code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowercase__ : str = True from torch.cuda.amp import autocast lowercase__ : Optional[int] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) lowerCAmelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowerCAmelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowerCAmelCase = field( default=0.999_995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _lowerCAmelCase ( __snake_case : ModelArguments , __snake_case : TrainingArguments ) -> Optional[int]: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __A : Union[str, Any] = logging.WARNING if model_args.verbose_logging: __A : Optional[int] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __A : str = logging.INFO logger.setLevel(__snake_case ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCAmelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCAmelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCAmelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = "longest" lowerCAmelCase = None lowerCAmelCase = None def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.feature_extractor.pad( _UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __A : Tuple = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1]) __A : Any = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __A : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1)).to( torch.long) __A : Dict = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device) # these two operations makes sure that all values # before the output lengths indices are attended to __A : List[str] = 1 __A : Optional[Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices __A : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCAmelCase , min_masks=2 , ) return batch class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , *_UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , **_UpperCAmelCase): '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) __A : Tuple = 0 __A : List[Any] = max_gumbel_temp __A : int = min_gumbel_temp __A : Union[str, Any] = gumbel_temp_decay def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' model.train() __A : Any = self._prepare_inputs(_UpperCAmelCase) if self.use_amp: with autocast(): __A : Any = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase) else: __A : Tuple = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __A : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __A : List[Any] = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']') if self.args.gradient_accumulation_steps > 1: __A : Dict = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCAmelCase).backward() elif self.use_apex: with amp.scale_loss(_UpperCAmelCase , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCAmelCase) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) return loss.detach() def _lowerCAmelCase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __A : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __A ,__A ,__A : Any = parser.parse_args_into_dataclasses() configure_logger(__snake_case , __snake_case ) # Downloading and loading a dataset from the hub. __A : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __A : Optional[int] = DatasetDict() __A : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) __A : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __A : Dict = DatasetDict() __A : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __A : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __A : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__snake_case ) def prepare_dataset(__snake_case : Optional[Any] ): # check that all files have the correct sampling rate __A ,__A : Tuple = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __A : List[str] = datasets.map( __snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __A : List[str] = vectorized_datasets.filter( lambda __snake_case : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__snake_case : int ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __A : str = vectorized_datasets.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __A : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __A : int = WavaVecaForPreTraining(__snake_case ) __A : Optional[int] = DataCollatorForWavaVecaPretraining(model=__snake_case , feature_extractor=__snake_case ) __A : Dict = WavaVecaPreTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=__snake_case , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->dict[str, float]: """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ ) ->float: """simple docstring""" return 10 - x * x def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->float: """simple docstring""" if equation(UpperCAmelCase_ ) * equation(UpperCAmelCase_ ) >= 0: raise ValueError('''Wrong space!''' ) __UpperCAmelCase : Tuple = a while (b - a) >= 0.01: # Find middle point __UpperCAmelCase : List[str] = (a + b) / 2 # Check if middle point is root if equation(UpperCAmelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(UpperCAmelCase_ ) * equation(UpperCAmelCase_ ) < 0: __UpperCAmelCase : Union[str, Any] = c else: __UpperCAmelCase : str = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
374
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = BertJapaneseTokenizer UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : str = True def _A ( self : Tuple ): super().setUp() SCREAMING_SNAKE_CASE : Dict = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self : Tuple , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE : Tuple = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def _A ( self : List[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.get_input_output_texts(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def _A ( self : List[Any] ): pass # TODO add if relevant def _A ( self : str ): pass # TODO add if relevant def _A ( self : Optional[Any] ): pass # TODO add if relevant def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCAmelCase_ , "wb" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , "rb" ) as handle: SCREAMING_SNAKE_CASE : List[Any] = pickle.load(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _A ( self : Dict ): try: SCREAMING_SNAKE_CASE : List[Any] = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _A ( self : Dict ): try: SCREAMING_SNAKE_CASE : Optional[Any] = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Any = MecabTokenizer(do_lower_case=UpperCAmelCase_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _A ( self : List[str] ): try: SCREAMING_SNAKE_CASE : Tuple = MecabTokenizer( do_lower_case=UpperCAmelCase_ , normalize_text=UpperCAmelCase_ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[Any] = MecabTokenizer(normalize_text=UpperCAmelCase_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCAmelCase_ , "wb" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , "rb" ) as handle: SCREAMING_SNAKE_CASE : List[str] = pickle.load(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sudachi def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def _A ( self : str ): SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(do_lower_case=UpperCAmelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = SudachiTokenizer(normalize_text=UpperCAmelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = SudachiTokenizer(trim_whitespace=UpperCAmelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCAmelCase_ , "wb" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , "rb" ) as handle: SCREAMING_SNAKE_CASE : List[Any] = pickle.load(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_jumanpp def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = JumanppTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = JumanppTokenizer(normalize_text=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = JumanppTokenizer(trim_whitespace=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[Any] = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] SCREAMING_SNAKE_CASE : str = {} for i, token in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : str = i SCREAMING_SNAKE_CASE : Optional[Any] = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE : Any = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(UpperCAmelCase_ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) SCREAMING_SNAKE_CASE : List[str] = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(UpperCAmelCase_ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) SCREAMING_SNAKE_CASE : Dict = tokenizer.encode("ありがとう。" , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = BertJapaneseTokenizer UpperCamelCase_ : Tuple = False def _A ( self : str ): super().setUp() SCREAMING_SNAKE_CASE : Tuple = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self : str , **UpperCAmelCase_ : int ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **UpperCAmelCase_ ) def _A ( self : List[str] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE : Optional[Any] = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def _A ( self : Any ): pass # TODO add if relevant def _A ( self : Optional[int] ): pass # TODO add if relevant def _A ( self : Dict ): pass # TODO add if relevant def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( UpperCAmelCase_ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE : Optional[int] = {} for i, token in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : str = i SCREAMING_SNAKE_CASE : List[str] = CharacterTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Any = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) SCREAMING_SNAKE_CASE : str = tokenizer.encode("ありがとう。" , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = "cl-tohoku/bert-base-japanese" SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : int ): SCREAMING_SNAKE_CASE : Any = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) SCREAMING_SNAKE_CASE : Optional[Any] = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
62
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , _snake_case : int = 101 ): __lowercase : Tuple = length def __len__( self : str ): return self.length def __getitem__( self : List[Any] , _snake_case : List[str] ): return i class __lowerCAmelCase : """simple docstring""" def __call__( self : Union[str, Any] , _snake_case : List[str] ): return {"input_ids": torch.tensor(_snake_case ), "labels": torch.tensor(_snake_case )} class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any ): super().__init__() # Add some (unused) params otherwise DDP will complain. __lowercase : str = nn.Linear(120 , 80 ) def snake_case_ ( self : Tuple , _snake_case : List[str] , _snake_case : Optional[int]=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @require_torch_neuroncore def snake_case_ ( self : Tuple ): __lowercase : List[str] = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __lowercase : Any = self.get_auto_remove_tmp_dir() __lowercase : List[str] = F'--output_dir {output_dir}'.split() __lowercase : Optional[Any] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @require_torch_multi_gpu def snake_case_ ( self : str ): __lowercase : Tuple = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __lowercase : Dict = self.get_auto_remove_tmp_dir() __lowercase : str = F'--output_dir {output_dir}'.split() __lowercase : Dict = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase : int = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase : int = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __lowerCAmelCase : str = DummyDataset(dataset_length) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: __lowercase : Dict = list(range(len(__lowerCAmelCase ) ) ) __lowercase : Optional[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase : Optional[int] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : List[str] = None
509
0
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
720
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
339
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
393
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : List[Any] = original_name.split(""".""" )[0] A : Optional[int] = key.split(""".""" ) A : Any = int(key_list[key_list.index(_lowerCAmelCase ) - 2] ) A : Any = int(key_list[key_list.index(_lowerCAmelCase ) - 1] ) A : Dict = orig_block_num - offset A : Tuple = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[int]: """simple docstring""" A : Optional[Any] = OrderedDict() A , A : List[Any] = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): A : Tuple = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 A : Any = key[: key.find("""proj""" )] A : Any = key.replace(_lowerCAmelCase , f'''patch_embeddings.{total_embed_found}.''' ) A : Tuple = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: A : Tuple = """poolformer.encoder.""" + key if "mlp.fc1" in key: A : Optional[Any] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: A : List[str] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: A : List[str] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """norm1""" , """before_norm""" ) if "norm2" in key: A : Optional[Any] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: A : Optional[int] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: A : str = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: A : Optional[Any] = key.replace("""head""" , """classifier""" ) A : str = value return new_state_dict def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" A : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" A : Optional[Any] = PoolFormerConfig() # set attributes based on model_name A : Union[str, Any] = """huggingface/label-files""" A : str = model_name[-3:] A : Optional[int] = 1000 A : int = """imagenet-1k-id2label.json""" A : Dict = (1, 1000) # set config attributes A : List[str] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A : List[str] = idalabel A : Optional[Any] = {v: k for k, v in idalabel.items()} if size == "s12": A : Union[str, Any] = [2, 2, 6, 2] A : List[str] = [64, 128, 320, 512] A : int = 4.0 A : Optional[Any] = 0.9 elif size == "s24": A : Optional[int] = [4, 4, 12, 4] A : Union[str, Any] = [64, 128, 320, 512] A : Union[str, Any] = 4.0 A : str = 0.9 elif size == "s36": A : Any = [6, 6, 18, 6] A : Optional[int] = [64, 128, 320, 512] A : Optional[int] = 4.0 A : int = 1e-6 A : Any = 0.9 elif size == "m36": A : Dict = [6, 6, 18, 6] A : Union[str, Any] = [96, 192, 384, 768] A : str = 4.0 A : Union[str, Any] = 1e-6 A : List[str] = 0.95 elif size == "m48": A : Any = [8, 8, 24, 8] A : Optional[Any] = [96, 192, 384, 768] A : str = 4.0 A : Dict = 1e-6 A : Dict = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A : Union[str, Any] = PoolFormerImageProcessor(crop_pct=_lowerCAmelCase ) # Prepare image A : int = prepare_img() A : Tuple = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A : Tuple = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) ) # rename keys A : int = rename_keys(_lowerCAmelCase ) # create HuggingFace model and load state dict A : int = PoolFormerForImageClassification(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Define image processor A : List[str] = PoolFormerImageProcessor(crop_pct=_lowerCAmelCase ) A : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass A : Dict = model(_lowerCAmelCase ) A : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": A : Any = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": A : Union[str, Any] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": A : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": A : Tuple = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": A : Optional[Any] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:str = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) SCREAMING_SNAKE_CASE_:Optional[Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
520
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A : List[Any] = [p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A : Union[str, Any] = sorted(_lowerCAmelCase ) # declaring useful variables A : str = len(_lowerCAmelCase ) A : Union[str, Any] = 0 A : Any = 0 A : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A : str = sorted_profit_by_weight[length - i - 1] A : List[Any] = profit_by_weight.index(_lowerCAmelCase ) A : Tuple = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) SCREAMING_SNAKE_CASE_:Union[str, Any] = [int(x) for x in input("""Input profits separated by spaces: """).split()] SCREAMING_SNAKE_CASE_:Optional[int] = [int(x) for x in input("""Input weights separated by spaces: """).split()] SCREAMING_SNAKE_CASE_:int = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
520
1
"""simple docstring""" def _snake_case ( UpperCamelCase : Tuple ): UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Tuple = set({"""(""", """[""", """{"""} ) UpperCAmelCase : Any = set({""")""", """]""", """}"""} ) UpperCAmelCase : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(UpperCAmelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase__ ) == 0 or (len(UpperCAmelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase__ ) == 0 def _snake_case ( ): UpperCAmelCase : Tuple = input("""Enter sequence of brackets: """ ) if is_balanced(UpperCAmelCase__ ): print(UpperCAmelCase__ , """is balanced""" ) else: print(UpperCAmelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
160
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __magic_name__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __magic_name__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __magic_name__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __magic_name__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __magic_name__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : Optional[int] =VOCAB_FILES_NAMES a_ : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ : List[str] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Tuple =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : Optional[int] =VOCAB_FILES_NAMES a_ : int =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ : Any =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Tuple =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __magic_name__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __magic_name__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(a ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __call__( self : str , _snake_case : Tuple , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Union[bool, str] = False , _snake_case : Union[bool, str] = False , _snake_case : Optional[int] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[bool] = None , **_snake_case : List[str] , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) elif titles is None or texts is None: a__ = titles if texts is None else texts return super().__call__( _snake_case , _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) a__ = titles if not isinstance(_snake_case , _snake_case ) else [titles] a__ = texts if not isinstance(_snake_case , _snake_case ) else [texts] a__ = len(_snake_case ) a__ = questions if not isinstance(_snake_case , _snake_case ) else [questions] * n_passages if len(_snake_case ) != len(_snake_case ): raise ValueError( F'''There should be as many titles than texts but got {len(_snake_case )} titles and {len(_snake_case )} texts.''' ) a__ = super().__call__(_snake_case , _snake_case , padding=_snake_case , truncation=_snake_case )['input_ids'] a__ = super().__call__(_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case )['input_ids'] a__ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_snake_case , _snake_case ) ] } if return_attention_mask is not False: a__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a__ = attention_mask return self.pad(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors=_snake_case ) def _lowerCAmelCase ( self : List[str] , _snake_case : BatchEncoding , _snake_case : DPRReaderOutput , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' a__ = reader_input['input_ids'] a__ , a__ , a__ = reader_output[:3] a__ = len(_snake_case ) a__ = sorted(range(_snake_case ) , reverse=_snake_case , key=relevance_logits.__getitem__ ) a__ = [] for doc_id in sorted_docs: a__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a__ = sequence_ids.index(self.pad_token_id ) else: a__ = len(_snake_case ) a__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_snake_case , top_spans=_snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_snake_case , start_index=_snake_case , end_index=_snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCAmelCase ( self : Dict , _snake_case : List[int] , _snake_case : List[int] , _snake_case : int , _snake_case : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' a__ = [] for start_index, start_score in enumerate(_snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a__ = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case ) a__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) a__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a ) class SCREAMING_SNAKE_CASE ( a , a ): """simple docstring""" a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : Any =READER_PRETRAINED_VOCAB_FILES_MAP a_ : Dict =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Union[str, Any] =READER_PRETRAINED_INIT_CONFIGURATION a_ : Tuple =["input_ids", "attention_mask"]
232
0
import pprint import requests UpperCamelCase__ = 'https://zenquotes.io/api' def lowerCamelCase ( ): return requests.get(API_ENDPOINT_URL + '/today' ).json() def lowerCamelCase ( ): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCamelCase__ = random_quotes() pprint.pprint(response)
709
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class a ( lowercase ): UpperCamelCase : List[Any] = """deit""" def __init__( self , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=224 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=16 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Optional[Any] = qkv_bias UpperCAmelCase__ : Dict = encoder_stride class a ( lowercase ): UpperCamelCase : Optional[int] = version.parse("""1.11""" ) @property def __snake_case ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __snake_case ( self ): return 1E-4
254
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __A ( a ): """simple docstring""" A_ = (DDIMParallelScheduler,) A_ = (('eta', 0.0), ('num_inference_steps', 5_0)) def snake_case_( self , **_lowerCamelCase )-> List[Any]: lowercase__ = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_lowerCamelCase ) return config def snake_case_( self , **_lowerCamelCase )-> List[str]: lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_lowerCamelCase ) lowercase__ = scheduler_class(**_lowerCamelCase ) lowercase__ , lowercase__ = 1_0, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for t in scheduler.timesteps: lowercase__ = model(_lowerCamelCase , _lowerCamelCase ) lowercase__ = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def snake_case_( self )-> Optional[Any]: for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def snake_case_( self )-> Optional[int]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCamelCase ) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1 ) lowercase__ = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def snake_case_( self )-> List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def snake_case_( self )-> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def snake_case_( self )-> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def snake_case_( self )-> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def snake_case_( self )-> str: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCamelCase ) def snake_case_( self )-> Union[str, Any]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCamelCase ) def snake_case_( self )-> Optional[Any]: self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def snake_case_( self )-> Tuple: for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=_lowerCamelCase ) def snake_case_( self )-> int: for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=_lowerCamelCase , num_inference_steps=_lowerCamelCase ) def snake_case_( self )-> List[Any]: for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCamelCase , eta=_lowerCamelCase ) def snake_case_( self )-> Optional[Any]: lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_4_7_7_1 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_2_4_6_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.0_2 ) ) < 1e-5 def snake_case_( self )-> Tuple: lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_lowerCamelCase ) lowercase__ , lowercase__ = 1_0, 0.0 scheduler.set_timesteps(_lowerCamelCase ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase__ = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) lowercase__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase__ = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCamelCase ) lowercase__ = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1e-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1e-3 def snake_case_( self )-> str: lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1e-3 def snake_case_( self )-> Any: lowercase__ = self.full_loop(prediction_type='''v_prediction''' ) lowercase__ = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1e-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1e-3 def snake_case_( self )-> Any: # We specify different beta, so that the first alpha is 0.99 lowercase__ = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.0_1 ) lowercase__ = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1e-3 def snake_case_( self )-> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowercase__ = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.0_1 ) lowercase__ = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1e-3
161
'''simple docstring''' def _lowerCAmelCase ( lowercase : float , lowercase : float ) ->float: """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
161
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : str = 8 # DPR tok UpperCAmelCase : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = os.path.join(_SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : Tuple = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : List[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase : int = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def SCREAMING_SNAKE_CASE ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def SCREAMING_SNAKE_CASE ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.get_dummy_dataset() UpperCAmelCase : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: UpperCAmelCase : Tuple = dataset UpperCAmelCase : List[str] = RagRetriever( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] = self.get_dummy_dataset() UpperCAmelCase : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""custom""" , ) if from_disk: UpperCAmelCase : str = os.path.join(self.tmpdirname , """dataset""" ) UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , """index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname , """index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname , """dataset""" ) ) del dataset UpperCAmelCase : List[Any] = RagRetriever( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : Optional[Any] = RagRetriever( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" , index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] , open(index_file_name + """.index_meta.dpr""" , """wb""" ) ) UpperCAmelCase : Dict = os.path.join(self.tmpdirname , """psgs_w100.tsv.pkl""" ) UpperCAmelCase : Any = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(_SCREAMING_SNAKE_CASE , open(_SCREAMING_SNAKE_CASE , """wb""" ) ) UpperCAmelCase : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""legacy""" , index_path=self.tmpdirname , ) UpperCAmelCase : str = RagRetriever( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : int = 1 UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: UpperCAmelCase : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[Any] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple = 1 UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Union[str, Any] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[str] = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = 1 UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : str = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : int = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = self.get_dummy_legacy_index_retriever() UpperCAmelCase : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=_SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["""text"""][0] , """bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] , """foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Tuple = retriever.retrieve(_SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' import torch UpperCAmelCase : Dict = 1 UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : List[str] = [[5, 7], [10, 11]] UpperCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Union[str, Any] = retriever(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) UpperCAmelCase : Any = retriever( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) UpperCAmelCase : Dict = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int = self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : Any = 1 UpperCAmelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=_SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = [[5, 7], [10, 11]] UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Tuple = retriever(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=_SCREAMING_SNAKE_CASE ) self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) , _SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
707
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : int = PriorTransformer __lowerCAmelCase : Dict = 'hidden_states' @property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = 4 UpperCAmelCase : Optional[Any] = 8 UpperCAmelCase : Union[str, Any] = 7 UpperCAmelCase : Any = floats_tensor((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Any: '''simple docstring''' torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = 4 UpperCAmelCase : Any = 8 UpperCAmelCase : List[Any] = 7 UpperCAmelCase : Any = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' return (4, 8) @property def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return (4, 8) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[Any] = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase : str = self.model_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : int = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) UpperCAmelCase : Dict = model.to(_SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , """set_default_attn_processor""" ): model.set_default_attn_processor() UpperCAmelCase : str = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase : str = model(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : Dict = output[0, :5].flatten().cpu() print(_SCREAMING_SNAKE_CASE ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase : Dict = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-2 ) ) @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=77 , _SCREAMING_SNAKE_CASE=0 ) -> int: '''simple docstring''' torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = embedding_dim UpperCAmelCase : Tuple = num_embeddings UpperCAmelCase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = torch.randn((batch_size, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = self.get_dummy_seed_input(seed=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): UpperCAmelCase : Any = model(**_SCREAMING_SNAKE_CASE )[0] assert list(sample.shape ) == [1, 768] UpperCAmelCase : int = sample[0, :8].flatten().cpu() print(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = torch.tensor(_SCREAMING_SNAKE_CASE ) assert torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 )
359
0
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : list ) -> None: A = set_counts A = max(A_ ) A = len(A_ ) A = [1] * num_sets A = list(range(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> bool: A = self.get_parent(A_ ) A = self.get_parent(A_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A = 0 A = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A = 0 A = src_parent A = self.set_counts[src_parent] A = max(self.max_set ,A_ ) return True def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set A = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
91
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=3 , snake_case_ : Union[str, Any]=6_4 , snake_case_ : Optional[Any]=None ): '''simple docstring''' snake_case__ : List[str] = np.random.default_rng(snake_case_ ) snake_case__ : int = length snake_case__ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) snake_case__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , snake_case_ : int ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): """simple docstring""" def __init__( self : int , snake_case_ : str=0 , snake_case_ : Optional[Any]=0 , snake_case_ : Tuple=False ): '''simple docstring''' super().__init__() snake_case__ : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : int = True def __magic_name__ ( self : int , snake_case_ : str=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : str = False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , snake_case_ : Tuple=0 , snake_case_ : int=0 , snake_case_ : int=False ): '''simple docstring''' super().__init__() snake_case__ : Tuple = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : int = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : Union[str, Any] = True def __magic_name__ ( self : Union[str, Any] , snake_case_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : List[Any] = False return x * self.a + self.b def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : Optional[int] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} snake_case__ : List[Any] = load_dataset('''csv''' , data_files=__lowerCAmelCase ) snake_case__ : Union[str, Any] = datasets['''train'''].unique('''label''' ) snake_case__ : Optional[Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) if "label" in examples: snake_case__ : List[Any] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : List[Any] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowerCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. snake_case__ : str = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) snake_case__ : List[Any] = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
347
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _a ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : str=3_0 , __UpperCamelCase : List[str]=4_0_0 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : str=None , __UpperCamelCase : Tuple=0.9 , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : int=True , __UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , __UpperCamelCase : str=[0.5, 0.5, 0.5] , )->Dict: _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 3_0} _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowercase__ ( self : Optional[Any] )->Union[str, Any]: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = PoolFormerImageProcessor if is_vision_available() else None def lowercase__ ( self : Any )->str: _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def lowercase__ ( self : str )->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : str )->List[Any]: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''crop_pct''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''image_std''' ) ) def lowercase__ ( self : List[Any] )->Union[str, Any]: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 3_0, '''width''': 3_0} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def lowercase__ ( self : Dict )->List[str]: pass def lowercase__ ( self : List[Any] )->List[str]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self : Optional[int] )->List[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self : List[Any] )->List[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
702
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _a ( yaml.SafeLoader): """simple docstring""" def lowercase__ ( self : List[str] , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = [self.constructed_objects[key_node] for key_node, _ in node.value] _UpperCAmelCase = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else key for key in keys] _UpperCAmelCase = Counter(__UpperCamelCase ) _UpperCAmelCase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str=False )->Dict: _UpperCAmelCase = super().construct_mapping(__UpperCamelCase , deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _UpperCAmelCase = full_content[1:].index('''---''' ) + 1 _UpperCAmelCase = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" # class attributes UpperCamelCase__ = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def lowercase__ ( cls : List[Any] , __UpperCamelCase : Path )->"DatasetMetadata": with open(__UpperCamelCase , encoding='''utf-8''' ) as readme_file: _UpperCAmelCase , _UpperCAmelCase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def lowercase__ ( self : Tuple , __UpperCamelCase : Path )->List[Any]: if path.exists(): with open(__UpperCamelCase , encoding='''utf-8''' ) as readme_file: _UpperCAmelCase = readme_file.read() else: _UpperCAmelCase = None _UpperCAmelCase = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[str] = None )->str: if readme_content is not None: _UpperCAmelCase , _UpperCAmelCase = _split_yaml_from_readme(__UpperCamelCase ) _UpperCAmelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _UpperCAmelCase = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def lowercase__ ( cls : str , __UpperCamelCase : str )->"DatasetMetadata": _UpperCAmelCase = yaml.load(__UpperCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _UpperCAmelCase = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def lowercase__ ( self : str )->str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCamelCase , allow_unicode=__UpperCamelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) __A : str = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __A : str = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __A : Union[str, Any] = ap.parse_args() __A : Dict = Path(args.readme_filepath) __A : Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
95
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[str] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Optional[int] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
35
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
1
'''simple docstring''' import random def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = num - 1 _lowercase = 0 while s % 2 == 0: _lowercase = s // 2 t += 1 for _ in range(5 ): _lowercase = random.randrange(2 , num - 1 ) _lowercase = pow(snake_case_ , snake_case_ , snake_case_ ) if v != 1: _lowercase = 0 while v != (num - 1): if i == t - 1: return False else: _lowercase = i + 1 _lowercase = (v**2) % num return True def _SCREAMING_SNAKE_CASE ( snake_case_ ): if num < 2: return False _lowercase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ = 1024 ): while True: _lowercase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case_ ): return num if __name__ == "__main__": _lowerCamelCase = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
572
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ ): return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = 0 _lowercase = number while duplicate > 0: _lowercase , _lowercase = divmod(snake_case_ , 10 ) fact_sum += factorial(snake_case_ ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') _lowerCamelCase = int(input('Enter number: ').strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
572
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCamelCase_ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__( self : Optional[Any] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[Any] ): """simple docstring""" super().__init__(features=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = torch_tensor_kwargs import torch # noqa import torch at initialization def __lowercase ( self : Optional[Any] , lowerCAmelCase__ : Dict ): """simple docstring""" import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and column: if all( isinstance(lowerCAmelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase__ ) return column def __lowercase ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" import torch if isinstance(lowerCAmelCase__ , (str, bytes, type(lowerCAmelCase__ )) ): return value elif isinstance(lowerCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Any = {} if isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): SCREAMING_SNAKE_CASE : Union[str, Any] = {'''dtype''': torch.intaa} elif isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE : List[str] = np.asarray(lowerCAmelCase__ ) return torch.tensor(lowerCAmelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def __lowercase ( self : Tuple , lowerCAmelCase__ : Tuple ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase__ , '''__array__''' ) and not isinstance(lowerCAmelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase__ ) def __lowercase ( self : str , lowerCAmelCase__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , lowerCAmelCase__ , map_list=lowerCAmelCase__ ) def __lowercase ( self : Dict , lowerCAmelCase__ : pa.Table ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_row(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_row(lowerCAmelCase__ ) return self.recursive_tensorize(lowerCAmelCase__ ) def __lowercase ( self : Any , lowerCAmelCase__ : pa.Table ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.numpy_arrow_extractor().extract_column(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.python_features_decoder.decode_column(lowerCAmelCase__ , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Any = self.recursive_tensorize(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self._consolidate(lowerCAmelCase__ ) return column def __lowercase ( self : List[Any] , lowerCAmelCase__ : pa.Table ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.python_features_decoder.decode_batch(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.recursive_tensorize(lowerCAmelCase__ ) for column_name in batch: SCREAMING_SNAKE_CASE : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
527
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase ( A : Dict ): SCREAMING_SNAKE_CASE : List[str] = torch.load(A , map_location='''cpu''' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE : List[Any] = torch.load(A , map_location='''cpu''' )['''model'''] # pop unnecessary weights SCREAMING_SNAKE_CASE : Optional[int] = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(A ) SCREAMING_SNAKE_CASE : int = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE : Optional[int] = sd.pop(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE : str = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) SCREAMING_SNAKE_CASE : str = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) SCREAMING_SNAKE_CASE : Any = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) SCREAMING_SNAKE_CASE : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = torch.split(A , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE : List[str] = q SCREAMING_SNAKE_CASE : List[str] = k SCREAMING_SNAKE_CASE : List[Any] = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase ( A : int , A : Union[str, Any] , A : Dict=None ): SCREAMING_SNAKE_CASE : Optional[Any] = load_checkpoint(A ) if config is not None: SCREAMING_SNAKE_CASE : Tuple = OPTConfig.from_pretrained(A ) else: SCREAMING_SNAKE_CASE : int = OPTConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = OPTModel(A ).half().eval() model.load_state_dict(A ) # Check results Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') lowerCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
527
1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" def update_area_of_max_square(lowerCAmelCase_, lowerCAmelCase_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE =update_area_of_max_square(_lowerCamelCase, col + 1 ) SCREAMING_SNAKE_CASE =update_area_of_max_square(row + 1, col + 1 ) SCREAMING_SNAKE_CASE =update_area_of_max_square(row + 1, _lowerCamelCase ) if mat[row][col]: SCREAMING_SNAKE_CASE =1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE =max(largest_square_area[0], _lowerCamelCase ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" def update_area_of_max_square_using_dp_array( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE =update_area_of_max_square_using_dp_array(_lowerCamelCase, col + 1, _lowerCamelCase ) SCREAMING_SNAKE_CASE =update_area_of_max_square_using_dp_array(row + 1, col + 1, _lowerCamelCase ) SCREAMING_SNAKE_CASE =update_area_of_max_square_using_dp_array(row + 1, _lowerCamelCase, _lowerCamelCase ) if mat[row][col]: SCREAMING_SNAKE_CASE =1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE =max(largest_square_area[0], _lowerCamelCase ) SCREAMING_SNAKE_CASE =sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE =[0] SCREAMING_SNAKE_CASE =[[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0, 0, _lowerCamelCase ) return largest_square_area[0] def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): SCREAMING_SNAKE_CASE =dp_array[row][col + 1] SCREAMING_SNAKE_CASE =dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE =dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE =1 + min(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) SCREAMING_SNAKE_CASE =max(dp_array[row][col], _lowerCamelCase ) else: SCREAMING_SNAKE_CASE =0 return largest_square_area def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[0] * (cols + 1) SCREAMING_SNAKE_CASE =[0] * (cols + 1) SCREAMING_SNAKE_CASE =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): SCREAMING_SNAKE_CASE =current_row[col + 1] SCREAMING_SNAKE_CASE =next_row[col + 1] SCREAMING_SNAKE_CASE =next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE =1 + min(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) SCREAMING_SNAKE_CASE =max(current_row[col], _lowerCamelCase ) else: SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
719
import math from numpy import inf from scipy.integrate import quad def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(lowerCAmelCase_, 0, lowerCAmelCase_, args=(lowerCAmelCase_) )[0] def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_, z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
252
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''lxmert''' UpperCamelCase = {} def __init__( self : Dict , A_ : Optional[Any]=30522 , A_ : Optional[int]=768 , A_ : int=12 , A_ : List[str]=9500 , A_ : int=1600 , A_ : str=400 , A_ : int=3072 , A_ : Optional[int]="gelu" , A_ : Dict=0.1 , A_ : Dict=0.1 , A_ : Tuple=512 , A_ : Optional[Any]=2 , A_ : str=0.02 , A_ : str=1E-12 , A_ : Optional[int]=9 , A_ : Optional[int]=5 , A_ : str=5 , A_ : str=2048 , A_ : Optional[int]=4 , A_ : int=6.67 , A_ : Optional[int]=True , A_ : int=True , A_ : Dict=True , A_ : Tuple=True , A_ : Union[str, Any]=True , A_ : Optional[Any]=True , A_ : Optional[Any]=True , **A_ : str , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = num_qa_labels lowerCamelCase_ = num_object_labels lowerCamelCase_ = num_attr_labels lowerCamelCase_ = l_layers lowerCamelCase_ = x_layers lowerCamelCase_ = r_layers lowerCamelCase_ = visual_feat_dim lowerCamelCase_ = visual_pos_dim lowerCamelCase_ = visual_loss_normalizer lowerCamelCase_ = task_matched lowerCamelCase_ = task_mask_lm lowerCamelCase_ = task_obj_predict lowerCamelCase_ = task_qa lowerCamelCase_ = visual_obj_loss lowerCamelCase_ = visual_attr_loss lowerCamelCase_ = visual_feat_loss lowerCamelCase_ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**A_ )
70
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase : Any = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , *lowercase , **lowercase) -> None: '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase)
302
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase__ ( ) -> Optional[Any]: lowerCamelCase_ = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } lowerCamelCase_ = Dataset.from_dict(_lowerCamelCase ) return dataset class a ( __snake_case ): def UpperCamelCase ( self : Union[str, Any] ) -> Any: lowerCamelCase_ = get_dataset() lowerCamelCase_ = make_duplicate_clusters(__SCREAMING_SNAKE_CASE , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase_ = get_dataset() lowerCamelCase_ , lowerCamelCase_ = deduplicate_dataset(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) print(__SCREAMING_SNAKE_CASE ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , __SCREAMING_SNAKE_CASE )
549
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str=13 , __SCREAMING_SNAKE_CASE : int=30 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=37 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 1 def UpperCamelCase ( self : Dict ) -> Union[str, Any]: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Any: lowerCamelCase_ = ViTMSNModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> List[str]: lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = ViTMSNForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = ViTMSNForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self : List[str] ) -> Tuple: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( __snake_case , __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : str = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = False def UpperCamelCase ( self : List[Any] ) -> List[str]: lowerCamelCase_ = ViTMSNModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass def UpperCamelCase ( self : List[Any] ) -> List[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCamelCase ( self : Optional[int] ) -> Any: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase ( self : int ) -> List[Any]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ViTMSNModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ) -> List[Any]: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Optional[int] ) -> Any: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def UpperCamelCase ( self : Dict ) -> Any: torch.manual_seed(2 ) lowerCamelCase_ = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
549
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''blip_text_model''' def __init__( self : Optional[int] , _UpperCAmelCase : Dict=30524 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : int=30522 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : str=102 , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=True , **_UpperCAmelCase : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , sep_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = encoder_hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = is_decoder UpperCAmelCase_ = use_cache @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''blip_vision_model''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : List[str]=384 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Union[str, Any]=1e-10 , **_UpperCAmelCase : Optional[Any] , ) -> List[str]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = patch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act @classmethod def lowercase__ ( cls : str , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''blip''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=512 , _UpperCAmelCase : Dict=2.6592 , _UpperCAmelCase : int=256 , **_UpperCAmelCase : str , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCAmelCase_ = BlipTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = BlipVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = self.vision_config.hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.02 UpperCAmelCase_ = image_text_hidden_size @classmethod def lowercase__ ( cls : List[Any] , _UpperCAmelCase : BlipTextConfig , _UpperCAmelCase : BlipVisionConfig , **_UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=13 , __magic_name__ : Tuple=32 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=3 , __magic_name__ : Dict=16 , __magic_name__ : List[Any]=[1, 2, 1] , __magic_name__ : Union[str, Any]=[2, 2, 4] , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : List[str]=False , __magic_name__ : Optional[Any]=True , __magic_name__ : Any=0.02 , __magic_name__ : List[str]=1E-5 , __magic_name__ : Dict=True , __magic_name__ : List[str]=None , __magic_name__ : Optional[int]=True , __magic_name__ : str=10 , __magic_name__ : List[str]=8 , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_absolute_embeddings lowerCAmelCase__ = patch_norm lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = is_training lowerCAmelCase__ = scope lowerCAmelCase__ = use_labels lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = encoder_stride def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] ): """simple docstring""" lowerCAmelCase__ = SwinvaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = SwinvaForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = SwinvaForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = SwinvaForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Optional[int] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) snake_case__ :Any = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) snake_case__ :Optional[int] = False snake_case__ :Union[str, Any] = False snake_case__ :Any = False snake_case__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = SwinvaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__magic_name__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCAmelCase__ = outputs.attentions lowerCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = config.window_size**2 lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ = len(__magic_name__ ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): lowerCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__magic_name__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swinv2 has a different seq_length lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__magic_name__ ) , __magic_name__ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = reshaped_hidden_states[0].shape lowerCAmelCase__ = ( reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = SwinvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __magic_name__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCAmelCase__ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**__magic_name__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) lowerCAmelCase__ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
48
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
159
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : int = BertJapaneseTokenizer lowercase__ : str = False lowercase__ : Union[str, Any] = True def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() lowerCAmelCase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = '''こんにちは、世界。 \nこんばんは、世界。''' lowerCAmelCase__ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ = self.get_input_output_texts(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return text, ids def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass # TODO add if relevant def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass # TODO add if relevant def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass # TODO add if relevant def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(lowerCamelCase_ ) lowerCAmelCase__ = '''こんにちは、世界。\nこんばんは、世界。''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCamelCase_ , '''wb''' ) as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , '''rb''' ) as handle: lowerCAmelCase__ = pickle.load(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: try: lowerCAmelCase__ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: try: lowerCAmelCase__ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = MecabTokenizer(do_lower_case=lowerCamelCase_ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: try: lowerCAmelCase__ = MecabTokenizer( do_lower_case=lowerCamelCase_ , normalize_text=lowerCamelCase_ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = MecabTokenizer(normalize_text=lowerCamelCase_ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(lowerCamelCase_ ) lowerCAmelCase__ = '''こんにちは、世界。\nこんばんは、世界。''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCamelCase_ , '''wb''' ) as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , '''rb''' ) as handle: lowerCAmelCase__ = pickle.load(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = SudachiTokenizer(do_lower_case=lowerCamelCase_ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = SudachiTokenizer(normalize_text=lowerCamelCase_ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = SudachiTokenizer(trim_whitespace=lowerCamelCase_ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(lowerCamelCase_ ) lowerCAmelCase__ = '''こんにちは、世界。\nこんばんは、世界。''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(lowerCamelCase_ , '''wb''' ) as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , '''rb''' ) as handle: lowerCAmelCase__ = pickle.load(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @require_jumanpp def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = JumanppTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = JumanppTokenizer(normalize_text=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = JumanppTokenizer(trim_whitespace=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowerCAmelCase__ = {} for i, token in enumerate(lowerCamelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowerCAmelCase__ = tokenizer.subword_tokenizer lowerCAmelCase__ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(lowerCamelCase_ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowerCAmelCase__ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(lowerCamelCase_ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowerCAmelCase__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = BertJapaneseTokenizer lowercase__ : List[str] = False def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() lowerCAmelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = '''こんにちは、世界。 \nこんばんは、世界。''' lowerCAmelCase__ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass # TODO add if relevant def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass # TODO add if relevant def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass # TODO add if relevant def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) lowerCAmelCase__ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( lowerCamelCase_ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowerCAmelCase__ = {} for i, token in enumerate(lowerCamelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = CharacterTokenizer(vocab=lowerCamelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowerCAmelCase__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = '''cl-tohoku/bert-base-japanese''' lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowerCAmelCase__ = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
98
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = '''RegNetConfig''' # Base docstring __UpperCAmelCase = '''facebook/regnet-y-040''' __UpperCAmelCase = [1, 1_088, 7, 7] # Image classification docstring __UpperCAmelCase = '''facebook/regnet-y-040''' __UpperCAmelCase = '''tabby, tabby cat''' __UpperCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 3 , lowerCamelCase_ = 1 , lowerCamelCase_ = 1 , lowerCamelCase_ = "relu" , ) -> int: super().__init__() lowerCAmelCase__ = nn.Convad( lowerCamelCase_ , lowerCamelCase_ , kernel_size=lowerCamelCase_ , stride=lowerCamelCase_ , padding=kernel_size // 2 , groups=lowerCamelCase_ , bias=lowerCamelCase_ , ) lowerCAmelCase__ = nn.BatchNormad(lowerCamelCase_ ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else nn.Identity() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = self.convolution(lowerCamelCase_ ) lowerCAmelCase__ = self.normalization(lowerCamelCase_ ) lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCAmelCase__ = config.num_channels def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCAmelCase__ = self.embedder(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 ) -> Any: super().__init__() lowerCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , stride=lowerCamelCase_ , bias=lowerCamelCase_ ) lowerCAmelCase__ = nn.BatchNormad(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tensor: lowerCAmelCase__ = self.convolution(lowerCamelCase_ ) lowerCAmelCase__ = self.normalization(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: super().__init__() lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase__ = nn.Sequential( nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: # b c h w -> b c 1 1 lowerCAmelCase__ = self.pooler(lowerCamelCase_ ) lowerCAmelCase__ = self.attention(lowerCamelCase_ ) lowerCAmelCase__ = hidden_state * attention return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ) -> Optional[int]: super().__init__() lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = hidden_state lowerCAmelCase__ = self.layer(lowerCamelCase_ ) lowerCAmelCase__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ) -> Optional[int]: super().__init__() lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = hidden_state lowerCAmelCase__ = self.layer(lowerCamelCase_ ) lowerCAmelCase__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , ) -> Dict: super().__init__() lowerCAmelCase__ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowerCAmelCase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , ) , *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for _ in range(depth - 1 )] , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = self.layers(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[int]: super().__init__() lowerCAmelCase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = True ) -> BaseModelOutputWithNoAttention: lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(lowerCamelCase_ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) class a__ ( a__ ): '''simple docstring''' lowercase__ : List[Any] = RegNetConfig lowercase__ : Tuple = "regnet" lowercase__ : List[str] = "pixel_values" lowercase__ : Tuple = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: if isinstance(lowerCamelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> int: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = value __UpperCAmelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __UpperCAmelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[int]: super().__init__(lowerCamelCase_ ) lowerCAmelCase__ = config lowerCAmelCase__ = RegNetEmbeddings(lowerCamelCase_ ) lowerCAmelCase__ = RegNetEncoder(lowerCamelCase_ ) lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(lowerCamelCase_ ) lowerCAmelCase__ = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(lowerCamelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__(lowerCamelCase_ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = RegNetModel(lowerCamelCase_ ) # classification head lowerCAmelCase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier(lowerCamelCase_ ) lowerCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ = '''single_label_classification''' else: lowerCAmelCase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ = MSELoss() if self.num_labels == 1: lowerCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ = CrossEntropyLoss() lowerCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ = BCEWithLogitsLoss() lowerCAmelCase__ = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
98
1
import os # Precomputes a list of the 100 first triangular numbers A__: Tuple = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ ( ): UpperCamelCase__: Dict = os.path.dirname(os.path.realpath(A_)) UpperCamelCase__: Optional[int] = os.path.join(A_ ,"words.txt") UpperCamelCase__: Tuple = "" with open(A_) as f: UpperCamelCase__: int = f.readline() UpperCamelCase__: str = [word.strip("\"") for word in words.strip("\r\n").split(",")] UpperCamelCase__: int = [ word for word in [sum(ord(A_) - 64 for x in word) for word in words] if word in TRIANGULAR_NUMBERS ] return len(A_) if __name__ == "__main__": print(solution())
380
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable A__: Any = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Union[str, Any] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
380
1
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 128 elif "12-12" in model_name: __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: __SCREAMING_SNAKE_CASE = 14 __SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 16 else: raise ValueError("""Model not supported""" ) __SCREAMING_SNAKE_CASE = """huggingface/label-files""" if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 35 __SCREAMING_SNAKE_CASE = """speech-commands-v2-id2label.json""" else: __SCREAMING_SNAKE_CASE = 527 __SCREAMING_SNAKE_CASE = """audioset-id2label.json""" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if "module.v" in name: __SCREAMING_SNAKE_CASE = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __SCREAMING_SNAKE_CASE = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __SCREAMING_SNAKE_CASE = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split(""".""" ) __SCREAMING_SNAKE_CASE = int(key_split[3] ) __SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[:dim] __SCREAMING_SNAKE_CASE = val[dim : dim * 2] __SCREAMING_SNAKE_CASE = val[-dim:] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location="""cpu""" ) # remove some keys remove_keys(__UpperCAmelCase ) # rename some keys __SCREAMING_SNAKE_CASE = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) # load 🤗 model __SCREAMING_SNAKE_CASE = ASTForAudioClassification(__UpperCAmelCase ) model.eval() model.load_state_dict(__UpperCAmelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __SCREAMING_SNAKE_CASE = -4.2_6_7_7_3_9_3 if """speech-commands""" not in model_name else -6.8_4_5_9_7_8 __SCREAMING_SNAKE_CASE = 4.5_6_8_9_9_7_4 if """speech-commands""" not in model_name else 5.5_6_5_4_5_2_6 __SCREAMING_SNAKE_CASE = 1024 if """speech-commands""" not in model_name else 128 __SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=__UpperCAmelCase , std=__UpperCAmelCase , max_length=__UpperCAmelCase ) if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __SCREAMING_SNAKE_CASE = dataset[0]["""audio"""]["""array"""] else: __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torchaudio.load(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() __SCREAMING_SNAKE_CASE = feature_extractor(__UpperCAmelCase , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __SCREAMING_SNAKE_CASE = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __SCREAMING_SNAKE_CASE = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __SCREAMING_SNAKE_CASE = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __SCREAMING_SNAKE_CASE = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __SCREAMING_SNAKE_CASE = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __SCREAMING_SNAKE_CASE = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __SCREAMING_SNAKE_CASE = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": __SCREAMING_SNAKE_CASE = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError("""Logits don\'t match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
from __future__ import annotations import typing from collections import Counter def UpperCamelCase_( lowerCamelCase_ ) -> typing.Counter[int]: _lowercase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCamelCase_ , max_perimeter + 1 ): _lowercase : str = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCamelCase_ ): _lowercase : Any = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: _lowercase : List[str] = pythagorean_triple(lowerCamelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
89
"""simple docstring""" import operator as op SCREAMING_SNAKE_CASE_ = '''scaler.pt''' SCREAMING_SNAKE_CASE_ = '''pytorch_model''' SCREAMING_SNAKE_CASE_ = '''random_states''' SCREAMING_SNAKE_CASE_ = '''optimizer''' SCREAMING_SNAKE_CASE_ = '''scheduler''' SCREAMING_SNAKE_CASE_ = '''pytorch_model.bin''' SCREAMING_SNAKE_CASE_ = '''pytorch_model.bin.index.json''' SCREAMING_SNAKE_CASE_ = '''model.safetensors''' SCREAMING_SNAKE_CASE_ = '''model.safetensors.index.json''' SCREAMING_SNAKE_CASE_ = '''1.10.2''' SCREAMING_SNAKE_CASE_ = '''py38''' SCREAMING_SNAKE_CASE_ = '''4.17.0''' SCREAMING_SNAKE_CASE_ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] SCREAMING_SNAKE_CASE_ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] SCREAMING_SNAKE_CASE_ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] SCREAMING_SNAKE_CASE_ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] SCREAMING_SNAKE_CASE_ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] SCREAMING_SNAKE_CASE_ = '''2.0.1''' SCREAMING_SNAKE_CASE_ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] SCREAMING_SNAKE_CASE_ = ['''default''', '''reduce-overhead''', '''max-autotune'''] SCREAMING_SNAKE_CASE_ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 SCREAMING_SNAKE_CASE_ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] SCREAMING_SNAKE_CASE_ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] SCREAMING_SNAKE_CASE_ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
465
0
import operator def _lowerCamelCase ( snake_case , snake_case = False , snake_case = None ): _lowerCAmelCase = operator.lt if reverse else operator.gt _lowerCAmelCase = solution or [] if not arr: return solution _lowerCAmelCase = [arr.pop(0 )] for i, item in enumerate(snake_case ): if _operator(snake_case , sublist[-1] ): sublist.append(snake_case ) arr.pop(snake_case ) # merging sublist into solution list if not solution: solution.extend(snake_case ) else: while sublist: _lowerCAmelCase = sublist.pop(0 ) for i, xx in enumerate(snake_case ): if not _operator(snake_case , snake_case ): solution.insert(snake_case , snake_case ) break else: solution.append(snake_case ) strand_sort(snake_case , snake_case , snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
225
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase__ ( UpperCAmelCase ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ ( lowercase__ : ArgumentParser ): raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): raise NotImplementedError()
225
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase_, UpperCAmelCase_ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
104
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a = datasets.utils.logging.get_logger(__name__) a = ["""names""", """prefix"""] a = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a = ["""encoding_errors""", """on_bad_lines"""] a = ["""date_format"""] @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : str = "," lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None lowerCamelCase : Optional[Union[List[int], List[str]]] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = True lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None lowerCamelCase : Optional[list] = None lowerCamelCase : Optional[list] = None lowerCamelCase : bool = False lowerCamelCase : Optional[Union[int, List[int]]] = None lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[Union[str, List[str]]] = None lowerCamelCase : bool = True lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = True lowerCamelCase : Optional[str] = None lowerCamelCase : str = "." lowerCamelCase : Optional[str] = None lowerCamelCase : str = '"' lowerCamelCase : int = 0 lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = True lowerCamelCase : bool = True lowerCamelCase : int = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : Optional[str] = None lowerCamelCase : int = 1_00_00 lowerCamelCase : Optional[datasets.Features] = None lowerCamelCase : Optional[str] = "strict" lowerCamelCase : Literal["error", "warn", "skip"] = "error" lowerCamelCase : Optional[str] = None def SCREAMING_SNAKE_CASE__ ( self: Tuple ): if self.delimiter is not None: _lowerCAmelCase :Tuple = self.delimiter if self.column_names is not None: _lowerCAmelCase :str = self.column_names @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Dict = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Dict = CsvConfig def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :List[Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] _lowerCAmelCase :Tuple = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Dict = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = [files] _lowerCAmelCase :List[str] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: pa.Table ): if self.config.features is not None: _lowerCAmelCase :str = self.config.features.arrow_schema if all(not require_storage_cast(_UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast _lowerCAmelCase :Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCAmelCase :Any = table_cast(_UpperCAmelCase , _UpperCAmelCase ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :Dict = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCAmelCase :Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): _lowerCAmelCase :int = pd.read_csv(_UpperCAmelCase , iterator=_UpperCAmelCase , dtype=_UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_UpperCAmelCase ): _lowerCAmelCase :Any = pa.Table.from_pandas(_UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_UpperCAmelCase )}: {e}""" ) raise
382
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] a = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] a = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): a = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
382
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase__ ( unittest.TestCase ): """simple docstring""" @property def _a ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = self.dummy_uncond_unet UpperCamelCase : Dict = ScoreSdeVeScheduler() UpperCamelCase : Any = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) UpperCamelCase : List[Any] = torch.manual_seed(0 ) UpperCamelCase : Dict = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_A ).images UpperCamelCase : Optional[int] = torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_A , return_dict=_A )[ 0 ] UpperCamelCase : List[str] = image[0, -3:, -3:, -1] UpperCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase : List[str] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = """google/ncsnpp-church-256""" UpperCamelCase : Any = UNetaDModel.from_pretrained(_A ) UpperCamelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(_A ) UpperCamelCase : Tuple = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) UpperCamelCase : Dict = torch.manual_seed(0 ) UpperCamelCase : Any = sde_ve(num_inference_steps=1_0 , output_type="""numpy""" , generator=_A ).images UpperCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCamelCase : List[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
102
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowercase : def __init__( self , lowercase=None , **lowercase ) -> int: logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) lowerCAmelCase = model lowerCAmelCase = kwargs.get("""model_save_dir""" , lowercase ) lowerCAmelCase = kwargs.get("""latest_model_name""" , lowercase ) def __call__( self , **lowercase ) -> List[Any]: lowerCAmelCase = {k: np.array(lowercase ) for k, v in kwargs.items()} return self.model.run(lowercase , lowercase ) @staticmethod def _snake_case ( lowercase , lowercase=None , lowercase=None ) -> Optional[Any]: if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) lowerCAmelCase = """CPUExecutionProvider""" return ort.InferenceSession(lowercase , providers=[provider] , sess_options=lowercase ) def _snake_case ( self , lowercase , lowercase = None , **lowercase ) -> str: lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) lowerCAmelCase = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase = self.model_save_dir.joinpath(lowercase ) if src_path.exists(): lowerCAmelCase = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass def _snake_case ( self , lowercase , **lowercase , ) -> str: if os.path.isfile(lowercase ): logger.error(f'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(lowercase , exist_ok=lowercase ) # saving model weights/files self._save_pretrained(lowercase , **lowercase ) @classmethod def _snake_case ( cls , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> Union[str, Any]: lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase ): lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(lowercase , lowercase ) , provider=lowercase , sess_options=lowercase ) lowerCAmelCase = Path(lowercase ) # load model from hub else: # download model lowerCAmelCase = hf_hub_download( repo_id=lowercase , filename=lowercase , use_auth_token=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , ) lowerCAmelCase = Path(lowercase ).parent lowerCAmelCase = Path(lowercase ).name lowerCAmelCase = OnnxRuntimeModel.load_model(lowercase , provider=lowercase , sess_options=lowercase ) return cls(model=lowercase , **lowercase ) @classmethod def _snake_case ( cls , lowercase , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> List[str]: lowerCAmelCase = None if len(str(lowercase ).split("""@""" ) ) == 2: lowerCAmelCase , lowerCAmelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , use_auth_token=lowercase , **lowercase , )
532
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __lowerCAmelCase : Optional[int] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Dict = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: snake_case_ : Optional[Any] = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: snake_case_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Union[str, Any] = value elif weight_type == "bias": snake_case_ : Optional[int] = value else: snake_case_ : List[Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Dict = fairseq_model.state_dict() snake_case_ : Any = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Tuple = None for name, value in fairseq_dict.items(): snake_case_ : List[str] = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : List[Any] = fairseq_model.proj snake_case_ : Tuple = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Union[str, Any] = True if "*" in mapped_key: snake_case_ : Union[str, Any] = name.split(__UpperCamelCase )[0].split(""".""" )[-2] snake_case_ : Tuple = mapped_key.replace("""*""" , __UpperCamelCase ) if "weight_g" in name: snake_case_ : Dict = """weight_g""" elif "weight_v" in name: snake_case_ : List[str] = """weight_v""" elif "bias" in name: snake_case_ : List[str] = """bias""" elif "weight" in name: snake_case_ : List[str] = """weight""" else: snake_case_ : Tuple = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = full_name.split("""conv_layers.""" )[-1] snake_case_ : str = name.split(""".""" ) snake_case_ : Any = int(items[0] ) snake_case_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : List[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : Dict = emb.weight.data return lin_layer def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.readlines() snake_case_ : Optional[Any] = [line.split(""" """ )[0] for line in lines] snake_case_ : Optional[int] = len(__UpperCamelCase ) snake_case_ : Union[str, Any] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(__UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Tuple , ): '''simple docstring''' snake_case_ : List[Any] = WavaVecaConfig.from_pretrained(__UpperCamelCase ) snake_case_ : Optional[Any] = SpeechaTextaConfig.from_pretrained( __UpperCamelCase , vocab_size=__UpperCamelCase , decoder_layers=__UpperCamelCase , do_stable_layer_norm=__UpperCamelCase ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) snake_case_ , snake_case_ , snake_case_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Any = WavaVecaModel(__UpperCamelCase ) snake_case_ : List[str] = recursively_load_weights_wavaveca(model.encoder , __UpperCamelCase ) snake_case_ : List[str] = SpeechaTextaForCausalLM(__UpperCamelCase ) snake_case_ , snake_case_ : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCamelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : int = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ : Any = SpeechEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) snake_case_ : Tuple = False # add projection layer snake_case_ : int = nn.Parameter(projection_layer.weight ) snake_case_ : Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case_ : Dict = create_vocab_dict(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = SpeechaTextaTokenizer(os.path.join(__UpperCamelCase , """vocab.json""" ) ) tokenizer.save_pretrained(__UpperCamelCase ) snake_case_ : Dict = hf_wavavec.config.to_dict() snake_case_ : List[str] = tokenizer.pad_token_id snake_case_ : Union[str, Any] = tokenizer.bos_token_id snake_case_ : str = tokenizer.eos_token_id snake_case_ : str = """speech_to_text_2""" snake_case_ : Any = """wav2vec2""" snake_case_ : Dict = SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __lowerCAmelCase : Any = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : Optional[int] = '\n'.join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open('w' ).writelines(_SCREAMING_SNAKE_CASE ) UpperCamelCase = "patrickvonplaten/t5-tiny-random" UpperCamelCase = "sshleifer/bart-tiny-random" UpperCamelCase = "sshleifer/tiny-mbart" UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowerCAmelCase_ ( a_ ): def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _lowercase : Dict = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _lowercase : Any = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(lowerCAmelCase_ , lowerCAmelCase_ ) _lowercase : List[Any] = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _lowercase : int = 'translation_en_to_de' if model == T5_TINY else 'summarization' _lowercase : Any = F""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCAmelCase_ , 'argv' , lowerCAmelCase_ ): run_generate() assert Path(lowerCAmelCase_ ).exists() # os.remove(Path(output_file_name)) def __a ( self ): self.run_eval_tester(lowerCAmelCase_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __a ( self , _lowerCAmelCase ): self.run_eval_tester(lowerCAmelCase_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __a ( self , _lowerCAmelCase ): _lowercase : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _lowercase : Optional[Any] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _lowercase : List[str] = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _lowercase : List[str] = Path(self.get_auto_remove_tmp_dir() ) _lowercase : Tuple = str(tmp_dir / 'scores.json' ) _lowercase : Any = str(tmp_dir / 'val.target' ) _dump_articles(lowerCAmelCase_ , text['en'] ) _dump_articles(lowerCAmelCase_ , text['de'] ) _lowercase : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization' _lowercase : List[Any] = F""" run_eval_search.py {model} {str(lowerCAmelCase_ )} {str(lowerCAmelCase_ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowerCAmelCase_ , 'argv' , lowerCAmelCase_ ): with CaptureStdout() as cs: run_search() _lowercase : Optional[int] = [' num_beams | length_penalty', model, 'Best score args'] _lowercase : Tuple = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowerCAmelCase_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCAmelCase_ ).exists() os.remove(Path(lowerCAmelCase_ ) )
66
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Optional[int]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : int ) -> List[str]: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
186
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __A : Optional[int] = None __A : int = logging.get_logger(__name__) __A : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : Optional[Any] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } __A : Tuple = { "xlnet-base-cased": None, "xlnet-large-cased": None, } __A : List[Any] = "▁" # Segments (not really needed) __A : Dict = 0 __A : List[str] = 1 __A : List[str] = 2 __A : int = 3 __A : str = 4 class lowercase_ ( lowerCAmelCase__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = "left" __UpperCamelCase = XLNetTokenizer def __init__( self: List[Any], _lowercase: Tuple=None, _lowercase: Any=None, _lowercase: int=False, _lowercase: str=True, _lowercase: Optional[Any]=False, _lowercase: Tuple="<s>", _lowercase: List[Any]="</s>", _lowercase: List[Any]="<unk>", _lowercase: Tuple="<sep>", _lowercase: List[str]="<pad>", _lowercase: str="<cls>", _lowercase: Union[str, Any]="<mask>", _lowercase: str=["<eop>", "<eod>"], **_lowercase: Dict, ): '''simple docstring''' __lowerCAmelCase = AddedToken(_lowercase, lstrip=_lowercase, rstrip=_lowercase) if isinstance(_lowercase, _lowercase) else mask_token super().__init__( vocab_file=_lowercase, tokenizer_file=_lowercase, do_lower_case=_lowercase, remove_space=_lowercase, keep_accents=_lowercase, bos_token=_lowercase, eos_token=_lowercase, unk_token=_lowercase, sep_token=_lowercase, pad_token=_lowercase, cls_token=_lowercase, mask_token=_lowercase, additional_special_tokens=_lowercase, **_lowercase, ) __lowerCAmelCase = 3 __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def _lowercase ( self: List[Any], _lowercase: List[int], _lowercase: Optional[List[int]] = None): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self: int, _lowercase: List[int], _lowercase: Optional[List[int]] = None): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowercase ( self: Optional[Any], _lowercase: str, _lowercase: Optional[str] = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(_lowercase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return __lowerCAmelCase = os.path.join( _lowercase, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase): copyfile(self.vocab_file, _lowercase) return (out_vocab_file,)
334
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __A : Optional[Any] = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __lowerCAmelCase = int(re.match(R""".*layer_(\d*).*""" , UpperCamelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def UpperCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if dtype == torch.bool: return 1 / 8 __lowerCAmelCase = re.search(R"""[^\d](\d+)$""" , str(UpperCamelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) __lowerCAmelCase = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if bloom_config_file == "": __lowerCAmelCase = BloomConfig() else: __lowerCAmelCase = BloomConfig.from_json_file(UpperCamelCase__ ) if shard_model: __lowerCAmelCase = os.listdir(UpperCamelCase__ ) __lowerCAmelCase = sorted(filter(lambda UpperCamelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) __lowerCAmelCase = {"""weight_map""": {}, """metadata""": {}} __lowerCAmelCase = 0 __lowerCAmelCase = None __lowerCAmelCase = BloomConfig() for j, file in enumerate(UpperCamelCase__ ): print("""Processing file: {}""".format(UpperCamelCase__ ) ) __lowerCAmelCase = None for i in range(UpperCamelCase__ ): # load all TP files __lowerCAmelCase = file.replace("""model_00""" , F'''model_0{i}''' ) __lowerCAmelCase = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names __lowerCAmelCase = list(temp.keys() ) for key in keys: __lowerCAmelCase = temp.pop(UpperCamelCase__ ) if tensors is None: __lowerCAmelCase = temp else: for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCAmelCase = tensors[key] / pretraining_tp torch.save( UpperCamelCase__ , os.path.join( UpperCamelCase__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __lowerCAmelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __lowerCAmelCase = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) __lowerCAmelCase = BloomConfig() __lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME __lowerCAmelCase = total_size with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCamelCase__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: __lowerCAmelCase = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) else: __lowerCAmelCase = BloomModel(UpperCamelCase__ ) __lowerCAmelCase = os.listdir(UpperCamelCase__ ) __lowerCAmelCase = sorted(filter(lambda UpperCamelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) __lowerCAmelCase = None for i, file in enumerate(UpperCamelCase__ ): __lowerCAmelCase = None for i in range(UpperCamelCase__ ): # load all TP files __lowerCAmelCase = file.replace("""model_00""" , F'''model_0{i}''' ) __lowerCAmelCase = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names __lowerCAmelCase = list(temp.keys() ) for key in keys: __lowerCAmelCase = temp.pop(UpperCamelCase__ ) if tensors is None: __lowerCAmelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCAmelCase = tensors[key] / pretraining_tp __lowerCAmelCase = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: __lowerCAmelCase = set(other_keys.missing_keys ) else: __lowerCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: __lowerCAmelCase = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __A : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
334
1
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class snake_case__ ( nn.Module ): A__ = 42 A__ = jnp.floataa def A_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , __a : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = hidden_states.shape __snake_case : int = jax.image.resize( _lowerCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __snake_case : str = self.conv(_lowerCAmelCase ) return hidden_states class snake_case__ ( nn.Module ): A__ = 42 A__ = jnp.floataa def A_ ( self : int ) -> int: '''simple docstring''' __snake_case : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __a : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = self.conv(_lowerCAmelCase ) return hidden_states class snake_case__ ( nn.Module ): A__ = 42 A__ = None A__ = 0.0 A__ = None A__ = jnp.floataa def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __snake_case : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __snake_case : Dict = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[str] = nn.Dense(_lowerCAmelCase , dtype=self.dtype ) __snake_case : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __snake_case : Optional[Any] = nn.Dropout(self.dropout_prob ) __snake_case : int = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __snake_case : Tuple = None if use_nin_shortcut: __snake_case : Dict = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Dict , __a : str , __a : Union[str, Any] , __a : List[str]=True ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = hidden_states __snake_case : Dict = self.norma(_lowerCAmelCase ) __snake_case : Optional[Any] = nn.swish(_lowerCAmelCase ) __snake_case : List[str] = self.conva(_lowerCAmelCase ) __snake_case : int = self.time_emb_proj(nn.swish(_lowerCAmelCase ) ) __snake_case : Tuple = jnp.expand_dims(jnp.expand_dims(_lowerCAmelCase , 1 ) , 1 ) __snake_case : Optional[int] = hidden_states + temb __snake_case : Tuple = self.norma(_lowerCAmelCase ) __snake_case : Tuple = nn.swish(_lowerCAmelCase ) __snake_case : str = self.dropout(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = self.conva(_lowerCAmelCase ) if self.conv_shortcut is not None: __snake_case : Union[str, Any] = self.conv_shortcut(_lowerCAmelCase ) return hidden_states + residual
286
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : jnp.ndarray @flax_register_to_config class a ( nn.Module ,__lowercase ,__lowercase ): SCREAMING_SNAKE_CASE__ : int = 32 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE__ : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE__ : Tuple[int] = (320, 640, 1280, 1280) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE__ : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE__ : int = 1280 SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : bool = False def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE: Tuple = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = jax.random.split(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.block_out_channels __SCREAMING_SNAKE_CASE: Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE: Any = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE: str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE: int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) __SCREAMING_SNAKE_CASE: Optional[int] = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE: Union[str, Any] = [] __SCREAMING_SNAKE_CASE: List[str] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE: List[str] = output_channel __SCREAMING_SNAKE_CASE: str = block_out_channels[i] __SCREAMING_SNAKE_CASE: Any = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE: str = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: Tuple = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = down_blocks # mid __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __SCREAMING_SNAKE_CASE: Optional[int] = [] __SCREAMING_SNAKE_CASE: Tuple = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: str = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __SCREAMING_SNAKE_CASE: int = output_channel __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[i] __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[min(i + 1 , len(_lowerCAmelCase ) - 1 )] __SCREAMING_SNAKE_CASE: Union[str, Any] = i == len(_lowerCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __SCREAMING_SNAKE_CASE: Optional[int] = FlaxCrossAttnUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: int = FlaxUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = output_channel __SCREAMING_SNAKE_CASE: Union[str, Any] = up_blocks # out __SCREAMING_SNAKE_CASE: Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = True , _lowerCAmelCase = False , ): """simple docstring""" if not isinstance(_lowerCAmelCase , jnp.ndarray ): __SCREAMING_SNAKE_CASE: Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE: Optional[Any] = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Union[str, Any] = jnp.expand_dims(_lowerCAmelCase , 0 ) __SCREAMING_SNAKE_CASE: Any = self.time_proj(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.time_embedding(_lowerCAmelCase ) # 2. pre-process __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE: List[str] = self.conv_in(_lowerCAmelCase ) # 3. down __SCREAMING_SNAKE_CASE: Dict = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __SCREAMING_SNAKE_CASE: Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCAmelCase , _lowerCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE: Union[str, Any] = new_down_block_res_samples # 4. mid __SCREAMING_SNAKE_CASE: Dict = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = up_block( _lowerCAmelCase , temb=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train , ) else: __SCREAMING_SNAKE_CASE: List[str] = up_block(_lowerCAmelCase , temb=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train ) # 6. post-process __SCREAMING_SNAKE_CASE: Optional[Any] = self.conv_norm_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.silu(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = self.conv_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCAmelCase )
202
0
def __UpperCAmelCase ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = set({"(", "[", "{"} ) UpperCAmelCase__ = set({")", "]", "}"} ) UpperCAmelCase__ = {"{": "}", "[": "]", "(": ")"} for i in range(len(__A ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__A ) == 0 or (len(__A ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__A ) == 0 def __UpperCAmelCase ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = input("Enter sequence of brackets: " ) if is_balanced(__A ): print(__A , "is balanced" ) else: print(__A , "is not balanced" ) if __name__ == "__main__": main()
716
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A = 6378137.0 A = 6356752.314245 A = 637_8137 def __UpperCAmelCase ( __A , __A , __A , __A ) -> float: '''simple docstring''' UpperCAmelCase__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase__ = atan((1 - flattening) * tan(radians(__A ) ) ) UpperCAmelCase__ = atan((1 - flattening) * tan(radians(__A ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase__ = haversine_distance(__A , __A , __A , __A ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase__ = (b_lata + b_lata) / 2 UpperCAmelCase__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase__ = (sin(__A ) ** 2) * (cos(__A ) ** 2) UpperCAmelCase__ = cos(sigma / 2 ) ** 2 UpperCAmelCase__ = (sigma - sin(__A )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase__ = (cos(__A ) ** 2) * (sin(__A ) ** 2) UpperCAmelCase__ = sin(sigma / 2 ) ** 2 UpperCAmelCase__ = (sigma + sin(__A )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
277
0
import numpy class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: UpperCamelCase_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCamelCase_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCamelCase_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCamelCase_ = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCamelCase_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCamelCase_ = numpy.zeros(output_array.shape ) def _UpperCAmelCase ( self ) -> numpy.ndarray: UpperCamelCase_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _UpperCAmelCase ( self ) -> None: UpperCamelCase_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCamelCase_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCamelCase_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: for iteration in range(1 , iterations + 1 ): UpperCamelCase_ = self.feedforward() self.back_propagation() if give_loss: UpperCamelCase_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: UpperCamelCase_ = input_arr UpperCamelCase_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case (__lowercase): return 1 / (1 + numpy.exp(-value)) def _snake_case (__lowercase): return (value) * (1 - (value)) def _snake_case (): UpperCamelCase_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCamelCase_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. UpperCamelCase_ = TwoHiddenLayerNeuralNetwork( input_array=__lowercase , output_array=__lowercase) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__lowercase , iterations=10 , give_loss=__lowercase) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
23
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
1
from math import factorial def SCREAMING_SNAKE_CASE__ ( __a = 20 ): snake_case_ : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ : Optional[Any] = n // 2 return int(factorial(__a ) / (factorial(__a ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
534
from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Optional[Any] = 0 # Number of processes finished snake_case_ : List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ : str = [0] * no_of_process # List to include calculation results snake_case_ : Optional[int] = [0] * no_of_process # Sort by arrival time. snake_case_ : str = [burst_time[i] for i in np.argsort(__a )] snake_case_ : str = [process_name[i] for i in np.argsort(__a )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ : int = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ : str = arrival_time[i] snake_case_ : Optional[Any] = 0 # Index showing the location of the process being performed snake_case_ : Tuple = 0 # Saves the current response ratio. snake_case_ : List[Any] = 0 for i in range(0 , __a ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ : Optional[Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ : Optional[int] = temp snake_case_ : Optional[Any] = i # Calculate the turn around time snake_case_ : Any = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ : Optional[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : List[Any] = [0] * no_of_process for i in range(0 , __a ): snake_case_ : Optional[int] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _SCREAMING_SNAKE_CASE = 5 _SCREAMING_SNAKE_CASE = ["""A""", """B""", """C""", """D""", """E"""] _SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5] _SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5] _SCREAMING_SNAKE_CASE = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _SCREAMING_SNAKE_CASE = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
534
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ): '''simple docstring''' # Initialise PyTorch model _lowerCAmelCase : List[str] = MobileBertConfig.from_json_file(UpperCamelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : Tuple = MobileBertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint _lowerCAmelCase : Union[str, Any] = load_tf_weights_in_mobilebert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCamelCase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
429
def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
429
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = 'gpt_neo' UpperCAmelCase : List[Any] = ['past_key_values'] UpperCAmelCase : int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any] , __snake_case : Union[str, Any]=50257 , __snake_case : Any=2048 , __snake_case : Dict=2048 , __snake_case : Dict=24 , __snake_case : Union[str, Any]=[[["global", "local"], 12]] , __snake_case : Tuple=16 , __snake_case : List[str]=None , __snake_case : Tuple=256 , __snake_case : Optional[int]="gelu_new" , __snake_case : str=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Dict=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Union[str, Any]=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=50256 , __snake_case : Union[str, Any]=50256 , **__snake_case : Optional[int] , ) -> Any: _a : List[Any] = vocab_size _a : Dict = max_position_embeddings _a : List[Any] = hidden_size _a : Tuple = num_layers _a : List[Any] = num_heads _a : List[Any] = intermediate_size _a : Dict = window_size _a : Tuple = activation_function _a : Dict = resid_dropout _a : List[str] = embed_dropout _a : Optional[Any] = attention_dropout _a : Dict = classifier_dropout _a : str = layer_norm_epsilon _a : Tuple = initializer_range _a : Union[str, Any] = use_cache _a : Tuple = bos_token_id _a : int = eos_token_id _a : List[Any] = attention_types _a : str = self.expand_attention_types_params(__snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @staticmethod def snake_case_ ( __snake_case : Tuple ) -> str: _a : Optional[int] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): import torch _a : Dict = input.size() _a : Tuple = len(UpperCamelCase_ ) _a : Tuple = shape[dimension] _a : Union[str, Any] = torch.arange(0 , UpperCamelCase_ , UpperCamelCase_ ) _a : Optional[Any] = torch.div(sizedim - size , UpperCamelCase_ , rounding_mode='''floor''' ) + 1 _a : int = torch.arange(UpperCamelCase_ ) + low_indices[:min_length][:, None] _a : Tuple = [slice(UpperCamelCase_ )] * rank _a : List[str] = indices _a : str = input[s] _a : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): import torch _a : List[Any] = torch.arange(1 , UpperCamelCase_ ) _a : Dict = torch.remainder(UpperCamelCase_ , UpperCamelCase_ ) _a : Any = remainders == 0 _a : List[str] = candidates[divisor_indices] _a : str = torch.max(UpperCamelCase_ ) return largest_divisor, torch.div(UpperCamelCase_ , UpperCamelCase_ , rounding_mode='''floor''' ) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): @property def snake_case_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: _a : List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='''inputs''' ) _a : Tuple = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def snake_case_ ( self : Any ) -> int: return self._config.num_heads def snake_case_ ( self : List[Any] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: _a : Tuple = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() _a : Optional[int] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a : Union[str, Any] = seqlen + 2 _a : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Optional[Any] = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] _a : Dict = common_inputs['''attention_mask'''] if self.use_past: _a : Optional[Any] = ordered_inputs['''attention_mask'''].dtype _a : str = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def snake_case_ ( self : Any ) -> int: return 13
249
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self : Any , __snake_case : int , __snake_case : Optional[Any]=13 , __snake_case : int=7 , __snake_case : Dict=True , __snake_case : str=True , __snake_case : List[str]=True , __snake_case : int=True , __snake_case : str=99 , __snake_case : Dict=24 , __snake_case : int=2 , __snake_case : Dict=6 , __snake_case : str=37 , __snake_case : str="gelu" , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Any=16 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=0.02 , __snake_case : str=3 , __snake_case : List[Any]=None , __snake_case : Any=1000 , ) -> str: _a : Dict = parent _a : Tuple = batch_size _a : Optional[int] = seq_length _a : Optional[int] = is_training _a : Dict = use_input_mask _a : Optional[Any] = use_token_type_ids _a : List[Any] = use_labels _a : List[str] = vocab_size _a : int = hidden_size _a : List[str] = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Dict = intermediate_size _a : str = hidden_act _a : str = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : List[str] = type_vocab_size _a : List[Any] = type_sequence_label_size _a : Optional[int] = initializer_range _a : str = num_labels _a : int = scope _a : Tuple = range_bbox def snake_case_ ( self : Any ) -> Any: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : Any = bbox[i, j, 3] _a : Any = bbox[i, j, 1] _a : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _a : int = bbox[i, j, 2] _a : str = bbox[i, j, 0] _a : List[Any] = t _a : Any = None if self.use_input_mask: _a : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a : Optional[Any] = None if self.use_token_type_ids: _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Any = None _a : Union[str, Any] = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : str ) -> List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self : int , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , ) -> Any: _a : Union[str, Any] = LiltModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Union[str, Any] = model(__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : int , ) -> Tuple: _a : List[str] = self.num_labels _a : Optional[Any] = LiltForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Optional[Any] = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , ) -> Optional[int]: _a : List[str] = LiltForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() _a : int = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Any ) -> Optional[int]: _a : List[Any] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = False def snake_case_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[int] ) -> List[str]: return True def snake_case_ ( self : int ) -> Dict: _a : Union[str, Any] = LiltModelTester(self ) _a : List[str] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def snake_case_ ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def snake_case_ ( self : str ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : str ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : Optional[Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def snake_case_ ( self : List[Any] ) -> List[Any]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def snake_case_ ( self : Dict ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = LiltModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @slow class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : Optional[Any] ) -> str: _a : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__snake_case ) _a : List[str] = torch.tensor([[1, 2]] , device=__snake_case ) _a : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__snake_case ) # forward pass with torch.no_grad(): _a : List[Any] = model(input_ids=__snake_case , bbox=__snake_case ) _a : Optional[Any] = torch.Size([1, 2, 768] ) _a : Optional[Any] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , __snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __snake_case , atol=1E-3 ) )
249
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _snake_case ( _A , _A ): _A = 1 @register_to_config def __init__( self ,UpperCamelCase=2_000 ,UpperCamelCase=0.1 ,UpperCamelCase=20 ,UpperCamelCase=1E-3 ) -> Dict: snake_case__ :List[Any] = None snake_case__ :Optional[Any] = None snake_case__ :Union[str, Any] = None def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[str]: snake_case__ :Optional[Any] = torch.linspace(1 ,self.config.sampling_eps ,UpperCamelCase ,device=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> int: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case__ :Union[str, Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case__ :Optional[int] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case__ :List[Any] = std.flatten() while len(std.shape ) < len(score.shape ): snake_case__ :Optional[Any] = std.unsqueeze(-1 ) snake_case__ :List[Any] = -score / std # compute snake_case__ :Optional[Any] = -1.0 / len(self.timesteps ) snake_case__ :str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case__ :List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case__ :List[Any] = beta_t.unsqueeze(-1 ) snake_case__ :Dict = -0.5 * beta_t * x snake_case__ :Tuple = torch.sqrt(UpperCamelCase ) snake_case__ :Tuple = drift - diffusion**2 * score snake_case__ :Any = x + drift * dt # add noise snake_case__ :str = randn_tensor(x.shape ,layout=x.layout ,generator=UpperCamelCase ,device=x.device ,dtype=x.dtype ) snake_case__ :Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
241
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _snake_case ( _A ): _A = 'char' _A = 'bpe' _A = 'wp' __UpperCAmelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _snake_case ( _A ): _A = ['image_processor', 'char_tokenizer'] _A = 'ViTImageProcessor' _A = 'MgpstrTokenizer' def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ) -> Any: snake_case__ :Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,UpperCamelCase ,) snake_case__ :int = kwargs.pop("feature_extractor" ) snake_case__ :int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) snake_case__ :Union[str, Any] = tokenizer snake_case__ :Any = AutoTokenizer.from_pretrained("gpt2" ) snake_case__ :str = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(UpperCamelCase ,UpperCamelCase ) def __call__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ) -> Dict: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: snake_case__ :Tuple = self.image_processor(UpperCamelCase ,return_tensors=UpperCamelCase ,**UpperCamelCase ) if text is not None: snake_case__ :Optional[Any] = self.char_tokenizer(UpperCamelCase ,return_tensors=UpperCamelCase ,**UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: snake_case__ :str = encodings["input_ids"] return inputs def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: snake_case__ , snake_case__ , snake_case__ :int = sequences snake_case__ :int = char_preds.size(0 ) snake_case__ , snake_case__ :Dict = self._decode_helper(UpperCamelCase ,"char" ) snake_case__ , snake_case__ :List[str] = self._decode_helper(UpperCamelCase ,"bpe" ) snake_case__ , snake_case__ :List[Any] = self._decode_helper(UpperCamelCase ,"wp" ) snake_case__ :Any = [] snake_case__ :Optional[int] = [] for i in range(UpperCamelCase ): snake_case__ :Any = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ :Tuple = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ :Dict = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ :Optional[int] = {} snake_case__ :List[str] = final_strs snake_case__ :Union[str, Any] = final_scores snake_case__ :Union[str, Any] = char_strs snake_case__ :Optional[Any] = bpe_strs snake_case__ :Union[str, Any] = wp_strs return out def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: if format == DecodeType.CHARACTER: snake_case__ :Dict = self.char_decode snake_case__ :Dict = 1 snake_case__ :List[Any] = "[s]" elif format == DecodeType.BPE: snake_case__ :Optional[Any] = self.bpe_decode snake_case__ :Optional[Any] = 2 snake_case__ :Dict = "#" elif format == DecodeType.WORDPIECE: snake_case__ :int = self.wp_decode snake_case__ :Union[str, Any] = 102 snake_case__ :Optional[int] = "[SEP]" else: raise ValueError(f'Format {format} is not supported.' ) snake_case__ , snake_case__ :List[str] = [], [] snake_case__ :List[str] = pred_logits.size(0 ) snake_case__ :Optional[int] = pred_logits.size(1 ) snake_case__ , snake_case__ :Dict = pred_logits.topk(1 ,dim=-1 ,largest=UpperCamelCase ,sorted=UpperCamelCase ) snake_case__ :Optional[Any] = preds_index.view(-1 ,UpperCamelCase )[:, 1:] snake_case__ :Optional[int] = decoder(UpperCamelCase ) snake_case__ , snake_case__ :List[Any] = torch.nn.functional.softmax(UpperCamelCase ,dim=2 ).max(dim=2 ) snake_case__ :str = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): snake_case__ :Optional[Any] = preds_str[index].find(UpperCamelCase ) snake_case__ :Tuple = preds_str[index][:pred_eos] snake_case__ :Dict = preds_index[index].cpu().tolist() snake_case__ :Dict = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 snake_case__ :str = preds_max_prob[index][: pred_eos_index + 1] snake_case__ :Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Dict: snake_case__ :Optional[int] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
241
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : int , __magic_name__ : Optional[int]=7 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : str=30 , __magic_name__ : Optional[int]=400 , __magic_name__ : str=True , __magic_name__ : Optional[Any]=None , __magic_name__ : List[Any]=True , __magic_name__ : Any=1 / 255 , __magic_name__ : List[Any]=True , __magic_name__ : Tuple=[0.5, 0.5, 0.5] , __magic_name__ : Any=[0.5, 0.5, 0.5] , __magic_name__ : str=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_pad def __A ( self : List[Any] ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __A ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[Any]=False ) -> Dict: if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DetrImageProcessor if is_vision_available() else None def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = DetrImageProcessingTester(self ) @property def __A ( self : Any ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "image_mean" ) ) self.assertTrue(hasattr(__magic_name__ , "image_std" ) ) self.assertTrue(hasattr(__magic_name__ , "do_normalize" ) ) self.assertTrue(hasattr(__magic_name__ , "do_rescale" ) ) self.assertTrue(hasattr(__magic_name__ , "rescale_factor" ) ) self.assertTrue(hasattr(__magic_name__ , "do_resize" ) ) self.assertTrue(hasattr(__magic_name__ , "size" ) ) self.assertTrue(hasattr(__magic_name__ , "do_pad" ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def __A ( self : Optional[Any] ) -> Tuple: pass def __A ( self : Any ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Any ) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self : Union[str, Any] ) -> Optional[Any]: # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {"image_id": 39_769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) SCREAMING_SNAKE_CASE_ = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __magic_name__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __magic_name__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __magic_name__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __magic_name__ ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __magic_name__ ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __magic_name__ ) ) @slow def __A ( self : Tuple ) -> Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} SCREAMING_SNAKE_CASE_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) SCREAMING_SNAKE_CASE_ = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __magic_name__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __magic_name__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __magic_name__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __magic_name__ ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __magic_name__ ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __magic_name__ ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __magic_name__ ) )
356
from __future__ import annotations def a__ ( __UpperCamelCase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
356
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<sep>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<cls>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" snake_case__ : int =AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token snake_case__ : Dict ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Optional[Any] =3 snake_case__ : Union[str, Any] =do_lower_case snake_case__ : Optional[Any] =remove_space snake_case__ : Optional[Any] =keep_accents snake_case__ : str =vocab_file snake_case__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) snake_case__ : Any =jieba snake_case__ : List[str] =str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] ={self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] =self.__dict__.copy() snake_case__ : Tuple =None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : List[Any] =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : int ={} snake_case__ : Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if self.remove_space: snake_case__ : Union[str, Any] =''' '''.join(inputs.strip().split() ) else: snake_case__ : Any =inputs snake_case__ : str =outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: snake_case__ : Union[str, Any] =unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict =''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: snake_case__ : List[str] =outputs.lower() return outputs def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" snake_case__ : List[str] =self.preprocess_text(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =[] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): snake_case__ : Union[str, Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case__ : str =cur_pieces[1:] else: snake_case__ : str =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" snake_case__ : List[str] =''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" snake_case__ : Optional[Any] =[self.sep_token_id] snake_case__ : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" snake_case__ : Union[str, Any] =[self.sep_token_id] snake_case__ : List[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Any =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: snake_case__ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] =super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
381
def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : int =len(SCREAMING_SNAKE_CASE ) snake_case__ : int =len(SCREAMING_SNAKE_CASE ) snake_case__ : int =( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case__ : list =[] for char_count in range(SCREAMING_SNAKE_CASE ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
381
1
'''simple docstring''' def _UpperCamelCase ( _a : int = 2_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase : Optional[int] = [0 for i in range(n + 1 )] __UpperCamelCase : str = 1 __UpperCamelCase : Optional[int] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _a ): __UpperCamelCase : Dict = 1 __UpperCamelCase : Any = 0 for i in range(_a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
715
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCamelCase ( _a : NDArray[floataa] , _a : NDArray[floataa] , _a : list[int] , _a : int , ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Union[str, Any] = coefficient_matrix.shape __UpperCamelCase , __UpperCamelCase : Union[str, Any] = constant_matrix.shape if rowsa != colsa: __UpperCamelCase : Tuple = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_a ) if colsa != 1: __UpperCamelCase : List[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_a ) if rowsa != rowsa: __UpperCamelCase : Optional[int] = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_a ) if len(_a ) != rowsa: __UpperCamelCase : Union[str, Any] = ( 'Number of initial values must be equal to number of rows in coefficient ' f"""matrix but received {len(_a )} and {rowsa}""" ) raise ValueError(_a ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __UpperCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] = table.shape strictly_diagonally_dominant(_a ) # Iterates the whole matrix for given number of times for _ in range(_a ): __UpperCamelCase : List[Any] = [] for row in range(_a ): __UpperCamelCase : List[Any] = 0 for col in range(_a ): if col == row: __UpperCamelCase : Optional[int] = table[row][col] elif col == cols - 1: __UpperCamelCase : str = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCamelCase : Any = (temp + val) / denom new_val.append(_a ) __UpperCamelCase : List[Any] = new_val return [float(_a ) for i in new_val] def _UpperCamelCase ( _a : NDArray[floataa] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : str = table.shape __UpperCamelCase : str = True for i in range(0 , _a ): __UpperCamelCase : Optional[Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
287
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ ( enum.Enum): lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = 2 @add_end_docstrings(_a) class lowerCAmelCase_ ( _a): lowerCamelCase_ = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : Optional[Any] , *__A : List[str] , **__A : List[Any] ) ->List[Any]: """simple docstring""" super().__init__(*__A , **__A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a__ :Optional[int] = None if self.model.config.prefix is not None: a__ :Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a__ :Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a__ , a__ , a__ :int = self._sanitize_parameters(prefix=__A , **self._forward_params ) a__ :Dict = {**self._preprocess_params, **preprocess_params} a__ :Any = {**self._forward_params, **forward_params} def _snake_case ( self : Optional[int] , __A : List[str]=None , __A : int=None , __A : Any=None , __A : Optional[Any]=None , __A : Tuple=None , __A : int=None , __A : Any=None , __A : Any=None , **__A : List[Any] , ) ->Tuple: """simple docstring""" a__ :List[str] = {} if prefix is not None: a__ :Optional[Any] = prefix if prefix: a__ :List[str] = self.tokenizer( __A , padding=__A , add_special_tokens=__A , return_tensors=self.framework ) a__ :Any = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) a__ :Dict = handle_long_generation preprocess_params.update(__A ) a__ :List[Any] = generate_kwargs a__ :List[str] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) a__ :Any = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) a__ :Optional[Any] = ReturnType.TENSORS if return_type is not None: a__ :Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: a__ :Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: a__ :Optional[int] = self.tokenizer.encode(__A , add_special_tokens=__A ) if len(__A ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) a__ :Union[str, Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self : Dict , *__A : Tuple , **__A : str ) ->int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*__A , **__A ) def __call__( self : Union[str, Any] , __A : Optional[Any] , **__A : Any ) ->Union[str, Any]: """simple docstring""" return super().__call__(__A , **__A ) def _snake_case ( self : List[Any] , __A : Tuple , __A : int="" , __A : Union[str, Any]=None , **__A : Optional[Any] ) ->Optional[int]: """simple docstring""" a__ :Tuple = self.tokenizer( prefix + prompt_text , padding=__A , add_special_tokens=__A , return_tensors=self.framework ) a__ :str = prompt_text if handle_long_generation == "hole": a__ :List[str] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: a__ :Any = generate_kwargs["max_new_tokens"] else: a__ :Union[str, Any] = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: a__ :Optional[int] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) a__ :Dict = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: a__ :List[Any] = inputs["attention_mask"][:, -keep_length:] return inputs def _snake_case ( self : Union[str, Any] , __A : List[Any] , **__A : Union[str, Any] ) ->Dict: """simple docstring""" a__ :Any = model_inputs["input_ids"] a__ :List[Any] = model_inputs.get("attention_mask" , __A ) # Allow empty prompts if input_ids.shape[1] == 0: a__ :Union[str, Any] = None a__ :Union[str, Any] = None a__ :str = 1 else: a__ :Optional[Any] = input_ids.shape[0] a__ :Tuple = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a__ :Optional[Any] = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: a__ :Any = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: a__ :str = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a__ :List[str] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a__ :Optional[int] = self.model.generate(input_ids=__A , attention_mask=__A , **__A ) a__ :List[str] = generated_sequence.shape[0] if self.framework == "pt": a__ :Union[str, Any] = generated_sequence.reshape(__A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a__ :int = tf.reshape(__A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _snake_case ( self : List[Any] , __A : List[str] , __A : str=ReturnType.FULL_TEXT , __A : Any=True ) ->List[str]: """simple docstring""" a__ :Optional[Any] = model_outputs["generated_sequence"][0] a__ :List[Any] = model_outputs["input_ids"] a__ :Optional[Any] = model_outputs["prompt_text"] a__ :int = generated_sequence.numpy().tolist() a__ :Optional[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a__ :Optional[Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a__ :List[Any] = self.tokenizer.decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a__ :Any = 0 else: a__ :Tuple = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__A , clean_up_tokenization_spaces=__A , ) ) if return_type == ReturnType.FULL_TEXT: a__ :Optional[int] = prompt_text + text[prompt_length:] else: a__ :Optional[int] = text[prompt_length:] a__ :str = {"generated_text": all_text} records.append(__A ) return records
395
import math def lowerCamelCase__ ( a : list , a : int ) -> int: """simple docstring""" a__ :str = len(a ) a__ :List[str] = int(math.floor(math.sqrt(a ) ) ) a__ :int = 0 while arr[min(a , a ) - 1] < x: a__ :Union[str, Any] = step step += int(math.floor(math.sqrt(a ) ) ) if prev >= n: return -1 while arr[prev] < x: a__ :str = prev + 1 if prev == min(a , a ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": snake_case__ = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ = [int(item) for item in user_input.split(''',''')] snake_case__ = int(input('''Enter the number to be searched:\n''')) snake_case__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
395
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Optional[int] = 'unispeech-sat' def __init__( self , snake_case=32 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=1E-5 , snake_case="group" , snake_case="gelu" , snake_case=(512, 512, 512, 512, 512, 512, 512) , snake_case=(5, 2, 2, 2, 2, 2, 2) , snake_case=(10, 3, 3, 3, 3, 2, 2) , snake_case=False , snake_case=128 , snake_case=16 , snake_case=False , snake_case=True , snake_case=0.05 , snake_case=10 , snake_case=2 , snake_case=0.0 , snake_case=10 , snake_case=0 , snake_case=320 , snake_case=2 , snake_case=0.1 , snake_case=100 , snake_case=256 , snake_case=256 , snake_case=0.1 , snake_case="mean" , snake_case=False , snake_case=False , snake_case=256 , snake_case=(512, 512, 512, 512, 1500) , snake_case=(5, 3, 3, 1, 1) , snake_case=(1, 2, 3, 1, 1) , snake_case=512 , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=504 , **snake_case , ): '''simple docstring''' super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_norm UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(snake_case ) UpperCamelCase__ = list(snake_case ) UpperCamelCase__ = list(snake_case ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = num_clusters UpperCamelCase__ = do_stable_layer_norm UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = apply_spec_augment UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase__ = num_codevectors_per_group UpperCamelCase__ = num_codevector_groups UpperCamelCase__ = contrastive_logits_temperature UpperCamelCase__ = feat_quantizer_dropout UpperCamelCase__ = num_negatives UpperCamelCase__ = codevector_dim UpperCamelCase__ = proj_codevector_dim UpperCamelCase__ = diversity_loss_weight # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(snake_case ) UpperCamelCase__ = list(snake_case ) UpperCamelCase__ = list(snake_case ) UpperCamelCase__ = xvector_output_dim @property def snake_case__ ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
185
def UpperCamelCase_( _A :List[str] , _A :Tuple , _A :Any , _A :Tuple , _A :Optional[int] , _A :str )-> List[str]: if index == r: for j in range(_A ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCamelCase__ = arr[i] combination_util(_A , _A , _A , index + 1 , _A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_A , _A , _A , _A , _A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCamelCase_( _A :Dict , _A :Optional[Any] , _A :Union[str, Any] )-> Optional[int]: # A temporary array to store all combination one by one UpperCamelCase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(_A , _A , _A , 0 , _A , 0 ) if __name__ == "__main__": # Driver code to check the function above __UpperCamelCase = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
185
1
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Dict = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / "cache" _lowerCamelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features _lowerCamelCase : Optional[Any] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Any = ParquetDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path / "cache" _lowerCamelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : List[str] = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' if issubclass(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Tuple = parquet_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = [parquet_path] _lowerCamelCase : Any = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Union[str, Any] = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=("train",) ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: _lowerCamelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = tmp_path / "cache" _lowerCamelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Any = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Union[str, Any] = features.copy() if features else default_expected_features _lowerCamelCase : str = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : str = ParquetDatasetReader({"train": parquet_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' if split: _lowerCamelCase : Union[str, Any] = {split: parquet_path} else: _lowerCamelCase : Optional[Any] = "train" _lowerCamelCase : Optional[Any] = {"train": parquet_path, "test": parquet_path} _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Tuple = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Dict = ParquetDatasetWriter(_lowerCamelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _lowerCamelCase : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) _lowerCamelCase : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Any = str(shared_datadir / "test_image_rgb.jpg" ) _lowerCamelCase : Optional[Any] = {"image": [image_path]} _lowerCamelCase : List[str] = Features({"image": Image()} ) _lowerCamelCase : List[str] = Dataset.from_dict(_lowerCamelCase , features=_lowerCamelCase ) _lowerCamelCase : List[Any] = ParquetDatasetWriter(_lowerCamelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _lowerCamelCase : List[Any] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _lowerCamelCase : List[str] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' assert get_writer_batch_size(_lowerCamelCase ) == expected
46
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __a ( A__ , A__ ) -> Union[str, Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) lowerCAmelCase = torch.permute(UpperCAmelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase__ ): # linear layer lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def __a ( A__ , A__ , A__ ) -> int: if "metadata" in layer: lowerCAmelCase = layer.split("metadata" ) lowerCAmelCase = "".join(split_layer[0] )[:-1] lowerCAmelCase = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: lowerCAmelCase = layer.split("kvstore" ) lowerCAmelCase = "".join(split_layer[0] )[:-1] lowerCAmelCase = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: lowerCAmelCase = layer.split("/" ) lowerCAmelCase = "/".join(split_layer[:-1] ) lowerCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: lowerCAmelCase = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: lowerCAmelCase = "file" else: lowerCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __a ( A__ , A__ ) -> Tuple: lowerCAmelCase = rename_keys(UpperCAmelCase__ ) lowerCAmelCase = {} for k, v in current_block.items(): lowerCAmelCase = v lowerCAmelCase = new_current_block torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) def __a ( A__ , A__ , A__ , A__ , A__ = WEIGHTS_NAME ) -> Union[str, Any]: lowerCAmelCase = convert_file_size_to_int(UpperCAmelCase__ ) lowerCAmelCase = [] lowerCAmelCase = {} lowerCAmelCase = 0 lowerCAmelCase = 0 os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: lowerCAmelCase = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] lowerCAmelCase = flatten_dict(UpperCAmelCase__ , sep="/" ) lowerCAmelCase = {} for layer in checkpoint_info.keys(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_key_and_tensorstore_dict( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if curr_real_layer_name in all_layers: lowerCAmelCase = content else: lowerCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowerCAmelCase = torch.tensor(UpperCAmelCase__ ) lowerCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowerCAmelCase , lowerCAmelCase = rename_base_flax_keys(tuple(key.split("/" ) ) , UpperCAmelCase__ ) lowerCAmelCase = "/".join(UpperCAmelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCAmelCase = os.path.join( UpperCAmelCase__ , weights_name.replace(".bin" , f"-{len(UpperCAmelCase__ )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCAmelCase__ , UpperCAmelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block lowerCAmelCase = {} lowerCAmelCase = 0 lowerCAmelCase = raw_weights.to(getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowerCAmelCase = os.path.join(UpperCAmelCase__ , weights_name.replace(".bin" , f"-{len(UpperCAmelCase__ )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCAmelCase__ , UpperCAmelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCAmelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCAmelCase = {} lowerCAmelCase = {} for idx, shard in enumerate(UpperCAmelCase__ ): lowerCAmelCase = weights_name.replace( ".bin" , f"-{idx+1:05d}-of-{len(UpperCAmelCase__ ):05d}.bin" ) # len(sharded_state_dicts):05d} lowerCAmelCase = os.path.join(UpperCAmelCase__ , weights_name.replace(".bin" , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase = shard for key in shard: lowerCAmelCase = shard_file # Add the metadata lowerCAmelCase = {"total_size": total_size} lowerCAmelCase = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , "w" , encoding="utf-8" ) as f: lowerCAmelCase = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + "\n" f.write(UpperCAmelCase__ ) return metadata, index if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) lowercase : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __a ( ) -> List[str]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCAmelCase = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) lowerCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) lowerCAmelCase = TaTokenizer.from_pretrained("t5-small" ) lowerCAmelCase = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors="pt" ).input_ids lowerCAmelCase = model.generate(UpperCAmelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'transfo-xl' lowerCAmelCase = ['mems'] lowerCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=2_6_7_7_3_5 , SCREAMING_SNAKE_CASE : Dict=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , SCREAMING_SNAKE_CASE : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE : Any=1_6 , SCREAMING_SNAKE_CASE : List[str]=6_4 , SCREAMING_SNAKE_CASE : int=4_0_9_6 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=1_8 , SCREAMING_SNAKE_CASE : Dict=1_6_0_0 , SCREAMING_SNAKE_CASE : Any=1_0_0_0 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[Any]=0 , SCREAMING_SNAKE_CASE : Optional[Any]=-1 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : int="normal" , SCREAMING_SNAKE_CASE : Optional[int]=0.0_1 , SCREAMING_SNAKE_CASE : List[str]=0.0_1 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , SCREAMING_SNAKE_CASE : List[str]=0 , **SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = [] self.cutoffs.extend(SCREAMING_SNAKE_CASE ) if proj_share_all_but_first: lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase = [False] + [False] * len(self.cutoffs ) lowerCAmelCase = d_model lowerCAmelCase = d_embed lowerCAmelCase = d_head lowerCAmelCase = d_inner lowerCAmelCase = div_val lowerCAmelCase = pre_lnorm lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = mem_len lowerCAmelCase = same_length lowerCAmelCase = attn_type lowerCAmelCase = clamp_len lowerCAmelCase = sample_softmax lowerCAmelCase = adaptive lowerCAmelCase = dropout lowerCAmelCase = dropatt lowerCAmelCase = untie_r lowerCAmelCase = init lowerCAmelCase = init_range lowerCAmelCase = proj_init_std lowerCAmelCase = init_std lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __A ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def __A ( self : Any , SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
159
0
import math def _UpperCamelCase ( lowerCAmelCase_ ) ->str: UpperCAmelCase = 0 UpperCAmelCase = 0 while num > 0: UpperCAmelCase = num % 8 UpperCAmelCase = octal + (remainder * math.floor(math.pow(1_0 , lowerCAmelCase_ ) )) counter += 1 UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(lowerCAmelCase_ )}""" def _UpperCamelCase ( ) ->None: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(6_5 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(2_1_6 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
377
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( __snake_case ): def __init__( self : Dict , *__lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def _lowercase ( self : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str = "eval" ) -> List[str]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(__lowerCamelCase ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def _lowercase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : str = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
377
1
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a= None a= '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a= [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __lowercase : """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None # Automatically constructed SCREAMING_SNAKE_CASE__ = "PIL.Image.Image" SCREAMING_SNAKE_CASE__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) SCREAMING_SNAKE_CASE__ = field(default='''Image''' , init=_lowerCamelCase , repr=_lowerCamelCase ) def __call__( self ): return self.pa_type def lowerCAmelCase ( self , _lowerCamelCase ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Optional[Any] = np.array(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCamelCase ) elif isinstance(_lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCamelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: __UpperCamelCase : List[str] = {} __UpperCamelCase , __UpperCamelCase : str = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_lowerCamelCase ): __UpperCamelCase : List[str] = PIL.Image.open(_lowerCamelCase ) else: __UpperCamelCase : Union[str, Any] = path.split('::' )[-1] try: __UpperCamelCase : Dict = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL )['repo_id'] __UpperCamelCase : Any = token_per_repo_id.get(_lowerCamelCase ) except ValueError: __UpperCamelCase : str = None with xopen(_lowerCamelCase , 'rb' , use_auth_token=_lowerCamelCase ) as f: __UpperCamelCase : str = BytesIO(f.read() ) __UpperCamelCase : Union[str, Any] = PIL.Image.open(bytes_ ) else: __UpperCamelCase : List[str] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase ( self ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def lowerCAmelCase ( self , _lowerCamelCase ): if pa.types.is_string(storage.type ): __UpperCamelCase : Any = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) __UpperCamelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase : List[str] = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) __UpperCamelCase : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __UpperCamelCase : Union[str, Any] = storage.field('bytes' ) else: __UpperCamelCase : Any = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __UpperCamelCase : Union[str, Any] = storage.field('path' ) else: __UpperCamelCase : Optional[int] = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) __UpperCamelCase : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __UpperCamelCase : List[str] = pa.array( [encode_np_array(np.array(_lowerCamelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __UpperCamelCase : Tuple = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) __UpperCamelCase : str = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def lowerCAmelCase ( self , _lowerCamelCase ): @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase ): with xopen(_lowerCamelCase , 'rb' ) as f: __UpperCamelCase : Tuple = f.read() return bytes_ __UpperCamelCase : Union[str, Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCamelCase : Dict = pa.array( [os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __UpperCamelCase : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def _UpperCamelCase ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __UpperCamelCase : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _UpperCamelCase ( _a : "PIL.Image.Image" ): """simple docstring""" __UpperCamelCase : List[str] = BytesIO() if image.format in list_image_compression_formats(): __UpperCamelCase : Optional[Any] = image.format else: __UpperCamelCase : List[str] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_a , format=_a ) return buffer.getvalue() def _UpperCamelCase ( _a : "PIL.Image.Image" ): """simple docstring""" if hasattr(_a , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_a )} def _UpperCamelCase ( _a : np.ndarray ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) __UpperCamelCase : List[str] = array.dtype __UpperCamelCase : Union[str, Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER __UpperCamelCase : Any = dtype.kind __UpperCamelCase : int = dtype.itemsize __UpperCamelCase : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __UpperCamelCase : Dict = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __UpperCamelCase : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __UpperCamelCase : List[Any] = dtype_byteorder + dtype_kind + str(_a ) __UpperCamelCase : int = np.dtype(_a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __UpperCamelCase : Any = PIL.Image.fromarray(array.astype(_a ) ) return {"path": None, "bytes": image_to_bytes(_a )} def _UpperCamelCase ( _a : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: __UpperCamelCase , __UpperCamelCase : Any = first_non_null_value(_a ) if isinstance(_a , _a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_a , np.ndarray ): __UpperCamelCase : int = no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] elif isinstance(_a , PIL.Image.Image ): __UpperCamelCase : int = no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] else: return objs else: return objs
287
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a= {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__ : Optional[Any] = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __snake_case (lowerCamelCase ): __a = '''facebook/nllb-200-distilled-600M''' __a = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) __a = '''translator''' __a = AutoTokenizer __a = AutoModelForSeqaSeqLM __a = LANGUAGE_CODES __a = ['''text''', '''text''', '''text'''] __a = ['''text'''] def __a ( self: Any , A_: Optional[int] , A_: Dict , A_: Optional[Any] ): if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) __lowerCamelCase = self.lang_to_code[src_lang] __lowerCamelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A_ , return_tensors="""pt""" , src_lang=A_ , tgt_lang=A_ ) def __a ( self: Tuple , A_: Dict ): return self.model.generate(**A_ ) def __a ( self: List[Any] , A_: List[Any] ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A_ )
281
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __magic_name__ : Optional[Any] = 'http://www.mocksite.com/file1.txt' __magic_name__ : Tuple = '"text": ["foo", "foo"]' __magic_name__ : str = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class __snake_case : __a = 200 __a = {'''Content-Length''': '''100'''} __a = {} def __a ( self: List[str] , **A_: List[Any] ): return [bytes(A_ , """utf-8""" )] def a_ ( *lowercase__ :List[Any], **lowercase__ :Any ): return MockResponse() @pytest.mark.parametrize("""urls_type""", [str, list, dict] ) def a_ ( lowercase__ :Optional[int], lowercase__ :Any, lowercase__ :Optional[int] ): import requests monkeypatch.setattr(lowercase__, """request""", lowercase__ ) __lowerCamelCase = URL if issubclass(lowercase__, lowercase__ ): __lowerCamelCase = url elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = [url] elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = {"""train""": url} __lowerCamelCase = """dummy""" __lowerCamelCase = """downloads""" __lowerCamelCase = tmp_path __lowerCamelCase = DownloadConfig( cache_dir=os.path.join(lowercase__, lowercase__ ), use_etag=lowercase__, ) __lowerCamelCase = DownloadManager(dataset_name=lowercase__, download_config=lowercase__ ) __lowerCamelCase = dl_manager.download(lowercase__ ) __lowerCamelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase__, lowercase__ ): __lowerCamelCase = [downloaded_paths] __lowerCamelCase = [urls] elif isinstance(lowercase__, lowercase__ ): assert "train" in downloaded_paths.keys() __lowerCamelCase = downloaded_paths.values() __lowerCamelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase__, lowercase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCamelCase = Path(lowercase__ ) __lowerCamelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCamelCase = downloaded_path.read_text() assert content == CONTENT __lowerCamelCase = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __lowerCamelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""", [str, list, dict] ) def a_ ( lowercase__ :Dict, lowercase__ :Optional[Any], lowercase__ :Dict ): __lowerCamelCase = str(lowercase__ ) if issubclass(lowercase__, lowercase__ ): __lowerCamelCase = filename elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = [filename] elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = {"""train""": filename} __lowerCamelCase = """dummy""" __lowerCamelCase = xz_file.parent __lowerCamelCase = """extracted""" __lowerCamelCase = DownloadConfig( cache_dir=lowercase__, use_etag=lowercase__, ) __lowerCamelCase = DownloadManager(dataset_name=lowercase__, download_config=lowercase__ ) __lowerCamelCase = dl_manager.extract(lowercase__ ) __lowerCamelCase = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase__, lowercase__ ): __lowerCamelCase = [extracted_paths] __lowerCamelCase = [paths] elif isinstance(lowercase__, lowercase__ ): assert "train" in extracted_paths.keys() __lowerCamelCase = extracted_paths.values() __lowerCamelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase__, lowercase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCamelCase = Path(lowercase__ ) __lowerCamelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase__, etag=lowercase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCamelCase = extracted_path.read_text() __lowerCamelCase = text_file.read_text() assert extracted_file_content == expected_file_content def a_ ( lowercase__ :List[str], lowercase__ :int ): assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(lowercase__, start=1 ): __lowerCamelCase = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""", ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def a_ ( lowercase__ :Optional[int], lowercase__ :Union[str, Any] ): __lowerCamelCase = request.getfixturevalue(lowercase__ ) __lowerCamelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ), start=1 ): _test_jsonl(lowercase__, lowercase__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""", ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def a_ ( lowercase__ :Optional[int], lowercase__ :List[Any] ): __lowerCamelCase = request.getfixturevalue(lowercase__ ) __lowerCamelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase__ ), start=1 ): _test_jsonl(lowercase__, lowercase__ ) assert num_tar == 1 assert num_jsonl == 2 def a_ ( lowercase__ :Tuple ): __lowerCamelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase__ ), start=1 ): assert os.path.basename(lowercase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
281
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class a__ ( A__ , A__ ): UpperCAmelCase__ = '''resnet''' UpperCAmelCase__ = ['''basic''', '''bottleneck'''] def __init__( self :List[Any] , _lowerCamelCase :Optional[Any]=3 , _lowerCamelCase :Any=64 , _lowerCamelCase :Tuple=[256, 512, 1_024, 2_048] , _lowerCamelCase :Dict=[3, 4, 6, 3] , _lowerCamelCase :Dict="bottleneck" , _lowerCamelCase :str="relu" , _lowerCamelCase :Optional[int]=False , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Any=None , **_lowerCamelCase :Any , ): '''simple docstring''' super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) UpperCamelCase_ : Dict =num_channels UpperCamelCase_ : str =embedding_size UpperCamelCase_ : Tuple =hidden_sizes UpperCamelCase_ : Tuple =depths UpperCamelCase_ : Optional[Any] =layer_type UpperCamelCase_ : str =hidden_act UpperCamelCase_ : List[str] =downsample_in_first_stage UpperCamelCase_ : Optional[Any] =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] UpperCamelCase_ , UpperCamelCase_ : List[str] =get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class a__ ( A__ ): UpperCAmelCase__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return 1E-3
395
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( __lowercase = "https://www.worldometers.info/coronavirus" ): UpperCamelCase_ : Dict =BeautifulSoup(requests.get(__lowercase ).text , 'html.parser' ) UpperCamelCase_ : List[Any] =soup.findAll('h1' ) UpperCamelCase_ : List[str] =soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowercase , __lowercase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
395
1
import heapq import sys import numpy as np UpperCAmelCase_ = tuple[int, int] class __UpperCamelCase : def __init__( self ): _UpperCAmelCase = [] _UpperCAmelCase = set() def UpperCamelCase( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def UpperCamelCase( self ): return len(self.elements ) == 0 def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCamelCase ) else: # update # print("update", item) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase( self , _UpperCamelCase ): if item in self.set: self.set.remove(_UpperCamelCase ) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase( self ): return self.elements[0][1] def UpperCamelCase( self ): ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(_UpperCamelCase ) return (priority, item) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> Any: """simple docstring""" _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) return np.linalg.norm(a - b ) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> int: """simple docstring""" return consistent_heuristic(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) // t def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> Tuple: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : dict[TPos, float] ) -> str: """simple docstring""" _UpperCAmelCase = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return ans def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = '''*''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase = '''#''' _UpperCAmelCase = '''-''' _UpperCAmelCase = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) = x # print(x) _UpperCAmelCase = '''-''' _UpperCAmelCase = back_pointer[x] _UpperCAmelCase = '''-''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) _UpperCAmelCase = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE_ , end=''' ''' ) _UpperCAmelCase = back_pointer[x] print(SCREAMING_SNAKE_CASE_ ) sys.exit() def A__ ( SCREAMING_SNAKE_CASE_ : TPos ) -> Tuple: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[Any]: """simple docstring""" for itera in range(SCREAMING_SNAKE_CASE_ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE_ ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) = s _UpperCAmelCase = (x - 1, y) _UpperCAmelCase = (x + 1, y) _UpperCAmelCase = (x, y + 1) _UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = -1 _UpperCAmelCase = float('''inf''' ) if valid(SCREAMING_SNAKE_CASE_ ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase = g_function[s] + 1 _UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE_ ): if key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) <= Wa * key( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): open_list[j].put( SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def A__ ( ) -> Any: """simple docstring""" _UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list UpperCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCAmelCase_ = make_common_ground() UpperCAmelCase_ = blocks_blk # hyper parameters UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 UpperCAmelCase_ = 20 UpperCAmelCase_ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = (n - 1, n - 1) UpperCAmelCase_ = 1 def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = {start: 0, goal: float('''inf''' )} _UpperCAmelCase = {start: -1, goal: -1} _UpperCAmelCase = [] _UpperCAmelCase = set() for i in range(SCREAMING_SNAKE_CASE_ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = [] _UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , SCREAMING_SNAKE_CASE_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase , _UpperCAmelCase = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_inad.append(SCREAMING_SNAKE_CASE_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
32
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = XLMTokenizer _UpperCAmelCase : List[Any] = False def __lowerCamelCase ( self : Union[str, Any] ) ->int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCamelCase__ : List[Any] = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase__ : str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A ) ) def __lowerCamelCase ( self : str , A : Dict ) ->Tuple: lowerCamelCase__ : str = '''lower newer''' lowerCamelCase__ : Optional[int] = '''lower newer''' return input_text, output_text def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : Dict = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase__ : Optional[Any] = '''lower''' lowerCamelCase__ : Any = ['''low''', '''er</w>'''] lowerCamelCase__ : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase__ : int = tokens + ['''<unk>'''] lowerCamelCase__ : List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) @slow def __lowerCamelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Tuple = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowerCamelCase__ : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) lowerCamelCase__ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) lowerCamelCase__ : str = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
315
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=UpperCamelCase_ ): A_ : int = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Any , *a__ : Dict , **a__ : Tuple ): '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _A ( cls : Optional[Any] , *a__ : List[Any] , **a__ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _A ( cls : Tuple , *a__ : List[Any] , **a__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
712
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def UpperCAmelCase_ ( lowerCamelCase_ = 2_0_0_0_0_0_0 ): """simple docstring""" lowerCAmelCase__ : list[int] = [0] lowerCAmelCase__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase__ : int = 0 # an estimate of b, using the quadratic formula lowerCAmelCase__ : float # the largest integer less than b_estimate lowerCAmelCase__ : int # the largest integer less than b_estimate lowerCAmelCase__ : int # the triangle number corresponding to b_floor lowerCAmelCase__ : int # the triangle number corresponding to b_ceil lowerCAmelCase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase__ : Optional[int] = floor(lowerCamelCase_ ) lowerCAmelCase__ : Any = ceil(lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = triangle_numbers[b_floor] lowerCAmelCase__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Tuple = triangle_b_first_guess * triangle_a lowerCAmelCase__ : List[str] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Dict = triangle_b_second_guess * triangle_a lowerCAmelCase__ : Dict = idx_a * b_ceil return area if __name__ == "__main__": print(f'{solution() = }')
568
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __magic_name__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowerCamelCase__ = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) lowerCamelCase__ = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) lowerCamelCase__ = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior lowerCamelCase__ = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowerCamelCase__ = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) lowerCamelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) lowerCamelCase__ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ] , ) @require_torch def __UpperCAmelCase ( self : Dict ): import torch lowerCamelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def __UpperCAmelCase ( self : Union[str, Any] ): lowerCamelCase__ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = pipeline("""text-classification""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def __UpperCAmelCase ( self : Optional[Any] ): lowerCamelCase__ = pipeline("""text-classification""" , framework="""tf""" ) lowerCamelCase__ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowerCamelCase__ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCamelCase__ = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCamelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCamelCase__ = """HuggingFace is in""" lowerCamelCase__ = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) lowerCamelCase__ = ["""HuggingFace is in """, """Paris is in France"""] lowerCamelCase__ = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}, {"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCamelCase__ = text_classifier(SCREAMING_SNAKE_CASE_ , top_k=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [[{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] * N, [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] * N] , ) lowerCamelCase__ = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} lowerCamelCase__ = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , {"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCamelCase__ = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_classifier(SCREAMING_SNAKE_CASE_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCamelCase__ = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE_ ), """score""": ANY(SCREAMING_SNAKE_CASE_ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
129
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any]=13 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=224 , SCREAMING_SNAKE_CASE_ : Tuple=1000 , SCREAMING_SNAKE_CASE_ : List[str]=[3, 3, 6, 4] , SCREAMING_SNAKE_CASE_ : List[Any]=[48, 56, 112, 220] , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = num_labels lowerCamelCase__ = image_size lowerCamelCase__ = layer_depths lowerCamelCase__ = embed_dims def __UpperCAmelCase ( self : str ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Optional[Any] ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=SCREAMING_SNAKE_CASE_ , layer_scale_init_value=1e-5 , ) def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCamelCase__ = SwiftFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowerCamelCase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Optional[Any] ): ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = self.prepare_config_and_inputs() lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () snake_case = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False snake_case = False def __UpperCAmelCase ( self : Optional[Any] ): lowerCamelCase__ = SwiftFormerModelTester(self ) lowerCamelCase__ = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __UpperCAmelCase ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def __UpperCAmelCase ( self : Tuple ): pass def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def __UpperCAmelCase ( self : Optional[int] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : int ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __UpperCAmelCase ( self : int ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = SwiftFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def __UpperCAmelCase ( self : str ): pass def __UpperCAmelCase ( self : int ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__ = outputs.hidden_states lowerCamelCase__ = 8 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : str ): def _config_zero_init(SCREAMING_SNAKE_CASE_ : Any ): lowerCamelCase__ = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1e-10 ) if isinstance(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = _config_zero_init(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return configs_no_init lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCAmelCase ( self : Dict ): pass def _A ( ): """simple docstring""" lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : Optional[int] ): lowerCamelCase__ = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
129
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) A_ : Optional[Any] = parser.parse_args() A_ : int = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
419
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
419
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
99
def a (lowerCAmelCase__ ): __a = False while is_sorted is False: # Until all the indices are traversed keep looping __a = True for i in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __a , __a = input_list[i + 1], input_list[i] # swapping if elements not in order __a = False for i in range(1 , len(lowerCAmelCase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __a , __a = input_list[i + 1], input_list[i] # swapping if elements not in order __a = False return input_list if __name__ == "__main__": print('Enter list to be sorted') SCREAMING_SNAKE_CASE = [int(x) for x in input().split()] # inputing elements of the list in one line SCREAMING_SNAKE_CASE = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
99
1
"""simple docstring""" __UpperCamelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __UpperCAmelCase ( _snake_case : str, _snake_case : str, _snake_case : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowercase = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(_snake_case )}""" ) raise ValueError(_snake_case ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
227
"""simple docstring""" def __UpperCAmelCase ( _snake_case : int, _snake_case : list ): _enforce_args(_snake_case, _snake_case ) if n == 0: return 0 _lowercase = float("-inf" ) for i in range(1, n + 1 ): _lowercase = max( _snake_case, prices[i - 1] + naive_cut_rod_recursive(n - i, _snake_case ) ) return max_revue def __UpperCAmelCase ( _snake_case : int, _snake_case : list ): _enforce_args(_snake_case, _snake_case ) _lowercase = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_snake_case, _snake_case, _snake_case ) def __UpperCAmelCase ( _snake_case : int, _snake_case : list, _snake_case : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowercase = float("-inf" ) for i in range(1, n + 1 ): _lowercase = max( _snake_case, prices[i - 1] + _top_down_cut_rod_recursive(n - i, _snake_case, _snake_case ), ) _lowercase = max_revenue return max_rev[n] def __UpperCAmelCase ( _snake_case : int, _snake_case : list ): _enforce_args(_snake_case, _snake_case ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowercase = [float("-inf" ) for _ in range(n + 1 )] _lowercase = 0 for i in range(1, n + 1 ): _lowercase = max_rev[i] for j in range(1, i + 1 ): _lowercase = max(_snake_case, prices[j - 1] + max_rev[i - j] ) _lowercase = max_revenue_i return max_rev[n] def __UpperCAmelCase ( _snake_case : int, _snake_case : list ): if n < 0: _lowercase = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(_snake_case ) if n > len(_snake_case ): _lowercase = ( "Each integral piece of rod must have a corresponding price. " f"""Got n = {n} but length of prices = {len(_snake_case )}""" ) raise ValueError(_snake_case ) def __UpperCAmelCase ( ): _lowercase = [6, 1_0, 1_2, 1_5, 2_0, 2_3] _lowercase = len(_snake_case ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowercase = 3_6 _lowercase = top_down_cut_rod(_snake_case, _snake_case ) _lowercase = bottom_up_cut_rod(_snake_case, _snake_case ) _lowercase = naive_cut_rod_recursive(_snake_case, _snake_case ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
227
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=1_8 , lowerCamelCase__=3_0 , lowerCamelCase__=4_0_0 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , ): '''simple docstring''' UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_0} UpperCamelCase = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_center_crop UpperCamelCase = crop_size def UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( _lowercase, unittest.TestCase ): '''simple docstring''' _snake_case = MobileNetVaImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = MobileNetVaImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''crop_size''' ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 2_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
212
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) ): SCREAMING_SNAKE_CASE : List[str] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Tuple = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : Optional[Any] = (1 - _cos) / 2 SCREAMING_SNAKE_CASE : List[Any] = 1 - _cos SCREAMING_SNAKE_CASE : Dict = 1 + alpha SCREAMING_SNAKE_CASE : List[Any] = -2 * _cos SCREAMING_SNAKE_CASE : List[Any] = 1 - alpha SCREAMING_SNAKE_CASE : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) ): SCREAMING_SNAKE_CASE : List[Any] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Optional[int] = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : Optional[Any] = (1 + _cos) / 2 SCREAMING_SNAKE_CASE : str = -1 - _cos SCREAMING_SNAKE_CASE : Dict = 1 + alpha SCREAMING_SNAKE_CASE : Dict = -2 * _cos SCREAMING_SNAKE_CASE : int = 1 - alpha SCREAMING_SNAKE_CASE : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) ): SCREAMING_SNAKE_CASE : Optional[int] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Optional[Any] = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : List[str] = _sin / 2 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = -ba SCREAMING_SNAKE_CASE : Dict = 1 + alpha SCREAMING_SNAKE_CASE : Optional[int] = -2 * _cos SCREAMING_SNAKE_CASE : Any = 1 - alpha SCREAMING_SNAKE_CASE : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) ): SCREAMING_SNAKE_CASE : Optional[Any] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : List[str] = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : str = 1 - alpha SCREAMING_SNAKE_CASE : List[str] = -2 * _cos SCREAMING_SNAKE_CASE : List[str] = 1 + alpha SCREAMING_SNAKE_CASE : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) , ): SCREAMING_SNAKE_CASE : List[str] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : str = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : List[Any] = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 + alpha * big_a SCREAMING_SNAKE_CASE : List[Any] = -2 * _cos SCREAMING_SNAKE_CASE : List[Any] = 1 - alpha * big_a SCREAMING_SNAKE_CASE : List[str] = 1 + alpha / big_a SCREAMING_SNAKE_CASE : Union[str, Any] = -2 * _cos SCREAMING_SNAKE_CASE : Any = 1 - alpha / big_a SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) , ): SCREAMING_SNAKE_CASE : Any = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Any = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : Tuple = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE : Optional[int] = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE : Optional[int] = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE : Any = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE : List[Any] = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE : List[str] = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha SCREAMING_SNAKE_CASE : Dict = big_a * (pmc + aaa) SCREAMING_SNAKE_CASE : Tuple = 2 * big_a * mpc SCREAMING_SNAKE_CASE : List[Any] = big_a * (pmc - aaa) SCREAMING_SNAKE_CASE : Dict = ppmc + aaa SCREAMING_SNAKE_CASE : int = -2 * pmpc SCREAMING_SNAKE_CASE : Dict = ppmc - aaa SCREAMING_SNAKE_CASE : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :float , _SCREAMING_SNAKE_CASE :float = 1 / sqrt(2 ) , ): SCREAMING_SNAKE_CASE : Tuple = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Optional[Any] = sin(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = cos(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : List[Any] = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE : str = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE : Dict = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE : str = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE : List[Any] = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha SCREAMING_SNAKE_CASE : List[str] = big_a * (ppmc + aaa) SCREAMING_SNAKE_CASE : Any = -2 * big_a * pmpc SCREAMING_SNAKE_CASE : List[str] = big_a * (ppmc - aaa) SCREAMING_SNAKE_CASE : Optional[int] = pmc + aaa SCREAMING_SNAKE_CASE : List[Any] = 2 * mpc SCREAMING_SNAKE_CASE : str = pmc - aaa SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
507
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } UpperCamelCase__ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } UpperCamelCase__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class a__ ( snake_case__ ): _a : List[Any] = VOCAB_FILES_NAMES _a : List[str] = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_INIT_CONFIGURATION _a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[str] = RealmTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(_A , normalizer_state.pop("type" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**_A ) __lowerCAmelCase = do_lower_case def __SCREAMING_SNAKE_CASE( self , _A , **_A ): """simple docstring""" __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("text_pair" , _A ) __lowerCAmelCase = kwargs.pop("return_tensors" , _A ) __lowerCAmelCase = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(_A ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(_A , _A , return_tensors=_A , **_A ) __lowerCAmelCase = encoded_candidates.get("input_ids" ) __lowerCAmelCase = encoded_candidates.get("attention_mask" ) __lowerCAmelCase = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(_A ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_A ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_A ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(_A ) != 0} return BatchEncoding(_A , tensor_type=_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A=None ): """simple docstring""" __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
706
def _a ( SCREAMING_SNAKE_CASE_ : int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 while repunit: __lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
552
0
"""simple docstring""" from itertools import count def _lowerCamelCase ( UpperCAmelCase__ = 50 ) -> int: '''simple docstring''' a__ = [1] * min_block_length for n in count(__snake_case ): fill_count_functions.append(1 ) for block_length in range(__snake_case,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F'''{solution() = }''')
232
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Optional[int] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _A : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
0
from math import ceil, sqrt def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 1000000 ) -> Optional[int]: lowercase__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
'''simple docstring''' # Algorithm for the pigeonhole sorting def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): _A = min(__snake_case ) # min() finds the minimum value _A = max(__snake_case ) # max() finds the maximum value _A = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _A = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__snake_case , __snake_case ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _A = 0 for count in range(__snake_case ): while holes[count] > 0: holes[count] -= 1 _A = count + min_val i += 1 def _SCREAMING_SNAKE_CASE ( ): _A = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__snake_case ) print('Sorted order is:' , ' '.join(__snake_case ) ) if __name__ == "__main__": main()
107
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a__ ( lowercase : Tuple, lowercase : List[str], lowercase : Optional[int], lowercase : List[str], lowercase : List[str]=True, lowercase : str="pt" ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {'''add_prefix_space''': True} if isinstance(lowercase, lowercase ) and not line.startswith(''' ''' ) else {} _UpperCamelCase = padding_side return tokenizer( [line], max_length=lowercase, padding='''max_length''' if pad_to_max_length else None, truncation=lowercase, return_tensors=lowercase, add_special_tokens=lowercase, **lowercase, ) def a__ ( lowercase : str, lowercase : int, lowercase : Tuple=None, ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = input_ids.ne(lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str="train" , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict="" , ) -> Any: '''simple docstring''' super().__init__() _UpperCamelCase = Path(lowerCAmelCase__ ).joinpath(type_path + '''.source''' ) _UpperCamelCase = Path(lowerCAmelCase__ ).joinpath(type_path + '''.target''' ) _UpperCamelCase = self.get_char_lens(self.src_file ) _UpperCamelCase = max_source_length _UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" _UpperCamelCase = tokenizer _UpperCamelCase = prefix if n_obs is not None: _UpperCamelCase = self.src_lens[:n_obs] _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang def __len__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Optional[Any] , lowerCAmelCase__ : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCamelCase = index + 1 # linecache starts at 1 _UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip('''\n''' ) _UpperCamelCase = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) _UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer _UpperCamelCase = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , '''right''' ) _UpperCamelCase = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , '''right''' ) _UpperCamelCase = source_inputs['''input_ids'''].squeeze() _UpperCamelCase = target_inputs['''input_ids'''].squeeze() _UpperCamelCase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCamelCase = torch.stack([x['''input_ids'''] for x in batch] ) _UpperCamelCase = torch.stack([x['''attention_mask'''] for x in batch] ) _UpperCamelCase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) _UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) _UpperCamelCase = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowercase__ : Union[str, Any] = getLogger(__name__) def a__ ( lowercase : List[List] ) -> Optional[int]: """simple docstring""" return list(itertools.chain.from_iterable(lowercase ) ) def a__ ( lowercase : str ) -> None: """simple docstring""" _UpperCamelCase = get_git_info() save_json(lowercase, os.path.join(lowercase, '''git_log.json''' ) ) def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : str=4, **lowercase : Optional[Any] ) -> Any: """simple docstring""" with open(lowercase, '''w''' ) as f: json.dump(lowercase, lowercase, indent=lowercase, **lowercase ) def a__ ( lowercase : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(lowercase ) as f: return json.load(lowercase ) def a__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = git.Repo(search_parent_directories=lowercase ) _UpperCamelCase = { '''repo_id''': str(lowercase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def a__ ( lowercase : Callable, lowercase : Iterable ) -> List: """simple docstring""" return list(map(lowercase, lowercase ) ) def a__ ( lowercase : List[Any], lowercase : Dict ) -> Optional[int]: """simple docstring""" with open(lowercase, '''wb''' ) as f: return pickle.dump(lowercase, lowercase ) def a__ ( lowercase : Tuple ) -> Tuple: """simple docstring""" def remove_articles(lowercase : Tuple ): return re.sub(r'''\b(a|an|the)\b''', ''' ''', lowercase ) def white_space_fix(lowercase : Tuple ): return " ".join(text.split() ) def remove_punc(lowercase : Optional[int] ): _UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase ) ) ) ) def a__ ( lowercase : Tuple, lowercase : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCamelCase = normalize_answer(lowercase ).split() _UpperCamelCase = normalize_answer(lowercase ).split() _UpperCamelCase = Counter(lowercase ) & Counter(lowercase ) _UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCamelCase = 1.0 * num_same / len(lowercase ) _UpperCamelCase = 1.0 * num_same / len(lowercase ) _UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def a__ ( lowercase : Tuple, lowercase : Any ) -> List[str]: """simple docstring""" return normalize_answer(lowercase ) == normalize_answer(lowercase ) def a__ ( lowercase : List[str], lowercase : List[str] ) -> Dict: """simple docstring""" assert len(lowercase ) == len(lowercase ) _UpperCamelCase = 0 for hypo, pred in zip(lowercase, lowercase ): em += exact_match_score(lowercase, lowercase ) if len(lowercase ) > 0: em /= len(lowercase ) return {"em": em} def a__ ( lowercase : Tuple ) -> Union[str, Any]: """simple docstring""" return model_prefix.startswith('''rag''' ) def a__ ( lowercase : int, lowercase : List[Any], lowercase : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCamelCase = '''dropout_rate''' for p in extra_params: if getattr(lowercase, lowercase, lowercase ): if not hasattr(lowercase, lowercase ) and not hasattr(lowercase, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowercase ) ) delattr(lowercase, lowercase ) continue _UpperCamelCase = p if hasattr(lowercase, lowercase ) else equivalent_param[p] setattr(lowercase, lowercase, getattr(lowercase, lowercase ) ) delattr(lowercase, lowercase ) return hparams, config
98
0
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return base * power(__snake_case ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a = int(input("Enter the base: ").strip()) _a = int(input("Enter the exponent: ").strip()) _a = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
719
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase__ = { '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } lowerCamelCase__ = F'{src_lang}-{tgt_lang}' lowerCamelCase__ = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__snake_case ,exist_ok=__snake_case ) lowerCamelCase__ = os.path.join(__snake_case ,'''README.md''' ) print(F'Generating {path}' ) with open(__snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(__snake_case ) # make sure we are under the root of the project _a = Path(__file__).resolve().parent.parent.parent _a = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _a = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
29
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class a_ ( _lowerCAmelCase ): def lowercase__ ( self : int , lowercase : List[Any]=None , lowercase : str=None , lowercase : Dict=None , **lowercase : int ): """simple docstring""" if tokenize_kwargs is None: lowercase_ :Any = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) lowercase_ :int = truncation lowercase_ :Optional[Any] = tokenize_kwargs lowercase_ :str = {} if return_tensors is not None: lowercase_ :Tuple = return_tensors return preprocess_params, {}, postprocess_params def lowercase__ ( self : List[Any] , lowercase : Tuple , **lowercase : Optional[int] ): """simple docstring""" lowercase_ :str = self.framework lowercase_ :Union[str, Any] = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) return model_inputs def lowercase__ ( self : List[str] , lowercase : int ): """simple docstring""" lowercase_ :int = self.model(**lowercase ) return model_outputs def lowercase__ ( self : Dict , lowercase : Optional[int] , lowercase : List[Any]=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *lowercase : Any , **lowercase : List[Any] ): """simple docstring""" return super().__call__(*lowercase , **lowercase )
172
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class a_ ( _lowerCAmelCase ): __A = "swin2sr" __A = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , lowercase : Union[str, Any]=64 , lowercase : Optional[int]=1 , lowercase : List[Any]=3 , lowercase : Tuple=180 , lowercase : Optional[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Optional[Any]=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : Union[str, Any]=2.0 , lowercase : List[Any]=True , lowercase : Optional[int]=0.0 , lowercase : List[Any]=0.0 , lowercase : Optional[int]=0.1 , lowercase : str="gelu" , lowercase : str=False , lowercase : Optional[Any]=0.02 , lowercase : List[Any]=1e-5 , lowercase : int=2 , lowercase : Union[str, Any]=1.0 , lowercase : List[Any]="1conv" , lowercase : Optional[int]="pixelshuffle" , **lowercase : Optional[int] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :str = image_size lowercase_ :int = patch_size lowercase_ :Tuple = num_channels lowercase_ :str = embed_dim lowercase_ :int = depths lowercase_ :Tuple = len(lowercase ) lowercase_ :Tuple = num_heads lowercase_ :Any = window_size lowercase_ :List[str] = mlp_ratio lowercase_ :int = qkv_bias lowercase_ :int = hidden_dropout_prob lowercase_ :Optional[int] = attention_probs_dropout_prob lowercase_ :int = drop_path_rate lowercase_ :Tuple = hidden_act lowercase_ :Tuple = use_absolute_embeddings lowercase_ :int = layer_norm_eps lowercase_ :List[Any] = initializer_range lowercase_ :Tuple = upscale lowercase_ :Any = img_range lowercase_ :Optional[Any] = resi_connection lowercase_ :Optional[int] = upsampler
172
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __lowerCAmelCase = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "rag" snake_case__ = True def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Tuple=" / " , __SCREAMING_SNAKE_CASE : Any=" // " , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : Dict=300 , __SCREAMING_SNAKE_CASE : Dict=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : int="wiki_dpr" , __SCREAMING_SNAKE_CASE : Optional[int]="train" , __SCREAMING_SNAKE_CASE : Union[str, Any]="compressed" , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> List[Any]: super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , prefix=__SCREAMING_SNAKE_CASE , vocab_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" a_ : Any = kwargs.pop('''question_encoder''' ) a_ : Dict = question_encoder_config.pop('''model_type''' ) a_ : Optional[int] = kwargs.pop('''generator''' ) a_ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig a_ : List[str] = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Tuple = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : List[str] = reduce_loss a_ : Any = label_smoothing a_ : Any = exclude_bos_score a_ : Union[str, Any] = do_marginalize a_ : Dict = title_sep a_ : Union[str, Any] = doc_sep a_ : Optional[Any] = n_docs a_ : Tuple = max_combined_length a_ : Dict = dataset a_ : List[str] = dataset_split a_ : int = index_name a_ : int = retrieval_vector_size a_ : int = retrieval_batch_size a_ : int = passages_path a_ : Optional[int] = index_path a_ : List[str] = use_dummy_dataset a_ : Optional[int] = output_retrieved a_ : Any = do_deduplication a_ : str = use_cache if self.forced_eos_token_id is None: a_ : Optional[Any] = getattr(self.generator , '''forced_eos_token_id''' , __SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : List[Any] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : List[str] = copy.deepcopy(self.__dict__ ) a_ : List[str] = self.question_encoder.to_dict() a_ : str = self.generator.to_dict() a_ : Dict = self.__class__.model_type return output
721
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ (a__ , unittest.TestCase ): '''simple docstring''' _a = DiTPipeline _a = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _a = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _a = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _a = False def _lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__a , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=__a , ) lowerCamelCase_ : Any = AutoencoderKL() lowerCamelCase_ : List[Any] = DDIMScheduler() lowerCamelCase_ : Tuple = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _lowerCAmelCase ( self : Any , __a : Optional[int] , __a : List[str]=0 ) ->Optional[int]: if str(__a ).startswith("""mps""" ): lowerCamelCase_ : Optional[int] = torch.manual_seed(__a ) else: lowerCamelCase_ : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase_ : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self : Tuple ) ->Optional[Any]: lowerCamelCase_ : Optional[Any] = """cpu""" lowerCamelCase_ : Any = self.get_dummy_components() lowerCamelCase_ : List[str] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : str = self.get_dummy_inputs(__a ) lowerCamelCase_ : int = pipe(**__a ).images lowerCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase_ : int = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def _lowerCAmelCase ( self : str ) ->List[Any]: self._test_inference_batch_single_identical(relax_max_difference=__a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self : List[str] ) ->Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : List[str] ) ->Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : int ) ->Tuple: lowerCamelCase_ : Tuple = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowerCamelCase_ : str = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowerCamelCase_ : Tuple = pipe.get_label_ids(__a ) lowerCamelCase_ : str = pipe(__a , generator=__a , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(__a , __a ): lowerCamelCase_ : List[Any] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowerCAmelCase ( self : Optional[int] ) ->List[Any]: lowerCamelCase_ : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowerCamelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowerCamelCase_ : List[str] = ["""vase""", """umbrella"""] lowerCamelCase_ : Any = pipe.get_label_ids(__a ) lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe(__a , generator=__a , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(__a , __a ): lowerCamelCase_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
278
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[Any] , __a : int , __a : str=13 , __a : Tuple=7 , __a : int=True , __a : int=True , __a : Dict=True , __a : str=True , __a : List[str]=99 , __a : Dict=64 , __a : Optional[Any]=32 , __a : List[Any]=5 , __a : Optional[int]=4 , __a : str=37 , __a : str="gelu" , __a : Optional[Any]=0.1 , __a : Union[str, Any]=0.1 , __a : int=512 , __a : Optional[Any]=16 , __a : Any=2 , __a : Dict=0.02 , __a : str=3 , __a : List[Any]=4 , __a : List[str]=None , ) ->Optional[int]: lowerCamelCase_ : Dict = parent lowerCamelCase_ : Optional[Any] = batch_size lowerCamelCase_ : Any = seq_length lowerCamelCase_ : Union[str, Any] = is_training lowerCamelCase_ : int = use_input_mask lowerCamelCase_ : int = use_token_type_ids lowerCamelCase_ : int = use_labels lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Any = hidden_size lowerCamelCase_ : Any = embedding_size lowerCamelCase_ : int = num_hidden_layers lowerCamelCase_ : Union[str, Any] = num_attention_heads lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : Optional[int] = hidden_act lowerCamelCase_ : Dict = hidden_dropout_prob lowerCamelCase_ : Any = attention_probs_dropout_prob lowerCamelCase_ : Optional[int] = max_position_embeddings lowerCamelCase_ : Dict = type_vocab_size lowerCamelCase_ : List[str] = type_sequence_label_size lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Union[str, Any] = num_labels lowerCamelCase_ : List[Any] = num_choices lowerCamelCase_ : Dict = scope def _lowerCAmelCase ( self : int ) ->str: lowerCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Tuple = None if self.use_input_mask: lowerCamelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : List[Any] = None if self.use_token_type_ids: lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Tuple = None lowerCamelCase_ : Optional[int] = None if self.use_labels: lowerCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Tuple ) ->Optional[Any]: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Tuple , __a : int , __a : List[str] , __a : Tuple , __a : Any , __a : Union[str, Any] , __a : int , __a : Any ) ->Tuple: lowerCamelCase_ : Tuple = MobileBertModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Dict = model(__a , attention_mask=__a , token_type_ids=__a ) lowerCamelCase_ : Optional[int] = model(__a , token_type_ids=__a ) lowerCamelCase_ : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , __a : str , __a : Union[str, Any] , __a : int , __a : List[Any] , __a : Dict , __a : List[Any] , __a : List[str] ) ->Tuple: lowerCamelCase_ : List[Any] = MobileBertForMaskedLM(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Union[str, Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Tuple , __a : Dict , __a : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : Dict ) ->int: lowerCamelCase_ : Tuple = MobileBertForNextSentencePrediction(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Any = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCAmelCase ( self : str , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Dict ) ->List[Any]: lowerCamelCase_ : Optional[int] = MobileBertForPreTraining(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : List[Any] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCAmelCase ( self : List[str] , __a : Tuple , __a : int , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[Any] , __a : Any ) ->List[str]: lowerCamelCase_ : Dict = MobileBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Tuple = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : str , __a : int , __a : Dict , __a : Dict , __a : List[Any] , __a : str ) ->Tuple: lowerCamelCase_ : Dict = self.num_labels lowerCamelCase_ : Optional[Any] = MobileBertForSequenceClassification(__a ) model.to(__a ) model.eval() lowerCamelCase_ : str = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[str] , __a : str , __a : List[str] , __a : Optional[int] , __a : int , __a : str , __a : str , __a : Optional[Any] ) ->Tuple: lowerCamelCase_ : int = self.num_labels lowerCamelCase_ : List[str] = MobileBertForTokenClassification(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Optional[Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Union[str, Any] , __a : Any , __a : Tuple , __a : Dict , __a : Dict , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] ) ->List[str]: lowerCamelCase_ : Any = self.num_choices lowerCamelCase_ : int = MobileBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Tuple = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : List[str] ) ->int: lowerCamelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Optional[Any] = config_and_inputs lowerCamelCase_ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ (a__ , a__ , unittest.TestCase ): '''simple docstring''' _a = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _a = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _a = True def _lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : Dict , __a : str=False ) ->Any: lowerCamelCase_ : Optional[int] = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class in get_values(__a ): lowerCamelCase_ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a ) lowerCamelCase_ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def _lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase_ : List[Any] = MobileBertModelTester(self ) lowerCamelCase_ : int = ConfigTester(self , config_class=__a , hidden_size=37 ) def _lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ) ->Any: lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a ) def _lowerCAmelCase ( self : List[str] ) ->Tuple: lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a ) def _lowerCAmelCase ( self : Optional[Any] ) ->Tuple: lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a ) def _lowerCAmelCase ( self : Any ) ->List[Any]: lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a ) def _lowerCAmelCase ( self : Optional[int] ) ->str: lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a ) def _lowerCAmelCase ( self : str ) ->Optional[Any]: lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a ) def _lowerCAmelCase ( self : List[str] ) ->int: lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a ) def _lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a ) def __lowerCamelCase ( A__ : List[str] ) -> Optional[int]: return torch.tensor( A__ , dtype=torch.long , device=A__ , ) snake_case__ : List[str] = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self : List[Any] ) ->List[str]: lowerCamelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(__a ) lowerCamelCase_ : int = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): lowerCamelCase_ : Optional[Any] = model(__a )[0] lowerCamelCase_ : Any = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __a ) lowerCamelCase_ : str = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] , device=__a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase_ : str = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase_ : Tuple = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
278
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def snake_case_ ( lowercase__ : List[Any] ): '''simple docstring''' _lowerCAmelCase =[ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def snake_case_ ( lowercase__ : List[Any] ): '''simple docstring''' _lowerCAmelCase =emb.weight.shape _lowerCAmelCase =nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) _lowerCAmelCase =emb.weight.data return lin_layer def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =torch.load(lowercase__ , map_location="""cpu""" ) _lowerCAmelCase =Namespace(**checkpoint["""cfg"""]["""model"""] ) _lowerCAmelCase =checkpoint['model'] remove_ignore_keys_(lowercase__ ) _lowerCAmelCase =state_dict['decoder.embed_tokens.weight'].shape[0] _lowerCAmelCase ={key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} _lowerCAmelCase =XGLMConfig( vocab_size=lowercase__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _lowerCAmelCase =XGLMForCausalLM(lowercase__ ) _lowerCAmelCase =model.load_state_dict(lowercase__ , strict=lowercase__ ) print(lowercase__ ) _lowerCAmelCase =make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() __SCREAMING_SNAKE_CASE : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
711
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: str = ReformerTokenizer a_: Any = ReformerTokenizerFast a_: Union[str, Any] = True a_: int = False a_: List[Any] = True def lowerCAmelCase__ ( self : str ): super().setUp() _lowerCAmelCase =ReformerTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase ="""<s>""" _lowerCAmelCase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCamelCase_ ) , 1000 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase__ ( self : Tuple ): if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ="""I was born in 92000, and this is falsé.""" _lowerCAmelCase =tokenizer.tokenize(lowerCamelCase_ ) _lowerCAmelCase =rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase =rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(lowerCamelCase_ ) _lowerCAmelCase =rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Optional[int]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase =self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) # Simple input _lowerCAmelCase ="""This is a simple input""" _lowerCAmelCase =["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase =("""This is a simple input""", """This is a pair""") _lowerCAmelCase =[ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" , ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =ReformerTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _lowerCAmelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase__ ( self : Tuple ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCAmelCase__ ( self : int ): _lowerCAmelCase ="""Hello World!""" _lowerCAmelCase =[126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCAmelCase =[ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @require_torch @slow def lowerCAmelCase__ ( self : Optional[int] ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowerCAmelCase =list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase =""" """.join(lowerCamelCase_ ) _lowerCAmelCase =self.big_tokenizer.encode_plus(lowerCamelCase_ , return_tensors="""pt""" ) _lowerCAmelCase =self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) _lowerCAmelCase =ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowerCAmelCase =encoded_sequence["""input_ids"""].shape _lowerCAmelCase =ReformerModel(lowerCamelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase_ ) model(**lowerCamelCase_ ) @slow def lowerCAmelCase__ ( self : Dict ): # fmt: off _lowerCAmelCase ={"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowerCAmelCase =[ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=lowerCamelCase_ , sequences=lowerCamelCase_ , )
149
0
__snake_case :str ={ 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def lowerCamelCase_ ( lowerCAmelCase__ : float ) -> str: '''simple docstring''' assert type(lowerCAmelCase__ ) in (int, float) and decimal == int(lowerCAmelCase__ ) A = int(lowerCAmelCase__ ) A = '' A = False if decimal < 0: A = True decimal *= -1 while decimal > 0: A , A = divmod(lowerCAmelCase__ , 16 ) A = values[remainder] + hexadecimal A = '0x' + hexadecimal if negative: A = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Dict , *snake_case_ : Any , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : List[Any] , *snake_case_ : Any , **snake_case_ : int ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
347
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class snake_case__ ( nn.Module): '''simple docstring''' lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case :List[str] = [] __snake_case :Union[str, Any] = [] for i in range(self.num_layers ): __snake_case :List[str] = self.in_channels if i == 0 else self.out_channels __snake_case :Any = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) __snake_case :Optional[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) __snake_case :Optional[Any] = resnets __snake_case :List[Any] = attentions if self.add_downsample: __snake_case :Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , a__ , a__ , a__ , a__=True ) -> List[Any]: '''simple docstring''' __snake_case :int = () for resnet, attn in zip(self.resnets , self.attentions ): __snake_case :Dict = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) __snake_case :List[Any] = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: __snake_case :List[Any] = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class snake_case__ ( nn.Module): '''simple docstring''' lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Union[str, Any] = [] for i in range(self.num_layers ): __snake_case :Union[str, Any] = self.in_channels if i == 0 else self.out_channels __snake_case :Any = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) __snake_case :Tuple = resnets if self.add_downsample: __snake_case :Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , a__ , a__ , a__=True ) -> Union[str, Any]: '''simple docstring''' __snake_case :List[Any] = () for resnet in self.resnets: __snake_case :Optional[Any] = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: __snake_case :Union[str, Any] = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class snake_case__ ( nn.Module): '''simple docstring''' lowerCamelCase : int lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Union[str, Any] = [] __snake_case :Optional[Any] = [] for i in range(self.num_layers ): __snake_case :Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels __snake_case :Tuple = self.prev_output_channel if i == 0 else self.out_channels __snake_case :int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) __snake_case :Dict = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) __snake_case :int = resnets __snake_case :Any = attentions if self.add_upsample: __snake_case :List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , a__ , a__ , a__ , a__ , a__=True ) -> Optional[int]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __snake_case :str = res_hidden_states_tuple[-1] __snake_case :Optional[Any] = res_hidden_states_tuple[:-1] __snake_case :List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __snake_case :Dict = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) __snake_case :int = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: __snake_case :Tuple = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class snake_case__ ( nn.Module): '''simple docstring''' lowerCamelCase : int lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :str = [] for i in range(self.num_layers ): __snake_case :Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels __snake_case :List[Any] = self.prev_output_channel if i == 0 else self.out_channels __snake_case :Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) __snake_case :Optional[int] = resnets if self.add_upsample: __snake_case :Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , a__ , a__ , a__ , a__=True ) -> Union[str, Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __snake_case :List[str] = res_hidden_states_tuple[-1] __snake_case :int = res_hidden_states_tuple[:-1] __snake_case :int = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __snake_case :Union[str, Any] = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: __snake_case :Optional[int] = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class snake_case__ ( nn.Module): '''simple docstring''' lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __snake_case :int = [] for _ in range(self.num_layers ): __snake_case :Dict = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) __snake_case :List[str] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) __snake_case :Tuple = resnets __snake_case :Optional[Any] = attentions def __call__( self , a__ , a__ , a__ , a__=True ) -> List[str]: '''simple docstring''' __snake_case :str = self.resnets[0](lowerCAmelCase_ , lowerCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __snake_case :List[Any] = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) __snake_case :Any = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) return hidden_states
717
from __future__ import annotations import time import numpy as np lowerCamelCase__ = [8, 5, 9, 7] lowerCamelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__ , a__ , ) -> None: '''simple docstring''' __snake_case :Dict = claim_vector __snake_case :Optional[int] = allocated_resources_table __snake_case :Optional[int] = maximum_claim_table def __lowercase ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowercase ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(a__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowercase ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(a__ ): i for i in self.__need()} def __lowercase ( self , **a__ ) -> None: '''simple docstring''' __snake_case :Optional[int] = self.__need() __snake_case :List[Any] = self.__allocated_resources_table __snake_case :str = self.__available_resources() __snake_case :List[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __snake_case :Dict = False for each_need in need_list: __snake_case :Dict = True for index, need in enumerate(a__ ): if need > available_resources[index]: __snake_case :Dict = False break if execution: __snake_case :Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case :List[str] = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(a__ ) # update available/freed resources stack __snake_case :Tuple = np.array(a__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(a__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def __lowercase ( self ) -> Dict: '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(a__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(a__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(a__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(a__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
291
0
"""simple docstring""" import random def _snake_case ( __snake_case : str , __snake_case : Tuple , __snake_case : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = a[left_index] _lowerCamelCase : Tuple = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: _lowerCamelCase , _lowerCamelCase : int = a[i], a[j] i += 1 _lowerCamelCase , _lowerCamelCase : List[Any] = a[i - 1], a[left_index] return i - 1 def _snake_case ( __snake_case : str , __snake_case : List[str] , __snake_case : int ): """simple docstring""" if left < right: _lowerCamelCase : Optional[Any] = random.randint(lowercase__ , right - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _lowerCamelCase : List[str] = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def _snake_case ( ): """simple docstring""" _lowerCamelCase : int = input("""Enter numbers separated by a comma:\n""" ).strip() _lowerCamelCase : Any = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
88
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=2 , __UpperCamelCase=24 , __UpperCamelCase=16 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=None , __UpperCamelCase=2 , __UpperCamelCase=2 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = patch_size snake_case_ = max_length snake_case_ = num_mel_bins snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = frequency_stride snake_case_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 snake_case_ = (self.max_length - self.patch_size) // self.time_stride + 1 snake_case_ = frequency_out_dimension * time_out_dimension snake_case_ = num_patches + 2 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, input_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = ASTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __A = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ASTModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['input_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ASTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) snake_case_ , snake_case_ = torchaudio.load(lowercase__ ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.default_feature_extractor snake_case_ = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__UpperCamelCase ) snake_case_ = self.default_feature_extractor snake_case_ , snake_case_ = prepare_audio() snake_case_ = audio.squeeze().numpy() snake_case_ = feature_extractor(__UpperCamelCase , sampling_rate=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
187
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowercase : Optional[int] = open # noqa: we just need to have a builtin inside this module to test it properly
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Union[str, Any] = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
114
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case( metaclass=__a ): __snake_case: Optional[Any] = ['''torch''', '''scipy'''] def __init__(self : Dict , *a : Optional[Any] , **a : int ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch', 'scipy'] ) @classmethod def _UpperCamelCase (cls : Union[str, Any] , *a : List[str] , **a : Any ) -> int: """simple docstring""" requires_backends(cls , ['torch', 'scipy'] ) @classmethod def _UpperCamelCase (cls : Any , *a : Tuple , **a : Optional[int] ) -> Any: """simple docstring""" requires_backends(cls , ['torch', 'scipy'] )
531
'''simple docstring''' _lowercase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_58_18, } def __UpperCamelCase ( a : str , a : str , a : float ) ->float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(a )}""" ) raise ValueError(a ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
342
0
from scipy.stats import pearsonr import datasets A__: Dict = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' A__: Union[str, Any] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' A__: List[Any] = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if return_pvalue: UpperCamelCase__: Union[str, Any] = pearsonr(__lowerCamelCase , __lowerCamelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowerCamelCase , __lowerCamelCase )[0] )}
706
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _a ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Tuple = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[str] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: int = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: List[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCamelCase__: Tuple = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Tuple = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__: Union[str, Any] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: str = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCamelCase__: List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Dict = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCamelCase__: Dict = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) )
221
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __magic_name__ = logging.get_logger(__name__) __magic_name__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __magic_name__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : '''simple docstring''' a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Model type selected in the list: """ + """, """.join(__SCREAMING_SNAKE_CASE )} ) a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a_ = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a_ = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a_ = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a_ = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a_ = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a_ = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """train""" a_ = """dev""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = 42 a_ = 42 a_ = 42 a_ = 42 def __init__( self : Tuple ,_a : List[str] ,_a : List[Any] ,_a : Dict = None ,_a : Any = Split.train ,_a : Optional[int] = False ,_a : Dict = None ,_a : Any = "pt" ,): '''simple docstring''' A_ : Union[str, Any] = args A_ : Dict = is_language_sensitive A_ : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): try: A_ : Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) A_ : int = mode # Load data features from cache or dataset file A_ : str = """v2""" if args.version_2_with_negative else """v1""" A_ : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : List[Any] = cached_features_file + """.lock""" with FileLock(UpperCAmelCase__ ): if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache: A_ : Optional[Any] = time.time() A_ : List[Any] = torch.load(UpperCAmelCase__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A_ : List[Any] = self.old_features["""features"""] A_ : Tuple = self.old_features.get("""dataset""" ,UpperCAmelCase__ ) A_ : Optional[int] = self.old_features.get("""examples""" ,UpperCAmelCase__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' ,time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: A_ : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: A_ : Union[str, Any] = self.processor.get_train_examples(args.data_dir ) A_ , A_ : Any = squad_convert_examples_to_features( examples=self.examples ,tokenizer=UpperCAmelCase__ ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=UpperCAmelCase__ ,) A_ : Optional[int] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} ,UpperCAmelCase__ ,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict ,_a : List[Any] ): '''simple docstring''' A_ : str = self.features[i] A_ : Any = torch.tensor(feature.input_ids ,dtype=torch.long ) A_ : int = torch.tensor(feature.attention_mask ,dtype=torch.long ) A_ : Dict = torch.tensor(feature.token_type_ids ,dtype=torch.long ) A_ : Optional[Any] = torch.tensor(feature.cls_index ,dtype=torch.long ) A_ : List[str] = torch.tensor(feature.p_mask ,dtype=torch.float ) A_ : List[str] = torch.tensor(feature.is_impossible ,dtype=torch.float ) A_ : Optional[int] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A_ : List[Any] = torch.tensor(feature.start_position ,dtype=torch.long ) A_ : List[Any] = torch.tensor(feature.end_position ,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
665
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Union[str, Any] ) -> Dict: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def UpperCamelCase_ ( snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __lowerCAmelCase = s_dict.pop(__UpperCamelCase ) elif "subsample" in key: __lowerCAmelCase = s_dict.pop(__UpperCamelCase ) def UpperCamelCase_ ( snake_case_ : Any ) -> Tuple: '''simple docstring''' __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] __lowerCAmelCase = mam_aaa["""model"""] __lowerCAmelCase = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = args.share_decoder_input_output_embed __lowerCAmelCase = [int(__UpperCamelCase ) for i in args.conv_kernel_sizes.split(""",""" )] __lowerCAmelCase = SpeechaTextConfig( vocab_size=__UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(__UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__UpperCamelCase , num_beams=5 , max_length=2_00 , use_cache=__UpperCamelCase , decoder_start_token_id=2 , early_stopping=__UpperCamelCase , ) __lowerCAmelCase = SpeechaTextForConditionalGeneration(__UpperCamelCase ) __lowerCAmelCase = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f""" but all the following weights are missing {missing}""" ) if tie_embeds: __lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __lowerCAmelCase = lm_head_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
721
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _A : List[str] = logging.get_logger(__name__) _A : Optional[Any] = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) _A : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCamelCase_ ( snake_case_ : str ) -> Dict: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCAmelCase = model_type_to_module_name(snake_case_ ) __lowerCAmelCase = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_ , """__name__""" , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCAmelCase = importlib.import_module("""transformers""" ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def UpperCamelCase_ ( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : Any , ) -> int: '''simple docstring''' __lowerCAmelCase = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_ , encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class _lowercase : '''simple docstring''' def __init__( self : List[str] ) -> int: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE__ ) def a ( cls : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: __lowerCAmelCase = kwargs.pop("""config""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = kwargs.pop("""trust_remote_code""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config_dict.get("""feature_extractor_type""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): __lowerCAmelCase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # It could be in `config.feature_extractor_type`` __lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE__ , """feature_extractor_type""" , SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: __lowerCAmelCase = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: __lowerCAmelCase = feature_extractor_class_from_name(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = feature_extractor_auto_map is not None __lowerCAmelCase = feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING __lowerCAmelCase = resolve_trust_remote_code( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if has_remote_code and trust_remote_code: __lowerCAmelCase = get_class_from_dynamic_module( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = kwargs.pop("""code_revision""" , SCREAMING_SNAKE_CASE__ ) if os.path.isdir(SCREAMING_SNAKE_CASE__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING: __lowerCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE__ )] return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
330
0
"""simple docstring""" from __future__ import annotations from random import random class a__ : def __init__( self , _a = None ): lowercase : Tuple = value lowercase : Union[str, Any] = random() lowercase : Node | None = None lowercase : Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ): lowercase : str = str(self.value ) + " " lowercase : Optional[Any] = str(self.left or "" ) lowercase : Any = str(self.right or "" ) return value + left + right def __magic_name__ ( __snake_case : Node | None , __snake_case : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase , lowercase : Union[str, Any] = split(root.left , __snake_case ) return left, root else: lowercase , lowercase : Any = split(root.right , __snake_case ) return root, right def __magic_name__ ( __snake_case : Node | None , __snake_case : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase : Union[str, Any] = merge(left.right , __snake_case ) return left else: lowercase : Union[str, Any] = merge(__snake_case , right.left ) return right def __magic_name__ ( __snake_case : Node | None , __snake_case : int ) -> Node | None: lowercase : List[str] = Node(__snake_case ) lowercase , lowercase : List[Any] = split(__snake_case , __snake_case ) return merge(merge(__snake_case , __snake_case ) , __snake_case ) def __magic_name__ ( __snake_case : Node | None , __snake_case : int ) -> Node | None: lowercase , lowercase : List[str] = split(__snake_case , value - 1 ) lowercase , lowercase : List[Any] = split(__snake_case , __snake_case ) return merge(__snake_case , __snake_case ) def __magic_name__ ( __snake_case : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def __magic_name__ ( __snake_case : Node | None , __snake_case : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": lowercase : Optional[int] = insert(__snake_case , int(arg[1:] ) ) elif arg[0] == "-": lowercase : Optional[Any] = erase(__snake_case , int(arg[1:] ) ) else: print("Unknown command" ) return root def __magic_name__ ( ) -> None: lowercase : Optional[int] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) lowercase : Tuple = input() while args != "q": lowercase : int = interact_treap(__snake_case , __snake_case ) print(__snake_case ) lowercase : List[Any] = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _A : List[str] = get_logger(__name__) class a__ : __lowerCAmelCase = """dummy_data""" __lowerCAmelCase = """datasets""" __lowerCAmelCase = False def __init__( self , _a , _a , _a , _a = None , _a = False , _a = True , _a = None , ): lowercase : int = 0 lowercase : Optional[Any] = dataset_name lowercase : List[str] = cache_dir lowercase : Union[str, Any] = use_local_dummy_data lowercase : str = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Tuple = str(_a ) # to be downloaded lowercase : Tuple = None lowercase : List[Any] = None @property def __magic_name__ ( self ): if self._dummy_file is None: lowercase : Optional[int] = self.download_dummy_data() return self._dummy_file @property def __magic_name__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def __magic_name__ ( self ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def __magic_name__ ( self ): lowercase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : str = cached_path( _a , cache_dir=self.cache_dir , extract_compressed_file=_a , force_extract=_a ) return os.path.join(_a , self.dummy_file_name ) @property def __magic_name__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __magic_name__ ( self ): if self._bucket_url is None: lowercase : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def __magic_name__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def __magic_name__ ( self , _a , *_a ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Optional[int] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_a , _a ): return self.create_dummy_data_dict(_a , _a ) elif isinstance(_a , (list, tuple) ): return self.create_dummy_data_list(_a , _a ) else: return self.create_dummy_data_single(_a , _a ) def __magic_name__ ( self , _a , *_a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , _a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , *_a , **_a ): return path def __magic_name__ ( self ): return {} def __magic_name__ ( self , _a , _a ): lowercase : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_a , _a ): for single_url in single_urls: download_callback(_a ) else: lowercase : Union[str, Any] = single_urls download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_a , _a ): lowercase : Any = [os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) lowercase : List[str] = value # make sure that values are unique if all(isinstance(_a , _a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __magic_name__ ( self , _a , _a ): lowercase : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , _a ) ) for url in data_url ) lowercase : List[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : Tuple = [data_url[0]] * len(_a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Union[str, Any] = os.path.join(_a , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_a ) return dummy_data_list def __magic_name__ ( self , _a , _a ): for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __magic_name__ ( self ): pass def __magic_name__ ( self ): pass def __magic_name__ ( self , _a ): def _iter_archive_members(_a ): # this preserves the order of the members inside the ZIP archive lowercase : Optional[int] = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_a ) lowercase : Union[str, Any] = Path(_a ) lowercase : List[Any] = _iter_archive_members(_a ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_a ).as_posix(), file_path.open("rb" ) def __magic_name__ ( self , _a ): if not isinstance(_a , _a ): lowercase : Any = [paths] for path in paths: if os.path.isfile(_a ): if os.path.basename(_a ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_a ): if os.path.basename(_a ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_a ): if filename.startswith((".", "__") ): continue yield os.path.join(_a , _a )
361
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A__ ( snake_case_ : int , snake_case_ : List[str] , snake_case_ : int ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: Union[str, Any]= [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: Any= [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE__: Dict= np.concatenate(snake_case_ , axis=0 ) SCREAMING_SNAKE_CASE__: Union[str, Any]= np.array(snake_case_ ).astype(np.floataa ) / 2_55.0 SCREAMING_SNAKE_CASE__: Dict= image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__: List[Any]= 2.0 * image - 1.0 SCREAMING_SNAKE_CASE__: Optional[int]= torch.from_numpy(snake_case_ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__: Optional[int]= torch.cat(snake_case_ , dim=0 ) return image def A__ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any=0.99_95 ): if not isinstance(snake_case_ , np.ndarray ): SCREAMING_SNAKE_CASE__: List[str]= True SCREAMING_SNAKE_CASE__: Any= va.device SCREAMING_SNAKE_CASE__: str= va.cpu().numpy() SCREAMING_SNAKE_CASE__: Union[str, Any]= va.cpu().numpy() SCREAMING_SNAKE_CASE__: str= np.sum(va * va / (np.linalg.norm(snake_case_ ) * np.linalg.norm(snake_case_ )) ) if np.abs(snake_case_ ) > DOT_THRESHOLD: SCREAMING_SNAKE_CASE__: Tuple= (1 - t) * va + t * va else: SCREAMING_SNAKE_CASE__: str= np.arccos(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[Any]= np.sin(snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= theta_a * t SCREAMING_SNAKE_CASE__: Any= np.sin(snake_case_ ) SCREAMING_SNAKE_CASE__: int= np.sin(theta_a - theta_t ) / sin_theta_a SCREAMING_SNAKE_CASE__: Dict= sin_theta_t / sin_theta_a SCREAMING_SNAKE_CASE__: Optional[int]= sa * va + sa * va if inputs_are_torch: SCREAMING_SNAKE_CASE__: Optional[Any]= torch.from_numpy(snake_case_ ).to(snake_case_ ) return va def A__ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] ): SCREAMING_SNAKE_CASE__: Optional[Any]= F.normalize(snake_case_ , dim=-1 ) SCREAMING_SNAKE_CASE__: List[Any]= F.normalize(snake_case_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A__ ( snake_case_ : Dict , snake_case_ : List[Any] ): for param in model.parameters(): SCREAMING_SNAKE_CASE__: Any= value class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , ) -> str: super().__init__() self.register_modules( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , clip_model=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , feature_extractor=lowerCAmelCase , coca_model=lowerCAmelCase , coca_tokenizer=lowerCAmelCase , coca_transform=lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: Optional[Any]= ( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase ) else feature_extractor.size['''shortest_edge'''] ) SCREAMING_SNAKE_CASE__: Any= transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase ) set_requires_grad(self.clip_model , lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE__: Optional[int]= self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: self.enable_attention_slicing(lowerCAmelCase ) def UpperCamelCase_ ( self ) -> str: set_requires_grad(self.vae , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Any: set_requires_grad(self.vae , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: set_requires_grad(self.unet , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: set_requires_grad(self.unet , lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: # get the original timestep using init_timestep SCREAMING_SNAKE_CASE__: int= min(int(num_inference_steps * strength ) , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE__: Dict= self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Any: if not isinstance(lowerCAmelCase , torch.Tensor ): raise ValueError(f'`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase )}' ) SCREAMING_SNAKE_CASE__: int= image.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Optional[int]= [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase ) ] SCREAMING_SNAKE_CASE__: List[str]= torch.cat(lowerCAmelCase , dim=0 ) else: SCREAMING_SNAKE_CASE__: List[str]= self.vae.encode(lowerCAmelCase ).latent_dist.sample(lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE__: str= 0.18215 * init_latents SCREAMING_SNAKE_CASE__: Union[str, Any]= init_latents.repeat_interleave(lowerCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE__: List[str]= randn_tensor(init_latents.shape , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) # get latents SCREAMING_SNAKE_CASE__: Tuple= self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= init_latents return latents def UpperCamelCase_ ( self , lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.coca_transform(lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE__: List[str]= self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) SCREAMING_SNAKE_CASE__: str= self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__: str= self.feature_extractor.preprocess(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() SCREAMING_SNAKE_CASE__: Optional[Any]= self.clip_model.get_image_features(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= image_embeddings_clip.repeat_interleave(lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> Tuple: SCREAMING_SNAKE_CASE__: List[Any]= latents.detach().requires_grad_() SCREAMING_SNAKE_CASE__: Union[str, Any]= self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE__: Optional[int]= self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): SCREAMING_SNAKE_CASE__: Dict= self.scheduler.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE__: Optional[Any]= 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__: str= (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE__: Optional[Any]= torch.sqrt(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Dict= self.scheduler.sigmas[index] SCREAMING_SNAKE_CASE__: Optional[int]= latents - sigma * noise_pred else: raise ValueError(f'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE__: List[Any]= 1 / 0.18215 * sample SCREAMING_SNAKE_CASE__: Tuple= self.vae.decode(lowerCAmelCase ).sample SCREAMING_SNAKE_CASE__: Optional[int]= (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__: int= transforms.Resize(self.feature_extractor_size )(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.normalize(lowerCAmelCase ).to(latents.dtype ) SCREAMING_SNAKE_CASE__: int= self.clip_model.get_image_features(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= spherical_dist_loss(lowerCAmelCase , lowerCAmelCase ).mean() * clip_guidance_scale SCREAMING_SNAKE_CASE__: Tuple= -torch.autograd.grad(lowerCAmelCase , lowerCAmelCase )[0] if isinstance(self.scheduler , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Union[str, Any]= latents.detach() + grads * (sigma**2) SCREAMING_SNAKE_CASE__: Dict= noise_pred_original else: SCREAMING_SNAKE_CASE__: List[Any]= noise_pred_original - torch.sqrt(lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 512 , lowerCAmelCase = 512 , lowerCAmelCase = 0.6 , lowerCAmelCase = 50 , lowerCAmelCase = 7.5 , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = 100 , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = 0.8 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , ) -> Optional[Any]: if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError(f'You have passed {batch_size} batch_size, but only {len(lowerCAmelCase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(lowerCAmelCase , torch.Generator ) and batch_size > 1: SCREAMING_SNAKE_CASE__: Optional[Any]= [generator] + [None] * (batch_size - 1) SCREAMING_SNAKE_CASE__: Optional[Any]= [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] SCREAMING_SNAKE_CASE__: List[Any]= [x[0] for x in coca_is_none if x[1]] SCREAMING_SNAKE_CASE__: Dict= ''', '''.join(lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase ): raise ValueError( f'Content prompt is None and CoCa [{coca_is_none_str}] is None.' f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) SCREAMING_SNAKE_CASE__: List[Any]= self.get_image_description(lowerCAmelCase ) if style_prompt is None: if len(lowerCAmelCase ): raise ValueError( f'Style prompt is None and CoCa [{coca_is_none_str}] is None.' f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_image_description(lowerCAmelCase ) # get prompt text embeddings for content and style SCREAMING_SNAKE_CASE__: Any= self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE__: str= self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__: Optional[int]= self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE__: List[Any]= slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE__: Optional[Any]= text_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # set timesteps SCREAMING_SNAKE_CASE__: Optional[Any]= '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) SCREAMING_SNAKE_CASE__: Tuple= {} if accepts_offset: SCREAMING_SNAKE_CASE__: Union[str, Any]= 1 self.scheduler.set_timesteps(lowerCAmelCase , **lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_timesteps(lowerCAmelCase , lowerCAmelCase , self.device ) SCREAMING_SNAKE_CASE__: Tuple= timesteps[:1].repeat(lowerCAmelCase ) # Preprocess image SCREAMING_SNAKE_CASE__: Dict= preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= slerp( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE__: Any= guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__: Optional[Any]= content_text_input.input_ids.shape[-1] SCREAMING_SNAKE_CASE__: Union[str, Any]= self.tokenizer([''''''] , padding='''max_length''' , max_length=lowerCAmelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt SCREAMING_SNAKE_CASE__: int= uncond_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE__: List[str]= torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE__: Optional[int]= (batch_size, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE__: str= text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps SCREAMING_SNAKE_CASE__: Dict= torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device='''cpu''' , dtype=lowerCAmelCase ).to( self.device ) else: SCREAMING_SNAKE_CASE__: str= torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) SCREAMING_SNAKE_CASE__: str= latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__: Any= latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__: Any= '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__: Optional[Any]= {} if accepts_eta: SCREAMING_SNAKE_CASE__: List[Any]= eta # check if the scheduler accepts generator SCREAMING_SNAKE_CASE__: Optional[Any]= '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: SCREAMING_SNAKE_CASE__: Tuple= generator with self.progress_bar(total=lowerCAmelCase ): for i, t in enumerate(lowerCAmelCase ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE__: str= torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE__: List[str]= self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE__: Any= self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE__: Optional[int]= noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE__: Union[str, Any]= ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= self.cond_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__: int= self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE__: List[Any]= 1 / 0.18215 * latents SCREAMING_SNAKE_CASE__: Tuple= self.vae.decode(lowerCAmelCase ).sample SCREAMING_SNAKE_CASE__: Tuple= (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__: int= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__: Tuple= self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase , nsfw_content_detected=lowerCAmelCase )
107
from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=UpperCamelCase_ ): __a = ["torch", "scipy"] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> Any: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase_ ( cls , *lowerCAmelCase , **lowerCAmelCase ) -> List[str]: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase_ ( cls , *lowerCAmelCase , **lowerCAmelCase ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
107
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = '''decision_transformer''' UpperCamelCase__ : Optional[Any] = ['''past_key_values'''] UpperCamelCase__ : Tuple = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int]=17 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Dict=128 , lowerCAmelCase__ : Union[str, Any]=4096 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : int="relu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=1E-5 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[Any]=50256 , lowerCAmelCase__ : Union[str, Any]=50256 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : Optional[int] , ) -> Optional[Any]: snake_case__ = state_dim snake_case__ = act_dim snake_case__ = hidden_size snake_case__ = max_ep_len snake_case__ = action_tanh snake_case__ = vocab_size snake_case__ = n_positions snake_case__ = n_layer snake_case__ = n_head snake_case__ = n_inner snake_case__ = activation_function snake_case__ = resid_pdrop snake_case__ = embd_pdrop snake_case__ = attn_pdrop snake_case__ = layer_norm_epsilon snake_case__ = initializer_range snake_case__ = scale_attn_weights snake_case__ = use_cache snake_case__ = scale_attn_by_inverse_layer_idx snake_case__ = reorder_and_upcast_attn snake_case__ = bos_token_id snake_case__ = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
214
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : str = '''vit''' def __init__( self : str , lowerCAmelCase__ : int=768 , lowerCAmelCase__ : List[Any]=12 , lowerCAmelCase__ : Optional[int]=12 , lowerCAmelCase__ : Optional[int]=3072 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : Optional[Any]=1E-12 , lowerCAmelCase__ : Optional[int]=224 , lowerCAmelCase__ : Optional[Any]=16 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=16 , **lowerCAmelCase__ : str , ) -> Optional[int]: super().__init__(**lowerCAmelCase__ ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = qkv_bias snake_case__ = encoder_stride class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' UpperCamelCase__ : Dict = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self : Any ) -> float: return 1E-4
214
1
"""simple docstring""" from collections import namedtuple __lowerCAmelCase : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') __lowerCAmelCase : List[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00_454, 264.172), '''cubicyard''': from_to(0.76_455, 1.30_795), '''cubicfoot''': from_to(0.028, 35.3_147), '''cup''': from_to(0.000_236_588, 4_226.75), } def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ''', '''.join(UpperCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ''', '''.join(UpperCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
158
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase ) -> bool: """simple docstring""" a__ = len(UpperCamelCase ) # We need to create solution object to save path. a__ = [[0 for _ in range(UpperCamelCase )] for _ in range(UpperCamelCase )] a__ = run_maze(UpperCamelCase , 0 , 0 , UpperCamelCase ) if solved: print('''\n'''.join(str(UpperCamelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> bool: """simple docstring""" a__ = len(UpperCamelCase ) # Final check point. if i == j == (size - 1): a__ = 1 return True a__ = (not i < 0) and (not j < 0) # Check lower bounds a__ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a__ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a__ = 1 # check for directions if ( run_maze(UpperCamelCase , i + 1 , UpperCamelCase , UpperCamelCase ) or run_maze(UpperCamelCase , UpperCamelCase , j + 1 , UpperCamelCase ) or run_maze(UpperCamelCase , i - 1 , UpperCamelCase , UpperCamelCase ) or run_maze(UpperCamelCase , UpperCamelCase , j - 1 , UpperCamelCase ) ): return True a__ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
158
1
'''simple docstring''' def lowerCamelCase__ ( a__ = 1_0_0_0_0_0_0) -> int: """simple docstring""" _snake_case : Dict = limit + 1 _snake_case : Union[str, Any] = [0] * limit for first_term in range(1 , a__): for n in range(a__ , a__ , a__): _snake_case : List[str] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case : List[Any] = sum(1 for x in frequency[1:limit] if x == 1_0) return count if __name__ == "__main__": print(F'''{solution() = }''')
517
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE_ = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE_ = "bert" else: raise ValueError("args.model_type should be \"bert\".") SCREAMING_SNAKE_CASE_ = model.state_dict() SCREAMING_SNAKE_CASE_ = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE_ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE_ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] SCREAMING_SNAKE_CASE_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] SCREAMING_SNAKE_CASE_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 SCREAMING_SNAKE_CASE_ = state_dict["cls.predictions.decoder.weight"] SCREAMING_SNAKE_CASE_ = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE_ = state_dict[F'''cls.predictions.transform.dense.{w}'''] SCREAMING_SNAKE_CASE_ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
517
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowercase__ = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names lowercase__ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase__ = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowercase__ = """allenai""" def _snake_case ( lowercase__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _lowerCamelCase : Optional[Any] = dict((re.sub(r'@@$' , '' , _snake_case ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _snake_case ), v) for k, v in d.items() ) _lowerCamelCase : List[str] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] _lowerCamelCase : Optional[Any] = d[k] # restore return da def _snake_case ( lowercase__ , lowercase__ ): # prep assert os.path.exists(_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _lowerCamelCase : Dict = basename(_snake_case ) _lowerCamelCase : List[str] = dirname(_snake_case ) _lowerCamelCase : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _lowerCamelCase : int = cls.hub_models() _lowerCamelCase : Union[str, Any] = {'bpe': 'fastbpe', 'tokenizer': 'moses'} _lowerCamelCase : Any = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) _lowerCamelCase : List[str] = hub_utils.from_pretrained( _snake_case , _snake_case , _snake_case , archive_map=_snake_case , **_snake_case ) _lowerCamelCase : int = vars(chkpt['args']['model'] ) _lowerCamelCase : Optional[int] = args['source_lang'] _lowerCamelCase : Any = args['target_lang'] _lowerCamelCase : str = dirname(_snake_case ) _lowerCamelCase : List[Any] = basename(_snake_case ) # dicts _lowerCamelCase : List[str] = os.path.join(_snake_case , f'''dict.{src_lang}.txt''' ) _lowerCamelCase : List[Any] = os.path.join(_snake_case , f'''dict.{tgt_lang}.txt''' ) _lowerCamelCase : List[str] = Dictionary.load(_snake_case ) _lowerCamelCase : List[str] = rewrite_dict_keys(src_dict.indices ) _lowerCamelCase : Any = len(_snake_case ) _lowerCamelCase : Optional[Any] = os.path.join(_snake_case , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _lowerCamelCase : Any = True for k in src_vocab.keys(): if not k.islower(): _lowerCamelCase : List[str] = False break _lowerCamelCase : Optional[Any] = Dictionary.load(_snake_case ) _lowerCamelCase : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) _lowerCamelCase : Any = len(_snake_case ) _lowerCamelCase : List[str] = os.path.join(_snake_case , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # merges_file (bpecodes) _lowerCamelCase : Tuple = os.path.join(_snake_case , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _lowerCamelCase : Dict = os.path.join(_snake_case , _snake_case ) if os.path.exists(_snake_case ): break with open(_snake_case , encoding='utf-8' ) as fin: _lowerCamelCase : List[str] = fin.read() _lowerCamelCase : Dict = re.sub(r' \d+$' , '' , _snake_case , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as fout: fout.write(_snake_case ) # model config _lowerCamelCase : int = os.path.join(_snake_case , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' _lowerCamelCase : List[str] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.0_2, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with _lowerCamelCase : Optional[Any] = 5 _lowerCamelCase : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _lowerCamelCase : int = best_score_hparams[model_dir]['length_penalty'] else: _lowerCamelCase : Optional[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # tokenizer config _lowerCamelCase : Dict = os.path.join(_snake_case , _snake_case ) _lowerCamelCase : List[Any] = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # model _lowerCamelCase : Union[str, Any] = chkpt['models'][0] _lowerCamelCase : Optional[int] = model.state_dict() # rename keys to start with 'model.' _lowerCamelCase : List[str] = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _lowerCamelCase : Tuple = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_snake_case , _snake_case ) _lowerCamelCase : Optional[Any] = FSMTConfig.from_pretrained(_snake_case ) _lowerCamelCase : List[Any] = FSMTForConditionalGeneration(_snake_case ) # check that it loads ok model_new.load_state_dict(_snake_case , strict=_snake_case ) # save _lowerCamelCase : List[str] = os.path.join(_snake_case , _snake_case ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_snake_case , _snake_case ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
711
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : Tuple = '' _lowerCamelCase : Any = '' _lowerCamelCase : List[Any] = [] _lowerCamelCase : Tuple = 0 _lowerCamelCase : Dict = 256 _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[Any] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : Dict = 0 def A_ ( self , lowercase ): _lowerCamelCase : Any = cva.imread(lowercase , 0 ) _lowerCamelCase : Optional[int] = copy.deepcopy(self.img ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) _lowerCamelCase : Optional[int] = np.sum(lowercase ) for i in range(len(lowercase ) ): _lowerCamelCase : List[Any] = x[i] / self.k self.sk += prk _lowerCamelCase : int = (self.L - 1) * self.sk if self.rem != 0: _lowerCamelCase : Union[str, Any] = int(last % last ) _lowerCamelCase : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowercase ) _lowerCamelCase : List[str] = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCamelCase : int = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCamelCase : Optional[Any] = self.img[j][i] if num != self.last_list[num]: _lowerCamelCase : Any = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def A_ ( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def A_ ( self ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowercase__ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") lowercase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
492
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = "switch_transformers" _A = ["past_key_values"] _A = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , lowercase__=3_2128 , lowercase__=768 , lowercase__=64 , lowercase__=2048 , lowercase__=64 , lowercase__=12 , lowercase__=3 , lowercase__=12 , lowercase__=3 , lowercase__=12 , lowercase__=8 , lowercase__=False , lowercase__=0.01 , lowercase__="float32" , lowercase__=False , lowercase__=32 , lowercase__=128 , lowercase__=0.1 , lowercase__=1e-6 , lowercase__=0.001 , lowercase__=0.001 , lowercase__=1.0 , lowercase__="relu" , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=0 , lowercase__=1 , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = d_model SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_kv SCREAMING_SNAKE_CASE_ : Dict = d_ff SCREAMING_SNAKE_CASE_ : List[Any] = num_sparse_encoder_layers SCREAMING_SNAKE_CASE_ : Tuple = num_layers SCREAMING_SNAKE_CASE_ : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE_ : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: SCREAMING_SNAKE_CASE_ : Tuple = self.num_layers // self.num_sparse_encoder_layers else: SCREAMING_SNAKE_CASE_ : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: SCREAMING_SNAKE_CASE_ : List[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: SCREAMING_SNAKE_CASE_ : List[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers SCREAMING_SNAKE_CASE_ : Tuple = num_heads SCREAMING_SNAKE_CASE_ : Dict = num_experts SCREAMING_SNAKE_CASE_ : str = expert_capacity SCREAMING_SNAKE_CASE_ : str = router_bias SCREAMING_SNAKE_CASE_ : int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE_ : List[Any] = router_dtype SCREAMING_SNAKE_CASE_ : List[Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE_ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ : str = relative_attention_max_distance SCREAMING_SNAKE_CASE_ : Tuple = dropout_rate SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Any = initializer_factor SCREAMING_SNAKE_CASE_ : List[Any] = feed_forward_proj SCREAMING_SNAKE_CASE_ : Tuple = use_cache SCREAMING_SNAKE_CASE_ : Optional[Any] = add_router_probs SCREAMING_SNAKE_CASE_ : List[Any] = router_z_loss_coef SCREAMING_SNAKE_CASE_ : List[str] = router_aux_loss_coef SCREAMING_SNAKE_CASE_ : Dict = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE_ : List[str] = act_info[-1] SCREAMING_SNAKE_CASE_ : Tuple = act_info[0] == "gated" if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE_ : Any = "gelu_new" super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , **lowercase__ , )
421
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) snake_case_ = parser.parse_args() snake_case_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
421
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _snake_case : __lowerCAmelCase : Optional[int] = 42 __lowerCAmelCase : str = 42 class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : list[list[Edge]] = [[] for _ in range(_lowercase)] lowercase__ : Dict = size def __getitem__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return iter(self._graph[vertex]) @property def lowercase__ ( self): '''simple docstring''' return self._size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""") self._graph[from_vertex].append(Edge(_lowercase , _lowercase)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = deque([start_vertex]) lowercase__ : list[int | None] = [None] * self.size lowercase__ : Tuple = 0 while queue: lowercase__ : Union[str, Any] = queue.popleft() lowercase__ : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ : Union[str, Any] = current_distance + edge.weight lowercase__ : Dict = distances[edge.destination_vertex] if ( isinstance(_lowercase , _lowercase) and new_distance >= dest_vertex_distance ): continue lowercase__ : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
719
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ : Optional[int] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _snake_case : __lowerCAmelCase : Optional[int] = PegasusConfig __lowerCAmelCase : str = {} __lowerCAmelCase : int = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ): '''simple docstring''' lowercase__ : Any = parent lowercase__ : int = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : str = is_training lowercase__ : str = use_labels lowercase__ : List[str] = vocab_size lowercase__ : Dict = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = eos_token_id lowercase__ : Any = pad_token_id lowercase__ : Any = bos_token_id def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase__ : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase__ : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__ : Any = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = 20 lowercase__ : str = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : str = model.encode(inputs_dict["""input_ids"""]) lowercase__ , lowercase__ : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase__ : int = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ : str = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : List[Any] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Any = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : Tuple = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = model.encode(inputs_dict["""input_ids"""]) lowercase__ , lowercase__ : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase__ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ : Tuple = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Dict = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: lowercase__ : int = np.not_equal(lowercase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase__ : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __lowerCAmelCase : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __lowerCAmelCase : List[str] = True __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : List[Any] = False def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = FlaxPegasusModelTester(self) lowercase__ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = model_class(SCREAMING_SNAKE_CASE_) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): return model.encode(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) with self.subTest("""JIT Enabled"""): lowercase__ : List[Any] = encode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase__ : Optional[int] = encode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(jitted_output.shape , output.shape) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase__ : Dict = model_class(SCREAMING_SNAKE_CASE_) lowercase__ : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase__ : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , encoder_outputs=SCREAMING_SNAKE_CASE_ , ) with self.subTest("""JIT Enabled"""): lowercase__ : List[str] = decode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase__ : Tuple = decode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(jitted_output.shape , output.shape) @slow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.ones((1, 1)) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : int = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase__ : Optional[int] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase__ : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase__ : Union[str, Any] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase__ : Dict = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" , truncation=SCREAMING_SNAKE_CASE_ , max_length=5_12 , padding=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = model.generate(**SCREAMING_SNAKE_CASE_ , num_beams=2).sequences lowercase__ : Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) assert tgt_text == decoded
495
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __A ='''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): def __init__( self , lowercase = " " ) -> List[str]: lowerCamelCase_ = sentence_delimiter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: return list(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = [] for sent_idx, sentence in enumerate(lowercase ): chars.extend(self.process_string(lowercase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase ) - 1: chars.append(self.sentence_delimiter ) return chars __A =tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __A =tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __A ='''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __A ='''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __A =''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> List[str]: if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(lowercase , lowercase ): lowerCamelCase_ = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
463
from math import isqrt def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = False return [i for i in range(2 , lowerCamelCase__ ) if is_prime[i]] def lowerCamelCase_ ( lowerCamelCase__ = 1_0**8 ): lowerCamelCase_ = calculate_prime_numbers(max_number // 2 ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = len(lowerCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
463
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : List[Any] , a_ : List[Any] , a_ : Dict , a_ : Optional[Any] = None , a_ : Any = None , a_ : List[Any] = False , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(features=_A , cache_dir=_A , keep_in_memory=_A , **_A ) __snake_case = Sql( cache_dir=_A , features=_A , sql=_A , con=_A , **_A , ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = None __snake_case = None __snake_case = None __snake_case = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , ) # Build dataset for splits __snake_case = self.builder.as_dataset( split="train" , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , a_ : Tuple , a_ : List[str] , a_ : int , a_ : List[str] = None , a_ : str = None , **a_ : Any , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __snake_case = dataset __snake_case = name __snake_case = con __snake_case = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case = num_proc __snake_case = to_sql_kwargs def A ( self : List[Any] ): """simple docstring""" __snake_case = self.to_sql_kwargs.pop("sql" , _A ) __snake_case = self.to_sql_kwargs.pop("con" , _A ) __snake_case = self.to_sql_kwargs.pop("index" , _A ) __snake_case = self._write(index=_A , **self.to_sql_kwargs ) return written def A ( self : str , a_ : Any ): """simple docstring""" __snake_case , __snake_case , __snake_case = args __snake_case = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs __snake_case = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case = batch.to_pandas() __snake_case = df.to_sql(self.name , self.con , index=_A , **_A ) return num_rows or len(_A ) def A ( self : Union[str, Any] , a_ : Optional[Any] , **a_ : Union[str, Any] ): """simple docstring""" __snake_case = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) __A = logging.getLogger(__name__) def UpperCamelCase__ ( lowercase__ : str ): snake_case : Dict = git.Repo(search_parent_directories=lowercase__ ) snake_case : List[Any] = { "repo_id": str(lowercase__ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase__ , "git_log.json" ) , "w" ) as f: json.dump(lowercase__ , lowercase__ , indent=4 ) def UpperCamelCase__ ( lowercase__ : Any ): if params.n_gpu <= 0: snake_case : Optional[Any] = 0 snake_case : List[Any] = -1 snake_case : int = True snake_case : str = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 snake_case : Tuple = int(os.environ["WORLD_SIZE"] ) snake_case : Dict = int(os.environ["N_GPU_NODE"] ) snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node snake_case : str = params.global_rank // params.n_gpu_per_node snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 snake_case : Union[str, Any] = 1 snake_case : List[Any] = 0 snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = 0 snake_case : List[str] = 1 snake_case : List[str] = 1 snake_case : Any = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 snake_case : Union[str, Any] = params.n_nodes > 1 # summary snake_case : Optional[Any] = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
134
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : str ): snake_case : str = [int(lowercase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase__ ) == 4 and all(0 <= int(lowercase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'{ip} is a {valid_or_invalid} IP v4 address.')
134
1
def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : List[Any] = [1] __A , __A , __A : Union[str, Any] = 0, 0, 0 __A : Optional[int] = ugly_nums[ia] * 2 __A : Any = ugly_nums[ia] * 3 __A : str = ugly_nums[ia] * 5 for _ in range(1 , a ): __A : Tuple = min(a , a , a ) ugly_nums.append(a ) if next_num == next_a: ia += 1 __A : int = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __A : Union[str, Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __A : List[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_00) = }""")
77
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : Tuple = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase : int = logging.get_logger(__name__) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Union[str, Any] = '''mask2former''' UpperCamelCase : Any = ['''swin'''] UpperCamelCase : Union[str, Any] = {'''hidden_size''': '''hidden_dim'''} def __init__( self , _A = None , _A = 256 , _A = 256 , _A = 256 , _A = 1024 , _A = "relu" , _A = 6 , _A = 10 , _A = 8 , _A = 0.0 , _A = 2048 , _A = False , _A = False , _A = 4 , _A = 255 , _A = 100 , _A = 0.1 , _A = 2.0 , _A = 5.0 , _A = 5.0 , _A = 12544 , _A = 3.0 , _A = 0.7_5 , _A = 0.0_2 , _A = 1.0 , _A = True , _A = [4, 8, 16, 32] , _A = None , **_A , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __A : Optional[int] = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_A , _A ): __A : Dict = backbone_config.pop('model_type' ) __A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __A : List[str] = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) __A : Optional[int] = backbone_config __A : Optional[Any] = feature_size __A : Any = mask_feature_size __A : Optional[Any] = hidden_dim __A : Union[str, Any] = encoder_feedforward_dim __A : Optional[Any] = activation_function __A : List[Any] = encoder_layers __A : Union[str, Any] = decoder_layers __A : Dict = num_attention_heads __A : Tuple = dropout __A : Dict = dim_feedforward __A : Tuple = pre_norm __A : Dict = enforce_input_projection __A : Optional[int] = common_stride __A : Optional[Any] = ignore_value __A : str = num_queries __A : List[Any] = no_object_weight __A : List[str] = class_weight __A : List[Any] = mask_weight __A : List[Any] = dice_weight __A : Tuple = train_num_points __A : Optional[Any] = oversample_ratio __A : Union[str, Any] = importance_sample_ratio __A : Union[str, Any] = init_std __A : int = init_xavier_std __A : Union[str, Any] = use_auxiliary_loss __A : Union[str, Any] = feature_strides __A : List[Any] = output_auxiliary_logits __A : Optional[Any] = decoder_layers super().__init__(**_A ) @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): return cls( backbone_config=_A , **_A , ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = copy.deepcopy(self.__dict__ ) __A : List[Any] = self.backbone_config.to_dict() __A : Union[str, Any] = self.__class__.model_type return output
77
1
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict = True , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) snake_case_ : Optional[Any] = False if main_process_only: snake_case_ : Dict = PartialState().local_process_index == 0 return _tqdm(*_UpperCAmelCase , **_UpperCAmelCase , disable=_UpperCAmelCase )
480
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowercase : Tuple = logging.get_logger(__name__) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_: str = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), f"""{len(_UpperCAmelCase )} != {len(_UpperCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowercase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowercase : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): try: lowerCamelCase_: Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" f""" {n_student}""" ) return list(range(_UpperCAmelCase ) ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): if n_student > n_teacher: raise ValueError(f"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(_UpperCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase = "student" , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): lowerCamelCase_: Union[str, Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(_UpperCAmelCase , _UpperCAmelCase ): AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) # purely for convenience lowerCamelCase_: Tuple = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).eval() else: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f"""teacher must be a model or string got type {type(_UpperCAmelCase )}""" lowerCamelCase_: Dict = teacher.config.to_diff_dict() try: lowerCamelCase_ , lowerCamelCase_: Tuple = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCamelCase_: str = teacher_e if d is None: lowerCamelCase_: Union[str, Any] = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): lowerCamelCase_ , lowerCamelCase_: Optional[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCamelCase_ , lowerCamelCase_: List[str] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCamelCase_: Tuple = teacher_e if d is None: lowerCamelCase_: Optional[Any] = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_UpperCAmelCase ) # Copy weights lowerCamelCase_: Tuple = teacher.config_class(**_UpperCAmelCase ) lowerCamelCase_: int = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCamelCase_: Tuple = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCamelCase_ , lowerCamelCase_: List[str] = list(range(_UpperCAmelCase ) ), list(range(_UpperCAmelCase ) ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" f""" {save_path}""" ) student.save_pretrained(_UpperCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCamelCase_: List[int] = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) if d_layers_to_copy is None: lowerCamelCase_: List[int] = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase ) try: if hasattr( _UpperCAmelCase , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) lowerCamelCase_: Union[str, Any] = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(_UpperCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
423
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case_ = random.Random() if is_torch_available(): import torch def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : Tuple=1.0 , snake_case_ : Dict=None , snake_case_ : int=None ) -> str: if rng is None: __snake_case = global_rng __snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : Dict , a__ : Tuple , a__ : Any=7 , a__ : str=400 , a__ : Optional[Any]=2000 , a__ : List[str]=1 , a__ : List[Any]=0.0 , a__ : Optional[Any]=1_6000 , a__ : Optional[Any]=True , a__ : int=True , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = min_seq_length __snake_case = max_seq_length __snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case = feature_size __snake_case = padding_value __snake_case = sampling_rate __snake_case = return_attention_mask __snake_case = do_normalize def a (self : Any ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a (self : Any , a__ : Union[str, Any]=False , a__ : List[str]=False ): """simple docstring""" def _flatten(a__ : int ): return list(itertools.chain(*A__ ) ) if equal_length: __snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : int = ASTFeatureExtractor def a (self : int ): """simple docstring""" __snake_case = ASTFeatureExtractionTester(self ) def a (self : Tuple ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __snake_case = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input __snake_case = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values __snake_case = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(A__ , A__ , atol=1E-3 ) ) # Test batched __snake_case = feat_extract(A__ , padding=A__ , return_tensors='''np''' ).input_values __snake_case = feat_extract(A__ , padding=A__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case = np.asarray(A__ ) __snake_case = feat_extract(A__ , return_tensors='''np''' ).input_values __snake_case = feat_extract(A__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1E-3 ) ) @require_torch def a (self : List[str] ): """simple docstring""" import torch __snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case = np.random.rand(100 ).astype(np.floataa ) __snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __snake_case = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a (self : Optional[Any] , a__ : Any ): """simple docstring""" from datasets import load_dataset __snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __snake_case = ds.sort('''id''' ).select(range(A__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def a (self : Optional[Any] ): """simple docstring""" __snake_case = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __snake_case = self._load_datasamples(1 ) __snake_case = ASTFeatureExtractor() __snake_case = feature_extractor(A__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A__ , atol=1E-4 ) )
720
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : Optional[Any] , **a__ : Optional[Any] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def a (self : str , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] ): """simple docstring""" __snake_case = ObjectDetectionPipeline(model=a__ , image_processor=a__ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def a (self : List[str] , a__ : Optional[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(a__ ) , 0 ) for detected_object in outputs: self.assertEqual( a__ , { '''score''': ANY(a__ ), '''label''': ANY(a__ ), '''box''': {'''xmin''': ANY(a__ ), '''ymin''': ANY(a__ ), '''xmax''': ANY(a__ ), '''ymax''': ANY(a__ )}, } , ) import datasets __snake_case = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __snake_case = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __snake_case = object_detector(a__ , threshold=0.0 ) self.assertEqual(len(a__ ) , len(a__ ) ) for outputs in batch_outputs: self.assertGreater(len(a__ ) , 0 ) for detected_object in outputs: self.assertEqual( a__ , { '''score''': ANY(a__ ), '''label''': ANY(a__ ), '''box''': {'''xmin''': ANY(a__ ), '''ymin''': ANY(a__ ), '''xmax''': ANY(a__ ), '''ymax''': ANY(a__ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @require_torch def a (self : Any ): """simple docstring""" __snake_case = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __snake_case = AutoModelForObjectDetection.from_pretrained(a__ ) __snake_case = AutoFeatureExtractor.from_pretrained(a__ ) __snake_case = ObjectDetectionPipeline(model=a__ , feature_extractor=a__ ) __snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) __snake_case = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def a (self : int ): """simple docstring""" __snake_case = '''facebook/detr-resnet-50''' __snake_case = AutoModelForObjectDetection.from_pretrained(a__ ) __snake_case = AutoFeatureExtractor.from_pretrained(a__ ) __snake_case = ObjectDetectionPipeline(model=a__ , feature_extractor=a__ ) __snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) __snake_case = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def a (self : List[Any] ): """simple docstring""" __snake_case = '''facebook/detr-resnet-50''' __snake_case = pipeline('''object-detection''' , model=a__ ) __snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) __snake_case = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def a (self : str ): """simple docstring""" __snake_case = 0.9_9_8_5 __snake_case = '''facebook/detr-resnet-50''' __snake_case = pipeline('''object-detection''' , model=a__ ) __snake_case = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=a__ ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def a (self : Dict ): """simple docstring""" __snake_case = '''Narsil/layoutlmv3-finetuned-funsd''' __snake_case = 0.9_9_9_3 __snake_case = pipeline('''object-detection''' , model=a__ , threshold=a__ ) __snake_case = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
388
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = value _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = tree def a ( self , snake_case__ ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
444
'''simple docstring''' from __future__ import annotations from math import gcd def lowercase (_A , _A = 2 , _A = 1 , _A = 3 , ): """simple docstring""" if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_A , _A , _A ) -> int: return (pow(_A , 2 ) + step) % modulus for _ in range(_A ): # These track the position within the cycle detection logic. _lowerCAmelCase : Dict = seed _lowerCAmelCase : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _lowerCAmelCase : str = rand_fn(_A , _A , _A ) _lowerCAmelCase : Optional[int] = rand_fn(_A , _A , _A ) _lowerCAmelCase : Union[str, Any] = rand_fn(_A , _A , _A ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _lowerCAmelCase : Optional[int] = gcd(hare - tortoise , _A ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _lowerCAmelCase : Tuple = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) lowerCAmelCase : List[str] = parser.parse_args() lowerCAmelCase : List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: lowerCAmelCase : Union[str, Any] = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
444
1
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase_ : str = logging.getLogger(__name__) class _lowercase ( lowerCAmelCase ): _a : Optional[int] = '''token-classification''' def __init__( self : Union[str, Any] , a : Optional[int] ): """simple docstring""" if type(a ) == dict: __snake_case : Optional[int] =Namespace(**a ) __snake_case : Optional[int] =import_module('''tasks''' ) try: __snake_case : Optional[int] =getattr(a , hparams.task_type ) __snake_case : TokenClassificationTask =token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case : str =self.token_classification_task.get_labels(hparams.labels ) __snake_case : Tuple =CrossEntropyLoss().ignore_index super().__init__(a , len(self.labels ) , self.mode ) def _UpperCamelCase ( self : Optional[Any] , **a : Tuple ): """simple docstring""" return self.model(**a ) def _UpperCamelCase ( self : Any , a : str , a : Tuple ): """simple docstring""" __snake_case : Dict ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __snake_case : Optional[Any] =( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Union[str, Any] =self(**a ) __snake_case : int =outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _UpperCamelCase ( self : str ): """simple docstring""" __snake_case : Optional[int] =self.hparams for mode in ["train", "dev", "test"]: __snake_case : List[Any] =self._feature_file(a ) if os.path.exists(a ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , a ) __snake_case : Optional[Any] =torch.load(a ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) __snake_case : List[str] =self.token_classification_task.read_examples_from_file(args.data_dir , a ) __snake_case : List[str] =self.token_classification_task.convert_examples_to_features( a , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=a , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , a ) torch.save(a , a ) def _UpperCamelCase ( self : Optional[int] , a : int , a : int , a : bool = False ): """simple docstring""" __snake_case : Any =self._feature_file(a ) logger.info('''Loading features from cached file %s''' , a ) __snake_case : int =torch.load(a ) __snake_case : Optional[int] =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case : Any =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case : Optional[Any] =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case : int =torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case : Any =torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(a , a , a , a ) , batch_size=a ) def _UpperCamelCase ( self : Optional[int] , a : int , a : int ): """simple docstring""" """Compute validation""" "" __snake_case : Union[str, Any] ={'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __snake_case : Union[str, Any] =( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Optional[Any] =self(**a ) __snake_case , __snake_case : Optional[int] =outputs[:2] __snake_case : Optional[Any] =logits.detach().cpu().numpy() __snake_case : Any =inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCamelCase ( self : Union[str, Any] , a : Optional[int] ): """simple docstring""" __snake_case : List[Any] =torch.stack([x['''val_loss'''] for x in outputs] ).mean() __snake_case : Optional[int] =np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) __snake_case : Union[str, Any] =np.argmax(a , axis=2 ) __snake_case : str =np.concatenate([x['''target'''] for x in outputs] , axis=0 ) __snake_case : Union[str, Any] =dict(enumerate(self.labels ) ) __snake_case : List[Any] =[[] for _ in range(out_label_ids.shape[0] )] __snake_case : Any =[[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case : int ={ '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(a , a ), '''precision''': precision_score(a , a ), '''recall''': recall_score(a , a ), '''f1''': fa_score(a , a ), } __snake_case : Any =dict(results.items() ) __snake_case : int =results return ret, preds_list, out_label_list def _UpperCamelCase ( self : List[str] , a : List[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case : str =self._eval_end(a ) __snake_case : Optional[Any] =ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCamelCase ( self : List[Any] , a : Any ): """simple docstring""" __snake_case , __snake_case , __snake_case : Tuple =self._eval_end(a ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case : Tuple =ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCamelCase ( a : int , a : Optional[int] ): """simple docstring""" BaseTransformer.add_model_specific_args(a , a ) parser.add_argument( '''--task_type''' , default='''NER''' , type=a , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=a , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=a , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=a , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": UpperCamelCase_ : List[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase_ : Optional[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase_ : Optional[Any] = parser.parse_args() UpperCamelCase_ : List[Any] = NERTransformer(args) UpperCamelCase_ : str = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase_ : str = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) UpperCamelCase_ : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
497
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( lowerCAmelCase , unittest.TestCase ): _a : List[str] = MgpstrTokenizer _a : int = False _a : List[str] = {} _a : Optional[Any] = False def _UpperCamelCase ( self : str ): """simple docstring""" super().setUp() # fmt: off __snake_case : Union[str, Any] =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __snake_case : Optional[Any] =dict(zip(a , range(len(a ) ) ) ) __snake_case : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a ) + '''\n''' ) def _UpperCamelCase ( self : Any , **a : int ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **a ) def _UpperCamelCase ( self : int , a : Any ): """simple docstring""" __snake_case : Dict ='''tester''' __snake_case : str ='''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def _UpperCamelCase ( self : Any ): """simple docstring""" pass def _UpperCamelCase ( self : Any ): """simple docstring""" __snake_case : List[Any] =self.get_tokenizers(do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[Any] ='''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __snake_case : Tuple =tokenizer.encode([special_token] , add_special_tokens=a ) self.assertEqual(len(a ) , 1 ) __snake_case : int =tokenizer.decode(a , skip_special_tokens=a ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : Union[str, Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Tuple =self.get_input_output_texts(a ) __snake_case : int =tokenizer.tokenize(a ) __snake_case : str =tokenizer.convert_tokens_to_ids(a ) __snake_case : Union[str, Any] =tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __snake_case : Tuple =tokenizer.convert_ids_to_tokens(a ) self.assertNotEqual(len(a ) , 0 ) __snake_case : Optional[Any] =tokenizer.decode(a ) self.assertIsInstance(a , a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" pass
497
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Any=3 ,_UpperCamelCase : Union[str, Any]=3_2 ,_UpperCamelCase : List[Any]=3 ,_UpperCamelCase : Dict=1_0 ,_UpperCamelCase : Dict=[1_0, 2_0, 3_0, 4_0] ,_UpperCamelCase : List[Any]=[1, 1, 2, 1] ,_UpperCamelCase : Dict=True ,_UpperCamelCase : int=True ,_UpperCamelCase : str="relu" ,_UpperCamelCase : Union[str, Any]=3 ,_UpperCamelCase : Any=None ,) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =parent SCREAMING_SNAKE_CASE__ =batch_size SCREAMING_SNAKE_CASE__ =image_size SCREAMING_SNAKE_CASE__ =num_channels SCREAMING_SNAKE_CASE__ =embeddings_size SCREAMING_SNAKE_CASE__ =hidden_sizes SCREAMING_SNAKE_CASE__ =depths SCREAMING_SNAKE_CASE__ =is_training SCREAMING_SNAKE_CASE__ =use_labels SCREAMING_SNAKE_CASE__ =hidden_act SCREAMING_SNAKE_CASE__ =num_labels SCREAMING_SNAKE_CASE__ =scope SCREAMING_SNAKE_CASE__ =len(a__ ) def __A ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ =self.get_config() return config, pixel_values def __A ( self : Dict ) -> List[Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __A ( self : str ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =FlaxRegNetModel(config=a__ ) SCREAMING_SNAKE_CASE__ =model(a__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) ,) def __A ( self : Tuple ,_UpperCamelCase : Dict ,_UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.num_labels SCREAMING_SNAKE_CASE__ =FlaxRegNetForImageClassification(config=a__ ) SCREAMING_SNAKE_CASE__ =model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __A ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ =config_and_inputs SCREAMING_SNAKE_CASE__ ={"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _A : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _A : Any = False _A : List[str] = False _A : Optional[Any] = False def __A ( self : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE__ =ConfigTester(self ,config_class=a__ ,has_text_modality=a__ ) def __A ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return def __A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def __A ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def __A ( self : int ) -> Tuple: '''simple docstring''' pass def __A ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ =model_class(a__ ) SCREAMING_SNAKE_CASE__ =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ =["""pixel_values"""] self.assertListEqual(arg_names[:1] ,a__ ) def __A ( self : int ) -> Dict: '''simple docstring''' def check_hidden_states_output(_UpperCamelCase : List[Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[str] ): SCREAMING_SNAKE_CASE__ =model_class(a__ ) SCREAMING_SNAKE_CASE__ =model(**self._prepare_for_class(a__ ,a__ ) ) SCREAMING_SNAKE_CASE__ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ =self.model_tester.num_stages self.assertEqual(len(a__ ) ,expected_num_stages + 1 ) SCREAMING_SNAKE_CASE__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ =True check_hidden_states_output(a__ ,a__ ,a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ =True check_hidden_states_output(a__ ,a__ ,a__ ) def __A ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ =self._prepare_for_class(a__ ,a__ ) SCREAMING_SNAKE_CASE__ =model_class(a__ ) @jax.jit def model_jitted(_UpperCamelCase : List[str] ,**_UpperCamelCase : Dict ): return model(pixel_values=a__ ,**a__ ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE__ =model_jitted(**a__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ =model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) ,len(a__ ) ) for jitted_output, output in zip(a__ ,a__ ): self.assertEqual(jitted_output.shape ,output.shape ) def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class __a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Dict ) -> Tuple: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def __A ( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ =FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) SCREAMING_SNAKE_CASE__ =self.default_image_processor SCREAMING_SNAKE_CASE__ =prepare_img() SCREAMING_SNAKE_CASE__ =image_processor(images=a__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ =model(**a__ ) # verify the logits SCREAMING_SNAKE_CASE__ =(1, 1_0_0_0) self.assertEqual(outputs.logits.shape ,a__ ) SCREAMING_SNAKE_CASE__ =jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,a__ ,atol=1e-4 ) )
151
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Dict = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = "unispeech-sat" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.1 , a__=0.1 , a__=0.0_2 , a__=1e-5 , a__="group" , a__="gelu" , a__=(512, 512, 512, 512, 512, 512, 512) , a__=(5, 2, 2, 2, 2, 2, 2) , a__=(10, 3, 3, 3, 3, 2, 2) , a__=False , a__=128 , a__=16 , a__=False , a__=True , a__=0.0_5 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__=320 , a__=2 , a__=0.1 , a__=100 , a__=256 , a__=256 , a__=0.1 , a__="mean" , a__=False , a__=False , a__=256 , a__=(512, 512, 512, 512, 1500) , a__=(5, 3, 3, 1, 1) , a__=(1, 2, 3, 1, 1) , a__=512 , a__=0 , a__=1 , a__=2 , a__=504 , **a__ , ): super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : int = feat_extract_norm _lowerCAmelCase : Any = feat_extract_activation _lowerCAmelCase : List[Any] = list(a__ ) _lowerCAmelCase : List[str] = list(a__ ) _lowerCAmelCase : Dict = list(a__ ) _lowerCAmelCase : str = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups _lowerCAmelCase : int = len(self.conv_dim ) _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : str = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : Optional[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : Union[str, Any] = layerdrop _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : str = initializer_range _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : str = num_clusters _lowerCAmelCase : Optional[Any] = do_stable_layer_norm _lowerCAmelCase : Optional[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Tuple = apply_spec_augment _lowerCAmelCase : Optional[Any] = mask_time_prob _lowerCAmelCase : List[Any] = mask_time_length _lowerCAmelCase : List[Any] = mask_time_min_masks _lowerCAmelCase : Optional[Any] = mask_feature_prob _lowerCAmelCase : str = mask_feature_length _lowerCAmelCase : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : Tuple = num_codevector_groups _lowerCAmelCase : str = contrastive_logits_temperature _lowerCAmelCase : Optional[int] = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Optional[int] = codevector_dim _lowerCAmelCase : List[Any] = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Union[str, Any] = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(a__ ) _lowerCAmelCase : List[Any] = list(a__ ) _lowerCAmelCase : Union[str, Any] = list(a__ ) _lowerCAmelCase : List[str] = xvector_output_dim @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
213
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : Any , __a : Any ): """simple docstring""" try: with open(__a , 'rb' ) as flax_state_f: _a : Union[str, Any] = from_bytes(__a , flax_state_f.read() ) except UnpicklingError as e: try: with open(__a ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__a , __a ) def UpperCAmelCase_ (__a : Optional[int] , __a : Dict ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights _a : Tuple = flatten_dict(jax.tree_util.tree_map(lambda __a : x.dtype == jnp.bfloataa , __a ) ).values() if any(__a ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) _a : Optional[int] = jax.tree_util.tree_map( lambda __a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __a ) _a : str = '' _a : int = flatten_dict(__a , sep='.' ) _a : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys _a : Union[str, Any] = [] _a : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _a : Optional[int] = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _a : str = flax_key_tuple_array[:-1] + ['weight'] _a : Dict = jnp.transpose(__a , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _a : Dict = flax_key_tuple_array[:-1] + ['weight'] _a : List[str] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _a : Dict = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__a ): _a : Optional[Any] = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) _a : int = '.'.join(__a ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _a : List[str] = np.asarray(__a ) if not isinstance(__a , np.ndarray ) else flax_tensor _a : Union[str, Any] = torch.from_numpy(__a ) # remove from missing keys missing_keys.remove(__a ) else: # weight is not expected by PyTorch model unexpected_keys.append(__a ) pt_model.load_state_dict(__a ) # re-transform missing_keys to list _a : Optional[int] = list(__a ) if len(__a ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(__a ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) return pt_model
319
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A( a ): snake_case_ = '''Speech2TextFeatureExtractor''' snake_case_ = '''Speech2TextTokenizer''' def __init__( self , _snake_case , _snake_case ) -> Dict: '''simple docstring''' super().__init__(_snake_case , _snake_case ) __a = self.feature_extractor __a = False def __call__( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __a = kwargs.pop('''raw_speech''' ) else: __a = kwargs.pop('''audio''' , _snake_case ) __a = kwargs.pop('''sampling_rate''' , _snake_case ) __a = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __a = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if text is not None: __a = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
219
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger() @dataclass class __A: snake_case_ = 42 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self , _snake_case ) -> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def __call__( self , _snake_case ) -> Dict: '''simple docstring''' __a = Tracker(self.dest )(_snake_case ).parametrized __a = Tracker(self.src )(_snake_case ).parametrized __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) ) __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) ) if len(_snake_case ) != len(_snake_case ): raise Exception( F"""Numbers of operations are different. Source module has {len(_snake_case )} operations while""" F""" destination module has {len(_snake_case )}.""" ) for dest_m, src_m in zip(_snake_case , _snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = True ) -> str: print(F"""Converting {name}...""" ) with torch.no_grad(): __a = timm.create_model(a__ , pretrained=a__ ).eval() __a = ResNetForImageClassification(a__ ).eval() __a = ModuleTransfer(src=a__ , dest=a__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(a__ ) assert torch.allclose(from_model(a__ ) , our_model(a__ ).logits ), "The model logits don't match the original one." __a = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(a__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a__ , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a__ , ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCAmelCase ( a__ , a__ = None , a__ = True ) -> List[Any]: __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(a__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ ) __a = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a__ , names_to_config[model_name] , a__ , a__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a__ , a__ , a__ , a__ ) return config, expected_shape if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) A : List[Any] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
219
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''torch''', '''torchsde'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase: Any = logging.get_logger(__name__) # General docstring _lowercase: List[Any] = '''RegNetConfig''' # Base docstring _lowercase: List[Any] = '''facebook/regnet-y-040''' _lowercase: int = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowercase: Union[str, Any] = '''facebook/regnet-y-040''' _lowercase: Tuple = '''tabby, tabby cat''' _lowercase: str = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : int , lowercase__ : int , lowercase__ : int = 3 , lowercase__ : int = 1 , lowercase__ : int = 1 , lowercase__ : Optional[str] = "relu" , ): super().__init__() _lowerCAmelCase = nn.Convad( lowercase__ , lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=kernel_size // 2 , groups=lowercase__ , bias=lowercase__ , ) _lowerCAmelCase = nn.BatchNormad(lowercase__ ) _lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : Union[str, Any] ): _lowerCAmelCase = self.convolution(lowercase__ ) _lowerCAmelCase = self.normalization(lowercase__ ) _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : int , lowercase__ : RegNetConfig ): super().__init__() _lowerCAmelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _lowerCAmelCase = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _lowerCAmelCase = self.embedder(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : int = 2 ): super().__init__() _lowerCAmelCase = nn.Convad(lowercase__ , lowercase__ , kernel_size=1 , stride=lowercase__ , bias=lowercase__ ) _lowerCAmelCase = nn.BatchNormad(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Tensor ): _lowerCAmelCase = self.convolution(lowercase__ ) _lowerCAmelCase = self.normalization(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , lowercase__ : int , lowercase__ : int ): super().__init__() _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) _lowerCAmelCase = nn.Sequential( nn.Convad(lowercase__ , lowercase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowercase__ , lowercase__ , kernel_size=1 ) , nn.Sigmoid() , ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[Any] ): # b c h w -> b c 1 1 _lowerCAmelCase = self.pooler(lowercase__ ) _lowerCAmelCase = self.attention(lowercase__ ) _lowerCAmelCase = hidden_state * attention return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 1 ): super().__init__() _lowerCAmelCase = in_channels != out_channels or stride != 1 _lowerCAmelCase = max(1 , out_channels // config.groups_width ) _lowerCAmelCase = ( RegNetShortCut(lowercase__ , lowercase__ , stride=lowercase__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase = nn.Sequential( RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=lowercase__ ) , ) _lowerCAmelCase = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Any ): _lowerCAmelCase = hidden_state _lowerCAmelCase = self.layer(lowercase__ ) _lowerCAmelCase = self.shortcut(lowercase__ ) hidden_state += residual _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Any , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 1 ): super().__init__() _lowerCAmelCase = in_channels != out_channels or stride != 1 _lowerCAmelCase = max(1 , out_channels // config.groups_width ) _lowerCAmelCase = ( RegNetShortCut(lowercase__ , lowercase__ , stride=lowercase__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase = nn.Sequential( RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act ) , RegNetSELayer(lowercase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=lowercase__ ) , ) _lowerCAmelCase = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Tuple ): _lowerCAmelCase = hidden_state _lowerCAmelCase = self.layer(lowercase__ ) _lowerCAmelCase = self.shortcut(lowercase__ ) hidden_state += residual _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 2 , lowercase__ : int = 2 , ): super().__init__() _lowerCAmelCase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer _lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowercase__ , lowercase__ , lowercase__ , stride=lowercase__ , ) , *[layer(lowercase__ , lowercase__ , lowercase__ ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Any ): _lowerCAmelCase = self.layers(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig ): super().__init__() _lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowercase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase__ , config.depths[1:] ): self.stages.append(RegNetStage(lowercase__ , lowercase__ , lowercase__ , depth=lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tensor , lowercase__ : bool = False , lowercase__ : bool = True ): _lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase = hidden_states + (hidden_state,) _lowerCAmelCase = stage_module(lowercase__ ) if output_hidden_states: _lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase__ , hidden_states=lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =RegNetConfig UpperCamelCase__ ="regnet" UpperCamelCase__ ="pixel_values" UpperCamelCase__ =True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : List[Any] ): if isinstance(lowercase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[str] , lowercase__ : List[Any]=False ): if isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase = value _lowercase: Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase: str = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : List[str] , lowercase__ : int ): super().__init__(lowercase__ ) _lowerCAmelCase = config _lowerCAmelCase = RegNetEmbeddings(lowercase__ ) _lowerCAmelCase = RegNetEncoder(lowercase__ ) _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Tensor , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None ): _lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.embedder(lowercase__ ) _lowerCAmelCase = self.encoder( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ ) _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : str , lowercase__ : Union[str, Any] ): super().__init__(lowercase__ ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = RegNetModel(lowercase__ ) # classification head _lowerCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[torch.FloatTensor] = None , lowercase__ : Optional[torch.LongTensor] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None , ): _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.regnet(lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ ) _lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase = self.classifier(lowercase__ ) _lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase = 'single_label_classification' else: _lowerCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase = MSELoss() if self.num_labels == 1: _lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase = loss_fct(lowercase__ , lowercase__ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase = BCEWithLogitsLoss() _lowerCAmelCase = loss_fct(lowercase__ , lowercase__ ) if not return_dict: _lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states )
192
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 256} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ )-> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
700
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCamelCase = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , use_clipped_model_output=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
451
0
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] ) -> None: _lowercase = len(SCREAMING_SNAKE_CASE_ ) print("""The following activities are selected:""" ) # The first activity is always selected _lowercase = 0 print(SCREAMING_SNAKE_CASE_ , end=""",""" ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE_ , end=""",""" ) _lowercase = j if __name__ == "__main__": import doctest doctest.testmod() A : Union[str, Any] = [1, 3, 0, 5, 8, 5] A : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
287
import datasets A : Optional[int] = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' A : Optional[int] = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' A : str = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )}
287
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCAmelCase ( __snake_case ): lowercase = None lowercase = None lowercase = None lowercase = None class UpperCAmelCase ( __snake_case ): def __init__( self : Union[str, Any] , __magic_name__ : List[Any]=1 , __magic_name__ : List[Any]=0 , __magic_name__ : Optional[Any]=2 , __magic_name__ : List[Any]=5_1_2 , __magic_name__ : Union[str, Any]="cls" , __magic_name__ : Any=False , __magic_name__ : str=True , **__magic_name__ : Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) UpperCamelCase = project_dim UpperCamelCase = pooler_fn UpperCamelCase = learn_encoder UpperCamelCase = use_attention_mask class UpperCAmelCase ( __snake_case ): lowercase = [R"""pooler""", R"""logit_scale"""] lowercase = [R"""position_ids""", R"""predictions.decoder.bias"""] lowercase = """roberta""" lowercase = RobertaSeriesConfig def __init__( self : List[str] , __magic_name__ : Dict ): """simple docstring""" super().__init__(__magic_name__ ) UpperCamelCase = XLMRobertaModel(__magic_name__ ) UpperCamelCase = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase = getattr(__magic_name__ , """has_pre_transformation""" , __magic_name__ ) if self.has_pre_transformation: UpperCamelCase = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.base_model( input_ids=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , position_ids=__magic_name__ , head_mask=__magic_name__ , inputs_embeds=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_attentions=__magic_name__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__magic_name__ , ) if self.has_pre_transformation: UpperCamelCase = outputs["""hidden_states"""][-2] UpperCamelCase = self.pre_LN(__magic_name__ ) UpperCamelCase = self.transformation_pre(__magic_name__ ) return TransformationModelOutput( projection_state=__magic_name__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCamelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__magic_name__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
181
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = XLMTokenizer lowercase = False def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCamelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowerCamelCase_ ( self : Any , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = """lower newer""" UpperCamelCase = """lower newer""" return input_text, output_text def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase = """lower""" UpperCamelCase = ["""low""", """er</w>"""] UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCamelCase = tokens + ["""<unk>"""] UpperCamelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
181
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Dict =logging.get_logger(__name__) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Optional[Any]: _lowerCamelCase : Dict = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights _lowerCamelCase : Dict = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Any = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : int = sd.pop(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Dict = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : Any = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) _lowerCamelCase : Any = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) _lowerCamelCase : List[Any] = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) _lowerCamelCase : Optional[int] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 ) _lowerCamelCase : Union[str, Any] = q _lowerCamelCase : str = k _lowerCamelCase : Any = v del sd[key] return sd @torch.no_grad() def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) ->List[Any]: _lowerCamelCase : List[Any] = load_checkpoint(SCREAMING_SNAKE_CASE_ ) if config is not None: _lowerCamelCase : Tuple = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: _lowerCamelCase : Optional[int] = OPTConfig() _lowerCamelCase : List[Any] = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check results Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') SCREAMING_SNAKE_CASE__ : Any =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
434
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
434
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=7 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Any=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=5 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Dict=5_12 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : Dict=0.02 , lowerCamelCase_ : Dict=3 , lowerCamelCase_ : Dict=4 , lowerCamelCase_ : int=None , ) -> Dict: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def lowerCAmelCase_ ( self : Optional[int] ) -> List[str]: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[int] ) -> int: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , use_stable_embedding=__A , ) def lowerCAmelCase_ ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] ) -> Optional[Any]: __a = OpenLlamaModel(config=__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A ) __a = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , ) -> int: __a = True __a = OpenLlamaModel(__A ) model.to(__A ) model.eval() __a = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) __a = model( __A , attention_mask=__A , encoder_hidden_states=__A , ) __a = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , ) -> Tuple: __a = OpenLlamaForCausalLM(config=__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , ) -> Union[str, Any]: __a = True __a = True __a = OpenLlamaForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass __a = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , use_cache=__A , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , output_hidden_states=__A , )["""hidden_states"""][0] __a = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["""hidden_states"""][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ) -> List[str]: __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): A_ : Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A_ : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () A_ : str = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A_ : List[Any] = False A_ : Optional[Any] = False def lowerCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: __a = OpenLlamaModelTester(self ) __a = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowerCAmelCase_ ( self : List[Any] ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : Optional[Any] ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : List[Any] ) -> Dict: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__A ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Dict ) -> Dict: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = """single_label_classification""" __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__A ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Any ) -> int: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = """multi_label_classification""" __a = input_dict["""input_ids"""] __a = input_ids.ne(1 ).to(__A ) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a = OpenLlamaForSequenceClassification(__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def lowerCAmelCase_ ( self : Any ) -> List[str]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : str ) -> Tuple: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ids_tensor([1, 10] , config.vocab_size ) __a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = OpenLlamaModel(__A ) original_model.to(__A ) original_model.eval() __a = original_model(__A ).last_hidden_state __a = original_model(__A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = {"""type""": scaling_type, """factor""": 10.0} __a = OpenLlamaModel(__A ) scaled_model.to(__A ) scaled_model.eval() __a = scaled_model(__A ).last_hidden_state __a = scaled_model(__A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__A , __A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__A , __A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__A , __A , atol=1E-5 ) )
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""DeiTFeatureExtractor"""] __A = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
0