case : str = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _snake_case : Tuple = requests.get('https://www.google.com/search' , params=__lowerCAmelCase , headers=__lowerCAmelCase ) _snake_case : Optional[Any] = BeautifulSoup(html.text , 'html.parser' ) _snake_case : Optional[Any] = ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _snake_case : List[str] = json.dumps(__lowerCAmelCase ) _snake_case : Optional[Any] = json.loads(__lowerCAmelCase ) _snake_case : str = re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , __lowerCAmelCase , ) if not matched_google_image_data: return 0 _snake_case : Any = re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(__lowerCAmelCase ) , ) _snake_case : Dict = re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , __lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(__lowerCAmelCase ): if index >= max_images: return index _snake_case : List[str] = bytes(__lowerCAmelCase , 'ascii' ).decode( 'unicode-escape' ) _snake_case : Optional[int] = bytes(__lowerCAmelCase , 'ascii' ).decode( 'unicode-escape' ) _snake_case : str = urllib.request.build_opener() _snake_case : List[Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(__lowerCAmelCase ) _snake_case : List[Any] = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 __lowerCAmelCase , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowercase_ : Any = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
304
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : List[str] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = "▁" __a = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } __a = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } __a = { "facebook/s2t-small-librispeech-asr": 1024, } __a = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] __a = {"mustc": MUSTC_LANGS} class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = MAX_MODEL_INPUT_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = [] def __init__( self : Optional[int] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[str]="<s>" , snake_case_ : List[str]="</s>" , snake_case_ : Any="<pad>" , snake_case_ : Optional[Any]="<unk>" , snake_case_ : Dict=False , snake_case_ : Union[str, Any]=False , snake_case_ : List[Any]=None , snake_case_ : Any=None , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Any , ): snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , do_upper_case=snake_case_ , do_lower_case=snake_case_ , tgt_lang=snake_case_ , lang_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) snake_case__ : List[str] = do_upper_case snake_case__ : str = do_lower_case snake_case__ : Optional[Any] = load_json(snake_case_ ) snake_case__ : Optional[int] = {v: k for k, v in self.encoder.items()} snake_case__ : int = spm_file snake_case__ : Optional[Any] = load_spm(snake_case_ , self.sp_model_kwargs ) if lang_codes is not None: snake_case__ : List[Any] = lang_codes snake_case__ : Tuple = LANGUAGES[lang_codes] snake_case__ : List[str] = [f"<lang:{lang}>" for lang in self.langs] snake_case__ : Dict = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} snake_case__ : int = self.lang_tokens snake_case__ : Optional[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: snake_case__ : Optional[int] = {} @property def lowerCamelCase ( self : List[str] ): return len(self.encoder ) @property def lowerCamelCase ( self : Dict ): return self._tgt_lang @tgt_lang.setter def lowerCamelCase ( self : str , snake_case_ : List[str] ): snake_case__ : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(snake_case_ ) def lowerCamelCase ( self : List[Any] , snake_case_ : str ): snake_case__ : Union[str, Any] = self.lang_code_to_id[tgt_lang] snake_case__ : Tuple = [lang_code_id] def lowerCamelCase ( self : str , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Dict ): return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def lowerCamelCase ( self : List[Any] , snake_case_ : int ): return self.decoder.get(snake_case_ , self.unk_token ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : List[str] ): snake_case__ : Optional[int] = [] snake_case__ : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: snake_case__ : Dict = self.sp_model.decode(snake_case_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " snake_case__ : Any = [] else: current_sub_tokens.append(snake_case_ ) snake_case__ : Any = self.sp_model.decode(snake_case_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Dict=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) snake_case__ : Any = [1] * len(self.prefix_tokens ) snake_case__ : Optional[int] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowerCamelCase ( self : List[Any] ): snake_case__ : Dict = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): snake_case__ : Dict = self.__dict__.copy() snake_case__ : List[Any] = None return state def __setstate__( self : Tuple , snake_case_ : Dict ): snake_case__ : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ : Optional[int] = {} snake_case__ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : List[str] = Path(snake_case_ ) assert save_dir.is_dir(), f"{save_directory} should be a directory" snake_case__ : Optional[int] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) snake_case__ : int = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: snake_case__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> sentencepiece.SentencePieceProcessor: snake_case__ : str = sentencepiece.SentencePieceProcessor(**_lowerCAmelCase ) spm.Load(str(_lowerCAmelCase ) ) return spm def __snake_case( _lowerCAmelCase ) -> Union[Dict, List]: with open(_lowerCAmelCase , """r""" ) as f: return json.load(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> None: with open(_lowerCAmelCase , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=2 )
708
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> Dict: # noqa: E741 snake_case__ : List[Any] = len(_lowerCAmelCase ) snake_case__ : str = 0 snake_case__ : str = [0] * n snake_case__ : Optional[Any] = [False] * n snake_case__ : Any = [False] * n def dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if parent == root: out_edge_count += 1 snake_case__ : Union[str, Any] = True snake_case__ : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case__ : Optional[int] = dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Dict = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: snake_case__ : Any = True # AP found via cycle if at == low[to]: snake_case__ : Optional[int] = True else: snake_case__ : Union[str, Any] = min(low[at] , _lowerCAmelCase ) return out_edge_count for i in range(_lowerCAmelCase ): if not visited[i]: snake_case__ : Union[str, Any] = 0 snake_case__ : int = dfs(_lowerCAmelCase , _lowerCAmelCase , -1 , _lowerCAmelCase ) snake_case__ : Any = out_edge_count > 1 for x in range(len(_lowerCAmelCase ) ): if is_art[x] is True: print(_lowerCAmelCase ) # Adjacency list of graph __a = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
301
0
import logging import os import threading import time try: import warnings except ImportError: _lowerCAmelCase: Optional[int] = None try: import msvcrt except ImportError: _lowerCAmelCase: List[str] = None try: import fcntl except ImportError: _lowerCAmelCase: Dict = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowerCAmelCase: str = OSError # Data # ------------------------------------------------ _lowerCAmelCase: Optional[Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _lowerCAmelCase: List[Any] = '3.0.12' _lowerCAmelCase: Any = None def _lowercase( ): global _logger a__ =_logger or logging.getLogger(__name__ ) return _logger class lowercase_ (lowercase__ ): def __init__( self , lowercase_) -> Dict: a__ =lock_file return None def __str__( self) -> Tuple: a__ =F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowercase_ : def __init__( self , lowercase_) -> Union[str, Any]: a__ =lock return None def __enter__( self) -> Dict: return self.lock def __exit__( self , lowercase_ , lowercase_ , lowercase_) -> int: self.lock.release() return None class lowercase_ : def __init__( self , lowercase_ , lowercase_=-1 , lowercase_=None) -> Any: a__ =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long a__ =self.hash_filename_if_too_long(lowercase_ , lowercase_) # The path to the lock file. a__ =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a__ =None # The default timeout value. a__ =timeout # We use this lock primarily for the lock counter. a__ =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a__ =0 return None @property def __UpperCamelCase ( self) -> str: return self._lock_file @property def __UpperCamelCase ( self) -> Optional[int]: return self._timeout @timeout.setter def __UpperCamelCase ( self , lowercase_) -> List[str]: a__ =float(lowercase_) return None def __UpperCamelCase ( self) -> Tuple: raise NotImplementedError() def __UpperCamelCase ( self) -> Dict: raise NotImplementedError() @property def __UpperCamelCase ( self) -> int: return self._lock_file_fd is not None def __UpperCamelCase ( self , lowercase_=None , lowercase_=0.05) -> List[str]: # Use the default timeout, if no timeout is provided. if timeout is None: a__ =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a__ =id(self) a__ =self._lock_file a__ =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""") self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""") break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""") raise Timeout(self._lock_file) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""") time.sleep(lowercase_) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a__ =max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def __UpperCamelCase ( self , lowercase_=False) -> Optional[Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a__ =id(self) a__ =self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""") self._release() a__ =0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""") return None def __enter__( self) -> str: self.acquire() return self def __exit__( self , lowercase_ , lowercase_ , lowercase_) -> List[str]: self.release() return None def __del__( self) -> List[str]: self.release(force=lowercase_) return None def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =os.path.basename(lowercase_) if len(lowercase_) > max_length and max_length > 0: a__ =os.path.dirname(lowercase_) a__ =str(hash(lowercase_)) a__ =filename[: max_length - len(lowercase_) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase_ , lowercase_) else: return path class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_=-1 , lowercase_=None) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_) a__ ='\\\\?\\' + relative_to_absolute_path(self.lock_file) def __UpperCamelCase ( self) -> Tuple: a__ =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a__ =os.open(self._lock_file , lowercase_) except OSError: pass else: try: msvcrt.locking(lowercase_ , msvcrt.LK_NBLCK , 1) except OSError: os.close(lowercase_) else: a__ =fd return None def __UpperCamelCase ( self) -> List[Any]: a__ =self._lock_file_fd a__ =None msvcrt.locking(lowercase_ , msvcrt.LK_UNLCK , 1) os.close(lowercase_) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_=-1 , lowercase_=None) -> Union[str, Any]: a__ =os.statvfs(os.path.dirname(lowercase_)).f_namemax super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =os.O_RDWR | os.O_CREAT | os.O_TRUNC a__ =os.open(self._lock_file , lowercase_) try: fcntl.flock(lowercase_ , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowercase_) else: a__ =fd return None def __UpperCamelCase ( self) -> Union[str, Any]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition a__ =self._lock_file_fd a__ =None fcntl.flock(lowercase_ , fcntl.LOCK_UN) os.close(lowercase_) return None class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a__ =os.open(self._lock_file , lowercase_) except OSError: pass else: a__ =fd return None def __UpperCamelCase ( self) -> List[str]: os.close(self._lock_file_fd) a__ =None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None _lowerCAmelCase: Any = None if msvcrt: _lowerCAmelCase: int = WindowsFileLock elif fcntl: _lowerCAmelCase: List[str] = UnixFileLock else: _lowerCAmelCase: List[str] = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
20
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: UpperCamelCase__ : int = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" UpperCamelCase__ : str = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("RGB" ) UpperCamelCase__ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) UpperCamelCase__ : Dict = transform(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: if "visual_encoder" in key: UpperCamelCase__ : Union[str, Any] = re.sub("visual_encoder*" , "vision_model.encoder" , __lowerCAmelCase ) if "blocks" in key: UpperCamelCase__ : List[str] = re.sub(R"blocks" , "layers" , __lowerCAmelCase ) if "attn" in key: UpperCamelCase__ : List[str] = re.sub(R"attn" , "self_attn" , __lowerCAmelCase ) if "norm1" in key: UpperCamelCase__ : List[str] = re.sub(R"norm1" , "layer_norm1" , __lowerCAmelCase ) if "norm2" in key: UpperCamelCase__ : Optional[int] = re.sub(R"norm2" , "layer_norm2" , __lowerCAmelCase ) if "encoder.norm" in key: UpperCamelCase__ : Optional[int] = re.sub(R"encoder.norm" , "post_layernorm" , __lowerCAmelCase ) if "encoder.patch_embed.proj" in key: UpperCamelCase__ : List[Any] = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , __lowerCAmelCase ) if "encoder.pos_embed" in key: UpperCamelCase__ : Union[str, Any] = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , __lowerCAmelCase ) if "encoder.cls_token" in key: UpperCamelCase__ : Optional[Any] = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , __lowerCAmelCase ) if "self_attn" in key: UpperCamelCase__ : Dict = re.sub(R"self_attn.proj" , "self_attn.projection" , __lowerCAmelCase ) return key @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Union[str, Any]: if config_path is not None: UpperCamelCase__ : List[str] = BlipConfig.from_pretrained(__lowerCAmelCase ) else: UpperCamelCase__ : Union[str, Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCamelCase__ : Dict = BlipForConditionalGeneration(__lowerCAmelCase ).eval() UpperCamelCase__ : Any = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" UpperCamelCase__ : List[Any] = blip_decoder(pretrained=__lowerCAmelCase , image_size=384 , vit="base" ) UpperCamelCase__ : str = pt_model.eval() UpperCamelCase__ : Optional[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase__ : Union[str, Any] = modified_state_dict.pop(__lowerCAmelCase ) UpperCamelCase__ : Tuple = rename_key(__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = value hf_model.load_state_dict(__lowerCAmelCase ) UpperCamelCase__ : Tuple = 384 UpperCamelCase__ : int = load_demo_image(image_size=__lowerCAmelCase , device="cpu" ) UpperCamelCase__ : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCamelCase__ : Tuple = tokenizer(["a picture of"] ).input_ids UpperCamelCase__ : Optional[Any] = hf_model.generate(__lowerCAmelCase , __lowerCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCamelCase__ : Optional[Any] = hf_model.generate(__lowerCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCamelCase__ : int = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) UpperCamelCase__ : Union[str, Any] = blip_vqa(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="base" ) vqa_model.eval() UpperCamelCase__ : List[str] = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase__ : Optional[int] = modified_state_dict.pop(__lowerCAmelCase ) UpperCamelCase__ : Dict = rename_key(__lowerCAmelCase ) UpperCamelCase__ : Optional[int] = value UpperCamelCase__ : Tuple = BlipForQuestionAnswering(__lowerCAmelCase ) hf_vqa_model.load_state_dict(__lowerCAmelCase ) UpperCamelCase__ : List[str] = ["How many dogs are in this image?"] UpperCamelCase__ : int = tokenizer(__lowerCAmelCase , return_tensors="pt" ).input_ids UpperCamelCase__ : List[str] = hf_vqa_model.generate(__lowerCAmelCase , __lowerCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) UpperCamelCase__ : Union[str, Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" UpperCamelCase__ : Any = blip_itm(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="base" ) itm_model.eval() UpperCamelCase__ : List[Any] = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase__ : Optional[int] = modified_state_dict.pop(__lowerCAmelCase ) UpperCamelCase__ : Any = rename_key(__lowerCAmelCase ) UpperCamelCase__ : List[str] = value UpperCamelCase__ : List[str] = BlipForImageTextRetrieval(__lowerCAmelCase ) UpperCamelCase__ : Dict = ["A picture of a woman with a dog sitting in a beach"] UpperCamelCase__ : Optional[Any] = tokenizer( __lowerCAmelCase , return_tensors="pt" , padding="max_length" , truncation=__lowerCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowerCAmelCase ) hf_itm_model.eval() UpperCamelCase__ : List[Any] = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": lowerCamelCase : List[Any] =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Tuple =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
228
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : List[str] = GPTSwaTokenizer A_ : Any = False A_ : Any = True A_ : List[Any] = False def __lowerCamelCase ( self : Optional[Any] ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ :Dict = GPTSwaTokenizer(UpperCamelCase_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :List[str] = 'This is a test' SCREAMING_SNAKE_CASE__ :Optional[int] = 'This is a test' return input_text, output_text def __lowerCamelCase ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ :Optional[Any] = '<s>' SCREAMING_SNAKE_CASE__ :Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def __lowerCamelCase ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCamelCase_ ) , 20_00 ) def __lowerCamelCase ( self : List[str] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def __lowerCamelCase ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ :Tuple = GPTSwaTokenizer(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( UpperCamelCase_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) SCREAMING_SNAKE_CASE__ :Tuple = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) # fmt: off self.assertListEqual( UpperCamelCase_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = GPTSwaTokenizer(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = ['This is a test', 'I was born in 92000, and this is falsé.'] SCREAMING_SNAKE_CASE__ :List[Any] = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertListEqual(tokenizer.encode_fast(UpperCamelCase_ ) , UpperCamelCase_ ) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.decode_fast(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def __lowerCamelCase ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Dict = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off SCREAMING_SNAKE_CASE__ :List[str] = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=UpperCamelCase_ , )
720
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
320
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : str = 'deit' def __init__( self : List[str] , A_ : Any=7_68 , A_ : List[str]=12 , A_ : Union[str, Any]=12 , A_ : List[str]=30_72 , A_ : int="gelu" , A_ : List[str]=0.0 , A_ : Any=0.0 , A_ : Union[str, Any]=0.02 , A_ : str=1e-1_2 , A_ : Optional[int]=2_24 , A_ : Tuple=16 , A_ : Optional[Any]=3 , A_ : int=True , A_ : Optional[Any]=16 , **A_ : List[Any] , )-> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = qkv_bias __UpperCamelCase = encoder_stride class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : List[str] = version.parse('1.11' ) @property def A ( self : Union[str, Any] )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : Tuple )-> float: return 1e-4
505
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
505
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( _lowerCAmelCase , unittest.TestCase): UpperCamelCase_ = BioGptTokenizer UpperCamelCase_ = False def __A ( self : List[str] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] SCREAMING_SNAKE_CASE : List[Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE : Any = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def __A ( self : List[str] , UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = '''lower newer''' SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' return input_text, output_text def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE : Dict = '''lower''' SCREAMING_SNAKE_CASE : Optional[Any] = ['''low''', '''er</w>'''] SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = tokens + ['''<unk>'''] SCREAMING_SNAKE_CASE : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : int = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
708
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowercase__ ( UpperCamelCase_ , UpperCamelCase_): UpperCamelCase_ = 1 @register_to_config def __init__( self : List[str] , UpperCamelCase__ : int = 1000 , UpperCamelCase__ : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(UpperCamelCase__ ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : str = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE : Tuple = 4 # running values SCREAMING_SNAKE_CASE : int = [] def __A ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, torch.device] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = num_inference_steps SCREAMING_SNAKE_CASE : Union[str, Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] SCREAMING_SNAKE_CASE : Tuple = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE : int = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.sin(steps * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE : Dict = (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE : Optional[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE : List[str] = timesteps.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = [] def __A ( self : Tuple , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) SCREAMING_SNAKE_CASE : Optional[int] = (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE : Union[str, Any] = timestep_index + 1 SCREAMING_SNAKE_CASE : int = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase__ ) if len(self.ets ) == 1: SCREAMING_SNAKE_CASE : Dict = self.ets[-1] elif len(self.ets ) == 2: SCREAMING_SNAKE_CASE : Optional[int] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: SCREAMING_SNAKE_CASE : str = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: SCREAMING_SNAKE_CASE : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE : Optional[int] = self._get_prev_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def __A ( self : Optional[Any] , UpperCamelCase__ : torch.FloatTensor , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return sample def __A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.alphas[timestep_index] SCREAMING_SNAKE_CASE : List[str] = self.betas[timestep_index] SCREAMING_SNAKE_CASE : Union[str, Any] = self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE : Tuple = self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE : Dict = (sample - sigma * ets) / max(UpperCamelCase__ , 1E-8 ) SCREAMING_SNAKE_CASE : Optional[Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
34
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _A ( snake_case ) -> Optional[int]: _lowercase : List[str] = [] for line in lines: _lowercase : Tuple = re.sub(r"#.*" , "" , SCREAMING_SNAKE_CASE__ ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE__ ) _lowercase : Any = "\n".join(SCREAMING_SNAKE_CASE__ ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("utf-8" ) return shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # get importable module names and hash for caching _snake_case = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _snake_case = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _snake_case = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name _snake_case = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
245
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = KandinskyVaaControlnetPipeline lowerCAmelCase_ : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] lowerCAmelCase_ : List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] lowerCAmelCase_ : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase_ : List[Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.dummy_unet UpperCAmelCase__ = self.dummy_movq UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_UpperCAmelCase , ) UpperCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=0 ): """simple docstring""" UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create hint UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase__ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = """cpu""" UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) UpperCAmelCase__ = output.images UpperCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCAmelCase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 UpperCAmelCase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) UpperCAmelCase__ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCAmelCase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = """A robot, 4k photo""" UpperCAmelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase__ = pipeline( image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=1_00 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
603
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __A : int = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCamelCase ( _A : Dict ) ->Tuple: """simple docstring""" if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ =[image] lowerCamelCase_ =[trans(img.convert("""RGB""" ) ) for img in image] lowerCamelCase_ =torch.stack(UpperCAmelCase__ ) return image class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase_ =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[Any]: if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: # get the original timestep using init_timestep lowerCamelCase_ =min(int(num_inference_steps * strength ) , __UpperCamelCase ) lowerCamelCase_ =max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )-> Optional[Any]: if not isinstance(__UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__UpperCamelCase )}' ) lowerCamelCase_ =image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowerCamelCase_ =init_latents.shape lowerCamelCase_ =randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents print("""add noise to latents at timestep""" , __UpperCamelCase ) lowerCamelCase_ =self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ =init_latents return latents @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.8 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , )-> str: self.check_inputs(__UpperCamelCase ) # 2. Preprocess image lowerCamelCase_ =preprocess(__UpperCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) lowerCamelCase_ , lowerCamelCase_ =self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) lowerCamelCase_ =timesteps[:1].repeat(__UpperCamelCase ) # 4. Prepare latent variables lowerCamelCase_ =self.prepare_latents(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.unet.dtype , self.device , __UpperCamelCase ) lowerCamelCase_ =latents # 5. Denoising loop for t in self.progress_bar(__UpperCamelCase ): # 1. predict noise model_output lowerCamelCase_ =self.unet(__UpperCamelCase , __UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , eta=__UpperCamelCase , use_clipped_model_output=__UpperCamelCase , generator=__UpperCamelCase , ).prev_sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__UpperCamelCase )
714
# Imports import numpy as np class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Any: self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: if red is not None: lowerCamelCase_ =red if green is not None: lowerCamelCase_ =green if blue is not None: lowerCamelCase_ =blue if red_edge is not None: lowerCamelCase_ =red_edge if nir is not None: lowerCamelCase_ =nir return True def _snake_case ( self , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={ """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self )-> Optional[Any]: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self )-> Tuple: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self )-> str: return self.nir * (self.red / (self.green**2)) def _snake_case ( self )-> Optional[int]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self )-> Tuple: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self )-> Dict: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self )-> List[Any]: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self )-> Tuple: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self )-> Optional[int]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self )-> List[str]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self )-> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self )-> Optional[int]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0.0_8 , _SCREAMING_SNAKE_CASE=1.2_2 , _SCREAMING_SNAKE_CASE=0.0_3 )-> Any: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self )-> Tuple: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self )-> Any: return (self.nir / self.green) - 1 def _snake_case ( self )-> Union[str, Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self )-> Union[str, Any]: return (self.red - self.blue) / self.red def _snake_case ( self )-> Dict: lowerCamelCase_ =self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self )-> int: return self.nir - self.green def _snake_case ( self )-> Dict: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =(2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0.1_6 )-> List[Any]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , _SCREAMING_SNAKE_CASE=0.5 )-> Dict: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self )-> int: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self )-> int: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self )-> Optional[Any]: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self )-> List[str]: return self.nir / self.red def _snake_case ( self )-> List[str]: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self )-> str: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self )-> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self )-> Dict: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self )-> List[str]: return self.red / (self.nir + self.red + self.green) def _snake_case ( self )-> int: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self )-> str: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self )-> str: lowerCamelCase_ =np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase_ =np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self )-> List[str]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self )-> List[Any]: return self.nir / self.red def _snake_case ( self )-> Optional[int]: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self )-> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
75
0
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Tuple=1_8 , UpperCamelCase__ : List[str]=3_0 , UpperCamelCase__ : Union[str, Any]=4_0_0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=None , UpperCamelCase__ : Any=True , )-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __lowerCAmelCase: Tuple = parent __lowerCAmelCase: str = batch_size __lowerCAmelCase: List[str] = num_channels __lowerCAmelCase: int = image_size __lowerCAmelCase: int = min_resolution __lowerCAmelCase: Optional[Any] = max_resolution __lowerCAmelCase: Any = do_resize __lowerCAmelCase: int = size __lowerCAmelCase: int = do_normalize def lowercase_ ( self : int)-> Union[str, Any]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class snake_case ( lowercase__, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = ImageGPTImageProcessor if is_vision_available() else None def lowercase_ ( self : int)-> int: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = ImageGPTImageProcessingTester(self) @property def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : int)-> Tuple: '''simple docstring''' __lowerCAmelCase: Optional[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , "clusters")) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCAmelCase__ , "size")) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize")) def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Any = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8}) __lowerCAmelCase: Any = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2}) def lowercase_ ( self : Optional[Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: List[str] = self.image_processing_class(**self.image_processor_dict) __lowerCAmelCase: List[str] = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase__ , obj[key])) else: self.assertEqual(obj[key] , UpperCAmelCase__) def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: str = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase: Any = os.path.join(UpperCAmelCase__ , "image_processor.json") image_processor_first.to_json_file(UpperCAmelCase__) __lowerCAmelCase: Optional[Any] = self.image_processing_class.from_json_file(UpperCAmelCase__).to_dict() __lowerCAmelCase: Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase__) def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCAmelCase__) __lowerCAmelCase: Tuple = self.image_processing_class.from_pretrained(UpperCAmelCase__).to_dict() __lowerCAmelCase: Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase__) @unittest.skip("ImageGPT requires clusters at initialization") def lowercase_ ( self : Optional[Any])-> Dict: '''simple docstring''' pass def a__ ( ) -> Dict: __lowerCAmelCase: List[Any] = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) __lowerCAmelCase: Optional[int] = Image.open(dataset[4]["file"] ) __lowerCAmelCase: Optional[Any] = Image.open(dataset[5]["file"] ) __lowerCAmelCase: Optional[Any] = [imagea, imagea] return images @require_vision @require_torch class snake_case ( unittest.TestCase ): @slow def lowercase_ ( self : Optional[int])-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") __lowerCAmelCase: int = prepare_images() # test non-batched __lowerCAmelCase: int = image_processing(images[0] , return_tensors="pt") self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __lowerCAmelCase: Tuple = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase__) # test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="pt") self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __lowerCAmelCase: str = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase__)
346
'''simple docstring''' from collections import defaultdict def _lowerCAmelCase ( __magic_name__ : int ) -> int: lowercase : Optional[Any] =1 lowercase : Union[str, Any] =True for v in tree[start]: if v not in visited: ret += dfs(__magic_name__ ) if ret % 2 == 0: cuts.append(__magic_name__ ) return ret def _lowerCAmelCase ( ) -> int: dfs(1 ) if __name__ == "__main__": UpperCamelCase_ , UpperCamelCase_ = 10, 9 UpperCamelCase_ = defaultdict(list) UpperCamelCase_ = {} UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
92
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class _A ( UpperCAmelCase_ ): '''simple docstring''' lowercase_ : Dict = ["pixel_values"] def __init__( self : List[str] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_55 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCamelCase__ : Any , ): """simple docstring""" super().__init__(**_snake_case ) __UpperCamelCase : Optional[int] = size if size is not None else {"""shortest_edge""": 2_24} __UpperCamelCase : Dict = get_size_dict(_snake_case , default_to_square=_snake_case ) __UpperCamelCase : Optional[int] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __UpperCamelCase : List[Any] = get_size_dict(_snake_case , param_name="""crop_size""" ) __UpperCamelCase : str = do_resize __UpperCamelCase : Any = size __UpperCamelCase : Tuple = resample __UpperCamelCase : str = do_center_crop __UpperCamelCase : Union[str, Any] = crop_size __UpperCamelCase : List[Any] = do_rescale __UpperCamelCase : Optional[int] = rescale_factor __UpperCamelCase : Any = do_normalize __UpperCamelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a ( self : str , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ): """simple docstring""" __UpperCamelCase : List[str] = get_size_dict(_snake_case , default_to_square=_snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __UpperCamelCase : Tuple = int((2_56 / 2_24) * size["""shortest_edge"""] ) __UpperCamelCase : Optional[int] = get_resize_output_image_size(_snake_case , size=_snake_case , default_to_square=_snake_case ) __UpperCamelCase : Dict = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _snake_case , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def a ( self : List[str] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[int] , ): """simple docstring""" __UpperCamelCase : List[str] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_snake_case , size=(size["""height"""], size["""width"""]) , data_format=_snake_case , **_snake_case ) def a ( self : List[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Any , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def a ( self : Optional[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Union[str, Any] , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def a ( self : Tuple , lowerCamelCase__ : ImageInput , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Dict[str, int]] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Dict[str, int]] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[float] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = None , lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = None , lowerCamelCase__ : Optional[TensorType] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : Any , ): """simple docstring""" __UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCamelCase : List[Any] = resample if resample is not None else self.resample __UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCamelCase : Dict = image_std if image_std is not None else self.image_std __UpperCamelCase : Dict = size if size is not None else self.size __UpperCamelCase : Tuple = get_size_dict(_snake_case , default_to_square=_snake_case ) __UpperCamelCase : Dict = crop_size if crop_size is not None else self.crop_size __UpperCamelCase : Any = get_size_dict(_snake_case , param_name="""crop_size""" ) __UpperCamelCase : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCamelCase : List[str] = [to_numpy_array(_snake_case ) for image in images] if do_resize: __UpperCamelCase : Tuple = [self.resize(_snake_case , _snake_case , _snake_case ) for image in images] if do_center_crop: __UpperCamelCase : Optional[Any] = [self.center_crop(_snake_case , _snake_case ) for image in images] if do_rescale: __UpperCamelCase : Dict = [self.rescale(_snake_case , _snake_case ) for image in images] if do_normalize: __UpperCamelCase : List[Any] = [self.normalize(_snake_case , _snake_case , _snake_case ) for image in images] __UpperCamelCase : Dict = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __UpperCamelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
708
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _A ( UpperCAmelCase_ ): lowercase_ : Union[str, Any] = '''gpt_neox_japanese''' def __init__( self : Optional[Any] , lowerCamelCase__ : List[Any]=3_20_00 , lowerCamelCase__ : Any=25_60 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Union[str, Any]=32 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : str=1.00 , lowerCamelCase__ : str=1_00_00 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : List[Any]=1e-5 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=3_19_96 , lowerCamelCase__ : Optional[Any]=3_19_99 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : List[Any]=0.0 , **lowerCamelCase__ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : List[Any] = max_position_embeddings __UpperCamelCase : Dict = hidden_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : List[Any] = num_attention_heads __UpperCamelCase : List[str] = intermediate_multiple_size __UpperCamelCase : List[str] = hidden_act __UpperCamelCase : str = rotary_pct __UpperCamelCase : Optional[int] = rotary_emb_base __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : Union[str, Any] = layer_norm_eps __UpperCamelCase : Optional[int] = use_cache __UpperCamelCase : Optional[int] = attention_dropout __UpperCamelCase : int = hidden_dropout
515
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A__ : def __init__( self , UpperCamelCase__ , ) -> Dict: '''simple docstring''' A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = 99 A_ = 32 A_ = 2 A_ = 4 A_ = 37 A_ = """gelu""" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = None def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.prepare_config_and_inputs() A_ = True A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = TFEsmModel(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A_ = model(UpperCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' A_ = True A_ = TFEsmModel(config=UpperCamelCase__ ) A_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } A_ = model(UpperCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ) # Also check the case where encoder outputs are not passed A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = TFEsmForMaskedLM(config=UpperCamelCase__ ) A_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.num_labels A_ = TFEsmForTokenClassification(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowercase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = TFEsmModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFEsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A_ = model.get_bias() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for k, v in name.items(): assert isinstance(UpperCamelCase__ , tf.Variable ) else: A_ = model.get_output_embeddings() assert x is None A_ = model.get_bias() assert name is None @require_tf class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCamelCase__ )[0] A_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase__ ) # compare the actual values for a slice. A_ = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) A_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A_ = model(UpperCamelCase__ )[0] # compare the actual values for a slice. A_ = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
288
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=12 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=0 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = projection_dim A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = dropout A_ = attention_dropout A_ = max_position_embeddings A_ = initializer_range A_ = scope A_ = bos_token_id def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A_ = input_mask.numpy() A_ , A_ = input_mask.shape A_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase__ ): A_ = 1 A_ = 0 A_ = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = TFBlipTextModel(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , training=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( _snake_case , unittest.TestCase ): lowercase = (TFBlipTextModel,) if is_tf_available() else () lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = BlipTextModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFBlipTextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=True ) -> str: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase__ )
288
1
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A = True except ImportError: A = False try: from torch.hub import _get_torch_home A = _get_torch_home() except ImportError: A = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) A = os.path.join(torch_cache_home, '''transformers''') A = '''https://cdn.huggingface.co''' A = '''https://s3.amazonaws.com/models.huggingface.co/bert''' A = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) A = os.path.join(PATH, '''config.yaml''') A = os.path.join(PATH, '''attributes.txt''') A = os.path.join(PATH, '''objects.txt''') A = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) A = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) A = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) A = '''pytorch_model.bin''' A = '''config.yaml''' def __A ( a_ :int=OBJECTS , a_ :str=ATTRIBUTES) -> Any: __a : Dict = [] with open(a_) as f: for object in f.readlines(): vg_classes.append(object.split(''',''')[0].lower().strip()) __a : List[Any] = [] with open(a_) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''')[0].lower().strip()) return vg_classes, vg_attrs def __A ( a_ :Union[str, Any]) -> Any: __a : List[str] = OrderedDict() with open(a_ , '''rb''') as f: __a : Optional[int] = pkl.load(a_)['''model'''] for k in copy.deepcopy(list(ckp.keys())): __a : str = ckp.pop(a_) if isinstance(a_ , np.ndarray): __a : List[str] = torch.tensor(a_) else: assert isinstance(a_ , torch.tensor), type(a_) __a : int = v return r class __lowercase : '''simple docstring''' __lowerCAmelCase = {} def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "root" , _UpperCAmelCase=0 ): __a : Tuple = name __a : Dict = level __a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() __a : Optional[int] = copy.deepcopy(_UpperCAmelCase ) __a : str = copy.deepcopy(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = Config(_UpperCAmelCase , name=_UpperCAmelCase , level=level + 1 ) __a : int = v setattr(self , _UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = val __a : Optional[Any] = val __a : List[str] = key.split('''.''' ) __a : Union[str, Any] = len(_UpperCAmelCase ) - 1 __a : Any = self._pointer if len(_UpperCAmelCase ) > 1: for i, l in enumerate(_UpperCAmelCase ): if hasattr(self , _UpperCAmelCase ) and isinstance(getattr(self , _UpperCAmelCase ) , _UpperCAmelCase ): setattr(getattr(self , _UpperCAmelCase ) , '''.'''.join(levels[i:] ) , _UpperCAmelCase ) if l == last_level: __a : str = val else: __a : Any = pointer[l] def _lowerCamelCase ( self ): return self._pointer def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): with open(f"""{file_name}""" , '''w''' ) as stream: dump(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): with open(f"""{file_name}""" , '''w''' ) as stream: json.dump(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase ): with open(_UpperCAmelCase ) as stream: __a : int = load(_UpperCAmelCase , Loader=_UpperCAmelCase ) return data def __str__( self ): __a : Tuple = ''' ''' if self._name != "root": __a : Union[str, Any] = f"""{t * (self._level-1)}{self._name}:\n""" else: __a : Optional[Any] = '''''' __a : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(_UpperCAmelCase ).__name__})\n""" __a : Any = level return r[:-1] @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) return cls(_UpperCAmelCase ) @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): __a : Dict = kwargs.pop('''cache_dir''' , _UpperCAmelCase ) __a : int = kwargs.pop('''force_download''' , _UpperCAmelCase ) __a : Tuple = kwargs.pop('''resume_download''' , _UpperCAmelCase ) __a : Dict = kwargs.pop('''proxies''' , _UpperCAmelCase ) __a : Tuple = kwargs.pop('''local_files_only''' , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): __a : List[str] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif os.path.isfile(_UpperCAmelCase ) or is_remote_url(_UpperCAmelCase ): __a : Optional[int] = pretrained_model_name_or_path else: __a : List[str] = hf_bucket_url(_UpperCAmelCase , filename=_UpperCAmelCase , use_cdn=_UpperCAmelCase ) try: # Load from URL or cache if already cached __a : List[str] = cached_path( _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __a : Tuple = Config.load_yaml(_UpperCAmelCase ) except EnvironmentError: __a : Tuple = '''Can\'t load config for''' raise EnvironmentError(_UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_UpperCAmelCase ), kwargs def __A ( a_ :Any) -> Union[str, Any]: __a : Optional[int] = torch.load('''dump.pt''' , map_location=in_tensor.device) __a : List[str] = in_tensor.numpy() __a : List[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5]) print(na.shape , na[0, 0, :5]) assert np.allclose(a_ , a_ , rtol=0.0_1 , atol=0.1), ( F"""{sum([1 for x in np.isclose(a_ , a_ , rtol=0.0_1 , atol=0.1).flatten() if x is False])/len(na.flatten())*1_00:.4f} %""" " element-wise mismatch" ) raise Exception('''tensors are all good''') # Hugging face functions below def __A ( a_ :List[Any]) -> List[Any]: __a : List[str] = urlparse(a_) return parsed.scheme in ("http", "https") def __A ( a_ :str , a_ :str , a_ :str=True) -> str: __a : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __a : Optional[int] = '''/''' not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def __A ( a_ :Optional[Any] , a_ :Optional[Any] , a_ :List[str]=None , a_ :Optional[Any]=0 , a_ :Optional[Any]=None , ) -> int: __a : List[str] = '''python/{}'''.format(sys.version.split()[0]) if _torch_available: ua += "; torch/{}".format(torch.__version__) if isinstance(a_ , a_): ua += "; " + "; ".join('''{}/{}'''.format(a_ , a_) for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent __a : Optional[Any] = {'''user-agent''': ua} if resume_size > 0: __a : Dict = '''bytes=%d-''' % (resume_size,) __a : Dict = requests.get(a_ , stream=a_ , proxies=a_ , headers=a_) if response.status_code == 4_16: # Range not satisfiable return __a : Tuple = response.headers.get('''Content-Length''') __a : Dict = resume_size + int(a_) if content_length is not None else None __a : Optional[int] = tqdm( unit='''B''' , unit_scale=a_ , total=a_ , initial=a_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=10_24): if chunk: # filter out keep-alive new chunks progress.update(len(a_)) temp_file.write(a_) progress.close() def __A ( a_ :Dict , a_ :Tuple=None , a_ :Optional[Any]=False , a_ :List[Any]=None , a_ :Union[str, Any]=10 , a_ :Union[str, Any]=False , a_ :List[Any]=None , a_ :Dict=False , ) -> Any: if cache_dir is None: __a : int = TRANSFORMERS_CACHE if isinstance(a_ , a_): __a : List[str] = str(a_) os.makedirs(a_ , exist_ok=a_) __a : List[str] = None if not local_files_only: try: __a : int = requests.head(a_ , allow_redirects=a_ , proxies=a_ , timeout=a_) if response.status_code == 2_00: __a : Any = response.headers.get('''ETag''') except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __a : Any = url_to_filename(a_ , a_) # get cache path to put the file __a : Tuple = os.path.join(a_ , a_) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(a_): return cache_path else: __a : Tuple = [ file for file in fnmatch.filter(os.listdir(a_) , filename + '''.*''') if not file.endswith('''.json''') and not file.endswith('''.lock''') ] if len(a_) > 0: return os.path.join(a_ , matching_files[-1]) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''') return None # From now on, etag is not None. if os.path.exists(a_) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __a : Dict = cache_path + '''.lock''' with FileLock(a_): # If the download just completed while the lock was activated. if os.path.exists(a_) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __a : Optional[int] = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(a_ , '''a+b''') as f: yield f __a : Optional[int] = _resumable_file_manager if os.path.exists(a_): __a : Optional[int] = os.stat(a_).st_size else: __a : Any = 0 else: __a : List[str] = partial(tempfile.NamedTemporaryFile , dir=a_ , delete=a_) __a : int = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , a_ , temp_file.name , ) http_get( a_ , a_ , proxies=a_ , resume_size=a_ , user_agent=a_ , ) os.replace(temp_file.name , a_) __a : Dict = {'''url''': url, '''etag''': etag} __a : Optional[Any] = cache_path + '''.json''' with open(a_ , '''w''') as meta_file: json.dump(a_ , a_) return cache_path def __A ( a_ :Union[str, Any] , a_ :List[str]=None) -> Any: __a : Union[str, Any] = url.encode('''utf-8''') __a : Tuple = shaaaa(a_) __a : Optional[Any] = url_hash.hexdigest() if etag: __a : Optional[Any] = etag.encode('''utf-8''') __a : Tuple = shaaaa(a_) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5'''): filename += ".h5" return filename def __A ( a_ :Optional[Any] , a_ :Optional[int]=None , a_ :Tuple=False , a_ :Optional[int]=None , a_ :Union[str, Any]=False , a_ :Tuple=None , a_ :List[Any]=False , a_ :str=False , a_ :List[Any]=False , ) -> Any: if cache_dir is None: __a : Dict = TRANSFORMERS_CACHE if isinstance(a_ , a_): __a : int = str(a_) if isinstance(a_ , a_): __a : List[Any] = str(a_) if is_remote_url(a_): # URL, so get it from the cache (downloading if necessary) __a : List[str] = get_from_cache( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , user_agent=a_ , local_files_only=a_ , ) elif os.path.exists(a_): # File, and it exists. __a : Any = url_or_filename elif urlparse(a_).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(a_)) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(a_)) if extract_compressed_file: if not is_zipfile(a_) and not tarfile.is_tarfile(a_): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __a : List[str] = os.path.split(a_) __a : Optional[Any] = output_file.replace('''.''' , '''-''') + '''-extracted''' __a : Optional[int] = os.path.join(a_ , a_) if os.path.isdir(a_) and os.listdir(a_) and not force_extract: return output_path_extracted # Prevent parallel extractions __a : List[str] = output_path + '''.lock''' with FileLock(a_): shutil.rmtree(a_ , ignore_errors=a_) os.makedirs(a_) if is_zipfile(a_): with ZipFile(a_ , '''r''') as zip_file: zip_file.extractall(a_) zip_file.close() elif tarfile.is_tarfile(a_): __a : Dict = tarfile.open(a_) tar_file.extractall(a_) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(a_)) return output_path_extracted return output_path def __A ( a_ :Tuple , a_ :Optional[int]=",") -> Optional[Any]: assert isinstance(a_ , a_) if os.path.isfile(a_): with open(a_) as f: __a : Any = eval(f.read()) else: __a : Tuple = requests.get(a_) try: __a : int = requests.json() except Exception: __a : Optional[Any] = req.content.decode() assert data is not None, "could not connect" try: __a : Optional[int] = eval(a_) except Exception: __a : Any = data.split('''\n''') req.close() return data def __A ( a_ :List[str]) -> str: __a : List[Any] = requests.get(a_) __a : Tuple = np.array(Image.open(BytesIO(response.content))) return img def __A ( a_ :Dict) -> Dict: __a : List[Any] = url.split('''/''')[-1] if fn not in os.listdir(os.getcwd()): wget.download(a_) with open(a_ , '''rb''') as stream: __a : Optional[int] = pkl.load(a_) __a : Optional[int] = weights.pop('''model''') __a : Dict = {} for k, v in model.items(): __a : str = torch.from_numpy(a_) if "running_var" in k: __a : List[Any] = torch.tensor([0]) __a : Optional[Any] = k.replace('''running_var''' , '''num_batches_tracked''') __a : str = zero return new def __A ( ) -> int: print(F"""{os.path.abspath(os.path.join(a_ , os.pardir))}/demo.ipynb""") def __A ( a_ :Optional[int] , a_ :List[Any]="RGB") -> str: assert isinstance(a_ , a_) if os.path.isfile(a_): __a : str = cva.imread(a_) else: __a : Dict = get_image_from_url(a_) assert img is not None, F"""could not connect to: {im}""" __a : Tuple = cva.cvtColor(a_ , cva.COLOR_BGR2RGB) if input_format == "RGB": __a : Dict = img[:, :, ::-1] return img def __A ( a_ :Optional[int] , a_ :str=1) -> List[str]: return (images[i : i + batch] for i in range(0 , len(a_) , a_))
711
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''autoformer''' __lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "student_t" , _UpperCAmelCase = "nll" , _UpperCAmelCase = 1 , _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] , _UpperCAmelCase = True , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 64 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 32 , _UpperCAmelCase = 32 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 100 , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = True , _UpperCAmelCase=True , _UpperCAmelCase = 10 , _UpperCAmelCase = 25 , _UpperCAmelCase = 3 , **_UpperCAmelCase , ): # time series specific configuration __a : Optional[int] = prediction_length __a : Optional[int] = context_length if context_length is not None else prediction_length __a : Union[str, Any] = distribution_output __a : str = loss __a : Optional[Any] = input_size __a : str = num_time_features __a : Optional[Any] = lags_sequence __a : Any = scaling __a : Optional[Any] = num_dynamic_real_features __a : str = num_static_real_features __a : Any = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a : List[str] = cardinality else: __a : Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a : Any = embedding_dimension else: __a : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a : Union[str, Any] = num_parallel_samples # Transformer architecture configuration __a : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features __a : List[Any] = d_model __a : List[str] = encoder_attention_heads __a : Union[str, Any] = decoder_attention_heads __a : Optional[int] = encoder_ffn_dim __a : List[str] = decoder_ffn_dim __a : List[str] = encoder_layers __a : Optional[int] = decoder_layers __a : Union[str, Any] = dropout __a : Union[str, Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : List[str] = encoder_layerdrop __a : Any = decoder_layerdrop __a : Union[str, Any] = activation_function __a : Union[str, Any] = init_std __a : List[str] = use_cache # Autoformer __a : int = label_length __a : List[Any] = moving_average __a : str = autocorrelation_factor super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
101
0
from math import ceil def _UpperCamelCase (a__ :Dict , a__ :int ): """simple docstring""" UpperCamelCase__ = list(range(0 , lowerCAmelCase__ ) ) UpperCamelCase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase__ ) # Missing blocks UpperCamelCase__ = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(lowerCAmelCase__ ) ) def _UpperCamelCase (a__ :Optional[int] , a__ :List[str] ): """simple docstring""" UpperCamelCase__ = list(range(lowerCAmelCase__ ) ) UpperCamelCase__ = int(ceil(n_layers / len(lowerCAmelCase__ ) ) ) UpperCamelCase__ = [layers[i : i + n_blocks] for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ )] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) )
619
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __UpperCAmelCase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase__ ( ) -> Any: '''simple docstring''' a__ : Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) a__ : Any = bs[:] a__ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 a__ : Tuple = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowercase__ ( lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' a__ : Tuple = set() a__ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ : Tuple = char return pairs class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self : str , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : int="replace" , a_ : Optional[Any]="<s>" , a_ : Optional[Any]="</s>" , a_ : Any="</s>" , a_ : Dict="<s>" , a_ : Optional[int]="<unk>" , a_ : Optional[int]="<pad>" , a_ : Any="<mask>" , a_ : Optional[Any]=False , **a_ : str , ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else bos_token a__ : Any = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token a__ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else sep_token a__ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else cls_token a__ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token a__ : Tuple = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : Dict = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( errors=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , **a_ , ) with open(a_ , encoding="utf-8" ) as vocab_handle: a__ : List[Any] = json.load(a_ ) a__ : str = {v: k for k, v in self.encoder.items()} a__ : int = errors # how to handle errors in decoding a__ : int = bytes_to_unicode() a__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(a_ , encoding="utf-8" ) as merges_handle: a__ : Dict = merges_handle.read().split("\n" )[1:-1] a__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] a__ : str = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : Tuple = {} a__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self : Dict , a_ : str ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] a__ : List[str] = tuple(a_ ) a__ : Dict = get_pairs(a_ ) if not pairs: return token while True: a__ : Dict = min(a_ , key=lambda a_ : self.bpe_ranks.get(a_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : List[Any] = bigram a__ : int = [] a__ : List[Any] = 0 while i < len(a_ ): try: a__ : List[str] = word.index(a_ , a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : Dict = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : List[Any] = tuple(a_ ) a__ : str = new_word if len(a_ ) == 1: break else: a__ : Optional[int] = get_pairs(a_ ) a__ : Union[str, Any] = " ".join(a_ ) a__ : str = word return word def UpperCAmelCase ( self : Optional[int] , a_ : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ : List[Any] = [] for token in re.findall(self.pat , a_ ): a__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a_ ).split(" " ) ) return bpe_tokens def UpperCAmelCase ( self : Union[str, Any] , a_ : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self : Optional[Any] , a_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.decoder.get(a_ ) def UpperCAmelCase ( self : str , a_ : List[Any] ) -> Optional[int]: '''simple docstring''' a__ : str = "".join(a_ ) a__ : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def UpperCAmelCase ( self : Any , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__ : Dict = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a__ : List[str] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a_ , ensure_ascii=a_ ) + "\n" ) a__ : Dict = 0 with open(a_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) a__ : Optional[Any] = token_index writer.write(" ".join(a_ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def UpperCAmelCase ( self : Optional[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self : Any , a_ : Optional[Any] , a_ : Union[str, Any]=False , **a_ : Dict ) -> Dict: '''simple docstring''' a__ : int = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a_ ) > 0 and not text[0].isspace()): a__ : int = " " + text return (text, kwargs) def UpperCAmelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> Optional[int]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : str , a_ : "Conversation" ) -> List[int]: '''simple docstring''' a__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) a__ : Dict = " ".join(a_ ) a__ : List[str] = self.encode(a_ ) if len(a_ ) > self.model_max_length: a__ : Union[str, Any] = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
642
0
'''simple docstring''' def A ( A_ : int = 600851475143 ): try: snake_case : Dict = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) snake_case : Tuple = 2 snake_case : List[str] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case : str = i while n % i == 0: snake_case : str = n // i i += 1 return int(_lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
706
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
555
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'facebook/bart-large-mnli' __lowerCamelCase = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __lowerCamelCase = 'text_classifier' __lowerCamelCase = AutoTokenizer __lowerCamelCase = AutoModelForSequenceClassification __lowerCamelCase = ['text', ['text']] __lowerCamelCase = ['text'] def __UpperCAmelCase ( self ): super().setup() UpperCAmelCase__ : Optional[Any] = self.model.config UpperCAmelCase__ : Tuple = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCAmelCase__ : Dict = int(_lowerCAmelCase ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : List[Any] = labels return self.pre_processor( [text] * len(_lowerCAmelCase ) , [f"This example is {label}" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : str = outputs.logits UpperCAmelCase__ : List[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
79
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a : Optional[int] = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = R"\w+[.]\d+" UpperCAmelCase : Dict = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: UpperCAmelCase : Tuple = key.replace(__magic_name__ , "_".join(pat.split("." ) ) ) return key def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=42 ): '''simple docstring''' UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase : Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) ) UpperCAmelCase : Optional[Any] = flatten_dict(__magic_name__ ) UpperCAmelCase : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Tuple = rename_key(__magic_name__ ) UpperCAmelCase : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCAmelCase : Optional[int] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
679
0
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : list ): '''simple docstring''' lowercase__ = set_counts lowercase__ = max(lowerCamelCase ) lowercase__ = len(lowerCamelCase ) lowercase__ = [1] * num_sets lowercase__ = list(range(lowerCamelCase ) ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.get_parent(lowerCamelCase ) lowercase__ = self.get_parent(lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase__ = 0 lowercase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase__ = 0 lowercase__ = src_parent lowercase__ = self.set_counts[src_parent] lowercase__ = max(self.max_set, lowerCamelCase ) return True def lowercase__ ( self : Any, lowerCamelCase : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : int = "convnextv2" def __init__( self, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = num_channels UpperCamelCase : str = patch_size UpperCamelCase : Tuple = num_stages UpperCamelCase : Optional[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase : Optional[Any] = [3, 3, 9, 3] if depths is None else depths UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Any = initializer_range UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : Optional[Any] = drop_path_rate UpperCamelCase : int = image_size UpperCamelCase : Optional[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1, len(self.depths ) + 1 )] UpperCamelCase , UpperCamelCase : int = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_, out_indices=SCREAMING_SNAKE_CASE_, stage_names=self.stage_names )
40
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self : Dict , _A : int = 16 , _A : int = 88 , _A : Optional[int] = None , _A : Optional[int] = None , _A : int = 1 , _A : float = 0.0 , _A : int = 32 , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : str = "geglu" , _A : bool = True , _A : bool = True , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = attention_head_dim __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads * attention_head_dim __SCREAMING_SNAKE_CASE : Tuple = in_channels __SCREAMING_SNAKE_CASE : str = torch.nn.GroupNorm(num_groups=_A , num_channels=_A , eps=1e-6 , affine=_A ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(_A , _A ) # 3. Define transformers blocks __SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A , _A , _A , dropout=_A , cross_attention_dim=_A , activation_fn=_A , attention_bias=_A , double_self_attention=_A , norm_elementwise_affine=_A , ) for d in range(_A ) ] ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(_A , _A ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : int=None , _A : Tuple=None , _A : Dict=None , _A : List[Any]=1 , _A : Union[str, Any]=None , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = hidden_states.shape __SCREAMING_SNAKE_CASE : Any = batch_frames // num_frames __SCREAMING_SNAKE_CASE : Dict = hidden_states __SCREAMING_SNAKE_CASE : str = hidden_states[None, :].reshape(_A , _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.norm(_A ) __SCREAMING_SNAKE_CASE : List[str] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = self.proj_in(_A ) # 2. Blocks for block in self.transformer_blocks: __SCREAMING_SNAKE_CASE : Optional[Any] = block( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , class_labels=_A , ) # 3. Output __SCREAMING_SNAKE_CASE : Any = self.proj_out(_A ) __SCREAMING_SNAKE_CASE : List[str] = ( hidden_states[None, None, :] .reshape(_A , _A , _A , _A , _A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.reshape(_A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_A )
74
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase =logging.getLogger() def __UpperCamelCase ( _lowerCAmelCase : Path , _lowerCAmelCase : list ): """simple docstring""" UpperCAmelCase = "\n".join(_lowerCAmelCase ) Path(_lowerCAmelCase ).open("w" ).writelines(_lowerCAmelCase ) __lowerCAmelCase ="patrickvonplaten/t5-tiny-random" __lowerCAmelCase ="sshleifer/bart-tiny-random" __lowerCAmelCase ="sshleifer/tiny-mbart" __lowerCAmelCase =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __magic_name__ ( lowercase_): def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : Any ): UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" UpperCAmelCase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() UpperCAmelCase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(UpperCamelCase__ ,UpperCamelCase__ ) UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) UpperCAmelCase = "translation_en_to_de" if model == T5_TINY else "summarization" UpperCAmelCase = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(UpperCamelCase__ ,"argv" ,UpperCamelCase__ ): run_generate() assert Path(UpperCamelCase__ ).exists() # os.remove(Path(output_file_name)) def _UpperCAmelCase ( self : Optional[Any] ): self.run_eval_tester(UpperCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _UpperCAmelCase ( self : Any ,__SCREAMING_SNAKE_CASE : Tuple ): self.run_eval_tester(UpperCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _UpperCAmelCase ( self : Any ,__SCREAMING_SNAKE_CASE : Any ): UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" UpperCAmelCase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() UpperCAmelCase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) UpperCAmelCase = str(tmp_dir / "scores.json" ) UpperCAmelCase = str(tmp_dir / "val.target" ) _dump_articles(UpperCamelCase__ ,text["en"] ) _dump_articles(UpperCamelCase__ ,text["de"] ) UpperCAmelCase = "translation_en_to_de" if model == T5_TINY else "summarization" UpperCAmelCase = f''' run_eval_search.py {model} {str(UpperCamelCase__ )} {str(UpperCamelCase__ )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(UpperCamelCase__ ,"argv" ,UpperCamelCase__ ): with CaptureStdout() as cs: run_search() UpperCAmelCase = [" num_beams | length_penalty", model, "Best score args"] UpperCAmelCase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(UpperCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(UpperCamelCase__ ).exists() os.remove(Path(UpperCamelCase__ ) )
711
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __lowerCAmelCase =logging.getLogger(__name__) def __UpperCamelCase ( _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=16 , _lowerCAmelCase = 10 , _lowerCAmelCase = 2 ): """simple docstring""" def get_dataset(_lowerCAmelCase ): UpperCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase = get_dataset(_lowerCAmelCase ) UpperCAmelCase = get_dataset(_lowerCAmelCase ) UpperCAmelCase = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) UpperCAmelCase = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" UpperCAmelCase = [] for epoch in range(_lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase , UpperCAmelCase = batch UpperCAmelCase = model(_lowerCAmelCase ) UpperCAmelCase = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) accelerator.backward(_lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __magic_name__ ( nn.Module): def __init__( self : Any ): super().__init__() UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) def _UpperCAmelCase ( self : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): return x * self.a + self.b class __magic_name__ ( unittest.TestCase): def _UpperCAmelCase ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(total_limit=1 ,project_dir=__SCREAMING_SNAKE_CASE ,automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase = Accelerator(project_config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def _UpperCAmelCase ( self : str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() # Train baseline UpperCAmelCase = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Save initial UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE ,"initial" ) accelerator.save_state(__SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() UpperCAmelCase = train(3 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) accelerator.load_state(__SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = train(2 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Save everything UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoint" ) accelerator.save_state(__SCREAMING_SNAKE_CASE ) # Load everything back in and make sure all states work accelerator.load_state(__SCREAMING_SNAKE_CASE ) test_rands += train(1 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase = Accelerator(project_dir=__SCREAMING_SNAKE_CASE ,project_config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() UpperCAmelCase = train(3 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = Accelerator(project_dir=__SCREAMING_SNAKE_CASE ,project_config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) accelerator.load_state(os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoints" ,"checkpoint_0" ) ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = train(2 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoints" ,"checkpoint_1" ) ) test_rands += train(1 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[int] ): UpperCAmelCase = torch.tensor([1, 2, 3] ) UpperCAmelCase = torch.tensor([2, 3, 4] ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(net.parameters() ) UpperCAmelCase = Accelerator() with self.assertRaises(__SCREAMING_SNAKE_CASE ) as ve: accelerator.register_for_checkpointing(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def _UpperCAmelCase ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase = torch.optim.lr_scheduler.StepLR(__SCREAMING_SNAKE_CASE ,step_size=1 ,gamma=0.99 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase = Accelerator(project_dir=__SCREAMING_SNAKE_CASE ,project_config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() UpperCAmelCase = scheduler.state_dict() train(3 ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertNotEqual(__SCREAMING_SNAKE_CASE ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoints" ,"checkpoint_0" ) ) self.assertEqual(__SCREAMING_SNAKE_CASE ,scheduler.state_dict() ) def _UpperCAmelCase ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__SCREAMING_SNAKE_CASE ,total_limit=2 ) # Train baseline UpperCAmelCase = Accelerator(project_dir=__SCREAMING_SNAKE_CASE ,project_config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = accelerator.prepare(__SCREAMING_SNAKE_CASE ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoints" ,"checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoints" ,"checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE ,"checkpoints" ,"checkpoint_10" ) ) ) @require_cuda def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__SCREAMING_SNAKE_CASE ,env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase ="/tmp/accelerate/state_checkpointing" __lowerCAmelCase =DummyModel() __lowerCAmelCase =torch.optim.Adam(params=model.parameters(), lr=1e-3) __lowerCAmelCase =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __lowerCAmelCase , __lowerCAmelCase =dummy_dataloaders() __lowerCAmelCase =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __lowerCAmelCase =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __lowerCAmelCase , __lowerCAmelCase =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __lowerCAmelCase =group["params"][0].device break assert param_device.type == accelerator.device.type __lowerCAmelCase =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: __lowerCAmelCase =group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: __lowerCAmelCase =group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
405
0
import numpy as np a__ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self : Optional[Any] ) -> None: """simple docstring""" __UpperCamelCase : Optional[Any] = np.array(lowerCAmelCase ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : str ) -> np.ndarray: """simple docstring""" __UpperCamelCase , __UpperCamelCase : int = np.where(letter == self.SQUARE ) __UpperCamelCase : Any = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : int ) -> str: """simple docstring""" __UpperCamelCase : List[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : str ) -> str: """simple docstring""" __UpperCamelCase : int = message.lower() __UpperCamelCase : Optional[int] = message.replace(""" """ , """""" ) __UpperCamelCase : List[str] = message.replace("""j""" , """i""" ) __UpperCamelCase : str = np.empty((2, len(lowerCAmelCase )) ) for letter_index in range(len(lowerCAmelCase ) ): __UpperCamelCase : Dict = self.letter_to_numbers(message[letter_index] ) __UpperCamelCase : Any = numbers[0] __UpperCamelCase : Optional[Any] = numbers[1] __UpperCamelCase : Any = first_step.reshape(2 * len(lowerCAmelCase ) ) __UpperCamelCase : Any = """""" for numbers_index in range(len(lowerCAmelCase ) ): __UpperCamelCase : Optional[Any] = int(second_step[numbers_index * 2] ) __UpperCamelCase : List[str] = int(second_step[(numbers_index * 2) + 1] ) __UpperCamelCase : Dict = self.numbers_to_letter(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : int = encoded_message + letter return encoded_message def lowerCamelCase__ ( self : str , lowerCAmelCase : str ) -> str: """simple docstring""" __UpperCamelCase : Dict = message.lower() message.replace(""" """ , """""" ) __UpperCamelCase : Dict = np.empty(2 * len(lowerCAmelCase ) ) for letter_index in range(len(lowerCAmelCase ) ): __UpperCamelCase : Union[str, Any] = self.letter_to_numbers(message[letter_index] ) __UpperCamelCase : str = numbers[0] __UpperCamelCase : Optional[Any] = numbers[1] __UpperCamelCase : Tuple = first_step.reshape((2, len(lowerCAmelCase )) ) __UpperCamelCase : Union[str, Any] = """""" for numbers_index in range(len(lowerCAmelCase ) ): __UpperCamelCase : Tuple = int(second_step[0, numbers_index] ) __UpperCamelCase : Union[str, Any] = int(second_step[1, numbers_index] ) __UpperCamelCase : Dict = self.numbers_to_letter(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : Tuple = decoded_message + letter return decoded_message
279
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def A__ (snake_case : Tuple ) -> Dict: __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = os.path.join(snake_case , """all_results.json""" ) if os.path.exists(snake_case ): with open(snake_case , """r""" ) as f: __UpperCamelCase : List[Any] = json.load(snake_case ) else: raise ValueError(F'''can\'t find {path}''' ) return results a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ) -> Dict: """simple docstring""" import xla_spawn __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): __UpperCamelCase : Union[str, Any] = time() xla_spawn.main() __UpperCamelCase : List[str] = time() __UpperCamelCase : Optional[int] = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" import xla_spawn __UpperCamelCase : List[Any] = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): xla_spawn.main()
279
1
def UpperCamelCase_ ( A__ : int , A__ : float , A__ : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def UpperCamelCase_ ( A__ : float , A__ : float , A__ : float ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (volume) ) ) def UpperCamelCase_ ( A__ : float , A__ : float , A__ : float ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def UpperCamelCase_ ( A__ : float , A__ : float , A__ : float ): '''simple docstring''' return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : str = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'autoformer' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[str] , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "student_t" , lowerCamelCase : str = "nll" , lowerCamelCase : int = 1 , lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase : bool = True , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : int = 64 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 32 , lowerCamelCase : int = 32 , lowerCamelCase : str = "gelu" , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : int = 1_00 , lowerCamelCase : float = 0.02 , lowerCamelCase : bool = True , lowerCamelCase : Optional[int]=True , lowerCamelCase : int = 10 , lowerCamelCase : int = 25 , lowerCamelCase : int = 3 , **lowerCamelCase : Dict , ) -> List[Any]: # time series specific configuration lowerCAmelCase_ : str = prediction_length lowerCAmelCase_ : str = context_length if context_length is not None else prediction_length lowerCAmelCase_ : List[Any] = distribution_output lowerCAmelCase_ : Optional[Any] = loss lowerCAmelCase_ : List[str] = input_size lowerCAmelCase_ : Optional[int] = num_time_features lowerCAmelCase_ : List[Any] = lags_sequence lowerCAmelCase_ : str = scaling lowerCAmelCase_ : Optional[Any] = num_dynamic_real_features lowerCAmelCase_ : str = num_static_real_features lowerCAmelCase_ : Dict = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase_ : Union[str, Any] = cardinality else: lowerCAmelCase_ : int = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase_ : Optional[int] = embedding_dimension else: lowerCAmelCase_ : Any = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase_ : List[str] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase_ : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase_ : List[str] = d_model lowerCAmelCase_ : Optional[int] = encoder_attention_heads lowerCAmelCase_ : List[str] = decoder_attention_heads lowerCAmelCase_ : Union[str, Any] = encoder_ffn_dim lowerCAmelCase_ : List[Any] = decoder_ffn_dim lowerCAmelCase_ : Dict = encoder_layers lowerCAmelCase_ : int = decoder_layers lowerCAmelCase_ : Tuple = dropout lowerCAmelCase_ : Optional[Any] = attention_dropout lowerCAmelCase_ : str = activation_dropout lowerCAmelCase_ : List[Any] = encoder_layerdrop lowerCAmelCase_ : Union[str, Any] = decoder_layerdrop lowerCAmelCase_ : Optional[int] = activation_function lowerCAmelCase_ : Union[str, Any] = init_std lowerCAmelCase_ : Union[str, Any] = use_cache # Autoformer lowerCAmelCase_ : Optional[Any] = label_length lowerCAmelCase_ : List[Any] = moving_average lowerCAmelCase_ : List[str] = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def __lowercase ( self : Union[str, Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
398
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): __UpperCAmelCase = True from torch.cuda.amp import autocast __UpperCAmelCase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ : List[str]=None , snake_case__ : List[str]=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase__ : Optional[bool] = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) UpperCAmelCase__ : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) UpperCAmelCase__ : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) UpperCAmelCase__ : bool = field( default=a__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) UpperCAmelCase__ : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : WavaVecaProcessor UpperCAmelCase__ : Union[bool, str] = True UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None def __call__( self, SCREAMING_SNAKE_CASE_ ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods UpperCamelCase : Any = [{'input_values': feature['input_values']} for feature in features] UpperCamelCase : int = [{'input_ids': feature['labels']} for feature in features] UpperCamelCase : Dict = self.processor.pad( SCREAMING_SNAKE_CASE_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='pt', ) UpperCamelCase : Optional[int] = self.processor.pad( labels=SCREAMING_SNAKE_CASE_, padding=self.padding, max_length=self.max_length_labels, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors='pt', ) # replace padding with -100 to ignore loss correctly UpperCamelCase : Optional[int] = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ), -100 ) UpperCamelCase : Dict = labels return batch class lowerCAmelCase_ ( a__ ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: model.train() UpperCamelCase : Optional[Any] = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) if self.use_amp: with autocast(): UpperCamelCase : str = self.compute_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = self.compute_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": UpperCamelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCamelCase : Optional[int] = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: UpperCamelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE_ ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE_, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE_ ) else: loss.backward() return loss.detach() def UpperCamelCase ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCamelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: UpperCamelCase : Optional[int] = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) UpperCamelCase : str = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer UpperCamelCase : List[Any] = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(snake_case__ : Union[str, Any] ): UpperCamelCase : str = re.sub(snake_case__ , '' , batch['sentence'] ).lower() + ' ' return batch UpperCamelCase : List[Any] = train_dataset.map(snake_case__ , remove_columns=['sentence'] ) UpperCamelCase : Dict = eval_dataset.map(snake_case__ , remove_columns=['sentence'] ) def extract_all_chars(snake_case__ : Dict ): UpperCamelCase : Union[str, Any] = ' '.join(batch['text'] ) UpperCamelCase : List[str] = list(set(snake_case__ ) ) return {"vocab": [vocab], "all_text": [all_text]} UpperCamelCase : Any = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=train_dataset.column_names , ) UpperCamelCase : List[Any] = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=eval_dataset.column_names , ) UpperCamelCase : Tuple = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) UpperCamelCase : Optional[Any] = {v: k for k, v in enumerate(snake_case__ )} UpperCamelCase : Optional[int] = vocab_dict[' '] del vocab_dict[" "] UpperCamelCase : Any = len(snake_case__ ) UpperCamelCase : Dict = len(snake_case__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(snake_case__ , snake_case__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : List[Any] = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) UpperCamelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ ) UpperCamelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : str = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: UpperCamelCase : Optional[Any] = min(len(snake_case__ ) , data_args.max_train_samples ) UpperCamelCase : Tuple = train_dataset.select(range(snake_case__ ) ) if data_args.max_val_samples is not None: UpperCamelCase : Union[str, Any] = eval_dataset.select(range(data_args.max_val_samples ) ) UpperCamelCase : int = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case__ : int ): UpperCamelCase , UpperCamelCase : Tuple = torchaudio.load(batch['path'] ) UpperCamelCase : Optional[Any] = resampler(snake_case__ ).squeeze().numpy() UpperCamelCase : Dict = 16000 UpperCamelCase : Optional[int] = batch['text'] return batch UpperCamelCase : Optional[int] = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : str = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case__ : Tuple ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" UpperCamelCase : Dict = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(snake_case__ ) return batch UpperCamelCase : int = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : Dict = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) # Metric UpperCamelCase : List[str] = datasets.load_metric('wer' ) def compute_metrics(snake_case__ : Union[str, Any] ): UpperCamelCase : str = pred.predictions UpperCamelCase : int = np.argmax(snake_case__ , axis=-1 ) UpperCamelCase : List[Any] = processor.tokenizer.pad_token_id UpperCamelCase : int = processor.batch_decode(snake_case__ ) # we do not want to group tokens when computing the metrics UpperCamelCase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=snake_case__ ) UpperCamelCase : Dict = wer_metric.compute(predictions=snake_case__ , references=snake_case__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator UpperCamelCase : Optional[int] = DataCollatorCTCWithPadding(processor=snake_case__ , padding=snake_case__ ) # Initialize our Trainer UpperCamelCase : Tuple = CTCTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , compute_metrics=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCamelCase : Dict = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): UpperCamelCase : List[str] = model_args.model_name_or_path else: UpperCamelCase : Union[str, Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) UpperCamelCase : Tuple = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() UpperCamelCase : Dict = train_result.metrics UpperCamelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) UpperCamelCase : Union[str, Any] = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('train' , snake_case__ ) trainer.save_metrics('train' , snake_case__ ) trainer.save_state() # Evaluation UpperCamelCase : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCamelCase : int = trainer.evaluate() UpperCamelCase : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case__ ) UpperCamelCase : Optional[Any] = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) return results if __name__ == "__main__": main()
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCamelCase : Optional[int] = logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **__UpperCAmelCase ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCamelCase = deprecated_arg[3:] setattr(self , __UpperCAmelCase , not kwargs.pop(__UpperCAmelCase ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) __UpperCamelCase = kwargs.pop('torchscript' , self.torchscript ) __UpperCamelCase = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __UpperCamelCase = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**__UpperCAmelCase ) lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Trace the models using torchscript"} ) lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) lowercase = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __UpperCamelCase = torch.device('cpu' ) __UpperCamelCase = 0 elif is_torch_tpu_available(): __UpperCamelCase = xm.xla_device() __UpperCamelCase = 0 else: __UpperCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase = torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase ( self ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def UpperCAmelCase ( self ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def UpperCAmelCase ( self ): '''simple docstring''' return self.n_gpu > 0
293
"""simple docstring""" def A ( snake_case :int ) -> bool: return str(snake_case ) == str(snake_case )[::-1] def A ( snake_case :int ) -> int: return int(snake_case ) + int(str(snake_case )[::-1] ) def A ( snake_case :int = 1_0_0_0_0 ) -> int: __UpperCamelCase = [] for num in range(1 , snake_case ): __UpperCamelCase = 0 __UpperCamelCase = num while iterations < 5_0: __UpperCamelCase = sum_reverse(snake_case ) iterations += 1 if is_palindrome(snake_case ): break else: lychrel_nums.append(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
293
1
from itertools import count def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int: """simple docstring""" A__ = [1] * min_block_length for n in count(lowercase_ ): fill_count_functions.append(1 ) for block_length in range(lowercase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(F'''{solution() = }''')
87
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , A : Tuple , A : int=7 , A : str=3 , A : List[Any]=30 , A : str=4_00 , A : Tuple=True , A : str=None , A : Tuple=True , A : List[str]=[0.5, 0.5, 0.5] , A : int=[0.5, 0.5, 0.5] , A : List[str]=True , A : List[str]=1 / 2_55 , A : List[Any]=True , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self : Tuple , A : int , A : int=False) -> Dict: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(A , Image.Image): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _UpperCAmelCase = max(A , key=lambda A: item[0])[0] _UpperCAmelCase = max(A , key=lambda A: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = DeformableDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self) @property def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A , 'image_mean')) self.assertTrue(hasattr(A , 'image_std')) self.assertTrue(hasattr(A , 'do_normalize')) self.assertTrue(hasattr(A , 'do_resize')) self.assertTrue(hasattr(A , 'do_rescale')) self.assertTrue(hasattr(A , 'do_pad')) self.assertTrue(hasattr(A , 'size')) def _lowerCamelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad , A) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , A) def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : List[str]) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A) for image in image_inputs: self.assertIsInstance(A , Image.Image) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A) for image in image_inputs: self.assertIsInstance(A , np.ndarray) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A) for image in image_inputs: self.assertIsInstance(A , torch.Tensor) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(A , return_tensors='pt').pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(A , batched=A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {'image_id': 3_97_69, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=A , annotations=A , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , A) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , A) _UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A)) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A)) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A)) @slow def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic') _UpperCAmelCase = image_processing(images=A , annotations=A , masks_path=A , return_tensors='pt') # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , A) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A , atol=1E-4)) # verify area _UpperCAmelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A)) # verify boxes _UpperCAmelCase = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , A) _UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A , atol=1E-3)) # verify image_id _UpperCAmelCase = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A)) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A)) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A)) # verify masks _UpperCAmelCase = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A) # verify orig_size _UpperCAmelCase = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A)) # verify size _UpperCAmelCase = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A))
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowerCamelCase = logging.getLogger(__name__) @dataclass class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCamelCase = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCamelCase = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''whether to use adafactor'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCamelCase = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCamelCase = field( default='''linear''' , metadata={'''help''': F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
82
'''simple docstring''' def snake_case ( a_ : list[int] , a_ : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(a_ ) == len(a_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Optional[int] = equationa UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[str] = equationa # Calculate the determinants of the matrices UpperCamelCase_ : Union[str, Any] = aa * ba - aa * ba UpperCamelCase_ : Dict = ca * ba - ca * ba UpperCamelCase_ : Dict = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCamelCase_ : List[Any] = determinant_x / determinant UpperCamelCase_ : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
208
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _snake_case ( ): """simple docstring""" print("Making key files..." ) make_key_files("rsa" , 1_0_2_4 ) print("Key files generation successful." ) def _snake_case ( lowerCAmelCase : int ): """simple docstring""" print("Generating prime p..." ) SCREAMING_SNAKE_CASE_ : Dict = rabinMiller.generate_large_prime(lowerCAmelCase ) print("Generating prime q..." ) SCREAMING_SNAKE_CASE_ : str = rabinMiller.generate_large_prime(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cryptoMath.find_mod_inverse(lowerCAmelCase , (p - 1) * (q - 1) ) SCREAMING_SNAKE_CASE_ : List[Any] = (n, e) SCREAMING_SNAKE_CASE_ : Optional[Any] = (n, d) return (public_key, private_key) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int ): """simple docstring""" if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print("\nWARNING:" ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' "Use a different name or delete these files and re-run this program." ) sys.exit() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = generate_key(lowerCAmelCase ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , "w" ) as out_file: out_file.write(f'{key_size},{public_key[0]},{public_key[1]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , "w" ) as out_file: out_file.write(f'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
316
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __lowerCamelCase : Tuple = TypeVar('''T''') class a__ ( Generic[T] ): def __init__( self : Optional[Any],_A : list[T],_A : Callable[[T, T], T] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any | T = None SCREAMING_SNAKE_CASE_ : int = len(_A ) SCREAMING_SNAKE_CASE_ : list[T] = [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE_ : List[str] = fnc self.build() def __UpperCamelCase ( self : Dict ): """simple docstring""" for p in range(self.N - 1,0,-1 ): SCREAMING_SNAKE_CASE_ : Dict = self.fn(self.st[p * 2],self.st[p * 2 + 1] ) def __UpperCamelCase ( self : Any,_A : int,_A : T ): """simple docstring""" p += self.N SCREAMING_SNAKE_CASE_ : Optional[int] = v while p > 1: SCREAMING_SNAKE_CASE_ : Tuple = p // 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.fn(self.st[p * 2],self.st[p * 2 + 1] ) def __UpperCamelCase ( self : Union[str, Any],_A : int,_A : int ): # noqa: E741 """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = l + self.N, r + self.N SCREAMING_SNAKE_CASE_ : T | None = None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE_ : Any = self.st[l] if res is None else self.fn(_A,self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE_ : Any = self.st[r] if res is None else self.fn(_A,self.st[r] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __lowerCamelCase : int = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __lowerCamelCase : Dict = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __lowerCamelCase : List[Any] = SegmentTree(test_array, min) __lowerCamelCase : Any = SegmentTree(test_array, max) __lowerCamelCase : str = SegmentTree(test_array, lambda a, b: a + b) def _snake_case ( ): """simple docstring""" for i in range(len(lowerCAmelCase ) ): for j in range(lowerCAmelCase , len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ : int = reduce(lowerCAmelCase , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE_ : List[Any] = reduce(lowerCAmelCase , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE_ : int = reduce(lambda lowerCAmelCase , lowerCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase , lowerCAmelCase ) assert max_range == max_segment_tree.query(lowerCAmelCase , lowerCAmelCase ) assert sum_range == sum_segment_tree.query(lowerCAmelCase , lowerCAmelCase ) test_all_segments() for index, value in test_updates.items(): __lowerCamelCase : Union[str, Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
316
1
'''simple docstring''' def __UpperCamelCase ( lowercase__ : list[int] ): '''simple docstring''' __lowercase =[] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): __lowercase =nums.pop(0 ) __lowercase =permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' def backtrack(lowercase__ : str ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__, len(lowercase__ ) ): __lowercase , __lowercase =nums[i], nums[start] backtrack(start + 1 ) __lowercase , __lowercase =nums[i], nums[start] # backtrack __lowercase =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
119
'''simple docstring''' from collections import defaultdict from math import gcd def __UpperCamelCase ( lowercase__ : int = 1_50_00_00 ): '''simple docstring''' __lowercase =defaultdict(lowercase__ ) __lowercase =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, lowercase__, 2 ): if gcd(lowercase__, lowercase__ ) > 1: continue __lowercase =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowercase__, limit + 1, lowercase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
119
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
184
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Tuple = LayoutLMTokenizer _lowercase : List[str] = LayoutLMTokenizerFast _lowercase : List[Any] = True _lowercase : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' super().setUp() __magic_name__ = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , **__UpperCamelCase: Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: List[str] ): '''simple docstring''' __magic_name__ = 'UNwant\u00E9d,running' __magic_name__ = 'unwanted, running' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__UpperCamelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' pass
184
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = credit_card_number _UpperCAmelCase = 0 _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit _UpperCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCAmelCase = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
602
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _a : """simple docstring""" def __init__( self : Any , __UpperCamelCase : List[Any] , )->Union[str, Any]: _UpperCAmelCase = parent _UpperCAmelCase = 1_3 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = 2 _UpperCAmelCase = 9_9 _UpperCAmelCase = 0 _UpperCAmelCase = 3_2 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 5_1_2 _UpperCAmelCase = 1_6 _UpperCAmelCase = 2 _UpperCAmelCase = 0.0_2 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = '''last''' _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = 0 def lowercase__ ( self : Tuple )->Union[str, Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) _UpperCAmelCase = None if self.use_input_lengths: _UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , )->Optional[Any]: _UpperCAmelCase = TFFlaubertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , )->Optional[Any]: _UpperCAmelCase = TFFlaubertWithLMHeadModel(__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , )->Optional[int]: _UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , )->Dict: _UpperCAmelCase = TFFlaubertForSequenceClassification(__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : List[str] , )->Optional[int]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFFlaubertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , )->int: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFFlaubertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase__ = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] )->Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : str )->Any: _UpperCAmelCase = TFFlaubertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=3_7 ) def lowercase__ ( self : Optional[int] )->Tuple: self.config_tester.run_common_tests() def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCamelCase ) @slow def lowercase__ ( self : int )->Any: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFFlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Any )->int: _UpperCAmelCase = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) _UpperCAmelCase = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = tf.TensorShape((1, 8, 5_1_2) ) self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice. _UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
602
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : str = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase( _a ): snake_case_ : List[Any] = """fnet""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : Dict=3_2_0_0_0 , SCREAMING_SNAKE_CASE : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE : Any=3_0_7_2 , SCREAMING_SNAKE_CASE : Tuple="gelu_new" , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Dict=5_1_2 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : Tuple=0.02 , SCREAMING_SNAKE_CASE : Optional[Any]=1e-1_2 , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : int=5_1_2 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : Optional[int]=2 , **SCREAMING_SNAKE_CASE : List[Any] , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = initializer_range __snake_case = type_vocab_size __snake_case = layer_norm_eps __snake_case = use_tpu_fourier_optimizations __snake_case = tpu_short_seq_length
473
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Tuple = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class UpperCamelCase( _a ): snake_case_ : List[Any] = """data2vec-vision""" def __init__( self : Any , SCREAMING_SNAKE_CASE : List[str]=7_6_8 , SCREAMING_SNAKE_CASE : Tuple=1_2 , SCREAMING_SNAKE_CASE : int=1_2 , SCREAMING_SNAKE_CASE : List[str]=3_0_7_2 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE : List[Any]=0.0 , SCREAMING_SNAKE_CASE : Any=0.02 , SCREAMING_SNAKE_CASE : List[str]=1e-1_2 , SCREAMING_SNAKE_CASE : Optional[int]=2_2_4 , SCREAMING_SNAKE_CASE : Optional[int]=1_6 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : List[str]=[3, 5, 7, 1_1] , SCREAMING_SNAKE_CASE : int=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Tuple=0.4 , SCREAMING_SNAKE_CASE : Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE : Tuple=1 , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : List[Any]=2_5_5 , **SCREAMING_SNAKE_CASE : Any , ) -> List[str]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = use_mask_token __snake_case = use_absolute_position_embeddings __snake_case = use_relative_position_bias __snake_case = use_shared_relative_position_bias __snake_case = layer_scale_init_value __snake_case = drop_path_rate __snake_case = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case = out_indices __snake_case = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case = use_auxiliary_head __snake_case = auxiliary_loss_weight __snake_case = auxiliary_channels __snake_case = auxiliary_num_convs __snake_case = auxiliary_concat_input __snake_case = semantic_loss_ignore_index class UpperCamelCase( _a ): snake_case_ : Any = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1e-4
473
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = 1 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def UpperCAmelCase__ ( self : Any ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self : Dict ): torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self : str ): torch.manual_seed(0 ) _UpperCAmelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase_ ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): def extract(*__UpperCamelCase : Any , **__UpperCamelCase : List[str] ): class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] ): _UpperCAmelCase = torch.ones([0] ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] ): self.pixel_values.to(UpperCamelCase_ ) return self return Out() return extract def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.dummy_cond_unet _UpperCAmelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) _UpperCAmelCase = self.dummy_vae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase = 77 _UpperCAmelCase = self.dummy_image.to(UpperCamelCase_ ) _UpperCAmelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _UpperCAmelCase = AltDiffusionImgaImgPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase_ ) _UpperCAmelCase = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) _UpperCAmelCase = alt_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCamelCase_ , ) _UpperCAmelCase = output.images _UpperCAmelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) _UpperCAmelCase = alt_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.dummy_cond_unet _UpperCAmelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) _UpperCAmelCase = self.dummy_vae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase = 77 _UpperCAmelCase = self.dummy_image.to(UpperCamelCase_ ) # put models in fp16 _UpperCAmelCase = unet.half() _UpperCAmelCase = vae.half() _UpperCAmelCase = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase = AltDiffusionImgaImgPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase_ ) _UpperCAmelCase = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = alt_pipe( [prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="np" , image=UpperCamelCase_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase = init_image.resize((760, 504) ) _UpperCAmelCase = 'BAAI/AltDiffusion' _UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = 'A fantasy landscape, trending on artstation' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase_ , output_type="np" , ) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _UpperCAmelCase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase = init_image.resize((768, 512) ) _UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _UpperCAmelCase = 'BAAI/AltDiffusion' _UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = 'A fantasy landscape, trending on artstation' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase_ , output_type="np" , ) _UpperCAmelCase = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
684
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Dict = 1, 1 for _ in range(number_of_steps - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
209
0
"""simple docstring""" import requests __snake_case = '''YOUR API KEY''' def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str = giphy_api_key ): """simple docstring""" _a = '''+'''.join(query.split() ) _a = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' _a = requests.get(_lowerCAmelCase ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
285
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase, _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _a , _a = emb.weight.shape _a = nn.Linear(_lowerCAmelCase, _lowerCAmelCase, bias=_lowerCAmelCase ) _a = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Union[str, Any]="facebook/mbart-large-en-ro", _lowerCAmelCase : Any=False, _lowerCAmelCase : int=False ): """simple docstring""" _a = torch.load(_lowerCAmelCase, map_location='''cpu''' )['''model'''] remove_ignore_keys_(_lowerCAmelCase ) _a = state_dict['''encoder.embed_tokens.weight'''].shape[0] _a = MBartConfig.from_pretrained(_lowerCAmelCase, vocab_size=_lowerCAmelCase ) if mbart_aa and finetuned: _a = '''relu''' _a = state_dict['''decoder.embed_tokens.weight'''] _a = MBartForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase ) if finetuned: _a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') __snake_case = parser.parse_args() __snake_case = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
285
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase : List[str] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Optional[Any] ): inspect_dataset(__snake_case , __snake_case ) _A = path + '.py' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Dict ): inspect_metric(__snake_case , __snake_case ) _A = path + '.py' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Any , __snake_case : Union[str, Any] ): _A = get_dataset_config_info(__snake_case , config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[str] ): with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case , config_name=__snake_case ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Optional[Any] ): _A = get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[Any] ): _A = get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs _A = expected_configs[0] assert expected_config in infos _A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Optional[int] , __snake_case : List[Any] ): _A = get_dataset_infos(__snake_case ) assert expected_config in infos _A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Any ): with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case , config_name=__snake_case )
107
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> int: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase : List[str] = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) lowerCamelCase : int = dict(scheduler.config ) lowerCamelCase : int = 1 lowerCamelCase : str = FrozenDict(UpperCamelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase : Optional[int] = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) lowerCamelCase : int = dict(scheduler.config ) lowerCamelCase : Tuple = True lowerCamelCase : List[str] = FrozenDict(UpperCamelCase__ ) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=UpperCamelCase__ , segmentation_processor=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def _lowercase ( self , UpperCamelCase__ = "auto" ) -> Any: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: self.enable_attention_slicing(UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase : int = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self ) -> List[Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> List[Any]: lowerCamelCase : str = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase : Union[str, Any] = self.segmentation_model(**UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase : Tuple = self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase : Any = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , )
311
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int=1_3 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : List[str]=3_2 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : Optional[int]=3_7 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=5_1_2 , UpperCamelCase__ : Optional[Any]=1_6 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope snake_case__ = self.vocab_size - 1 def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) snake_case__ = ids_tensor([self.batch_size] , self.num_choices) snake_case__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , *UpperCamelCase__ : Union[str, Any]): '''simple docstring''' snake_case__ = OpenAIGPTModel(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : Optional[Any]): '''simple docstring''' snake_case__ = OpenAIGPTLMHeadModel(UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = OpenAIGPTDoubleHeadsModel(UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __magic_name__ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : List[Any]): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = OpenAIGPTForSequenceClassification(UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" _lowercase : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowercase : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowercase : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int=False): '''simple docstring''' snake_case__ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) snake_case__ = inputs_dict["""labels"""] snake_case__ = inputs_dict["""labels"""] snake_case__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__) return inputs_dict def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = OpenAIGPTModelTester(self) snake_case__ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=3_7) def __magic_name__ ( self : int): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__) def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__) def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__) @slow def __magic_name__ ( self : str): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = OpenAIGPTModel.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""") model.to(UpperCamelCase__) snake_case__ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=UpperCamelCase__) # the president is snake_case__ = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case__ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__)
708
import math from collections.abc import Iterator from itertools import takewhile def _UpperCAmelCase ( a : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( ): snake_case__ = 2 while True: if is_prime(a ): yield num num += 1 def _UpperCAmelCase ( a : int = 200_0000 ): return sum(takewhile(lambda a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
99
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _UpperCAmelCase ( A , A ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =tmp_path / """cache""" UpperCAmelCase__ ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase__ =SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_sql_dataset(lowerCamelCase__ , lowerCamelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =tmp_path / """cache""" UpperCAmelCase__ ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCAmelCase__ =features.copy() if features else default_expected_features UpperCAmelCase__ =( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase__ =SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_sql_dataset(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( A ): '''simple docstring''' with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: UpperCAmelCase__ =con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =tmp_path / """cache""" UpperCAmelCase__ =os.path.join(lowerCamelCase__ , "tmp.sql" ) UpperCAmelCase__ =SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowerCamelCase__ ).read() SqlDatasetWriter(lowerCamelCase__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() UpperCAmelCase__ =iter_sql_file(lowerCamelCase__ ) UpperCAmelCase__ =iter_sql_file(lowerCamelCase__ ) for rowa, rowa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =tmp_path / """cache""" UpperCAmelCase__ =os.path.join(lowerCamelCase__ , "tmp.sql" ) UpperCAmelCase__ =SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowerCamelCase__ ).read() SqlDatasetWriter(lowerCamelCase__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() UpperCAmelCase__ =iter_sql_file(lowerCamelCase__ ) UpperCAmelCase__ =iter_sql_file(lowerCamelCase__ ) for rowa, rowa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =tmp_path / """cache""" UpperCAmelCase__ =os.path.join(lowerCamelCase__ , "tmp.sql" ) UpperCAmelCase__ =SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowerCamelCase__ ).read() with pytest.raises(lowerCamelCase__ ): SqlDatasetWriter(lowerCamelCase__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
625
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) A_ : Any = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""" , lowerCamelCase__ ) if matches: A_ : Optional[Any] = float(matches[1] ) A_ : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A_ : Optional[Any] = 10_01 A_ : Union[str, Any] = """imagenet-1k-id2label.json""" A_ : List[str] = """huggingface/label-files""" A_ : str = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : Optional[int] = {int(lowerCamelCase__ ) + 1: v for k, v in idalabel.items()} A_ : int = """background""" A_ : List[str] = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def a ( ): '''simple docstring''' A_ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): '''simple docstring''' A_ : Optional[Any] = get_mobilenet_va_config(lowerCamelCase__ ) # Load 🤗 model A_ : Dict = MobileNetVaForImageClassification(lowerCamelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A_ : Any = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) A_ : int = image_processor(images=prepare_img() , return_tensors="""pt""" ) A_ : List[str] = model(**lowerCamelCase__ ) A_ : Any = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": A_ : str = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": A_ : int = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: A_ : Any = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) A_ : Union[str, Any] = """google/""" + model_name image_processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
667
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case ,__snake_case : Any = [], [] while len(__UpperCamelCase ) > 1: __snake_case ,__snake_case : Optional[Any] = min(__UpperCamelCase ), max(__UpperCamelCase ) start.append(__UpperCamelCase ) end.append(__UpperCamelCase ) collection.remove(__UpperCamelCase ) collection.remove(__UpperCamelCase ) end.reverse() return start + collection + end if __name__ == "__main__": __A = input('''Enter numbers separated by a comma:\n''').strip() __A = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
708
'''simple docstring''' import math class a_ : def __init__(self , __a=0) -> Any: # a graph with Node 0,1,...,N-1 """simple docstring""" __snake_case : List[str] = n __snake_case : Tuple = [ [math.inf for j in range(0 , __a)] for i in range(0 , __a) ] # adjacency matrix for weight __snake_case : Union[str, Any] = [ [math.inf for j in range(0 , __a)] for i in range(0 , __a) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = w def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): __snake_case : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def SCREAMING_SNAKE_CASE__ (self , __a , __a) -> Optional[int]: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": __A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
61
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig A_: List[str] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } A_: List[Any] = logging.get_logger(__name__) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'maskformer' lowerCAmelCase__ = {'hidden_size': 'mask_feature_size'} lowerCAmelCase__ = ['resnet', 'swin'] lowerCAmelCase__ = ['detr'] def __init__( self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 0.1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0.02 , UpperCAmelCase = 1.0 , UpperCAmelCase = 1.0 , UpperCAmelCase = 1.0 , UpperCAmelCase = 20.0 , UpperCAmelCase = None , **UpperCAmelCase , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowercase = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase = backbone_config.pop("""model_type""" ) _lowercase = CONFIG_MAPPING[backbone_model_type] _lowercase = config_class.from_dict(UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowercase = DetrConfig() else: # verify that the decoder is supported _lowercase = ( decoder_config.pop("""model_type""" ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {",".join(self.decoders_supported )}''' ) if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase = CONFIG_MAPPING[decoder_type] _lowercase = config_class.from_dict(UpperCAmelCase ) _lowercase = backbone_config _lowercase = decoder_config # main feature dimension for the model _lowercase = fpn_feature_size _lowercase = mask_feature_size # initializer _lowercase = init_std _lowercase = init_xavier_std # Hungarian matcher && loss _lowercase = cross_entropy_weight _lowercase = dice_weight _lowercase = mask_weight _lowercase = use_auxiliary_loss _lowercase = no_object_weight _lowercase = output_auxiliary_logits _lowercase = self.decoder_config.encoder_attention_heads _lowercase = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return cls( backbone_config=UpperCAmelCase , decoder_config=UpperCAmelCase , **UpperCAmelCase , ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.backbone_config.to_dict() _lowercase = self.decoder_config.to_dict() _lowercase = self.__class__.model_type return output
398
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase ( _A ): """simple docstring""" return DownloadCommand(args.model ,args.cache_dir ,args.force ,args.trust_remote_code ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' _lowercase = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=UpperCAmelCase , default=UpperCAmelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=UpperCAmelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=UpperCAmelCase ) def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = model _lowercase = cache _lowercase = force _lowercase = trust_remote_code def _UpperCAmelCase ( self ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
398
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def A_ ( a , a ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(a , a ) ) ) def A_ ( a , a ): """simple docstring""" if dataset.ndim != value_array.ndim: SCREAMING_SNAKE_CASE_ : Tuple = ( 'Wrong input data\'s dimensions... ' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(a ) try: if dataset.shape[1] != value_array.shape[1]: SCREAMING_SNAKE_CASE_ : List[Any] = ( 'Wrong input data\'s shape... ' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(a ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'Input data have different datatype... ' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(a ) SCREAMING_SNAKE_CASE_ : str = [] for value in value_array: SCREAMING_SNAKE_CASE_ : Union[str, Any] = euclidean(a , dataset[0] ) SCREAMING_SNAKE_CASE_ : List[str] = dataset[0].tolist() for dataset_value in dataset[1:]: SCREAMING_SNAKE_CASE_ : Tuple = euclidean(a , a ) if dist > temp_dist: SCREAMING_SNAKE_CASE_ : Dict = temp_dist SCREAMING_SNAKE_CASE_ : List[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def A_ ( a , a ): """simple docstring""" return np.dot(a , a ) / (norm(a ) * norm(a )) if __name__ == "__main__": import doctest doctest.testmod()
353
def A_ ( a , a , a ): """simple docstring""" if len(a ) != len(a ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. SCREAMING_SNAKE_CASE_ : Tuple = [p / w for p, w in zip(a , a )] # Creating a copy of the list and sorting profit/weight in ascending order SCREAMING_SNAKE_CASE_ : List[Any] = sorted(a ) # declaring useful variables SCREAMING_SNAKE_CASE_ : List[Any] = len(a ) SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted_profit_by_weight[length - i - 1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = profit_by_weight.index(a ) SCREAMING_SNAKE_CASE_ : Dict = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowerCAmelCase : Tuple = [int(x) for x in input('Input profits separated by spaces: ').split()] lowerCAmelCase : Union[str, Any] = [int(x) for x in input('Input weights separated by spaces: ').split()] lowerCAmelCase : Dict = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
353
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase__ ( lowerCamelCase_ : int ): if not is_accelerate_available(): return method __a : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCamelCase_ ) < version.parse('0.17.0' ): return method def wrapper(self : str , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Union[str, Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowerCamelCase_ , **lowerCamelCase_ ) return wrapper
47
"""simple docstring""" from __future__ import annotations import pandas as pd def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase ): _UpperCAmelCase = burst_time[i] _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 9_99_99_99_99 _UpperCAmelCase = 0 _UpperCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _UpperCAmelCase = remaining_time[j] _UpperCAmelCase = j _UpperCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _UpperCAmelCase = remaining_time[short] if minm == 0: _UpperCAmelCase = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 _UpperCAmelCase = False # Find finish time of current process _UpperCAmelCase = increment_time + 1 # Calculate waiting time _UpperCAmelCase = finish_time - arrival_time[short] _UpperCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: _UpperCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0] * no_of_processes for i in range(lowercase ): _UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 for i in range(lowercase ): _UpperCAmelCase = total_waiting_time + waiting_time[i] _UpperCAmelCase = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") UpperCAmelCase__ = int(input()) UpperCAmelCase__ = [0] * no_of_processes UpperCAmelCase__ = [0] * no_of_processes UpperCAmelCase__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) UpperCAmelCase__ , UpperCAmelCase__ = map(int, input().split()) UpperCAmelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase__ = burst_time UpperCAmelCase__ = no_of_processes UpperCAmelCase__ = waiting_time UpperCAmelCase__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
277
0
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a ( enum.Enum ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self: str , *UpperCamelCase: Dict , **UpperCamelCase: Any ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=UpperCamelCase , **self._forward_params ) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: int=None , UpperCamelCase: Any=None , UpperCamelCase: Tuple=None , UpperCamelCase: Optional[Any]=None , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[int]=None , UpperCamelCase: str=None , UpperCamelCase: Any=None , **UpperCamelCase: Optional[Any] , ): """simple docstring""" A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( UpperCamelCase , padding=UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=self.framework ) A__ = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" """ [None, 'hole']""" ) A__ = handle_long_generation preprocess_params.update(UpperCamelCase ) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) if len(UpperCamelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase ( self: str , *UpperCamelCase: List[str] , **UpperCamelCase: Dict ): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*UpperCamelCase , **UpperCamelCase ) def __call__( self: str , UpperCamelCase: Optional[int] , **UpperCamelCase: Tuple ): """simple docstring""" return super().__call__(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Any , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any="" , UpperCamelCase: Any=None , **UpperCamelCase: Any ): """simple docstring""" A__ = self.tokenizer( prefix + prompt_text , padding=UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=self.framework ) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs["""max_new_tokens"""] else: A__ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) A__ = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCamelCase ( self: Dict , UpperCamelCase: Dict , **UpperCamelCase: int ): """simple docstring""" A__ = model_inputs["""input_ids"""] A__ = model_inputs.get("""attention_mask""" , UpperCamelCase ) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: A__ = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=UpperCamelCase , attention_mask=UpperCamelCase , **UpperCamelCase ) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(UpperCamelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": A__ = tf.reshape(UpperCamelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: int=ReturnType.FULL_TEXT , UpperCamelCase: Any=True ): """simple docstring""" A__ = model_outputs["""generated_sequence"""][0] A__ = model_outputs["""input_ids"""] A__ = model_outputs["""prompt_text"""] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase , ) ) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {"""generated_text""": all_text} records.append(UpperCamelCase ) return records
717
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : List[str] ): A__ = [0] * len(UpperCAmelCase_ ) A__ = [] A__ = [1] * len(UpperCAmelCase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCAmelCase_ ) ): if indegree[i] == 0: queue.append(UpperCAmelCase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(UpperCAmelCase_ ) print(max(UpperCAmelCase_ ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE_ : Any = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
500
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ : Dict = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE__ : str = { 'facebook/mbart-large-en-ro': 1_024, 'facebook/mbart-large-cc25': 1_024, } # fmt: off SCREAMING_SNAKE_CASE__ : Dict = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=None , A_=None , A_=None , **A_ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Dict = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( vocab_file=A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , **A_ , ) _UpperCAmelCase : Any = vocab_file _UpperCAmelCase : Tuple = False if not self.vocab_file else True _UpperCAmelCase : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _UpperCAmelCase : Optional[Any] = { lang_code: self.convert_tokens_to_ids(A_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else """en_XX""" _UpperCAmelCase : List[str] = self.convert_tokens_to_ids(self._src_lang ) _UpperCAmelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __snake_case( self ): return self._src_lang @src_lang.setter def __snake_case( self , A_ ): _UpperCAmelCase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __snake_case( self , A_ , A_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __snake_case( self , A_ , A_ = None ): _UpperCAmelCase : List[Any] = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case( self , A_ , A_ , A_ , A_ , **A_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _UpperCAmelCase : Dict = src_lang _UpperCAmelCase : Dict = self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) _UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(A_ ) _UpperCAmelCase : str = tgt_lang_id return inputs def __snake_case( self , A_ , A_ = "en_XX" , A_ = None , A_ = "ro_RO" , **A_ , ): _UpperCAmelCase : int = src_lang _UpperCAmelCase : int = tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def __snake_case( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __snake_case( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __snake_case( self , A_ ): _UpperCAmelCase : int = self.convert_tokens_to_ids(A_ ) _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Any = [self.eos_token_id, self.cur_lang_code] _UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __snake_case( self , A_ ): _UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(A_ ) _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [self.eos_token_id, self.cur_lang_code] _UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCAmelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __snake_case( self , A_ , A_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return _UpperCAmelCase : int = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
643
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A ) class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __SCREAMING_SNAKE_CASE = Features({'''image''': Image()} ) __SCREAMING_SNAKE_CASE = Features({'''labels''': ClassLabel} ) __SCREAMING_SNAKE_CASE = "image" __SCREAMING_SNAKE_CASE = "labels" def __snake_case( self , A_ ): if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , A_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _UpperCAmelCase : Tuple = copy.deepcopy(self ) _UpperCAmelCase : str = self.label_schema.copy() _UpperCAmelCase : Optional[Any] = features[self.label_column] _UpperCAmelCase : int = label_schema return task_template @property def __snake_case( self ): return { self.image_column: "image", self.label_column: "labels", }
643
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' def __init__( self: List[Any] , *_lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any]=None , _lowerCamelCase: Dict=None , **_lowerCamelCase: Dict ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = eval_examples SCREAMING_SNAKE_CASE_ = post_process_function def _A ( self: Tuple , _lowerCamelCase: Optional[Dataset] = None , _lowerCamelCase: List[str]=None , _lowerCamelCase: Optional[List[str]] = None , _lowerCamelCase: str = "eval" , **_lowerCamelCase: Union[str, Any] , ): SCREAMING_SNAKE_CASE_ = gen_kwargs.copy() SCREAMING_SNAKE_CASE_ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE_ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE_ = gen_kwargs SCREAMING_SNAKE_CASE_ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE_ = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ = self.compute_metrics SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE_ = compute_metrics SCREAMING_SNAKE_CASE_ = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE_ = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE_ = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def _A ( self: List[str] , _lowerCamelCase: int , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str = "test" , **_lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = gen_kwargs.copy() SCREAMING_SNAKE_CASE_ = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ = self.compute_metrics SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE_ = compute_metrics SCREAMING_SNAKE_CASE_ = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE_ = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE_ = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE_ = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
718
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE__ : Dict = ["image"] SCREAMING_SNAKE_CASE__ : List[Any] = ["image"] SCREAMING_SNAKE_CASE__ : List[Any] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE__ : Optional[int] = False @property def _A ( self: Optional[Any] ): return 32 @property def _A ( self: Optional[int] ): return 32 @property def _A ( self: List[Any] ): return self.time_input_dim * 4 @property def _A ( self: Any ): return 8 @property def _A ( self: int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE_ = CLIPVisionModel(_lowerCamelCase ) return model @property def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = CLIPImageProcessor( crop_size=2_24 , do_center_crop=_lowerCamelCase , do_normalize=_lowerCamelCase , do_resize=_lowerCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_24 , ) return image_processor @property def _A ( self: Dict ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE_ = PriorTransformer(**_lowerCamelCase ) return model @property def _A ( self: List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_ = ShapERenderer(**_lowerCamelCase ) return model def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = self.dummy_prior SCREAMING_SNAKE_CASE_ = self.dummy_image_encoder SCREAMING_SNAKE_CASE_ = self.dummy_image_processor SCREAMING_SNAKE_CASE_ = self.dummy_renderer SCREAMING_SNAKE_CASE_ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=_lowerCamelCase , clip_sample=_lowerCamelCase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _A ( self: Optional[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[Any]=0 ): SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self: str ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = torch_device == '''cpu''' SCREAMING_SNAKE_CASE_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCamelCase , relax_max_difference=_lowerCamelCase , ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_ = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_ = pipe(**_lowerCamelCase , num_images_per_prompt=_lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE_ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( _lowerCamelCase , generator=_lowerCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
89
0
"""simple docstring""" from maths.prime_check import is_prime def snake_case__ ( _snake_case : int ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(_snake_case ) if is_prime(_snake_case ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
516
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
516
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase ( _lowercase ): def __init__(self : Tuple , *A__ : Union[str, Any] , **A__ : Optional[Any] ) -> None: warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , A__ , ) super().__init__(*A__ , **A__ )
459
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Optional[Any] = '''MCTCTFeatureExtractor''' UpperCAmelCase : Tuple = '''AutoTokenizer''' def __init__(self : int , A__ : Tuple , A__ : Union[str, Any] ) -> Dict: super().__init__(A__ , A__ ) lowercase = self.feature_extractor lowercase = False def __call__(self : Tuple , *A__ : str , **A__ : Dict ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A__ , **A__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowercase = kwargs.pop("raw_speech" ) else: lowercase = kwargs.pop("audio" , A__ ) lowercase = kwargs.pop("sampling_rate" , A__ ) lowercase = kwargs.pop("text" , A__ ) if len(A__ ) > 0: lowercase = args[0] lowercase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase = self.feature_extractor(A__ , *A__ , sampling_rate=A__ , **A__ ) if text is not None: lowercase = self.tokenizer(A__ , **A__ ) if text is None: return inputs elif audio is None: return encodings else: lowercase = encodings["input_ids"] return inputs def UpperCAmelCase__ (self : Tuple , *A__ : str , **A__ : str ) -> str: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCAmelCase__ (self : Any , *A__ : List[Any] , **A__ : List[str] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A__ , **A__ ) lowercase = kwargs.pop("input_features" , A__ ) lowercase = kwargs.pop("labels" , A__ ) if len(A__ ) > 0: lowercase = args[0] lowercase = args[1:] if input_features is not None: lowercase = self.feature_extractor.pad(A__ , *A__ , **A__ ) if labels is not None: lowercase = self.tokenizer.pad(A__ , **A__ ) if labels is None: return input_features elif input_features is None: return labels else: lowercase = labels["input_ids"] return input_features def UpperCAmelCase__ (self : Tuple , *A__ : Optional[int] , **A__ : Optional[int] ) -> Tuple: return self.tokenizer.decode(*A__ , **A__ ) @contextmanager def UpperCAmelCase__ (self : Optional[Any] ) -> Union[str, Any]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowercase = True lowercase = self.tokenizer yield lowercase = self.feature_extractor lowercase = False
459
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def A ( lowercase__ : Accelerator , lowercase__ : int = 16 ) -> Dict: UpperCamelCase__ :Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase__ :Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : str ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Dict = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ :Union[str, Any] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ :List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ :int = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ :List[Any] = 8 else: UpperCamelCase__ :Any = None return tokenizer.pad( lowercase__ , padding="""longest""" , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase__ :Tuple = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) UpperCamelCase__ :List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def A ( lowercase__ : str , lowercase__ : Optional[int] ) -> Tuple: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase__ ) == "1": UpperCamelCase__ :List[str] = 2 # Initialize accelerator UpperCamelCase__ :Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Tuple = config["""lr"""] UpperCamelCase__ :List[str] = int(config["""num_epochs"""] ) UpperCamelCase__ :List[str] = int(config["""seed"""] ) UpperCamelCase__ :List[str] = int(config["""batch_size"""] ) UpperCamelCase__ :Any = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase__ ) def inner_training_loop(lowercase__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ :List[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ :Any = AdamW(params=model.parameters() , lr=lowercase__ ) UpperCamelCase__ , UpperCamelCase__ :Tuple = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate scheduler UpperCamelCase__ :List[str] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase__ :Dict = model(**lowercase__ ) UpperCamelCase__ :Optional[int] = outputs.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :List[Any] = model(**lowercase__ ) UpperCamelCase__ :Optional[int] = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) UpperCamelCase__ :Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def A ( ) -> List[Any]: UpperCamelCase__ :str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase__ , default=lowercase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase__ :Any = parser.parse_args() UpperCamelCase__ :List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
45
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase_: Optional[Any] = 'hf-internal-testing/tiny-random-bert' lowercase_: Dict = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') lowercase_: Union[str, Any] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class lowercase__ (unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ): snake_case__ : List[Any] = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , """refs""" , """main""" ) ) as f: snake_case__ : int = f.read() self.assertEqual(__a , os.path.join(__a , """snapshots""" , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. snake_case__ : List[str] = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. snake_case__ : str = cached_file(__a , __a , revision="""9b8c223""" ) self.assertEqual(__a , os.path.join(__a , """snapshots""" , __a , __a ) ) def lowercase ( self : Any ): with self.assertRaisesRegex(__a , """is not a valid model identifier""" ): snake_case__ : Any = cached_file("""tiny-random-bert""" , __a ) with self.assertRaisesRegex(__a , """is not a valid git identifier""" ): snake_case__ : List[Any] = cached_file(__a , __a , revision="""aaaa""" ) with self.assertRaisesRegex(__a , """does not appear to have a file named""" ): snake_case__ : Any = cached_file(__a , """conf""" ) def lowercase ( self : Union[str, Any] ): with self.assertRaisesRegex(__a , """does not appear to have a file named""" ): snake_case__ : Tuple = cached_file(__a , """conf""" ) with open(os.path.join(__a , """refs""" , """main""" ) ) as f: snake_case__ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , """.no_exist""" , __a , """conf""" ) ) ) snake_case__ : List[str] = cached_file(__a , """conf""" , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) snake_case__ : Optional[Any] = cached_file(__a , """conf""" , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) snake_case__ : Dict = mock.Mock() snake_case__ : int = 5_0_0 snake_case__ : List[Any] = {} snake_case__ : List[Any] = HTTPError snake_case__ : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__a ) as mock_head: snake_case__ : Optional[Any] = cached_file(__a , """conf""" , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def lowercase ( self : Optional[int] ): self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , __a ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , __a ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , __a ) ) def lowercase ( self : Union[str, Any] ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , __a , revision="""ahaha""" ) snake_case__ : List[str] = get_file_from_repo("""bert-base-cased""" , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case__ : List[Any] = json.loads(open(__a , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 7_6_8 ) def lowercase ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : int = Path(__a ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(__a , """a.txt""" ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , """b.txt""" ) )
715
import colorsys from PIL import Image # type: ignore def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : List[Any] = x snake_case__ : int = y for step in range(UpperCAmelCase_): # noqa: B007 snake_case__ : str = a * a - b * b + x snake_case__ : Tuple = 2 * a * b + y snake_case__ : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowercase ( UpperCAmelCase_): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowercase ( UpperCAmelCase_): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(UpperCAmelCase_ , 1 , 1)) def _lowercase ( UpperCAmelCase_ = 800 , UpperCAmelCase_ = 600 , UpperCAmelCase_ = -0.6 , UpperCAmelCase_ = 0 , UpperCAmelCase_ = 3.2 , UpperCAmelCase_ = 50 , UpperCAmelCase_ = True , ): """simple docstring""" snake_case__ : Dict = Image.new("""RGB""" , (image_width, image_height)) snake_case__ : Optional[Any] = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase_): for image_y in range(UpperCAmelCase_): # determine the figure-coordinates based on the image-coordinates snake_case__ : Optional[int] = figure_width / image_width * image_height snake_case__ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case__ : str = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case__ : int = get_distance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case__ : List[str] = get_color_coded_rgb(UpperCAmelCase_) else: snake_case__ : Optional[Any] = get_black_and_white_rgb(UpperCAmelCase_) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase_: List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
127
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase_ ( _snake_case ): """simple docstring""" a_ ="vit_msn" def __init__( self : Tuple , _a : str=768 , _a : List[str]=12 , _a : Union[str, Any]=12 , _a : List[Any]=3072 , _a : Union[str, Any]="gelu" , _a : List[str]=0.0 , _a : Union[str, Any]=0.0 , _a : Tuple=0.02 , _a : Any=1e-06 , _a : Union[str, Any]=224 , _a : Tuple=16 , _a : Optional[int]=3 , _a : Dict=True , **_a : int , ) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : Union[str, Any] = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : Dict = image_size __lowerCamelCase : int = patch_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : List[str] = qkv_bias
459
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class snake_case ( _snake_case ): '''simple docstring''' UpperCamelCase__ : torch.FloatTensor class snake_case ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 3 , lowerCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCamelCase_ : Tuple[int] = (64,) , lowerCamelCase_ : int = 1 , lowerCamelCase_ : str = "silu" , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : int = 256 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : float = 0.18215 , lowerCamelCase_ : str = "group" , ) ->str: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase__ = Encoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , down_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , double_z=lowerCamelCase_ , ) UpperCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) UpperCAmelCase__ = VectorQuantizer(lowerCamelCase_ , lowerCamelCase_ , beta=0.25 , remap=lowerCamelCase_ , sane_index_shape=lowerCamelCase_ ) UpperCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) # pass init params to Decoder UpperCAmelCase__ = Decoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , up_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , norm_type=lowerCamelCase_ , ) @apply_forward_hook def UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ) ->VQEncoderOutput: '''simple docstring''' UpperCAmelCase__ = self.encoder(lowerCamelCase_ ) UpperCAmelCase__ = self.quant_conv(lowerCamelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCamelCase_ ) @apply_forward_hook def UpperCAmelCase ( self : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.quantize(lowerCamelCase_ ) else: UpperCAmelCase__ = h UpperCAmelCase__ = self.post_quant_conv(lowerCamelCase_ ) UpperCAmelCase__ = self.decoder(lowerCamelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ ) def UpperCAmelCase ( self : Any , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase__ = sample UpperCAmelCase__ = self.encode(lowerCamelCase_ ).latents UpperCAmelCase__ = self.decode(lowerCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ )
392
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : Optional[int] = logging.getLogger(__name__) def lowerCamelCase( a__ ,a__): return (preds == labels).mean() @dataclass class A__ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,a__) # Set seed set_seed(training_args.seed) try: _SCREAMING_SNAKE_CASE =processors[data_args.task_name]() _SCREAMING_SNAKE_CASE =processor.get_labels() _SCREAMING_SNAKE_CASE =len(a__) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,) # Get datasets _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(a__) -> Dict: _SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(a__ ,p.label_ids)} # Data collator _SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer _SCREAMING_SNAKE_CASE =Trainer( model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _SCREAMING_SNAKE_CASE ={} if training_args.do_eval: logger.info('''*** Evaluate ***''') _SCREAMING_SNAKE_CASE =trainer.evaluate() _SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''') if trainer.is_world_master(): with open(a__ ,'''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' ,a__ ,a__) writer.write('''%s = %s\n''' % (key, value)) results.update(a__) return results def lowerCamelCase( a__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
705
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : Optional[Any] = '''T5Config''' class A__ ( UpperCamelCase__ ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig class A__ ( UpperCamelCase__ ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig class A__ ( UpperCamelCase__ ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig
191
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case ( lowercase__): def A__ ( self : List[Any] ): lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_, "embed_dim" ) ) self.parent.assertTrue(hasattr(a_, "num_heads" ) ) class _snake_case : def __init__( self : int, __lowercase : str, __lowercase : Any=13, __lowercase : List[Any]=64, __lowercase : Union[str, Any]=3, __lowercase : Dict=[16, 48, 96], __lowercase : Union[str, Any]=[1, 3, 6], __lowercase : Optional[int]=[1, 2, 10], __lowercase : Dict=[7, 3, 3], __lowercase : Any=[4, 2, 2], __lowercase : List[str]=[2, 1, 1], __lowercase : Dict=[2, 2, 2], __lowercase : Dict=[False, False, True], __lowercase : str=[0.0, 0.0, 0.0], __lowercase : List[Any]=0.02, __lowercase : Union[str, Any]=1e-1_2, __lowercase : Optional[Any]=True, __lowercase : Tuple=True, __lowercase : List[Any]=2, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_sizes lowercase__ = patch_stride lowercase__ = patch_padding lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = num_heads lowercase__ = stride_kv lowercase__ = depth lowercase__ = cls_token lowercase__ = attention_drop_rate lowercase__ = initializer_range lowercase__ = layer_norm_eps def A__ ( self : Tuple ): lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: # create a random int32 tensor of given shape lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self : Tuple ): return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def A__ ( self : Optional[Any], __lowercase : Dict, __lowercase : Optional[Any], __lowercase : Dict ): lowercase__ = TFCvtModel(config=a_ ) lowercase__ = model(a_, training=a_ ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def A__ ( self : Dict, __lowercase : Union[str, Any], __lowercase : Union[str, Any], __lowercase : Any ): lowercase__ = self.num_labels lowercase__ = TFCvtForImageClassification(a_ ) lowercase__ = model(a_, labels=a_, training=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A__ ( self : str ): lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : Union[str, Any] =(TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCamelCase__ : Optional[int] =( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ : List[str] =False UpperCamelCase__ : int =False UpperCamelCase__ : str =False UpperCamelCase__ : int =False UpperCamelCase__ : Tuple =False def A__ ( self : Any ): lowercase__ = TFCvtModelTester(self ) lowercase__ = TFCvtConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def A__ ( self : Optional[int] ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def A__ ( self : Dict ): pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def A__ ( self : List[Any] ): pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def A__ ( self : Dict ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) def A__ ( self : str ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def A__ ( self : str ): super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def A__ ( self : Dict ): lowercase__ = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(a_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def A__ ( self : Optional[Any] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], a_ ) def A__ ( self : Union[str, Any] ): def check_hidden_states_output(__lowercase : List[str], __lowercase : List[Any], __lowercase : Any ): lowercase__ = model_class(a_ ) lowercase__ = model(**self._prepare_for_class(a_, a_ ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depth ) self.assertEqual(len(a_ ), a_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(a_, a_, a_ ) def A__ ( self : Any ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A__ ( self : List[Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def A__ ( self : Any ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFCvtModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __lowerCAmelCase ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase): @cached_property def A__ ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self : Optional[Any] ): lowercase__ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a_, return_tensors="tf" ) # forward pass lowercase__ = model(**a_ ) # verify the logits lowercase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, a_ ) lowercase__ = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), a_, atol=1e-4 ) )
413
import numpy as np class __snake_case : def __init__( self ): """simple docstring""" lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = None lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __eq__( self ,a_ ): """simple docstring""" return self.position == cell.position def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" print(self.position ) class __snake_case : def __init__( self ,a_=(5, 5) ): """simple docstring""" lowerCAmelCase__ = np.zeros(a_ ) lowerCAmelCase__ = world_size[0] lowerCAmelCase__ = world_size[1] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" print(self.w ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowerCAmelCase__ = cell.position[0] lowerCAmelCase__ = cell.position[1] lowerCAmelCase__ = [] for n in neughbour_cord: lowerCAmelCase__ = current_x + n[0] lowerCAmelCase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowerCAmelCase__ = Cell() lowerCAmelCase__ = (x, y) lowerCAmelCase__ = cell neighbours.append(a_ ) return neighbours def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> int: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] _open.append(snake_case__ ) while _open: lowerCAmelCase__ = np.argmin([n.f for n in _open] ) lowerCAmelCase__ = _open[min_f] _closed.append(_open.pop(snake_case__ ) ) if current == goal: break for n in world.get_neigbours(snake_case__ ): for c in _closed: if c == n: continue lowerCAmelCase__ = current.g + 1 lowerCAmelCase__ , lowerCAmelCase__ = n.position lowerCAmelCase__ , lowerCAmelCase__ = goal.position lowerCAmelCase__ = (ya - ya) ** 2 + (xa - xa) ** 2 lowerCAmelCase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case__ ) lowerCAmelCase__ = [] while current.parent is not None: path.append(current.position ) lowerCAmelCase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _lowerCAmelCase : str = Gridworld() # Start position and goal _lowerCAmelCase : List[Any] = Cell() _lowerCAmelCase : List[str] = (0, 0) _lowerCAmelCase : Optional[int] = Cell() _lowerCAmelCase : int = (4, 4) print(f"""path from {start.position} to {goal.position}""") _lowerCAmelCase : Optional[int] = astar(world, start, goal) # Just for visual reasons. for i in s: _lowerCAmelCase : int = 1 print(world.w)
193
0
import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : """simple docstring""" def __init__( self , a_ , a_ , a_ , a_ , a_ , a_=0.2 , a_=0.2 ): lowerCamelCase_ : Optional[Any] = bp_numa lowerCamelCase_ : int = bp_numa lowerCamelCase_ : Tuple = bp_numa lowerCamelCase_ : List[str] = conva_get[:2] lowerCamelCase_ : List[str] = conva_get[2] lowerCamelCase_ : int = size_pa lowerCamelCase_ : Dict = rate_w lowerCamelCase_ : Tuple = rate_t lowerCamelCase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCamelCase_ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase_ : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCamelCase_ : Any = -2 * np.random.rand(self.num_bpa ) + 1 lowerCamelCase_ : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCamelCase ( self , a_ ): # save model dict with pickle lowerCamelCase_ : Union[str, Any] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(a_ , "wb" ) as f: pickle.dump(a_ , a_ ) print(F"""Model saved: {save_path}""" ) @classmethod def _UpperCamelCase ( cls , a_ ): # read saved model with open(a_ , "rb" ) as f: lowerCamelCase_ : Tuple = pickle.load(a_ ) # noqa: S301 lowerCamelCase_ : Optional[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) lowerCamelCase_ : Union[str, Any] = model_dic.get("size_pooling1" ) lowerCamelCase_ : Union[str, Any] = model_dic.get("num_bp1" ) lowerCamelCase_ : List[Any] = model_dic.get("num_bp2" ) lowerCamelCase_ : Any = model_dic.get("num_bp3" ) lowerCamelCase_ : int = model_dic.get("rate_weight" ) lowerCamelCase_ : Tuple = model_dic.get("rate_thre" ) # create model instance lowerCamelCase_ : Tuple = CNN(a_ , a_ , a_ , a_ , a_ , a_ , a_ ) # modify model parameter lowerCamelCase_ : Tuple = model_dic.get("w_conv1" ) lowerCamelCase_ : List[str] = model_dic.get("wkj" ) lowerCamelCase_ : Tuple = model_dic.get("vji" ) lowerCamelCase_ : Dict = model_dic.get("thre_conv1" ) lowerCamelCase_ : Optional[int] = model_dic.get("thre_bp2" ) lowerCamelCase_ : List[str] = model_dic.get("thre_bp3" ) return conv_ins def _UpperCamelCase ( self , a_ ): return 1 / (1 + np.exp(-1 * x )) def _UpperCamelCase ( self , a_ ): return round(a_ , 3 ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ ): # convolution process lowerCamelCase_ : Union[str, Any] = convs[0] lowerCamelCase_ : Dict = convs[1] lowerCamelCase_ : Optional[Any] = np.shape(a_ )[0] # get the data slice of original image data, data_focus lowerCamelCase_ : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , a_ ): for j_focus in range(0 , size_data - size_conv + 1 , a_ ): lowerCamelCase_ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(a_ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : str = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(a_ ): lowerCamelCase_ : List[Any] = [] for i_focus in range(len(a_ ) ): lowerCamelCase_ : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(a_ ) ) lowerCamelCase_ : Tuple = np.asmatrix(a_ ).reshape( a_ , a_ ) data_featuremap.append(a_ ) # expanding the data slice to One dimenssion lowerCamelCase_ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(a_ ) ) lowerCamelCase_ : str = np.asarray(a_ ) return focus_list, data_featuremap def _UpperCamelCase ( self , a_ , a_ , a_="average_pool" ): # pooling process lowerCamelCase_ : Any = len(featuremaps[0] ) lowerCamelCase_ : str = int(size_map / size_pooling ) lowerCamelCase_ : Tuple = [] for i_map in range(len(a_ ) ): lowerCamelCase_ : List[Any] = featuremaps[i_map] lowerCamelCase_ : Dict = [] for i_focus in range(0 , a_ , a_ ): for j_focus in range(0 , a_ , a_ ): lowerCamelCase_ : Union[str, Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(a_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(a_ ) ) lowerCamelCase_ : Tuple = np.asmatrix(a_ ).reshape(a_ , a_ ) featuremap_pooled.append(a_ ) return featuremap_pooled def _UpperCamelCase ( self , a_ ): # expanding three dimension data to one dimension list lowerCamelCase_ : Optional[Any] = [] for i in range(len(a_ ) ): lowerCamelCase_ : Tuple = np.shape(data[i] ) lowerCamelCase_ : Optional[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCamelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(a_ ) lowerCamelCase_ : Optional[int] = np.asarray(a_ ) return data_expanded def _UpperCamelCase ( self , a_ ): # expanding matrix to one dimension list lowerCamelCase_ : Union[str, Any] = np.asarray(a_ ) lowerCamelCase_ : str = np.shape(a_ ) lowerCamelCase_ : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : List[str] = 0 for i_map in range(a_ ): lowerCamelCase_ : List[Any] = np.ones((size_map, size_map) ) for i in range(0 , a_ , a_ ): for j in range(0 , a_ , a_ ): lowerCamelCase_ : Any = pd_pool[ i_pool ] lowerCamelCase_ : List[Any] = i_pool + 1 lowerCamelCase_ : Optional[int] = np.multiply( a_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(a_ ) return pd_all def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(a_ )) ) print((" - - Shape: Teach_Data ", np.shape(a_ )) ) lowerCamelCase_ : str = 0 lowerCamelCase_ : Tuple = [] lowerCamelCase_ : Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowerCamelCase_ : Optional[Any] = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(a_ ) ): # print('------------Learning Image: %d--------------'%p) lowerCamelCase_ : Optional[int] = np.asmatrix(datas_train[p] ) lowerCamelCase_ : List[Any] = np.asarray(datas_teach[p] ) lowerCamelCase_ ,lowerCamelCase_ : Union[str, Any] = self.convolute( a_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ : Dict = self.pooling(a_ , self.size_poolinga ) lowerCamelCase_ : int = np.shape(a_ ) lowerCamelCase_ : Optional[Any] = self._expand(a_ ) lowerCamelCase_ : Optional[Any] = data_bp_input lowerCamelCase_ : Dict = np.dot(a_ , self.vji.T ) - self.thre_bpa lowerCamelCase_ : str = self.sig(a_ ) lowerCamelCase_ : Optional[int] = np.dot(a_ , self.wkj.T ) - self.thre_bpa lowerCamelCase_ : Union[str, Any] = self.sig(a_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCamelCase_ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(a_ , (1 - bp_outa) ) ) lowerCamelCase_ : Union[str, Any] = np.multiply( np.dot(a_ , self.wkj ) , np.multiply(a_ , (1 - bp_outa) ) ) lowerCamelCase_ : str = np.dot(a_ , self.vji ) lowerCamelCase_ : List[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCamelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() lowerCamelCase_ : Union[str, Any] = self._calculate_gradient_from_pool( a_ , a_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCamelCase_ : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowerCamelCase_ : Dict = self.rate_weight * np.dot(a_ , a_ ) lowerCamelCase_ : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCamelCase_ : List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCamelCase_ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCamelCase_ : Dict = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCamelCase_ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre lowerCamelCase_ : Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCamelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCamelCase_ : Any = rp + 1 lowerCamelCase_ : List[Any] = error_count / patterns all_mse.append(a_ ) def draw_error(): lowerCamelCase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(a_ , "+-" ) plt.plot(a_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(a_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCamelCase ( self , a_ ): # model predict lowerCamelCase_ : Optional[Any] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(a_ )) ) for p in range(len(a_ ) ): lowerCamelCase_ : Any = np.asmatrix(datas_test[p] ) lowerCamelCase_ ,lowerCamelCase_ : Dict = self.convolute( a_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ : int = self.pooling(a_ , self.size_poolinga ) lowerCamelCase_ : Dict = self._expand(a_ ) lowerCamelCase_ : List[str] = data_bp_input lowerCamelCase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowerCamelCase_ : List[Any] = self.sig(a_ ) lowerCamelCase_ : int = bp_outa * self.wkj.T - self.thre_bpa lowerCamelCase_ : int = self.sig(a_ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCamelCase_ : str = [list(map(self.do_round , a_ ) ) for each in produce_out] return np.asarray(a_ ) def _UpperCamelCase ( self , a_ ): # return the data of image after convoluting process so we can check it out lowerCamelCase_ : Any = np.asmatrix(a_ ) lowerCamelCase_ ,lowerCamelCase_ : int = self.convolute( a_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ : str = self.pooling(a_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
73
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''spiece.model'''} __magic_name__ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } __magic_name__ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 3 __magic_name__ = 4 class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[int] = '''left''' def __init__( self , a_ , a_=False , a_=True , a_=False , a_="<s>" , a_="</s>" , a_="<unk>" , a_="<sep>" , a_="<pad>" , a_="<cls>" , a_="<mask>" , a_=["<eop>", "<eod>"] , a_ = None , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token lowerCamelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = do_lower_case lowerCamelCase_ : str = remove_space lowerCamelCase_ : Tuple = keep_accents lowerCamelCase_ : Dict = vocab_file lowerCamelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def _UpperCamelCase ( self ): return len(self.sp_model ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCamelCase_ : Any = self.__dict__.copy() lowerCamelCase_ : Optional[int] = None return state def __setstate__( self , a_ ): lowerCamelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ : int = {} lowerCamelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , a_ ): if self.remove_space: lowerCamelCase_ : Optional[int] = " ".join(inputs.strip().split() ) else: lowerCamelCase_ : str = inputs lowerCamelCase_ : Any = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase_ : Dict = unicodedata.normalize("NFKD" , a_ ) lowerCamelCase_ : int = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: lowerCamelCase_ : Any = outputs.lower() return outputs def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : List[Any] = self.preprocess_text(a_ ) lowerCamelCase_ : Optional[int] = self.sp_model.encode(a_ , out_type=a_ ) lowerCamelCase_ : List[str] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ : int = cur_pieces[1:] else: lowerCamelCase_ : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def _UpperCamelCase ( self , a_ ): return self.sp_model.PieceToId(a_ ) def _UpperCamelCase ( self , a_ ): return self.sp_model.IdToPiece(a_ ) def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : Dict = "".join(a_ ).replace(a_ , " " ).strip() return out_string def _UpperCamelCase ( self , a_ , a_ = False , a_ = None , a_ = True , **a_ , ): lowerCamelCase_ : int = kwargs.pop("use_source_tokenizer" , a_ ) lowerCamelCase_ : List[str] = self.convert_ids_to_tokens(a_ , skip_special_tokens=a_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) lowerCamelCase_ : Union[str, Any] = [] sub_texts.append(a_ ) else: current_sub_text.append(a_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase_ : Union[str, Any] = "".join(a_ ) lowerCamelCase_ : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase_ : List[Any] = self.clean_up_tokenization(a_ ) return clean_text else: return text def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : Optional[Any] = [self.sep_token_id] lowerCamelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : Optional[Any] = [self.sep_token_id] lowerCamelCase_ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Any = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: lowerCamelCase_ : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
73
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( A__ ): def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=True , a=False , a=False , a=False , a=2 , a=99 , a=0 , a=32 , a=5 , a=4 , a=0.1 , a=0.1 , a=512 , a=12 , a=2 , a=0.02 , a=3 , a=4 , a="last" , a=None , a=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_lengths SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = gelu_activation SCREAMING_SNAKE_CASE = sinusoidal_embeddings SCREAMING_SNAKE_CASE = causal SCREAMING_SNAKE_CASE = asm SCREAMING_SNAKE_CASE = n_langs SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_special SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = summary_type SCREAMING_SNAKE_CASE = use_proj SCREAMING_SNAKE_CASE = scope def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE = None if self.use_input_lengths: SCREAMING_SNAKE_CASE = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , 2).float() SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict: SCREAMING_SNAKE_CASE = FlaubertModel(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , lengths=a , langs=a) SCREAMING_SNAKE_CASE = model(a , langs=a) SCREAMING_SNAKE_CASE = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> str: SCREAMING_SNAKE_CASE = FlaubertWithLMHeadModel(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Any: SCREAMING_SNAKE_CASE = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict: SCREAMING_SNAKE_CASE = FlaubertForQuestionAnswering(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) SCREAMING_SNAKE_CASE = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a) ((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> int: SCREAMING_SNAKE_CASE = FlaubertForSequenceClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Any: SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = FlaubertForTokenClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Tuple: SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : Any = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Any: SCREAMING_SNAKE_CASE = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaubertModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , emb_dim=37) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(config=a) SCREAMING_SNAKE_CASE = self._prepare_for_class(a , a) SCREAMING_SNAKE_CASE = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu'), inputs_dict['attention_mask'].to('cpu'))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt')) SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(a , 'traced_model.pt') , map_location=a) loaded(inputs_dict['input_ids'].to(a) , inputs_dict['attention_mask'].to(a)) @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased') SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(a)[0] SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768)) self.assertEqual(output.shape , a) SCREAMING_SNAKE_CASE = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1E-4))
73
"""simple docstring""" import math def UpperCamelCase ( _lowerCAmelCase : int ) -> str: _UpperCAmelCase : Any = 0 _UpperCAmelCase : Dict = 0 while num > 0: _UpperCAmelCase : str = num % 8 _UpperCAmelCase : Any = octal + (remainder * math.floor(math.pow(10, _lowerCAmelCase ) )) counter += 1 _UpperCAmelCase : List[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(_lowerCAmelCase )}''' def UpperCamelCase ( ) -> None: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
238
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase__ = logging.get_logger(__name__) # General docstring UpperCamelCase__ = 'MobileNetV1Config' # Base docstring UpperCamelCase__ = 'google/mobilenet_v1_1.0_224' UpperCamelCase__ = [1, 1024, 7, 7] # Image classification docstring UpperCamelCase__ = 'google/mobilenet_v1_1.0_224' UpperCamelCase__ = 'tabby, tabby cat' UpperCamelCase__ = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : str = {} if isinstance(_UpperCamelCase , _UpperCamelCase ): lowercase_ : str = model.mobilenet_va else: lowercase_ : List[str] = model lowercase_ : Any = "MobilenetV1/Conv2d_0/" lowercase_ : Tuple = backbone.conv_stem.convolution.weight lowercase_ : int = backbone.conv_stem.normalization.bias lowercase_ : Optional[Any] = backbone.conv_stem.normalization.weight lowercase_ : Optional[int] = backbone.conv_stem.normalization.running_mean lowercase_ : str = backbone.conv_stem.normalization.running_var for i in range(13 ): lowercase_ : Tuple = i + 1 lowercase_ : str = i * 2 lowercase_ : Tuple = backbone.layer[pt_index] lowercase_ : Union[str, Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowercase_ : List[str] = pointer.convolution.weight lowercase_ : Optional[int] = pointer.normalization.bias lowercase_ : str = pointer.normalization.weight lowercase_ : List[Any] = pointer.normalization.running_mean lowercase_ : List[Any] = pointer.normalization.running_var lowercase_ : Union[str, Any] = backbone.layer[pt_index + 1] lowercase_ : List[Any] = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowercase_ : Optional[int] = pointer.convolution.weight lowercase_ : List[str] = pointer.normalization.bias lowercase_ : Optional[int] = pointer.normalization.weight lowercase_ : Any = pointer.normalization.running_mean lowercase_ : Union[str, Any] = pointer.normalization.running_var if isinstance(_UpperCamelCase , _UpperCamelCase ): lowercase_ : Optional[Any] = "MobilenetV1/Logits/Conv2d_1c_1x1/" lowercase_ : Dict = model.classifier.weight lowercase_ : List[Any] = model.classifier.bias return tf_to_pt_map def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowercase_ : Tuple = tf.train.list_variables(_UpperCamelCase ) lowercase_ : Any = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) lowercase_ : Optional[int] = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) lowercase_ : int = array # Build TF to PyTorch weights loading map lowercase_ : Optional[Any] = _build_tf_to_pytorch_map(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue lowercase_ : Optional[int] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowercase_ : Optional[Any] = np.transpose(_UpperCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowercase_ : str = array.squeeze().transpose() else: lowercase_ : Union[str, Any] = np.transpose(_UpperCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) lowercase_ : List[Any] = torch.from_numpy(_UpperCamelCase ) tf_weights.pop(_UpperCamelCase , _UpperCamelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCamelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCamelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCamelCase ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : Dict = features.shape[-2:] lowercase_ , lowercase_ : List[str] = conv_layer.stride lowercase_ , lowercase_ : List[Any] = conv_layer.kernel_size if in_height % stride_height == 0: lowercase_ : Tuple = max(kernel_height - stride_height , 0 ) else: lowercase_ : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowercase_ : str = max(kernel_width - stride_width , 0 ) else: lowercase_ : Any = max(kernel_width - (in_width % stride_width) , 0 ) lowercase_ : Dict = pad_along_width // 2 lowercase_ : str = pad_along_width - pad_left lowercase_ : List[Any] = pad_along_height // 2 lowercase_ : Optional[int] = pad_along_height - pad_top lowercase_ : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCamelCase , _UpperCamelCase , "constant" , 0.0 ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[int] , a : MobileNetVaConfig , a : int , a : int , a : int , a : Optional[int] = 1 , a : Optional[int] = 1 , a : bool = False , a : Optional[bool] = True , a : Optional[bool or str] = True , ): '''simple docstring''' super().__init__() lowercase_ : str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) lowercase_ : List[str] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase_ : str = nn.Convad( in_channels=a , out_channels=a , kernel_size=a , stride=a , padding=a , groups=a , bias=a , padding_mode="zeros" , ) if use_normalization: lowercase_ : Optional[int] = nn.BatchNormad( num_features=a , eps=config.layer_norm_eps , momentum=0.9997 , affine=a , track_running_stats=a , ) else: lowercase_ : str = None if use_activation: if isinstance(a , a ): lowercase_ : Union[str, Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , a ): lowercase_ : List[str] = ACTaFN[config.hidden_act] else: lowercase_ : int = config.hidden_act else: lowercase_ : Optional[int] = None def lowerCAmelCase__ ( self : Optional[Any] , a : torch.Tensor ): '''simple docstring''' if self.config.tf_padding: lowercase_ : Dict = apply_tf_padding(a , self.convolution ) lowercase_ : List[Any] = self.convolution(a ) if self.normalization is not None: lowercase_ : str = self.normalization(a ) if self.activation is not None: lowercase_ : Any = self.activation(a ) return features class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Optional[Any] = MobileNetVaConfig __lowerCamelCase: Any = load_tf_weights_in_mobilenet_va __lowerCamelCase: str = 'mobilenet_v1' __lowerCamelCase: Union[str, Any] = 'pixel_values' __lowerCamelCase: Union[str, Any] = False def lowerCAmelCase__ ( self : Optional[int] , a : Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase__ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase__ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , snake_case , ) class _UpperCAmelCase ( snake_case ): def __init__( self : Optional[Any] , a : MobileNetVaConfig , a : bool = True ): '''simple docstring''' super().__init__(a ) lowercase_ : Optional[int] = config lowercase_ : Tuple = 3_2 lowercase_ : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase_ : int = MobileNetVaConvLayer( a , in_channels=config.num_channels , out_channels=a , kernel_size=3 , stride=2 , ) lowercase_ : List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase_ : str = nn.ModuleList() for i in range(1_3 ): lowercase_ : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase_ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( a , in_channels=a , out_channels=a , kernel_size=3 , stride=strides[i] , groups=a , ) ) self.layer.append( MobileNetVaConvLayer( a , in_channels=a , out_channels=a , kernel_size=1 , ) ) lowercase_ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self : List[str] , a : str ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : List[str] , a : Optional[torch.Tensor] = None , a : Optional[bool] = None , a : Optional[bool] = None , ): '''simple docstring''' lowercase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowercase_ : Optional[int] = self.conv_stem(a ) lowercase_ : Union[str, Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase_ : Optional[Any] = layer_module(a ) if output_hidden_states: lowercase_ : List[Any] = all_hidden_states + (hidden_states,) lowercase_ : Tuple = hidden_states if self.pooler is not None: lowercase_ : List[str] = torch.flatten(self.pooler(a ) , start_dim=1 ) else: lowercase_ : Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=a , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case , ) class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MobileNetVaConfig ): '''simple docstring''' super().__init__(a ) lowercase_ : Tuple = config.num_labels lowercase_ : Optional[int] = MobileNetVaModel(a ) lowercase_ : Any = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase_ : str = nn.Dropout(config.classifier_dropout_prob , inplace=a ) lowercase_ : Optional[int] = nn.Linear(a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : Optional[int] , a : Optional[torch.Tensor] = None , a : Optional[bool] = None , a : Optional[torch.Tensor] = None , a : Optional[bool] = None , ): '''simple docstring''' lowercase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : List[Any] = self.mobilenet_va(a , output_hidden_states=a , return_dict=a ) lowercase_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] lowercase_ : Union[str, Any] = self.classifier(self.dropout(a ) ) lowercase_ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase_ : Optional[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase_ : Any = "single_label_classification" else: lowercase_ : List[str] = "multi_label_classification" if self.config.problem_type == "regression": lowercase_ : Optional[int] = MSELoss() if self.num_labels == 1: lowercase_ : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase_ : Optional[int] = loss_fct(a , a ) elif self.config.problem_type == "single_label_classification": lowercase_ : Any = CrossEntropyLoss() lowercase_ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase_ : Union[str, Any] = BCEWithLogitsLoss() lowercase_ : Optional[int] = loss_fct(a , a ) if not return_dict: lowercase_ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=a , logits=a , hidden_states=outputs.hidden_states , )
640
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
1
"""simple docstring""" from collections import defaultdict class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _UpperCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) ) ] _UpperCAmelCase = defaultdict(snake_case_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _UpperCAmelCase = (1 << len(snake_case_ )) - 1 def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple )->int: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _UpperCAmelCase = self.count_ways_until(snake_case_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _UpperCAmelCase = total_ways_util return self.dp[mask][task_no] def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] )->Optional[int]: # Store the list of persons for each task for i in range(len(snake_case_ ) ): for j in task_performed[i]: self.task[j].append(snake_case_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __A : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __A : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
602
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCamelCase = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = False ,lowercase = False ,lowercase = None ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : Optional[Any] = path_or_paths UpperCAmelCase_ : Optional[int] = split if split or isinstance(lowercase ,lowercase) else "train" UpperCAmelCase_ : Optional[int] = features UpperCAmelCase_ : Dict = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : Tuple = streaming UpperCAmelCase_ : Union[str, Any] = num_proc UpperCAmelCase_ : Union[str, Any] = kwargs @abstractmethod def A_ ( self): """simple docstring""" pass class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self ,lowercase = None ,lowercase = None ,lowercase = False ,lowercase = False ,lowercase = None ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : List[Any] = features UpperCAmelCase_ : List[Any] = cache_dir UpperCAmelCase_ : List[str] = keep_in_memory UpperCAmelCase_ : Optional[int] = streaming UpperCAmelCase_ : Dict = num_proc UpperCAmelCase_ : str = kwargs @abstractmethod def A_ ( self): """simple docstring""" pass
455
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _lowerCAmelCase : str = random.Random() def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=1.0 , _lowerCAmelCase : int=None , _lowerCAmelCase : Tuple=None ) -> Optional[Any]: if rng is None: A_ : Union[str, Any] = global_rng A_ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :str , snake_case :Tuple , snake_case :Dict=7 , snake_case :int=400 , snake_case :Optional[Any]=2_000 , snake_case :str=1 , snake_case :Any=0.0 , snake_case :Tuple=16_000 , snake_case :List[Any]=True , snake_case :Tuple=80 , snake_case :Optional[Any]=16 , snake_case :Any=64 , snake_case :List[str]="hann_window" , snake_case :List[str]=80 , snake_case :Union[str, Any]=7_600 , snake_case :Union[str, Any]=1e-10 , snake_case :List[str]=True , ): '''simple docstring''' A_ : List[str] = parent A_ : List[Any] = batch_size A_ : Optional[int] = min_seq_length A_ : Union[str, Any] = max_seq_length A_ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ : Tuple = feature_size A_ : Union[str, Any] = padding_value A_ : Tuple = sampling_rate A_ : Any = do_normalize A_ : Dict = num_mel_bins A_ : str = hop_length A_ : int = win_length A_ : str = win_function A_ : List[str] = fmin A_ : Any = fmax A_ : Any = mel_floor A_ : List[str] = return_attention_mask def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str=False , snake_case :Dict=False ): '''simple docstring''' def _flatten(snake_case :Tuple ): return list(itertools.chain(*_snake_case ) ) if equal_length: A_ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A_ : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : int = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE ( self :str , snake_case :Optional[int]=False , snake_case :Union[str, Any]=False ): '''simple docstring''' if equal_length: A_ : List[str] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ : Union[str, Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : Optional[Any] = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch class __magic_name__ ( A_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : List[str] = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Optional[Any] ): '''simple docstring''' self.assertTrue(np.all(np.mean(_snake_case , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ : Optional[int] = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input A_ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values A_ : Tuple = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1e-3 ) ) # Test batched A_ : Any = feat_extract(_snake_case , return_tensors="np" ).input_values A_ : Optional[Any] = feat_extract(_snake_case , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] A_ : Optional[Any] = [None, 1_600, None] for max_length, padding in zip(_snake_case , _snake_case ): A_ : str = feat_extract(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors="np" ) A_ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Dict = range(800 , 1_400 , 200 ) A_ : str = [floats_list((1, x) )[0] for x in lengths] A_ : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] A_ : List[str] = [None, 1_600, None] for max_length, padding in zip(_snake_case , _snake_case ): A_ : List[str] = feat_extract(_snake_case , max_length=_snake_case , padding=_snake_case ) A_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ : Tuple = feat_extract( _snake_case , truncation=_snake_case , max_length=1_000 , padding="max_length" , return_tensors="np" ) A_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ : str = feat_extract( _snake_case , truncation=_snake_case , max_length=1_000 , padding="longest" , return_tensors="np" ) A_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) A_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ : Optional[Any] = feat_extract( _snake_case , truncation=_snake_case , max_length=2_000 , padding="longest" , return_tensors="np" ) A_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : int = np.random.rand(100 ).astype(np.floataa ) A_ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ : Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A_ : int = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ : Optional[int] = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test feature size A_ : Dict = feature_extractor(audio_target=_snake_case , padding=_snake_case , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input A_ : Any = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values A_ : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1e-3 ) ) # Test batched A_ : Tuple = feature_extractor(_snake_case , return_tensors="np" ).input_values A_ : Dict = feature_extractor(_snake_case , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A_ : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ : Union[str, Any] = np.asarray(_snake_case ) A_ : Dict = feature_extractor(_snake_case , return_tensors="np" ).input_values A_ : Union[str, Any] = feature_extractor(_snake_case , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() A_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) A_ : int = feat_extract.model_input_names[0] A_ : Dict = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) A_ : List[str] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) A_ : Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) A_ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: A_ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) A_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A_ : Tuple = feat_extract.model_input_names[0] A_ : Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) A_ : Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: A_ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) A_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() A_ : List[str] = feat_extract.model_input_names[0] A_ : int = BatchFeature({input_name: speech_inputs} ) A_ : List[Any] = feat_extract.num_mel_bins # hack! A_ : Optional[int] = feat_extract.pad(_snake_case , padding="longest" , return_tensors="np" )[input_name] A_ : str = feat_extract.pad(_snake_case , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Dict = self.feat_extract_dict A_ : Any = True A_ : Union[str, Any] = self.feature_extraction_class(**_snake_case ) A_ : Tuple = self.feat_extract_tester.prepare_inputs_for_target() A_ : List[Any] = [len(_snake_case ) for x in speech_inputs] A_ : Any = feat_extract.model_input_names[0] A_ : str = BatchFeature({input_name: speech_inputs} ) A_ : str = feat_extract.num_mel_bins # hack! A_ : Optional[Any] = feat_extract.pad(_snake_case , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : List[Any] = self.feat_extract_dict A_ : Tuple = True A_ : Optional[int] = self.feature_extraction_class(**_snake_case ) A_ : Tuple = self.feat_extract_tester.prepare_inputs_for_target() A_ : int = [len(_snake_case ) for x in speech_inputs] A_ : Union[str, Any] = feat_extract.model_input_names[0] A_ : Any = BatchFeature({input_name: speech_inputs} ) A_ : int = min(_snake_case ) A_ : List[str] = feat_extract.num_mel_bins # hack! A_ : Optional[Any] = feat_extract.pad( _snake_case , padding="max_length" , max_length=_snake_case , truncation=_snake_case , return_tensors="np" ) self.assertIn("attention_mask" , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :str ): '''simple docstring''' from datasets import load_dataset A_ : int = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A_ : Union[str, Any] = ds.sort("id" ).select(range(_snake_case ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on A_ : Union[str, Any] = self._load_datasamples(1 ) A_ : List[Any] = SpeechTaFeatureExtractor() A_ : Any = feature_extractor(_snake_case , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _snake_case , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : str = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on A_ : Dict = self._load_datasamples(1 ) A_ : Tuple = SpeechTaFeatureExtractor() A_ : Optional[Any] = feature_extractor(audio_target=_snake_case , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _snake_case , atol=1e-4 ) )
454
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[float | int, list[tuple[int, int]]]: lowercase__ , lowercase__ : Optional[Any] = grid.shape lowercase__ : List[str] = [-1, 1, 0, 0] lowercase__ : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase__ , lowercase__ : List[str] = [(0, source)], set() lowercase__ : List[str] = np.full((rows, cols) , np.inf ) lowercase__ : Optional[int] = 0 lowercase__ : str = np.empty((rows, cols) , dtype=__lowerCamelCase ) lowercase__ : Optional[int] = None while queue: ((lowercase__) , (lowercase__)) : Tuple = heappop(__lowerCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase__ : Union[str, Any] = [] while (x, y) != source: path.append((x, y) ) lowercase__ , lowercase__ : Union[str, Any] = predecessors[x, y] path.append(__lowerCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__lowerCamelCase ) ): lowercase__ , lowercase__ : Any = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase__ : Tuple = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__lowerCamelCase , (dist + 1, (nx, ny)) ) lowercase__ : Optional[Any] = dist + 1 lowercase__ : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
560
0
"""simple docstring""" import requests def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: lowerCAmelCase__ : Union[str, Any] = {"""Content-Type""": """application/json"""} lowerCAmelCase__ : List[str] = requests.post(__UpperCAmelCase , json={"""text""": message_body} , headers=__UpperCAmelCase ) if response.status_code != 200: lowerCAmelCase__ : Union[str, Any] = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
507
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {"""vocab_file""": """sentencepiece.model"""} _A = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } _A = { """google/rembert""": 2_5_6, } class _lowerCamelCase ( a_ ): _lowerCamelCase :List[str] = VOCAB_FILES_NAMES _lowerCamelCase :Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Any="[CLS]" , UpperCamelCase : Tuple="[SEP]" , UpperCamelCase : Any="[UNK]" , UpperCamelCase : str="[SEP]" , UpperCamelCase : Dict="[PAD]" , UpperCamelCase : Any="[CLS]" , UpperCamelCase : Dict="[MASK]" , **UpperCamelCase : Dict , ) -> Tuple: """simple docstring""" super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : List[Any] = do_lower_case lowerCAmelCase__ : str = remove_space lowerCAmelCase__ : Optional[int] = keep_accents lowerCAmelCase__ : str = vocab_file lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(UpperCamelCase ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return len(self.sp_model ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Union[str, Any] = None return state def __setstate__( self : Any , UpperCamelCase : int ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = d lowerCAmelCase__ : int = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=False ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.sp_model.EncodeAsPieces(UpperCamelCase ) return pieces def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.sp_model.decode_pieces(UpperCamelCase ) return out_string def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : int = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCamelCase ) ) return lowerCAmelCase__ : Any = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
507
1
"""simple docstring""" from math import factorial, radians def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : int = 18 , _lowercase : int = 10 ) ->float: '''simple docstring''' a : Optional[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians a : Any = radians(_lowercase ) a : Optional[int] = angle_in_radians a : Dict = 3 a : Dict = -1 for _ in range(_lowercase ): result += (b * (angle_in_radians**a)) / factorial(_lowercase ) a : List[str] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_lowercase , _lowercase ) if __name__ == "__main__": __import__('''doctest''').testmod()
633
"""simple docstring""" class __UpperCamelCase : # Public class to implement a graph def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a : int = row a : Tuple = col a : Optional[int] = graph def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: # Checking all 8 elements surrounding nth element a : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order a : str = [-1, 0, 1, -1, 1, -1, 0, 1] a : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase__ ) def __a ( self ) -> int: # And finally, count all islands. a : Union[str, Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] a : Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += 1 return count
633
1
from bisect import bisect from itertools import accumulate def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : x[0] / x[1] , reverse=UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase__ = list(accumulate(UpperCamelCase_ ) ) lowerCAmelCase__ = bisect(UpperCamelCase_ , UpperCamelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a_ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') a_ = subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode('''utf-8''').split() a_ = '''|'''.join(sys.argv[1:]) a_ = re.compile(rF"^({joined_dirs}).*?\.py$") a_ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
115
0
import os def snake_case__ ( lowercase = "input.txt" ): with open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) as input_file: lowerCAmelCase_: Dict = [ [int(lowercase ) for element in line.split("," )] for line in input_file.readlines() ] lowerCAmelCase_: int = len(lowercase ) lowerCAmelCase_: Any = len(matrix[0] ) lowerCAmelCase_: List[Any] = [[-1 for _ in range(lowercase )] for _ in range(lowercase )] for i in range(lowercase ): lowerCAmelCase_: Union[str, Any] = matrix[i][0] for j in range(1 , lowercase ): for i in range(lowercase ): lowerCAmelCase_: str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowercase ): lowerCAmelCase_: Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCAmelCase_: Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
613
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : List[str] = False class _lowercase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): lowerCAmelCase_: List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase_: Tuple = "A painting of a squirrel eating a burger " lowerCAmelCase_: List[str] = torch.manual_seed(0 ) lowerCAmelCase_: Dict = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) lowerCAmelCase_: int = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase_: List[str] = generator.manual_seed(0 ) lowerCAmelCase_: Dict = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _a ( self ): lowerCAmelCase_: Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase_: str = "A painting of a squirrel eating a burger " lowerCAmelCase_: int = torch.manual_seed(0 ) lowerCAmelCase_: List[str] = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowerCAmelCase_: List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_: Optional[int] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
613
1
import os from pathlib import Path def UpperCAmelCase__ ( ): """simple docstring""" from torch.utils.cpp_extension import load a_ = Path(_A ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' a_ = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
143
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowercase ( enum.Enum ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 @add_end_docstrings(a__ ) class __lowercase ( a__ ): _lowerCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Tuple , *lowercase__ : Tuple , **lowercase__ : Any ): super().__init__(*lowercase__ , **lowercase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a_ = None if self.model.config.prefix is not None: a_ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a_ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a_ , a_ , a_ = self._sanitize_parameters(prefix=lowercase__ , **self._forward_params ) a_ = {**self._preprocess_params, **preprocess_params} a_ = {**self._forward_params, **forward_params} def __magic_name__ ( self : Any , lowercase__ : Tuple=None , lowercase__ : List[str]=None , lowercase__ : Optional[Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : Any=None , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , **lowercase__ : Optional[Any] , ): a_ = {} if prefix is not None: a_ = prefix if prefix: a_ = self.tokenizer( lowercase__ , padding=lowercase__ , add_special_tokens=lowercase__ , return_tensors=self.framework ) a_ = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) a_ = handle_long_generation preprocess_params.update(lowercase__ ) a_ = generate_kwargs a_ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) a_ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) a_ = ReturnType.TENSORS if return_type is not None: a_ = return_type if clean_up_tokenization_spaces is not None: a_ = clean_up_tokenization_spaces if stop_sequence is not None: a_ = self.tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) if len(lowercase__ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) a_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __magic_name__ ( self : int , *lowercase__ : int , **lowercase__ : Union[str, Any] ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*lowercase__ , **lowercase__ ) def __call__( self : Union[str, Any] , lowercase__ : List[Any] , **lowercase__ : str ): return super().__call__(lowercase__ , **lowercase__ ) def __magic_name__ ( self : Any , lowercase__ : List[Any] , lowercase__ : int="" , lowercase__ : Union[str, Any]=None , **lowercase__ : int ): a_ = self.tokenizer( prefix + prompt_text , padding=lowercase__ , add_special_tokens=lowercase__ , return_tensors=self.framework ) a_ = prompt_text if handle_long_generation == "hole": a_ = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: a_ = generate_kwargs['''max_new_tokens'''] else: a_ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: a_ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) a_ = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: a_ = inputs['''attention_mask'''][:, -keep_length:] return inputs def __magic_name__ ( self : Union[str, Any] , lowercase__ : Dict , **lowercase__ : Tuple ): a_ = model_inputs['''input_ids'''] a_ = model_inputs.get('''attention_mask''' , lowercase__ ) # Allow empty prompts if input_ids.shape[1] == 0: a_ = None a_ = None a_ = 1 else: a_ = input_ids.shape[0] a_ = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a_ = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: a_ = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: a_ = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a_ = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a_ = self.model.generate(input_ids=lowercase__ , attention_mask=lowercase__ , **lowercase__ ) a_ = generated_sequence.shape[0] if self.framework == "pt": a_ = generated_sequence.reshape(lowercase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a_ = tf.reshape(lowercase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __magic_name__ ( self : List[str] , lowercase__ : Optional[Any] , lowercase__ : Dict=ReturnType.FULL_TEXT , lowercase__ : Tuple=True ): a_ = model_outputs['''generated_sequence'''][0] a_ = model_outputs['''input_ids'''] a_ = model_outputs['''prompt_text'''] a_ = generated_sequence.numpy().tolist() a_ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a_ = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a_ = self.tokenizer.decode( lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a_ = 0 else: a_ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ , ) ) if return_type == ReturnType.FULL_TEXT: a_ = prompt_text + text[prompt_length:] else: a_ = text[prompt_length:] a_ = {'''generated_text''': all_text} records.append(lowercase__ ) return records
143
1
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[False] * len(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =[-1] * len(__SCREAMING_SNAKE_CASE ) def dfs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _UpperCamelCase =True _UpperCamelCase =c for u in graph[v]: if not visited[u]: dfs(__SCREAMING_SNAKE_CASE , 1 - c ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): if not visited[i]: dfs(__SCREAMING_SNAKE_CASE , 0 ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __lowerCamelCase : Any = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
404
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration a__ = 5_0_0_0_0_0 a__ , a__ = os.path.split(__file__) a__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _UpperCAmelCase ( a : datasets.Dataset , **a : Tuple ): snake_case__ = dataset.map(**a ) @get_duration def _UpperCAmelCase ( a : datasets.Dataset , **a : Optional[Any] ): snake_case__ = dataset.filter(**a ) def _UpperCAmelCase ( ): snake_case__ = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) snake_case__ = generate_example_dataset( os.path.join(a , """dataset.arrow""" ) , a , num_examples=a ) snake_case__ = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=a ) def tokenize(a : Union[str, Any] ): return tokenizer(examples["""text"""] ) snake_case__ = map(a ) snake_case__ = map(a , batched=a ) snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""numpy""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""pandas""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) snake_case__ = map(a , function=a , batched=a ) snake_case__ = filter(a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(a , """wb""" ) as f: f.write(json.dumps(a ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
654
0
import math def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 0 __lowercase = 0 while num > 0: __lowercase = num % 8 __lowercase = octal + (remainder * math.floor(math.pow(10 , lowerCamelCase ) )) counter += 1 __lowercase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(lowerCamelCase )}' def snake_case ( ): '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _snake_case : str = { # 1536-bit 5: { """prime""": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), """generator""": 2, }, } class UpperCamelCase_ : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] = 14 ) ->Dict: if group not in primes: raise ValueError("Unsupported Group" ) lowercase = primes[group]["prime"] lowercase = primes[group]["generator"] lowercase = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->str: return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE( self :int ) ->Tuple: lowercase = pow(self.generator , self.__private_key , self.prime ) return hex(__SCREAMING_SNAKE_CASE )[2:] def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :Dict ) ->Union[str, Any]: return ( 2 <= key <= self.prime - 2 and pow(__SCREAMING_SNAKE_CASE , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE( self :str , lowerCAmelCase__ :Union[str, Any] ) ->Dict: lowercase = int(__SCREAMING_SNAKE_CASE , base=16 ) if not self.is_valid_public_key(__SCREAMING_SNAKE_CASE ): raise ValueError("Invalid public key" ) lowercase = pow(__SCREAMING_SNAKE_CASE , self.__private_key , self.prime ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) ->Any: return ( 2 <= remote_public_key_str <= prime - 2 and pow(__SCREAMING_SNAKE_CASE , (prime - 1) // 2 , __SCREAMING_SNAKE_CASE ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE( lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] = 14 ) ->int: lowercase = int(__SCREAMING_SNAKE_CASE , base=16 ) lowercase = int(__SCREAMING_SNAKE_CASE , base=16 ) lowercase = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Invalid public key" ) lowercase = pow(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
441
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
0
def lowerCamelCase ( UpperCamelCase : list ) -> float: _lowerCamelCase = 0 while len(UpperCamelCase ) > 1: _lowerCamelCase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _lowerCamelCase = files.index(min(UpperCamelCase ) ) temp += files[min_index] files.pop(UpperCamelCase ) files.append(UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
717
from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Dict , *snake_case__ : Optional[int] , **snake_case__ : Optional[Any] ) -> Optional[int]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : str , **snake_case__ : int ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Any , **snake_case__ : Any ) -> int: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[Any] , *snake_case__ : Optional[int] , **snake_case__ : List[str] ) -> Optional[Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Tuple ) -> int: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Dict , *snake_case__ : int , **snake_case__ : Dict ) -> str: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Union[str, Any] , *snake_case__ : Union[str, Any] , **snake_case__ : int ) -> Union[str, Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : int , **snake_case__ : Optional[int] ) -> Optional[int]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : List[str] , **snake_case__ : Dict ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case__ : int , **snake_case__ : Any ) -> Tuple: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ) -> Tuple: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Any ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Union[str, Any] ) -> List[Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Tuple , **snake_case__ : Any ) -> str: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[str] , *snake_case__ : str , **snake_case__ : Tuple ) -> Tuple: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[Any] , *snake_case__ : Dict , **snake_case__ : Optional[Any] ) -> Dict: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Optional[Any] , **snake_case__ : int ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : Dict , **snake_case__ : Optional[int] ) -> Tuple: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case__ : Any , **snake_case__ : Dict ) -> List[str]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ) -> int: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ) -> List[str]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : List[str] , *snake_case__ : str , **snake_case__ : str ) -> str: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : str , *snake_case__ : str , **snake_case__ : Dict ) -> Any: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : Any , **snake_case__ : Tuple ) -> Any: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case__ : List[Any] , **snake_case__ : int ) -> int: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Any , *snake_case__ : Dict , **snake_case__ : Optional[Any] ) -> List[Any]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Union[str, Any] , *snake_case__ : Any , **snake_case__ : Dict ) -> Dict: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : int , *snake_case__ : str , **snake_case__ : str ) -> Optional[Any]: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Optional[Any] , *snake_case__ : Dict , **snake_case__ : List[str] ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : int , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : int , *snake_case__ : Optional[int] , **snake_case__ : Union[str, Any] ) -> Tuple: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : int , **snake_case__ : List[Any] ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Tuple , *snake_case__ : List[str] , **snake_case__ : Any ) -> Optional[Any]: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : Optional[int] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> Any: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : Dict , *snake_case__ : Any , **snake_case__ : int ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : Optional[int] , *snake_case__ : Union[str, Any] , **snake_case__ : List[str] ) -> Dict: requires_backends(cls , ['flax'] ) class lowerCAmelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['flax'] def __init__( self : int , *snake_case__ : Optional[int] , **snake_case__ : int ) -> int: requires_backends(self , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : List[Any] , **snake_case__ : Tuple ) -> Tuple: requires_backends(cls , ['flax'] ) @classmethod def _snake_case ( cls : List[Any] , *snake_case__ : List[Any] , **snake_case__ : Optional[int] ) -> Tuple: requires_backends(cls , ['flax'] )
234
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers SCREAMING_SNAKE_CASE :str = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
628
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" UpperCamelCase_ = False if num < 0: UpperCamelCase_ = True UpperCamelCase_ = -num UpperCamelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
628
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __lowercase = logging.getLogger() def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) __lowercase = """patrickvonplaten/t5-tiny-random""" __lowercase = """sshleifer/bart-tiny-random""" __lowercase = """sshleifer/tiny-mbart""" __lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _lowercase ( __lowerCamelCase ): def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) -> str: """simple docstring""" A_ = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' A_ = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() A_ = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(lowerCamelCase__ , lowerCamelCase__ ) A_ = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) A_ = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' A_ = F"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_generate() assert Path(lowerCamelCase__ ).exists() # os.remove(Path(output_file_name)) def UpperCamelCase ( self : str ) -> str: """simple docstring""" self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Tuple ) -> Dict: """simple docstring""" A_ = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' A_ = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() A_ = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } A_ = Path(self.get_auto_remove_tmp_dir() ) A_ = str(tmp_dir / '''scores.json''' ) A_ = str(tmp_dir / '''val.target''' ) _dump_articles(lowerCamelCase__ , text['''en'''] ) _dump_articles(lowerCamelCase__ , text['''de'''] ) A_ = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' A_ = F"\n run_eval_search.py\n {model}\n {str(lowerCamelCase__ )}\n {str(lowerCamelCase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): with CaptureStdout() as cs: run_search() A_ = [''' num_beams | length_penalty''', model, '''Best score args'''] A_ = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(lowerCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase__ ).exists() os.remove(Path(lowerCamelCase__ ) )
702
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = len(SCREAMING_SNAKE_CASE ) A_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A_ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A_ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A_ = subset[i - 1][j] if arr[i - 1] <= j: A_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
563
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( __lowercase , unittest.TestCase ): # TODO: is there an appropriate internal test set? __a = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): _UpperCAmelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): @property def UpperCAmelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self ): _UpperCAmelCase = ort.SessionOptions() _UpperCAmelCase = False return options def UpperCAmelCase ( self ): _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase = init_image.resize((128, 128) ) # using the PNDM scheduler by default _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = """A fantasy landscape, trending on artstation""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self ): _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase = init_image.resize((128, 128) ) _UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = """A fantasy landscape, trending on artstation""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=20 , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
518
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _A ( __lowercase ): __a = """Salesforce/blip-image-captioning-base""" __a = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) __a = """image_captioner""" __a = AutoModelForVisionaSeq __a = ["""image"""] __a = ["""text"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): requires_backends(self , ["""vision"""] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.pre_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.model.generate(**_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0].strip()
518
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __UpperCAmelCase ( snake_case_ : Dict=None ): '''simple docstring''' if subparsers is not None: UpperCAmelCase: str = subparsers.add_parser("env" ) else: UpperCAmelCase: int = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=snake_case_ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def __UpperCAmelCase ( snake_case_ : List[str] ): '''simple docstring''' UpperCAmelCase: Tuple = torch.__version__ UpperCAmelCase: Tuple = torch.cuda.is_available() UpperCAmelCase: List[str] = is_xpu_available() UpperCAmelCase: Optional[Any] = is_npu_available() UpperCAmelCase: Tuple = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): UpperCAmelCase: Optional[int] = load_config_from_file(args.config_file ).to_dict() UpperCAmelCase: str = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "PyTorch XPU available": str(snake_case_ ), "PyTorch NPU available": str(snake_case_ ), "System RAM": F'{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB', } if pt_cuda_available: UpperCAmelCase: Optional[Any] = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) UpperCAmelCase: List[Any] = ( "\n".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'\t{accelerate_config}' ) print(snake_case_ ) UpperCAmelCase: List[str] = accelerate_config return info def __UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase: str = env_command_parser() UpperCAmelCase: List[Any] = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
711
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ : Optional[int] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ : Optional[int] = logging.get_logger(__name__) class __lowerCamelCase ( lowercase ): lowerCamelCase__: Union[str, Any] = '''maskformer''' lowerCamelCase__: Optional[int] = {'''hidden_size''': '''mask_feature_size'''} lowerCamelCase__: Optional[int] = ['''resnet''', '''swin'''] lowerCamelCase__: Optional[int] = ['''detr'''] def __init__( self , __snake_case = 2_5_6 , __snake_case = 2_5_6 , __snake_case = 0.1 , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0.02 , __snake_case = 1.0 , __snake_case = 1.0 , __snake_case = 1.0 , __snake_case = 20.0 , __snake_case = None , **__snake_case , ) -> List[Any]: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase: str = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: Union[str, Any] = backbone_config.pop("model_type" ) UpperCAmelCase: List[str] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase: Any = config_class.from_dict(__snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase: Tuple = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase: Dict = ( decoder_config.pop("model_type" ) if isinstance(__snake_case , __snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: Union[str, Any] = CONFIG_MAPPING[decoder_type] UpperCAmelCase: Optional[Any] = config_class.from_dict(__snake_case ) UpperCAmelCase: Any = backbone_config UpperCAmelCase: Dict = decoder_config # main feature dimension for the model UpperCAmelCase: Optional[int] = fpn_feature_size UpperCAmelCase: Union[str, Any] = mask_feature_size # initializer UpperCAmelCase: Tuple = init_std UpperCAmelCase: Union[str, Any] = init_xavier_std # Hungarian matcher && loss UpperCAmelCase: Optional[int] = cross_entropy_weight UpperCAmelCase: List[str] = dice_weight UpperCAmelCase: List[Any] = mask_weight UpperCAmelCase: List[str] = use_auxiliary_loss UpperCAmelCase: List[str] = no_object_weight UpperCAmelCase: int = output_auxiliary_logits UpperCAmelCase: int = self.decoder_config.encoder_attention_heads UpperCAmelCase: Dict = self.decoder_config.num_hidden_layers super().__init__(**__snake_case ) @classmethod def A__ ( cls , __snake_case , __snake_case , **__snake_case ) -> Tuple: """simple docstring""" return cls( backbone_config=__snake_case , decoder_config=__snake_case , **__snake_case , ) def A__ ( self ) -> Dict[str, any]: """simple docstring""" UpperCAmelCase: Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase: Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase: List[Any] = self.decoder_config.to_dict() UpperCAmelCase: Dict = self.__class__.model_type return output
166
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __lowerCamelCase , unittest.TestCase ): a__ : Tuple = BlenderbotSmallTokenizer a__ : List[str] = False def __lowercase( self : str ) -> Union[str, Any]: super().setUp() UpperCamelCase__ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCamelCase__ : str = dict(zip(_lowerCamelCase, range(len(_lowerCamelCase ) ) ) ) UpperCamelCase__ : List[str] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCamelCase__ : Dict = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCamelCase__ : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def __lowercase( self : List[str], **__lowerCamelCase : Union[str, Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **_lowerCamelCase ) def __lowercase( self : Optional[Any], __lowerCamelCase : int ) -> List[Any]: UpperCamelCase__ : List[Any] = '''adapt act apte''' UpperCamelCase__ : Dict = '''adapt act apte''' return input_text, output_text def __lowercase( self : List[Any] ) -> int: UpperCamelCase__ : int = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ : Optional[Any] = '''adapt act apte''' UpperCamelCase__ : Optional[int] = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCamelCase__ : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) UpperCamelCase__ : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase__ : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), _lowerCamelCase ) def __lowercase( self : Optional[int] ) -> Union[str, Any]: UpperCamelCase__ : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] UpperCamelCase__ : int = '''I am a small frog.''' UpperCamelCase__ : Dict = tok([src_text], padding=_lowerCamelCase, truncation=_lowerCamelCase )['''input_ids'''] UpperCamelCase__ : Dict = tok.batch_decode(_lowerCamelCase, skip_special_tokens=_lowerCamelCase, clean_up_tokenization_spaces=_lowerCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase( self : str ) -> Any: UpperCamelCase__ : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCamelCase__ : Optional[Any] = '''I am a small frog .''' UpperCamelCase__ : Any = '''.''' UpperCamelCase__ : Dict = tok(_lowerCamelCase )['''input_ids'''] UpperCamelCase__ : Optional[Any] = tok(_lowerCamelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
344
'''simple docstring''' def _lowerCAmelCase ( lowercase : int = 1_0**1_2 ) ->int: """simple docstring""" lowercase__ = 1 lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
161
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowerCamelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __lowerCamelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __lowerCamelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __lowerCamelCase = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _a ( ): a_ , a_ : List[Any] = randrange(len(__UpperCamelCase ) ), randrange(len(__UpperCamelCase ) ) a_ : List[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] a_ , a_ : Optional[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _a ( __UpperCamelCase = 1_0_0 ): return (generate_random_hand() for _ in range(__UpperCamelCase )) @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Union[str, Any] = PokerHand(__UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase ).compare_with(PokerHand(__UpperCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase ).compare_with(PokerHand(__UpperCamelCase ) ) == expected def _a ( ): a_ : int = [PokerHand(__UpperCamelCase ) for hand in SORTED_HANDS] a_ : Dict = poker_hands.copy() shuffle(__UpperCamelCase ) a_ : Dict = chain(sorted(__UpperCamelCase ) ) for index, hand in enumerate(__UpperCamelCase ): assert hand == poker_hands[index] def _a ( ): # Test that five high straights are compared correctly. a_ : str = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=__UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _a ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a_ : List[str] = PokerHand("""2C 4S AS 3D 5C""" ) a_ : Dict = True a_ : List[Any] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _a ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a_ : Tuple = 0 a_ : Optional[Any] = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) a_ : Optional[int] = os.path.join(__UpperCamelCase , """poker_hands.txt""" ) with open(__UpperCamelCase ) as file_hand: for line in file_hand: a_ : Dict = line[:1_4].strip() a_ : int = line[1_5:].strip() a_ , a_ : Optional[int] = PokerHand(__UpperCamelCase ), PokerHand(__UpperCamelCase ) a_ : str = player.compare_with(__UpperCamelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
478
0
"""simple docstring""" from functools import reduce _lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCamelCase ( _A = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
264
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } _lowerCAmelCase = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } _lowerCAmelCase = { 'jukebox': 5_12, } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : int = PRETRAINED_LYRIC_TOKENS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self :Tuple , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :str , __magic_name__ :List[Any]=["v3", "v2", "v2"] , __magic_name__ :List[Any]=512 , __magic_name__ :Optional[Any]=5 , __magic_name__ :Tuple="<|endoftext|>" , **__magic_name__ :Tuple , ) ->Union[str, Any]: lowercase : Any = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token super().__init__( unk_token=__magic_name__ , n_genres=__magic_name__ , version=__magic_name__ , max_n_lyric_tokens=__magic_name__ , **__magic_name__ , ) lowercase : Optional[int] = version lowercase : Optional[int] = max_n_lyric_tokens lowercase : Optional[int] = n_genres with open(__magic_name__ , encoding="""utf-8""" ) as vocab_handle: lowercase : Optional[int] = json.load(__magic_name__ ) with open(__magic_name__ , encoding="""utf-8""" ) as vocab_handle: lowercase : Any = json.load(__magic_name__ ) with open(__magic_name__ , encoding="""utf-8""" ) as vocab_handle: lowercase : List[str] = json.load(__magic_name__ ) lowercase : str = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowercase : Dict = oov.replace(r"""\-'""" , r"""\-+'""" ) lowercase : Union[str, Any] = regex.compile(__magic_name__ ) lowercase : Tuple = {v: k for k, v in self.artists_encoder.items()} lowercase : Tuple = {v: k for k, v in self.genres_encoder.items()} lowercase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def __snake_case ( self :str ) ->Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def __snake_case ( self :int ) ->Optional[int]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def __snake_case ( self :str , __magic_name__ :Optional[int] , __magic_name__ :Dict , __magic_name__ :Optional[Any] ) ->List[str]: lowercase : Optional[int] = [self.artists_encoder.get(__magic_name__ , 0 ) for artist in list_artists] for genres in range(len(__magic_name__ ) ): lowercase : int = [self.genres_encoder.get(__magic_name__ , 0 ) for genre in list_genres[genres]] lowercase : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowercase : str = [[self.lyrics_encoder.get(__magic_name__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __snake_case ( self :Optional[int] , __magic_name__ :Optional[Any] ) ->List[str]: return list(__magic_name__ ) def __snake_case ( self :Tuple , __magic_name__ :Tuple , __magic_name__ :List[str] , __magic_name__ :str , **__magic_name__ :Union[str, Any] ) ->Tuple: lowercase , lowercase , lowercase : List[str] = self.prepare_for_tokenization(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase : List[str] = self._tokenize(__magic_name__ ) return artist, genre, lyrics def __snake_case ( self :Optional[int] , __magic_name__ :str , __magic_name__ :str , __magic_name__ :str , __magic_name__ :bool = False ) ->Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowercase : Tuple = artists[idx].lower() lowercase : Dict = [genres[idx].lower()] else: lowercase : str = self._normalize(artists[idx] ) + """.v2""" lowercase : str = [ self._normalize(__magic_name__ ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowercase : Dict = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) lowercase : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" lowercase : Optional[Any] = {vocab[index]: index + 1 for index in range(len(__magic_name__ ) )} lowercase : List[Any] = 0 lowercase : str = len(__magic_name__ ) + 1 lowercase : List[Any] = self.vocab lowercase : Optional[Any] = {v: k for k, v in self.vocab.items()} lowercase : Tuple = """""" else: lowercase : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) lowercase : str = self._run_strip_accents(__magic_name__ ) lowercase : str = lyrics.replace("""\\""" , """\n""" ) lowercase : int = self.out_of_vocab.sub("""""" , __magic_name__ ), [], [] return artists, genres, lyrics def __snake_case ( self :List[Any] , __magic_name__ :Optional[Any] ) ->List[str]: lowercase : Any = unicodedata.normalize("""NFD""" , __magic_name__ ) lowercase : Optional[Any] = [] for char in text: lowercase : int = unicodedata.category(__magic_name__ ) if cat == "Mn": continue output.append(__magic_name__ ) return "".join(__magic_name__ ) def __snake_case ( self :Optional[int] , __magic_name__ :str ) ->str: lowercase : Tuple = ( [chr(__magic_name__ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(__magic_name__ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(__magic_name__ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) lowercase : Dict = frozenset(__magic_name__ ) lowercase : Optional[int] = re.compile(r"""_+""" ) lowercase : Optional[int] = """""".join([c if c in accepted else """_""" for c in text.lower()] ) lowercase : Union[str, Any] = pattern.sub("""_""" , __magic_name__ ).strip("""_""" ) return text def __snake_case ( self :Optional[int] , __magic_name__ :List[str] ) ->str: return " ".join(__magic_name__ ) def __snake_case ( self :Tuple , __magic_name__ :Optional[int] , __magic_name__ :Optional[Union[str, TensorType]] = None , __magic_name__ :bool = False ) ->Tuple: # Convert to TensorType if not isinstance(__magic_name__ , __magic_name__ ): lowercase : Optional[Any] = TensorType(__magic_name__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf lowercase : int = tf.constant lowercase : List[str] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch lowercase : List[Any] = torch.tensor lowercase : List[str] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 lowercase : int = jnp.array lowercase : Dict = _is_jax else: lowercase : List[Any] = np.asarray lowercase : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowercase : Dict = [inputs] if not is_tensor(__magic_name__ ): lowercase : str = as_tensor(__magic_name__ ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :str , __magic_name__ :Optional[Any]="" , __magic_name__ :Optional[int]="pt" ) ->BatchEncoding: lowercase : Union[str, Any] = [0, 0, 0] lowercase : Optional[int] = [artist] * len(self.version ) lowercase : Dict = [genres] * len(self.version ) lowercase , lowercase , lowercase : Dict = self.tokenize(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase , lowercase , lowercase : Dict = self._convert_token_to_id(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase : Tuple = [-INFINITY] * len(full_tokens[-1] ) lowercase : Union[str, Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__magic_name__ ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def __snake_case ( self :int , __magic_name__ :str , __magic_name__ :Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : int = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__magic_name__ ) ) lowercase : Any = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__magic_name__ ) ) lowercase : Optional[int] = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__magic_name__ ) ) return (artists_file, genres_file, lyrics_file) def __snake_case ( self :int , __magic_name__ :int , __magic_name__ :Dict , __magic_name__ :Union[str, Any] ) ->List[str]: lowercase : Union[str, Any] = self.artists_decoder.get(__magic_name__ ) lowercase : int = [self.genres_decoder.get(__magic_name__ ) for genre in genres_index] lowercase : Union[str, Any] = [self.lyrics_decoder.get(__magic_name__ ) for character in lyric_index] return artist, genres, lyrics
264
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : int = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ["PoolFormerFeatureExtractor"] snake_case_ : Dict = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
700
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") snake_case_ , snake_case_ : Tuple = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") snake_case_ : List[str] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: snake_case_ : Tuple = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case_ : int = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
169
0