code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : List[Any] = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = SavedModel() SCREAMING_SNAKE_CASE = [] with open(os.path.join(UpperCAmelCase__ , "utils" , "tf_ops" , "onnx.json" ) ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(UpperCAmelCase__ )] ) with open(UpperCAmelCase__ , "rb" ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(UpperCAmelCase__ ) if strict and len(UpperCAmelCase__ ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(UpperCAmelCase__ ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*UpperCAmelCase__ , sep="\n" ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
403
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Optional[int] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : List[str] = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } _lowerCamelCase : int = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class lowercase ( a ): lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = SqueezeBertTokenizer def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]="[UNK]" , _UpperCamelCase : List[Any]="[SEP]" , _UpperCamelCase : Tuple="[PAD]" , _UpperCamelCase : int="[CLS]" , _UpperCamelCase : Tuple="[MASK]" , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Any , ) -> Optional[Any]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
403
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Dict = logging.get_logger(__name__) A : str = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' __UpperCAmelCase : int ='''table-transformer''' __UpperCAmelCase : int =['''past_key_values'''] __UpperCAmelCase : Dict ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.0_2 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowerCAmelCase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = backbone_config.get("model_type" ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None, None, None __lowerCAmelCase = use_timm_backbone __lowerCAmelCase = backbone_config __lowerCAmelCase = num_channels __lowerCAmelCase = num_queries __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = encoder_layers __lowerCAmelCase = auxiliary_loss __lowerCAmelCase = position_embedding_type __lowerCAmelCase = backbone __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = dilation # Hungarian matcher __lowerCAmelCase = class_cost __lowerCAmelCase = bbox_cost __lowerCAmelCase = giou_cost # Loss coefficients __lowerCAmelCase = mask_loss_coefficient __lowerCAmelCase = dice_loss_coefficient __lowerCAmelCase = bbox_loss_coefficient __lowerCAmelCase = giou_loss_coefficient __lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def snake_case ( self ): return self.encoder_attention_heads @property def snake_case ( self ): return self.d_model class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' __UpperCAmelCase : str =version.parse("""1.11""" ) @property def snake_case ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def snake_case ( self ): return 1e-5 @property def snake_case ( self ): return 12
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Optional[int] = logging.get_logger(__name__) A : List[str] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""bit""" __UpperCAmelCase : Optional[int] =["""preactivation""", """bottleneck"""] __UpperCAmelCase : List[str] =["""SAME""", """VALID"""] def __init__( self , __a=3 , __a=64 , __a=[2_56, 5_12, 10_24, 20_48] , __a=[3, 4, 6, 3] , __a="preactivation" , __a="relu" , __a=None , __a=32 , __a=0.0 , __a=False , __a=32 , __a=1 , __a=None , __a=None , **__a , ): super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCAmelCase = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = global_padding __lowerCAmelCase = num_groups __lowerCAmelCase = drop_path_rate __lowerCAmelCase = embedding_dynamic_padding __lowerCAmelCase = output_stride __lowerCAmelCase = width_factor __lowerCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__a ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
282
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __magic_name__ : Optional[Any] = datasets.logging.get_logger(__name__) __magic_name__ : str = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ __magic_name__ : Tuple = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ __magic_name__ : Union[str, Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="dummy_doc" ): '''simple docstring''' _snake_case = {doc: key_lines} _snake_case = {doc: sys_lines} _snake_case = {} _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case , _snake_case = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) key_singletons_num += singletons_num if NP_only or min_span: _snake_case = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE__ ) sys_singletons_num += singletons_num if NP_only or min_span: _snake_case = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if remove_nested: _snake_case , _snake_case = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _snake_case , _snake_case = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _snake_case = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( "Number of resulting singleton clusters in the key " f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively" ) return doc_coref_infos def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = get_coref_infos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = {} _snake_case = 0 _snake_case = 0 for name, metric in metrics: _snake_case , _snake_case , _snake_case = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , f'''Recall: {recall * 1_00:.2f}''' , f''' Precision: {precision * 1_00:.2f}''' , f''' F1: {fa * 1_00:.2f}''' , ) if conll_subparts_num == 3: _snake_case = (conll / 3) * 1_00 logger.info(f'''CoNLL score: {conll:.2f}''' ) output_scores.update({"conll_score": conll} ) return output_scores def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _snake_case = line.split()[5] if not parse_col == "-": _snake_case = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def UpperCamelCase( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False ): _snake_case = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _snake_case = util.check_gold_parse_annotation(lowerCamelCase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _snake_case = evaluate( key_lines=lowerCamelCase , sys_lines=lowerCamelCase , metrics=lowerCamelCase , NP_only=lowerCamelCase , remove_nested=lowerCamelCase , keep_singletons=lowerCamelCase , min_span=lowerCamelCase , ) return score
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __magic_name__ : Optional[int] = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): _snake_case = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images _snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] =StableDiffusionSAGPipeline UpperCAmelCase__ : Any =TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Dict =TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : List[str] =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : int =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Optional[Any] =False def _lowercase ( self : Dict ) ->str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase ( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=0 ) ->Union[str, Any]: """simple docstring""" if str(UpperCAmelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE : int = torch.manual_seed(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Any ) ->str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : int ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sag_pipe.to(UpperCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = """.""" SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="""np""" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE : str = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowercase ( self : List[str] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sag_pipe.to(UpperCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = """.""" SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="""np""" ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowercase ( self : Optional[int] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE : Optional[Any] = sag_pipe.to(UpperCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = """.""" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=UpperCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="""np""" , ) SCREAMING_SNAKE_CASE : Tuple = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
446
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : int = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any ="""gpt_neox_japanese""" def __init__( self : Any , UpperCAmelCase__ : Any=3_2_0_0_0 , UpperCAmelCase__ : Dict=2_5_6_0 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Optional[int]=3_2 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Optional[int]=1.00 , UpperCAmelCase__ : List[Any]=1_0_0_0_0 , UpperCAmelCase__ : Tuple=2_0_4_8 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Tuple=3_1_9_9_6 , UpperCAmelCase__ : Tuple=3_1_9_9_9 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , **UpperCAmelCase__ : Optional[Any] , ) ->Optional[Any]: """simple docstring""" super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_multiple_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = rotary_pct SCREAMING_SNAKE_CASE : Tuple = rotary_emb_base SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : str = hidden_dropout
446
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __a ( self : Any ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """num_attention_heads""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=6_4_0 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Tuple="silu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : str=None , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = last_hidden_size __a = num_attention_heads __a = hidden_act __a = conv_kernel_size __a = output_stride __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope def __a ( self : Optional[int] ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : Any ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a = MobileViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self : Optional[Any] ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" a_ :List[str] =( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) a_ :str =( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) a_ :Tuple =False a_ :Dict =False a_ :int =False a_ :Optional[int] =False def __a ( self : List[str] ): '''simple docstring''' __a = MobileViTModelTester(self ) __a = MobileViTConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def __a ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def __a ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def __a ( self : int ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(SCREAMING_SNAKE_CASE__ ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __a ( self : Tuple ): '''simple docstring''' pass def __a ( self : List[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __a ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): __a = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def __a ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) -> Union[str, Any]: """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self : List[str] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def __a ( self : List[Any] ): '''simple docstring''' __a = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(SCREAMING_SNAKE_CASE__ ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __a = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __a = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' __a = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __a = model.to(SCREAMING_SNAKE_CASE__ ) __a = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(**SCREAMING_SNAKE_CASE__ ) __a = outputs.logits # verify the logits __a = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) __a = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __a ( self : Optional[int] ): '''simple docstring''' __a = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __a = model.to(SCREAMING_SNAKE_CASE__ ) __a = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(**SCREAMING_SNAKE_CASE__ ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ , target_sizes=[(5_0, 6_0)] ) __a = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ ) __a = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ ) __a = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ )
582
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 42 _a = 42 class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 42 _a = (1_6, 3_2, 9_6, 2_5_6) _a = jnp.floataa def snake_case ( self : Tuple )-> int: lowerCamelCase__ : Tuple =nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) lowerCamelCase__ : Dict =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ : Dict =self.block_out_channels[i] lowerCamelCase__ : Dict =self.block_out_channels[i + 1] lowerCamelCase__ : List[str] =nn.Conv( lowerCamelCase, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCamelCase ) lowerCamelCase__ : Optional[int] =nn.Conv( lowerCamelCase, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCamelCase ) lowerCamelCase__ : Any =blocks lowerCamelCase__ : Optional[int] =nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self : Any, lowerCamelCase : int )-> List[str]: lowerCamelCase__ : Tuple =self.conv_in(lowerCamelCase ) lowerCamelCase__ : Dict =nn.silu(lowerCamelCase ) for block in self.blocks: lowerCamelCase__ : str =block(lowerCamelCase ) lowerCamelCase__ : List[str] =nn.silu(lowerCamelCase ) lowerCamelCase__ : Any =self.conv_out(lowerCamelCase ) return embedding @flax_register_to_config class __SCREAMING_SNAKE_CASE ( nn.Module , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _a = 3_2 _a = 4 _a = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _a = False _a = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _a = 2 _a = 8 _a = None _a = 1_2_8_0 _a = 0.0 _a = False _a = jnp.floataa _a = True _a = 0 _a = "rgb" _a = (1_6, 3_2, 9_6, 2_5_6) def snake_case ( self : str, lowerCamelCase : jax.random.KeyArray )-> FrozenDict: # init input tensors lowerCamelCase__ : int =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ : int =jnp.zeros(lowerCamelCase, dtype=jnp.floataa ) lowerCamelCase__ : Union[str, Any] =jnp.ones((1,), dtype=jnp.intaa ) lowerCamelCase__ : str =jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) lowerCamelCase__ : Any =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ : Optional[Any] =jnp.zeros(lowerCamelCase, dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =jax.random.split(lowerCamelCase ) lowerCamelCase__ : Dict ={'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )["params"] def snake_case ( self : Any )-> Tuple: lowerCamelCase__ : Optional[int] =self.block_out_channels lowerCamelCase__ : Tuple =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ : List[Any] =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ : int =nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time lowerCamelCase__ : str =FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) lowerCamelCase__ : Dict =FlaxTimestepEmbedding(lowerCamelCase, dtype=self.dtype ) lowerCamelCase__ : List[Any] =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) lowerCamelCase__ : Dict =self.only_cross_attention if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : int =(only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : List[str] =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ : Union[str, Any] =[] lowerCamelCase__ : Dict =[] lowerCamelCase__ : List[Any] =block_out_channels[0] lowerCamelCase__ : List[Any] =nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ : List[Any] =output_channel lowerCamelCase__ : str =block_out_channels[i] lowerCamelCase__ : Dict =i == len(lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ : str =FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase, out_channels=lowerCamelCase, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: lowerCamelCase__ : List[Any] =FlaxDownBlockaD( in_channels=lowerCamelCase, out_channels=lowerCamelCase, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(lowerCamelCase ) for _ in range(self.layers_per_block ): lowerCamelCase__ : Any =nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCamelCase ) if not is_final_block: lowerCamelCase__ : Any =nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCamelCase ) lowerCamelCase__ : int =down_blocks lowerCamelCase__ : List[str] =controlnet_down_blocks # mid lowerCamelCase__ : Tuple =block_out_channels[-1] lowerCamelCase__ : List[Any] =FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCamelCase, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) lowerCamelCase__ : List[str] =nn.Conv( lowerCamelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self : int, lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : float = 1.0, lowerCamelCase : bool = True, lowerCamelCase : bool = False, )-> Union[FlaxControlNetOutput, Tuple]: lowerCamelCase__ : int =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ : int =jnp.flip(lowerCamelCase, axis=1 ) # 1. time if not isinstance(lowerCamelCase, jnp.ndarray ): lowerCamelCase__ : Any =jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(lowerCamelCase, jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ : int =jnp.expand_dims(lowerCamelCase, 0 ) lowerCamelCase__ : Optional[Any] =self.time_proj(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =self.time_embedding(lowerCamelCase ) # 2. pre-process lowerCamelCase__ : Optional[int] =jnp.transpose(lowerCamelCase, (0, 2, 3, 1) ) lowerCamelCase__ : Dict =self.conv_in(lowerCamelCase ) lowerCamelCase__ : List[str] =jnp.transpose(lowerCamelCase, (0, 2, 3, 1) ) lowerCamelCase__ : int =self.controlnet_cond_embedding(lowerCamelCase ) sample += controlnet_cond # 3. down lowerCamelCase__ : Union[str, Any] =(sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : Dict =down_block(lowerCamelCase, lowerCamelCase, lowerCamelCase, deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ : Tuple =down_block(lowerCamelCase, lowerCamelCase, deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ : Optional[int] =self.mid_block(lowerCamelCase, lowerCamelCase, lowerCamelCase, deterministic=not train ) # 5. contronet blocks lowerCamelCase__ : Optional[Any] =() for down_block_res_sample, controlnet_block in zip(lowerCamelCase, self.controlnet_down_blocks ): lowerCamelCase__ : Union[str, Any] =controlnet_block(lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ : List[str] =controlnet_down_block_res_samples lowerCamelCase__ : List[str] =self.controlnet_mid_block(lowerCamelCase ) # 6. scaling lowerCamelCase__ : Union[str, Any] =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCamelCase, mid_block_res_sample=lowerCamelCase )
625
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): if len(UpperCamelCase__ ) < 2: return collection def circle_sort_util(UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> bool: _UpperCAmelCase : Optional[int] = False if low == high: return swapped _UpperCAmelCase : str = low _UpperCAmelCase : str = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase : Tuple = ( collection[right], collection[left], ) _UpperCAmelCase : Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase : Any = ( collection[right + 1], collection[left], ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : int = low + int((high - low) / 2 ) _UpperCAmelCase : str = circle_sort_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : List[str] = circle_sort_util(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) return swapped or left_swap or right_swap _UpperCAmelCase : Optional[Any] = True while is_not_sorted is True: _UpperCAmelCase : Optional[Any] = circle_sort_util(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) - 1 ) return collection if __name__ == "__main__": _lowerCAmelCase :str = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase :List[str] = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
506
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
303
0
"""simple docstring""" from scipy.stats import spearmanr import datasets _A = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _A = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _A = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def _UpperCamelCase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ) -> Optional[int]: lowerCamelCase : List[Any] = spearmanr(UpperCAmelCase_ , UpperCAmelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
133
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): '''simple docstring''' if num <= 0: lowerCamelCase : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) lowerCamelCase : Optional[Any] = [True] * (num + 1) lowerCamelCase : int = [] lowerCamelCase : Dict = 2 lowerCamelCase : List[str] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: lowerCamelCase : Optional[int] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
133
1
'''simple docstring''' def lowercase__ ( __lowercase : int = 2000000 ) -> int: """simple docstring""" __UpperCamelCase = [0 for i in range(n + 1 )] __UpperCamelCase = 1 __UpperCamelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __lowercase ): __UpperCamelCase = 1 __UpperCamelCase = 0 for i in range(__lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
399
'''simple docstring''' import math def lowercase__ ( __lowercase : int ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): __UpperCamelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowercase ) if number < 1: __UpperCamelCase = F'''Input value of [number={number}] must be > 0''' raise ValueError(__lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , __lowercase ): for _ in range(__lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a__ : int =0 try: a__ : str =proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
399
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : List[str] = """glpn""" def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[2, 2, 2, 2] , __lowerCAmelCase=[8, 4, 2, 1] , __lowerCAmelCase=[32, 64, 160, 256] , __lowerCAmelCase=[7, 3, 3, 3] , __lowerCAmelCase=[4, 2, 2, 2] , __lowerCAmelCase=[1, 2, 5, 8] , __lowerCAmelCase=[4, 4, 4, 4] , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=64 , __lowerCAmelCase=10 , __lowerCAmelCase=-1 , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = max_depth UpperCamelCase__ = head_in_index
721
from typing import Any def _UpperCamelCase (a__ :list ): """simple docstring""" if not input_list: return [] UpperCamelCase__ = [input_list.count(a__ ) for value in input_list] UpperCamelCase__ = max(a__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
548
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCAmelCase =pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = path + ".py" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = path + ".py" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs UpperCAmelCase = expected_configs[0] assert expected_config in infos UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
333
0
from heapq import heappop, heappush import numpy as np def __magic_name__ ( A : np.ndarray, A : tuple[int, int], A : tuple[int, int], A : bool, ): '''simple docstring''' a , a = grid.shape a = [-1, 1, 0, 0] a = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a , a = [(0, source)], set() a = np.full((rows, cols), np.inf ) a = 0 a = np.empty((rows, cols), dtype=A ) a = None while queue: ((a) , (a)) = heappop(A ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a = [] while (x, y) != source: path.append((x, y) ) a , a = predecessors[x, y] path.append(A ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(A ) ): a , a = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(A, (dist + 1, (nx, ny)) ) a = dist + 1 a = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
662
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : Dict = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Dict = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : Optional[Any], _snake_case : Union[str, Any]=50_265, _snake_case : Optional[Any]=768, _snake_case : Tuple=12, _snake_case : Union[str, Any]=12, _snake_case : Optional[int]=3_072, _snake_case : List[str]="gelu", _snake_case : Optional[int]=0.1, _snake_case : Dict=0.1, _snake_case : Tuple=512, _snake_case : Union[str, Any]=2, _snake_case : Optional[Any]=0.02, _snake_case : Any=1E-12, _snake_case : Union[str, Any]=1, _snake_case : Dict=0, _snake_case : str=2, _snake_case : Tuple="absolute", _snake_case : str=True, _snake_case : List[str]=None, **_snake_case : Union[str, Any], ): '''simple docstring''' super().__init__(pad_token_id=_snake_case, bos_token_id=_snake_case, eos_token_id=_snake_case, **_snake_case ) snake_case : Optional[Any] =vocab_size snake_case : Dict =hidden_size snake_case : Tuple =num_hidden_layers snake_case : str =num_attention_heads snake_case : Union[str, Any] =hidden_act snake_case : Optional[Any] =intermediate_size snake_case : str =hidden_dropout_prob snake_case : str =attention_probs_dropout_prob snake_case : Tuple =max_position_embeddings snake_case : Optional[int] =type_vocab_size snake_case : int =initializer_range snake_case : Optional[int] =layer_norm_eps snake_case : Optional[Any] =position_embedding_type snake_case : List[str] =use_cache snake_case : Optional[Any] =classifier_dropout class lowerCAmelCase_ ( a_ ): @property def __snake_case ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": snake_case : Any ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case : Union[str, Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
349
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 42 __UpperCAmelCase = jnp.floataa __UpperCAmelCase = True def __snake_case ( self : str ): '''simple docstring''' super().setup() snake_case : List[Any] =nn.Dense(5, dtype=self.dtype ) def __call__( self : Optional[int], *_snake_case : str, **_snake_case : Optional[Any] ): '''simple docstring''' snake_case : Optional[int] =super().__call__(*_snake_case, **_snake_case ) snake_case : Optional[int] =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = FlaxBigBirdForNaturalQuestionsModule def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): def cross_entropy(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): snake_case : int =logits.shape[-1] snake_case : Any =(labels[..., None] == jnp.arange(lowerCamelCase_ )[None]).astype('''f4''' ) snake_case : List[str] =jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) snake_case : List[Any] =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: snake_case : Optional[Any] =reduction(lowerCamelCase_ ) return loss snake_case : Optional[int] =partial(lowerCamelCase_ , reduction=jnp.mean ) snake_case : Optional[Any] =cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Tuple =cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Any =cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase_ : __UpperCAmelCase = "google/bigbird-roberta-base" __UpperCAmelCase = 3000 __UpperCAmelCase = 1_0500 __UpperCAmelCase = 128 __UpperCAmelCase = 3 __UpperCAmelCase = 1 __UpperCAmelCase = 5 # tx_args __UpperCAmelCase = 3e-5 __UpperCAmelCase = 0.0 __UpperCAmelCase = 2_0000 __UpperCAmelCase = 0.0_0_9_5 __UpperCAmelCase = "bigbird-roberta-natural-questions" __UpperCAmelCase = "training-expt" __UpperCAmelCase = "data/nq-training.jsonl" __UpperCAmelCase = "data/nq-validation.jsonl" def __snake_case ( self : Optional[Any] ): '''simple docstring''' os.makedirs(self.base_dir, exist_ok=_snake_case ) snake_case : Dict =os.path.join(self.base_dir, self.save_dir ) snake_case : Union[str, Any] =self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase_ : __UpperCAmelCase = 42 __UpperCAmelCase = 4096 # no dynamic padding on TPUs def __call__( self : List[Any], _snake_case : Union[str, Any] ): '''simple docstring''' snake_case : Tuple =self.collate_fn(_snake_case ) snake_case : Dict =jax.tree_util.tree_map(_snake_case, _snake_case ) return batch def __snake_case ( self : Dict, _snake_case : str ): '''simple docstring''' snake_case , snake_case : Dict =self.fetch_inputs(features['''input_ids'''] ) snake_case : List[str] ={ '''input_ids''': jnp.array(_snake_case, dtype=jnp.intaa ), '''attention_mask''': jnp.array(_snake_case, dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''], dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''], dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''], dtype=jnp.intaa ), } return batch def __snake_case ( self : Optional[Any], _snake_case : list ): '''simple docstring''' snake_case : int =[self._fetch_inputs(_snake_case ) for ids in input_ids] return zip(*_snake_case ) def __snake_case ( self : Optional[Any], _snake_case : list ): '''simple docstring''' snake_case : List[Any] =[1 for _ in range(len(_snake_case ) )] while len(_snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): if seed is not None: snake_case : Union[str, Any] =dataset.shuffle(seed=lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) // batch_size ): snake_case : List[Any] =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase_ ) @partial(jax.pmap , axis_name='''batch''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): def loss_fn(lowerCamelCase_ ): snake_case : Dict =model_inputs.pop('''start_labels''' ) snake_case : Optional[Any] =model_inputs.pop('''end_labels''' ) snake_case : Any =model_inputs.pop('''pooled_labels''' ) snake_case : Dict =state.apply_fn(**lowerCamelCase_ , params=lowerCamelCase_ , dropout_rng=lowerCamelCase_ , train=lowerCamelCase_ ) snake_case , snake_case , snake_case : List[Any] =outputs return state.loss_fn( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) snake_case , snake_case : Any =jax.random.split(lowerCamelCase_ ) snake_case : List[str] =jax.value_and_grad(lowerCamelCase_ ) snake_case , snake_case : str =grad_fn(state.params ) snake_case : Optional[Any] =jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) snake_case : Any =jax.lax.pmean(lowerCamelCase_ , '''batch''' ) snake_case : Optional[int] =state.apply_gradients(grads=lowerCamelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _a ( lowerCamelCase_ , **lowerCamelCase_ ): snake_case : List[Any] =model_inputs.pop('''start_labels''' ) snake_case : int =model_inputs.pop('''end_labels''' ) snake_case : List[str] =model_inputs.pop('''pooled_labels''' ) snake_case : Optional[Any] =state.apply_fn(**lowerCamelCase_ , params=state.params , train=lowerCamelCase_ ) snake_case , snake_case , snake_case : Dict =outputs snake_case : List[Any] =state.loss_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[Any] =jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowerCAmelCase_ ( train_state.TrainState ): __UpperCAmelCase = struct.field(pytree_node=a_ ) @dataclass class lowerCAmelCase_ : __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = None def __snake_case ( self : Tuple, _snake_case : int, _snake_case : Any, _snake_case : Tuple, _snake_case : Any=None ): '''simple docstring''' snake_case : int =model.params snake_case : List[str] =TrainState.create( apply_fn=model.__call__, params=_snake_case, tx=_snake_case, loss_fn=_snake_case, ) if ckpt_dir is not None: snake_case , snake_case , snake_case , snake_case , snake_case : Optional[Any] =restore_checkpoint(_snake_case, _snake_case ) snake_case : Tuple ={ '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } snake_case , snake_case : Tuple =build_tx(**_snake_case ) snake_case : Optional[int] =train_state.TrainState( step=_snake_case, apply_fn=model.__call__, params=_snake_case, tx=_snake_case, opt_state=_snake_case, ) snake_case : int =args snake_case : str =data_collator snake_case : Tuple =lr snake_case : Union[str, Any] =params snake_case : Tuple =jax_utils.replicate(_snake_case ) return state def __snake_case ( self : Union[str, Any], _snake_case : int, _snake_case : int, _snake_case : Optional[Any] ): '''simple docstring''' snake_case : Dict =self.args snake_case : Optional[int] =len(_snake_case ) // args.batch_size snake_case : str =jax.random.PRNGKey(0 ) snake_case : Union[str, Any] =jax.random.split(_snake_case, jax.device_count() ) for epoch in range(args.max_epochs ): snake_case : Any =jnp.array(0, dtype=jnp.floataa ) snake_case : Dict =get_batched_dataset(_snake_case, args.batch_size, seed=_snake_case ) snake_case : Optional[Any] =0 for batch in tqdm(_snake_case, total=_snake_case, desc=f'''Running EPOCH-{epoch}''' ): snake_case : Tuple =self.data_collator(_snake_case ) snake_case , snake_case , snake_case : Optional[Any] =self.train_step_fn(_snake_case, _snake_case, **_snake_case ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: snake_case : List[Any] =jax_utils.unreplicate(state.step ) snake_case : List[Any] =running_loss.item() / i snake_case : Tuple =self.scheduler_fn(state_step - 1 ) snake_case : Optional[int] =self.evaluate(_snake_case, _snake_case ) snake_case : Tuple ={ '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_snake_case ) ) self.logger.log(_snake_case, commit=_snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''', state=_snake_case ) def __snake_case ( self : Optional[Any], _snake_case : List[str], _snake_case : Dict ): '''simple docstring''' snake_case : Union[str, Any] =get_batched_dataset(_snake_case, self.args.batch_size ) snake_case : Dict =len(_snake_case ) // self.args.batch_size snake_case : List[str] =jnp.array(0, dtype=jnp.floataa ) snake_case : Optional[int] =0 for batch in tqdm(_snake_case, total=_snake_case, desc='''Evaluating ... ''' ): snake_case : Dict =self.data_collator(_snake_case ) snake_case : str =self.val_step_fn(_snake_case, **_snake_case ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def __snake_case ( self : Union[str, Any], _snake_case : Optional[Any], _snake_case : Optional[Any] ): '''simple docstring''' snake_case : Any =jax_utils.unreplicate(_snake_case ) print(f'''SAVING CHECKPOINT IN {save_dir}''', end=''' ... ''' ) self.model_save_fn(_snake_case, params=state.params ) with open(os.path.join(_snake_case, '''opt_state.msgpack''' ), '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args, os.path.join(_snake_case, '''args.joblib''' ) ) joblib.dump(self.data_collator, os.path.join(_snake_case, '''data_collator.joblib''' ) ) with open(os.path.join(_snake_case, '''training_state.json''' ), '''w''' ) as f: json.dump({'''step''': state.step.item()}, _snake_case ) print('''DONE''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ ): print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(lowerCamelCase_ , '''flax_model.msgpack''' ) , '''rb''' ) as f: snake_case : Tuple =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase_ , '''opt_state.msgpack''' ) , '''rb''' ) as f: snake_case : List[Any] =from_bytes(state.opt_state , f.read() ) snake_case : Tuple =joblib.load(os.path.join(lowerCamelCase_ , '''args.joblib''' ) ) snake_case : List[str] =joblib.load(os.path.join(lowerCamelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCamelCase_ , '''training_state.json''' ) , '''r''' ) as f: snake_case : Optional[Any] =json.load(lowerCamelCase_ ) snake_case : Optional[int] =training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : str =num_train_steps - warmup_steps snake_case : Dict =optax.linear_schedule(init_value=lowerCamelCase_ , end_value=lowerCamelCase_ , transition_steps=lowerCamelCase_ ) snake_case : Tuple =optax.linear_schedule(init_value=lowerCamelCase_ , end_value=1e-7 , transition_steps=lowerCamelCase_ ) snake_case : int =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): def weight_decay_mask(lowerCamelCase_ ): snake_case : Tuple =traverse_util.flatten_dict(lowerCamelCase_ ) snake_case : List[Any] ={k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase_ ) snake_case : List[str] =scheduler_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[Any] =optax.adamw(learning_rate=lowerCamelCase_ , weight_decay=lowerCamelCase_ , mask=lowerCamelCase_ ) return tx, lr
349
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ): A : List[Any] = "resnet" A : Tuple = ["basic", "bottleneck"] def __init__( self : Optional[int] , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : int=64 , _lowerCAmelCase : Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , _lowerCAmelCase : Any=[3, 4, 6, 3] , _lowerCAmelCase : List[str]="bottleneck" , _lowerCAmelCase : List[str]="relu" , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) __snake_case : Any = num_channels __snake_case : Optional[int] = embedding_size __snake_case : Optional[int] = hidden_sizes __snake_case : Tuple = depths __snake_case : int = layer_type __snake_case : List[Any] = hidden_act __snake_case : Any = downsample_in_first_stage __snake_case : int = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCAmelCase ) + 1 )] __snake_case , __snake_case : Any = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = version.parse("1.11" ) @property def snake_case__ ( self : Optional[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case__ ( self : int ): return 1e-3
390
lowercase_ = {str(digit): digit**5 for digit in range(10)} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(solution())
390
1
import torch def __lowerCamelCase ( ) -> List[str]: if torch.cuda.is_available(): lowerCamelCase_ : Dict = torch.cuda.device_count() else: lowerCamelCase_ : Dict = 0 print(f'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
278
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = '''dpr''' def __init__( self : int ,__A : Union[str, Any]=3_0522 ,__A : Optional[int]=768 ,__A : int=12 ,__A : List[Any]=12 ,__A : Optional[Any]=3072 ,__A : Union[str, Any]="gelu" ,__A : Union[str, Any]=0.1 ,__A : List[Any]=0.1 ,__A : str=512 ,__A : List[str]=2 ,__A : Tuple=0.02 ,__A : Tuple=1e-12 ,__A : List[Any]=0 ,__A : List[str]="absolute" ,__A : int = 0 ,**__A : int ,) -> Tuple: super().__init__(pad_token_id=__A ,**__A ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = projection_dim _lowercase = position_embedding_type
67
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A_ ( unittest.TestCase ): """simple docstring""" lowercase : int = StableDiffusionLDMaDPipeline lowercase : Any = TEXT_TO_IMAGE_PARAMS lowercase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) a : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : Tuple = CLIPTextModel(__UpperCAmelCase ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> str: if str(__UpperCAmelCase ).startswith('mps' ): a : List[str] = torch.manual_seed(__UpperCAmelCase ) else: a : int = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Dict: a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Tuple = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) a : Tuple = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[Any] = self.get_dummy_inputs(__UpperCAmelCase ) a : List[Any] = ldmad_pipe(**__UpperCAmelCase ) a , a : str = output.rgb, output.depth a : List[Any] = rgb[0, -3:, -3:, -1] a : str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a : Any = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) a : Any = np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowercase_ ( self ) -> List[Any]: a : Optional[int] = self.get_dummy_components() a : Union[str, Any] = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) a : List[str] = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) a : Optional[Any] = 3 * [inputs['prompt']] # forward a : List[str] = ldmad_pipe(**__UpperCAmelCase ) a , a : int = output.rgb, output.depth a : int = rgb_slice_a[0, -3:, -3:, -1] a : List[Any] = depth_slice_a[0, -3:, -1] a : Tuple = self.get_dummy_inputs(__UpperCAmelCase ) a : List[str] = 3 * [inputs.pop('prompt' )] a : Optional[int] = ldmad_pipe.tokenizer( __UpperCAmelCase , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors='pt' , ) a : Union[str, Any] = text_inputs['input_ids'].to(__UpperCAmelCase ) a : List[Any] = ldmad_pipe.text_encoder(__UpperCAmelCase )[0] a : str = prompt_embeds # forward a : Any = ldmad_pipe(**__UpperCAmelCase ) a , a : Optional[Any] = output.rgb, output.depth a : Dict = rgb_slice_a[0, -3:, -3:, -1] a : Any = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowercase_ ( self ) -> Optional[int]: a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) a : Union[str, Any] = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) a : Any = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[str] = self.get_dummy_inputs(__UpperCAmelCase ) a : List[str] = 'french fries' a : List[str] = ldmad_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) a , a : Union[str, Any] = output.rgb, output.depth a : List[Any] = rgb[0, -3:, -3:, -1] a : Optional[int] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a : Optional[int] = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) a : Union[str, Any] = np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> Union[str, Any]: a : Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : str = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) a : Any = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) a : int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Dict: a : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) a : Union[str, Any] = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[Any] = self.get_inputs(__UpperCAmelCase ) a : Dict = ldmad_pipe(**__UpperCAmelCase ) a , a : Union[str, Any] = output.rgb, output.depth a : Union[str, Any] = rgb[0, -3:, -3:, -1].flatten() a : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) a : List[str] = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) a : Optional[int] = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: a : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) a : Union[str, Any] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) a : str = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Optional[int]: a : Dict = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : Tuple = self.get_inputs(__UpperCAmelCase ) a : Dict = ldmad_pipe(**__UpperCAmelCase ) a , a : Union[str, Any] = output.rgb, output.depth a : int = 0.49_5586 a : Dict = 0.3379_5515 a : Optional[Any] = 112.4_8518 a : List[Any] = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowercase_ ( self ) -> Any: a : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : Dict = self.get_inputs(__UpperCAmelCase ) a : Union[str, Any] = ldmad_pipe(**__UpperCAmelCase ) a , a : Optional[Any] = output.rgb, output.depth a : Dict = 0.419_4127 a : Union[str, Any] = 0.3537_5586 a : Tuple = 0.563_8502 a : str = 0.3468_6103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
509
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer SCREAMING_SNAKE_CASE__ : Any = ["gpt2"] SCREAMING_SNAKE_CASE__ : str = "gpt2" if is_tf_available(): class A_ ( tf.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase ) -> Optional[Any]: super().__init__() a : Any = tokenizer a : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) a : str = TFGPTaLMHeadModel.from_config(__UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowercase_ ( self , __UpperCAmelCase ) -> Dict: a : Tuple = self.tokenizer(__UpperCAmelCase ) a : List[Any] = tokenized['input_ids'].to_tensor() a : List[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) a : Optional[Any] = self.model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )['logits'] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: super().setUp() a : Any = [GPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] a : Union[str, Any] = [TFGPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] a : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: a : Optional[Any] = tokenizer([test_inputs] , return_tensors='tf' ) a : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors a : List[Any] = python_outputs[key].numpy() a : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase_ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: a : Optional[Any] = tf.function(__UpperCAmelCase ) for test_inputs in self.test_sentences: a : Dict = tf.constant(__UpperCAmelCase ) a : List[str] = compiled_tokenizer(__UpperCAmelCase ) a : List[Any] = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ ( self ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: a : Union[str, Any] = ModelToSave(tokenizer=__UpperCAmelCase ) a : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) a : Union[str, Any] = model.serving(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a : Optional[int] = Path(__UpperCAmelCase ) / 'saved.model' tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={'serving_default': model.serving} ) a : Union[str, Any] = tf.saved_model.load(__UpperCAmelCase ) a : Optional[int] = loaded_model.signatures['serving_default'](__UpperCAmelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase_ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: a : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) a : Optional[Any] = tf_tokenizer(__UpperCAmelCase ) # Build model with some sample inputs a : Optional[int] = tf_tokenizer.get_config() a : str = TFGPTaTokenizer.from_config(__UpperCAmelCase ) a : Dict = model_from_config(__UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase_ ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: # for the test to run a : Optional[Any] = 12_31_23 for max_length in [3, 5, 10_24]: a : Any = tf.convert_to_tensor([self.test_sentences[0]] ) a : List[Any] = tf_tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase ) a : Optional[int] = out['input_ids'].numpy().shape[1] assert out_length == max_length
509
1
from __future__ import annotations def lowercase__( A , A = None , A = None , A = False , ): snake_case__ : Dict = cipher_alphabet or [chr(A ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) snake_case__ : List[Any] = { 'a': 0.08_497, 'b': 0.01_492, 'c': 0.02_202, 'd': 0.04_253, 'e': 0.11_162, 'f': 0.02_228, 'g': 0.02_015, 'h': 0.06_094, 'i': 0.07_546, 'j': 0.00_153, 'k': 0.01_292, 'l': 0.04_025, 'm': 0.02_406, 'n': 0.06_749, 'o': 0.07_507, 'p': 0.01_929, 'q': 0.00_095, 'r': 0.07_587, 's': 0.06_327, 't': 0.09_356, 'u': 0.02_758, 'v': 0.00_978, 'w': 0.02_560, 'x': 0.00_150, 'y': 0.01_994, 'z': 0.00_077, } else: # Custom frequencies dictionary snake_case__ : Union[str, Any] = frequencies_dict if not case_sensitive: snake_case__ : Union[str, Any] = ciphertext.lower() # Chi squared statistic values snake_case__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(A ) ): snake_case__ : List[str] = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet snake_case__ : Optional[Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter snake_case__ : Optional[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: snake_case__ : Optional[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message snake_case__ : Optional[Any] = decrypted_with_shift.lower().count(A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ : Any = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message snake_case__ : Union[str, Any] = decrypted_with_shift.count(A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ : Any = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary snake_case__ : str = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(A ) -> tuple[float, str]: return chi_squared_statistic_values[key] snake_case__ : int = min( A , key=A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( snake_case__ ) , ( snake_case__ ) , ) : str = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
170
from __future__ import annotations def lowercase__( A ): return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
170
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A ={'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure)
719
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case_ (_a : List[str] ): for param in module.parameters(): UpperCAmelCase = False def snake_case_ (): UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = plt.imshow(_a ) fig.axes.get_xaxis().set_visible(_a ) fig.axes.get_yaxis().set_visible(_a ) plt.show() def snake_case_ (): UpperCAmelCase = datetime.now() UpperCAmelCase = current_time.strftime('''%H:%M:%S''' ) return timestamp
358
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'upernet' def __init__(self , A=None , A=512 , A=0.02 , A=[1, 2, 3, 6] , A=True , A=0.4 , A=384 , A=256 , A=1 , A=False , A=255 , **A , ) -> Optional[int]: """simple docstring""" super().__init__(**A ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _a = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(A , A ): _a = backbone_config.get('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(A ) _a = backbone_config _a = hidden_size _a = initializer_range _a = pool_scales _a = use_auxiliary_head _a = auxiliary_loss_weight _a = auxiliary_in_channels _a = auxiliary_channels _a = auxiliary_num_convs _a = auxiliary_concat_input _a = loss_ignore_index def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
11
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = DanceDiffusionPipeline _lowerCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } _lowerCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowerCAmelCase = False _lowerCAmelCase = False def a ( self ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=A_ , use_timestep_embedding=A_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) _UpperCamelCase = IPNDMScheduler() _UpperCamelCase = { "unet": unet, "scheduler": scheduler, } return components def a ( self , A_ , A_=0 ): if str(A_ ).startswith("mps" ): _UpperCamelCase = torch.manual_seed(A_ ) else: _UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) _UpperCamelCase = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def a ( self ): _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = DanceDiffusionPipeline(**A_ ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_dummy_inputs(A_ ) _UpperCamelCase = pipe(**A_ ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a ( self ): return super().test_save_load_local() @skip_mps def a ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def a ( self ): return super().test_save_load_optional_components() @skip_mps def a ( self ): return super().test_attention_slicing_forward_pass() def a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): _UpperCamelCase = torch_device _UpperCamelCase = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self ): _UpperCamelCase = torch_device _UpperCamelCase = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
138
0
'''simple docstring''' def A (__lowerCamelCase :int = 100 ): _lowerCAmelCase = n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
162
'''simple docstring''' from heapq import heappop, heappush import numpy as np def A (__lowerCamelCase :np.ndarray , __lowerCamelCase :tuple[int, int] , __lowerCamelCase :tuple[int, int] , __lowerCamelCase :bool , ): _lowerCAmelCase , _lowerCAmelCase = grid.shape _lowerCAmelCase = [-1, 1, 0, 0] _lowerCAmelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _lowerCAmelCase , _lowerCAmelCase = [(0, source)], set() _lowerCAmelCase = np.full((rows, cols) , np.inf ) _lowerCAmelCase = 0 _lowerCAmelCase = np.empty((rows, cols) , dtype=__lowerCamelCase ) _lowerCAmelCase = None while queue: ((_lowerCAmelCase) , (_lowerCAmelCase)) = heappop(__lowerCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _lowerCAmelCase = [] while (x, y) != source: path.append((x, y) ) _lowerCAmelCase , _lowerCAmelCase = predecessors[x, y] path.append(__lowerCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__lowerCamelCase ) ): _lowerCAmelCase , _lowerCAmelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _lowerCAmelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__lowerCamelCase , (dist + 1, (nx, ny)) ) _lowerCAmelCase = dist + 1 _lowerCAmelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
162
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase ="""▁""" _lowerCamelCase =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : str = BertGenerationTokenizer _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[Any] = True def UpperCamelCase__ ( self ): super().setUp() lowerCamelCase : int = BertGenerationTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = """<s>""" lowerCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__magic_name__ ) , 1_0_0_2 ) def UpperCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = BertGenerationTokenizer(__magic_name__ , keep_accents=__magic_name__ ) lowerCamelCase : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) lowerCamelCase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) lowerCamelCase : int = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase__ ( self ): return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = """Hello World!""" lowerCamelCase : Any = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : str = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase : str = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @require_torch @slow def UpperCamelCase__ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] lowerCamelCase : Dict = """ """.join(__magic_name__ ) lowerCamelCase : Any = self.big_tokenizer.encode_plus(__magic_name__ , return_tensors="""pt""" , return_token_type_ids=__magic_name__ ) lowerCamelCase : List[str] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__magic_name__ ) lowerCamelCase : Tuple = BertGenerationConfig() lowerCamelCase : Optional[int] = BertGenerationEncoder(__magic_name__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__magic_name__ ) model(**__magic_name__ ) @slow def UpperCamelCase__ ( self ): # fmt: off lowerCamelCase : Any = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
681
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A__ : # setable values _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[jnp.ndarray] = None _UpperCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def UpperCamelCase__ ( cls ): return cls() @dataclass class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : jnp.ndarray _UpperCAmelCase : jnp.ndarray _UpperCAmelCase : KarrasVeSchedulerState class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): return True @register_to_config def __init__( self , __magic_name__ = 0.02 , __magic_name__ = 1_0_0 , __magic_name__ = 1.007 , __magic_name__ = 8_0 , __magic_name__ = 0.05 , __magic_name__ = 5_0 , ): pass def UpperCamelCase__ ( self ): return KarrasVeSchedulerState.create() def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ = () ): lowerCamelCase : Dict = jnp.arange(0 , __magic_name__ )[::-1].copy() lowerCamelCase : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__magic_name__ , schedule=jnp.array(__magic_name__ , dtype=jnp.floataa ) , timesteps=__magic_name__ , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase : Dict = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase : List[Any] = random.split(__magic_name__ , num=1 ) lowerCamelCase : Union[str, Any] = self.config.s_noise * random.normal(key=__magic_name__ , shape=sample.shape ) lowerCamelCase : List[Any] = sigma + gamma * sigma lowerCamelCase : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = True , ): lowerCamelCase : Optional[Any] = sample_hat + sigma_hat * model_output lowerCamelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__magic_name__ , derivative=__magic_name__ , state=__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = True , ): lowerCamelCase : str = sample_prev + sigma_prev * model_output lowerCamelCase : str = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__magic_name__ , derivative=__magic_name__ , state=__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): raise NotImplementedError()
681
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = abs(lowerCAmelCase__ ) snake_case_ : Optional[Any] = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Tuple = abs(lowerCAmelCase__ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' return sum(int(lowerCAmelCase__ ) for c in str(abs(lowerCAmelCase__ ) ) ) def __lowerCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> None: snake_case_ : Dict = F'{func.__name__}({value})' snake_case_ : List[str] = timeit(F'__main__.{call}' , setup="""import __main__""" ) print(F'{call:56} = {func(lowerCAmelCase__ )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
def lowerCAmelCase_ (lowercase__ : int = 60_08_51_47_51_43 ) -> int: '''simple docstring''' try: lowerCAmelCase__ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 while i * i <= n: while n % i == 0: lowerCAmelCase__ = i n //= i i += 1 if n > 1: lowerCAmelCase__ = n return int(lowercase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
668
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase_ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str]=13 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Any=99 , SCREAMING_SNAKE_CASE_ : int=[1, 1, 2] , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : List[str]=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE_ : int=37 , SCREAMING_SNAKE_CASE_ : str="gelu_new" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=512 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=False , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __snake_case ( self : List[str] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , ): lowerCAmelCase__ = TFFunnelModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase__ = TFFunnelBaseModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , ): lowerCAmelCase__ = TFFunnelForPreTraining(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase__ = TFFunnelForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , ): lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , ): lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Union[str, Any] ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCamelCase_ :Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase_ :Optional[int] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ :Dict = False UpperCamelCase_ :Tuple = False def __snake_case ( self : int ): lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : str ): self.config_tester.run_common_tests() def __snake_case ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) @require_tf class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): UpperCamelCase_ :str = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase_ :Optional[Any] = False UpperCamelCase_ :Any = False def __snake_case ( self : Union[str, Any] ): lowerCAmelCase__ = TFFunnelModelTester(self , base=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Any ): self.config_tester.run_common_tests() def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
668
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : str = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = 'autoformer' A : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "student_t" , _SCREAMING_SNAKE_CASE = "nll" , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7] , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 25 , _SCREAMING_SNAKE_CASE = 3 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: # time series specific configuration snake_case_ : Dict = prediction_length snake_case_ : str = context_length if context_length is not None else prediction_length snake_case_ : int = distribution_output snake_case_ : Any = loss snake_case_ : Union[str, Any] = input_size snake_case_ : Any = num_time_features snake_case_ : List[Any] = lags_sequence snake_case_ : List[Any] = scaling snake_case_ : str = num_dynamic_real_features snake_case_ : Union[str, Any] = num_static_real_features snake_case_ : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) snake_case_ : Tuple = cardinality else: snake_case_ : Optional[Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) snake_case_ : str = embedding_dimension else: snake_case_ : str = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ : Optional[int] = num_parallel_samples # Transformer architecture configuration snake_case_ : List[Any] = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ : Any = d_model snake_case_ : List[str] = encoder_attention_heads snake_case_ : str = decoder_attention_heads snake_case_ : List[str] = encoder_ffn_dim snake_case_ : Tuple = decoder_ffn_dim snake_case_ : List[str] = encoder_layers snake_case_ : List[str] = decoder_layers snake_case_ : str = dropout snake_case_ : Dict = attention_dropout snake_case_ : str = activation_dropout snake_case_ : Tuple = encoder_layerdrop snake_case_ : int = decoder_layerdrop snake_case_ : Optional[int] = activation_function snake_case_ : Optional[Any] = init_std snake_case_ : List[str] = use_cache # Autoformer snake_case_ : List[str] = label_length snake_case_ : int = moving_average snake_case_ : str = autocorrelation_factor super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
114
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[int] = 'sew-d' def __init__( self , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=("p2c", "c2p") , _SCREAMING_SNAKE_CASE="layer_norm" , _SCREAMING_SNAKE_CASE="gelu_python" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-7 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE="group" , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="mean" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = feat_extract_norm snake_case_ : Union[str, Any] = feat_extract_activation snake_case_ : Any = list(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = list(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = list(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = conv_bias snake_case_ : Union[str, Any] = num_conv_pos_embeddings snake_case_ : Tuple = num_conv_pos_embedding_groups snake_case_ : Optional[int] = len(self.conv_dim ) snake_case_ : str = num_hidden_layers snake_case_ : List[Any] = intermediate_size snake_case_ : List[Any] = squeeze_factor snake_case_ : Tuple = max_position_embeddings snake_case_ : Optional[int] = position_buckets snake_case_ : Union[str, Any] = share_att_key snake_case_ : Optional[int] = relative_attention snake_case_ : List[str] = norm_rel_ebd snake_case_ : Tuple = list(_SCREAMING_SNAKE_CASE ) snake_case_ : str = hidden_act snake_case_ : Any = num_attention_heads snake_case_ : Dict = hidden_dropout snake_case_ : int = attention_dropout snake_case_ : Any = activation_dropout snake_case_ : Optional[Any] = feat_proj_dropout snake_case_ : Tuple = final_dropout snake_case_ : Tuple = layer_norm_eps snake_case_ : Tuple = feature_layer_norm_eps snake_case_ : Any = initializer_range snake_case_ : Optional[int] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : List[str] = apply_spec_augment snake_case_ : List[Any] = mask_time_prob snake_case_ : str = mask_time_length snake_case_ : Optional[Any] = mask_time_min_masks snake_case_ : Optional[Any] = mask_feature_prob snake_case_ : str = mask_feature_length snake_case_ : Optional[int] = mask_feature_min_masks # ctc loss snake_case_ : Any = ctc_loss_reduction snake_case_ : Tuple = ctc_zero_infinity # sequence classification snake_case_ : int = use_weighted_layer_sum snake_case_ : List[Any] = classifier_proj_size @property def _lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
114
1
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Any = current_set.copy() for row_index, row in enumerate(A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = row[0] for column_index, column in enumerate(A__ ): if magnitude == 0: SCREAMING_SNAKE_CASE_ : int = column continue SCREAMING_SNAKE_CASE_ : List[str] = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE_ : Any = current_set[0] SCREAMING_SNAKE_CASE_ : List[Any] = [first_row] SCREAMING_SNAKE_CASE_ : Dict = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A__ ) continue for column_index in range(len(A__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE_ : Tuple = final_set[0] SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE_ : int = simplify(A__ ) for i in range(len(A__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = resultant return final_set def a__ ( A__ ): if len(A__ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) SCREAMING_SNAKE_CASE_ : List[str] = len(A__ ) + 1 if any(len(A__ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(A__, (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(A__ ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE_ : Any = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE_ : List[Any] = data_set.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = [] for row_index, row in enumerate(A__ ): if 0 not in row: SCREAMING_SNAKE_CASE_ : Optional[int] = data_set.pop(A__ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0, A__ ) SCREAMING_SNAKE_CASE_ : Any = data_set.copy() SCREAMING_SNAKE_CASE_ : List[str] = simplify(A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = simplified[::-1] SCREAMING_SNAKE_CASE_ : list = [] for row in simplified: SCREAMING_SNAKE_CASE_ : str = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE_ : Optional[int] = row.copy()[: len(A__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A__ ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE_ : Any = temp_row[1::] SCREAMING_SNAKE_CASE_ : List[Any] = temp_row[::-1] for column_index, column in enumerate(A__ ): current_solution -= column * solutions[column_index] solutions.append(A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for item in solutions: final.append(float(round(A__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : int =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
101
from ...processing_utils import ProcessorMixin class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """WhisperFeatureExtractor""" _UpperCAmelCase = """WhisperTokenizer""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : List[Any] = False def UpperCamelCase__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ , language=lowerCAmelCase__ , no_timestamps=lowerCAmelCase__ ) def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('audio' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('sampling_rate' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('text' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE_ : List[Any] = args[0] SCREAMING_SNAKE_CASE_ : List[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : Optional[int] = encodings['input_ids'] return inputs def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
101
1
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class snake_case_( unittest.TestCase ): __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __UpperCamelCase = ['''accelerate''', '''launch'''] __UpperCamelCase = Path.home() / '''.cache/huggingface/accelerate''' __UpperCamelCase = '''default_config.yaml''' __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / '''_default_config.yaml''' __UpperCamelCase = Path('''tests/test_configs''' ) @classmethod def lowerCamelCase__ ( cls : Dict ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase__ ( self : int ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=UpperCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(UpperCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase__ ( self : List[str] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class snake_case_( unittest.TestCase ): __UpperCamelCase = '''test-tpu''' __UpperCamelCase = '''us-central1-a''' __UpperCamelCase = '''ls''' __UpperCamelCase = ['''accelerate''', '''tpu-config'''] __UpperCamelCase = '''cd /usr/share''' __UpperCamelCase = '''tests/test_samples/test_command_file.sh''' __UpperCamelCase = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=UpperCamelCase_ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=UpperCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase_ , )
707
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = None def _snake_case ( _snake_case : Dict , _snake_case : List[str]=0.999 , _snake_case : Dict="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : List[Any] = [] for i in range(_snake_case ): lowerCAmelCase : int = i / num_diffusion_timesteps lowerCAmelCase : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 1_0_0_0 , UpperCamelCase_ : str = "fixed_small_log" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[float] = 1.0 , UpperCamelCase_ : str = "epsilon" , UpperCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCAmelCase : Any = betas_for_alpha_bar(UpperCamelCase_ ) lowerCAmelCase : str = 1.0 - self.betas lowerCAmelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase : Any = 1.0 # setable values lowerCAmelCase : Any = None lowerCAmelCase : Any = torch.from_numpy(np.arange(0 , UpperCamelCase_ )[::-1].copy() ) lowerCAmelCase : List[str] = variance_type def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Any = num_inference_steps lowerCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase : Any = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None ): if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : int = self.alphas_cumprod[t] lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : Tuple = self.betas[t] else: lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Optional[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase : Any = torch.log(torch.clamp(UpperCamelCase_ , min=1E-20 ) ) lowerCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase : Optional[Any] = variance.log() lowerCAmelCase : Union[str, Any] = beta.log() lowerCAmelCase : Dict = (predicted_variance + 1) / 2 lowerCAmelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase, lowerCAmelCase : List[Any] = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase : Any = t - 1 lowerCAmelCase : Union[str, Any] = self.alphas_cumprod[t] lowerCAmelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase : int = 1 - alpha_prod_t lowerCAmelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase : List[Any] = self.betas[t] lowerCAmelCase : Optional[int] = self.alphas[t] else: lowerCAmelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : Tuple = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Dict = torch.clamp( UpperCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase : int = 0 if t > 0: lowerCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ , device=model_output.device ) lowerCAmelCase : Any = self._get_variance( UpperCamelCase_ , predicted_variance=UpperCamelCase_ , prev_timestep=UpperCamelCase_ , ) if self.variance_type == "fixed_small_log": lowerCAmelCase : str = variance elif self.variance_type == "learned_range": lowerCAmelCase : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) lowerCAmelCase : List[Any] = variance * variance_noise lowerCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase : int = timesteps.to(original_samples.device ) lowerCAmelCase : Dict = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
637
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __UpperCAmelCase = random.Random() def _snake_case ( A , A=1.0 , A=None , A=None ) -> Optional[Any]: if rng is None: lowerCAmelCase__ = global_rng lowerCAmelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=4_00 , lowerCamelCase_=20_00 , lowerCamelCase_=1 , lowerCamelCase_=0.0 , lowerCamelCase_=1_60_00 , lowerCamelCase_=True , lowerCamelCase_=80 , lowerCamelCase_=16 , lowerCamelCase_=64 , lowerCamelCase_="hann_window" , lowerCamelCase_=80 , lowerCamelCase_=76_00 , lowerCamelCase_=1e-10 , lowerCamelCase_=True , ) -> List[Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = min_seq_length lowerCAmelCase__ = max_seq_length lowerCAmelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ = feature_size lowerCAmelCase__ = padding_value lowerCAmelCase__ = sampling_rate lowerCAmelCase__ = do_normalize lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = hop_length lowerCAmelCase__ = win_length lowerCAmelCase__ = win_function lowerCAmelCase__ = fmin lowerCAmelCase__ = fmax lowerCAmelCase__ = mel_floor lowerCAmelCase__ = return_attention_mask def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=False , lowerCamelCase_=False ) -> str: def _flatten(lowerCamelCase_ ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: lowerCAmelCase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=False , lowerCamelCase_=False ) -> Union[str, Any]: if equal_length: lowerCAmelCase__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : str = SpeechTaFeatureExtractor def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = SpeechTaFeatureExtractionTester(self ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: self.assertTrue(np.all(np.mean(lowerCamelCase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ , axis=0 ) - 1 ) < 1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase__ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test batched lowerCAmelCase__ = feat_extract(lowerCamelCase_ , return_tensors='''np''' ).input_values lowerCAmelCase__ = feat_extract(lowerCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ = [None, 16_00, None] for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = feat_extract(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors='''np''' ) lowerCAmelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = range(8_00 , 14_00 , 2_00 ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ = [None, 16_00, None] for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = feat_extract(lowerCamelCase_ , max_length=lowerCamelCase_ , padding=lowerCamelCase_ ) lowerCAmelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feat_extract( lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10_00 , padding='''max_length''' , return_tensors='''np''' ) lowerCAmelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feat_extract( lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10_00 , padding='''longest''' , return_tensors='''np''' ) lowerCAmelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feat_extract( lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=20_00 , padding='''longest''' , return_tensors='''np''' ) lowerCAmelCase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ = feature_extractor(audio_target=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCAmelCase__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test batched lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_values lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase__ = np.asarray(lowerCamelCase_ ) lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_values lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) for x, y in zip(lowerCamelCase_ , processed_features[input_name] ) ) ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase_ ) lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowerCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase_ ) lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowerCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = feat_extract.num_mel_bins # hack! lowerCAmelCase__ = feat_extract.pad(lowerCamelCase_ , padding='''longest''' , return_tensors='''np''' )[input_name] lowerCAmelCase__ = feat_extract.pad(lowerCamelCase_ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.feat_extract_dict lowerCAmelCase__ = True lowerCAmelCase__ = self.feature_extraction_class(**lowerCamelCase_ ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase__ = [len(lowerCamelCase_ ) for x in speech_inputs] lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = feat_extract.num_mel_bins # hack! lowerCAmelCase__ = feat_extract.pad(lowerCamelCase_ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCamelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.feat_extract_dict lowerCAmelCase__ = True lowerCAmelCase__ = self.feature_extraction_class(**lowerCamelCase_ ) lowerCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase__ = [len(lowerCamelCase_ ) for x in speech_inputs] lowerCAmelCase__ = feat_extract.model_input_names[0] lowerCAmelCase__ = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase__ = min(lowerCamelCase_ ) lowerCAmelCase__ = feat_extract.num_mel_bins # hack! lowerCAmelCase__ = feat_extract.pad( lowerCamelCase_ , padding='''max_length''' , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCamelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: from datasets import load_dataset lowerCAmelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase__ = ds.sort('''id''' ).select(range(lowerCamelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # fmt: off lowerCAmelCase__ = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on lowerCAmelCase__ = self._load_datasamples(1 ) lowerCAmelCase__ = SpeechTaFeatureExtractor() lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase_ , atol=1e-6 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # fmt: off lowerCAmelCase__ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on lowerCAmelCase__ = self._load_datasamples(1 ) lowerCAmelCase__ = SpeechTaFeatureExtractor() lowerCAmelCase__ = feature_extractor(audio_target=lowerCamelCase_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase_ , atol=1e-4 ) )
90
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: int = """table-transformer""" SCREAMING_SNAKE_CASE_: int = ["""past_key_values"""] SCREAMING_SNAKE_CASE_: int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __a=True , __a=None , __a=3 , __a=100 , __a=6 , __a=2048 , __a=8 , __a=6 , __a=2048 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=256 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) A__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__a , __a ): A__ = backbone_config.get('model_type' ) A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(__a ) # set timm attributes to None A__ , A__ , A__ = None, None, None A__ = use_timm_backbone A__ = backbone_config A__ = num_channels A__ = num_queries A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = init_xavier_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = encoder_layers A__ = auxiliary_loss A__ = position_embedding_type A__ = backbone A__ = use_pretrained_backbone A__ = dilation # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = mask_loss_coefficient A__ = dice_loss_coefficient A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def _UpperCAmelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): """simple docstring""" return self.d_model class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Tuple = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _UpperCAmelCase ( self ): """simple docstring""" return 1E-5 @property def _UpperCAmelCase ( self ): """simple docstring""" return 12
260
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _snake_case = Features({"""image""": Image()} ) _snake_case = Features({"""labels""": ClassLabel} ) _snake_case = "image" _snake_case = "labels" def UpperCAmelCase ( self , A ) -> Optional[int]: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) snake_case : Dict = copy.deepcopy(self ) snake_case : Optional[Any] = self.label_schema.copy() snake_case : Union[str, Any] = features[self.label_column] snake_case : List[str] = label_schema return task_template @property def UpperCAmelCase ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 8 ) -> str: _A = ascii_letters + digits + punctuation return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_snake_case ) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(_snake_case , quotient + remainder ) + random(_snake_case , _snake_case ) + random(_snake_case , _snake_case ) ) _A = list(_snake_case ) shuffle(_snake_case ) return "".join(_snake_case ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int ) -> str: return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] ) -> str: pass # Put your code here... def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :Union[str, Any] ) -> str: pass # Put your code here... def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :Dict ) -> str: pass # Put your code here... def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int = 8 ) -> bool: if len(_snake_case ) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password ) _A = any(char in ascii_lowercase for char in password ) _A = any(char in digits for char in password ) _A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE_ ( ) -> Any: _A = int(input('''Please indicate the max length of your password: ''' ).strip() ) _A = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(_snake_case ) ) print( '''Alternative Password generated:''' , alternative_password_generator(_snake_case , _snake_case ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
2
import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE (torch.nn.Module ): def __init__( self : int , a : Optional[Any]="sayef/fsner-bert-base-uncased" )-> str: """simple docstring""" super(a , self ).__init__() lowercase__ = AutoModel.from_pretrained(a , return_dict=a ) lowercase__ = torch.nn.CosineSimilarity(3 , 1E-0_8 ) lowercase__ = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , **a : Tuple )-> List[str]: """simple docstring""" return self.bert(**a ).last_hidden_state def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Any )-> Optional[Any]: """simple docstring""" return token_embeddings.sum(2 , keepdim=a ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : List[str] , a : List[str] , a : List[str]=1 )-> Dict: """simple docstring""" return self.softmax(T * self.cos(a , a ) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Optional[Any] , a : List[Any] )-> Tuple: """simple docstring""" lowercase__ = W_supports['sizes'].tolist() lowercase__ = W_supports['start_token_id'].item() lowercase__ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase__ = self.BERT(**a ) lowercase__ = self.BERT(**a ) lowercase__ = None lowercase__ = None lowercase__ = W_supports['input_ids'] == start_token_id lowercase__ = W_supports['input_ids'] == end_token_id for i, size in enumerate(a ): if i == 0: lowercase__ = 0 else: lowercase__ = support_sizes[i - 1] lowercase__ = S[s : s + size][start_token_masks[s : s + size]] lowercase__ = S[s : s + size][end_token_masks[s : s + size]] lowercase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase__ = torch.vstack((p_starts, p_start) ) lowercase__ = torch.vstack((p_ends, p_end) ) else: lowercase__ = p_start lowercase__ = p_end return p_starts, p_ends
235
0
from __future__ import annotations _A : int = 8.988e9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> dict[str, float]: """simple docstring""" lowerCamelCase__ : Optional[int] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowerCamelCase__ : Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCamelCase__ : List[Any] = abs(UpperCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCamelCase__ : List[str] = abs(UpperCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCamelCase__ : List[str] = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
130
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Any , A : str ) ->int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowerCamelCase__ : Any = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(A ) def __lowerCamelCase ( self : List[str] ) ->List[str]: lowerCamelCase__ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Dict ) ->Optional[Any]: lowerCamelCase__ : Tuple = '''sgugger/tiny-distilbert-classification''' lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Tuple ) ->Dict: lowerCamelCase__ : int = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Tuple: lowerCamelCase__ : Optional[int] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : List[Any] ) ->Any: lowerCamelCase__ : Optional[int] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmark(A ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase__ : Tuple = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Any ) ->Any: lowerCamelCase__ : Dict = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ : int = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Dict = TensorFlowBenchmark(A , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def __lowerCamelCase ( self : Dict ) ->Dict: lowerCamelCase__ : Dict = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A , multi_process=A , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(A , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(A , '''env.csv''' ) , multi_process=A , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''env.csv''' ) ).exists() ) def __lowerCamelCase ( self : Tuple ) ->Optional[int]: lowerCamelCase__ : List[Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A : int ): self.assertTrue(hasattr(A , '''sequential''' ) ) self.assertTrue(hasattr(A , '''cumulative''' ) ) self.assertTrue(hasattr(A , '''current''' ) ) self.assertTrue(hasattr(A , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , '''log.txt''' ) , log_print=A , trace_memory_line_by_line=A , eager_mode=A , multi_process=A , ) lowerCamelCase__ : Any = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A , '''log.txt''' ) ).exists() )
130
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = tempfile.mkdtemp() # fmt: off __UpperCamelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __UpperCamelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __UpperCamelCase = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowercase( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , **_SCREAMING_SNAKE_CASE ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , **_SCREAMING_SNAKE_CASE ) -> Dict: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowercase( self ) -> Tuple: __UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase( self ) -> List[Any]: __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = self.get_image_processor() __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Tuple: __UpperCamelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) __UpperCamelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Tuple: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='np' ) __UpperCamelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase( self ) -> Any: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'lower newer' __UpperCamelCase = processor(text=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase( self ) -> Optional[int]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'lower newer' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __lowercase( self ) -> List[str]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Any: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'lower newer' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
383
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = "speech_to_text_2" UpperCAmelCase__ = ["past_key_values"] UpperCAmelCase__ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _SCREAMING_SNAKE_CASE=10_000 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2_048 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1_024 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = decoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_target_positions super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
383
1
"""simple docstring""" def UpperCamelCase ( _A ) -> Optional[Any]: if n == 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return 0 elif n == 2: return 1 else: lowercase : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( _A ) -> List[Any]: lowercase : List[Any] = 0 lowercase : Union[str, Any] = 2 while digits < n: index += 1 lowercase : Optional[Any] = len(str(fibonacci(_lowerCAmelCase ) ) ) return index def UpperCamelCase ( _A = 1_000 ) -> Tuple: return fibonacci_digits_index(_lowerCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
701
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = (PNDMScheduler,) _SCREAMING_SNAKE_CASE : Optional[int] = (("""num_inference_steps""", 50),) def __snake_case ( self :int , **__magic_name__ :List[str] ) ->str: lowercase : Dict = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__magic_name__ ) return config def __snake_case ( self :Any , __magic_name__ :Any=0 , **__magic_name__ :List[Any] ) ->Optional[int]: lowercase : List[Any] = dict(self.forward_default_kwargs ) lowercase : str = kwargs.pop("""num_inference_steps""" , __magic_name__ ) lowercase : Any = self.dummy_sample lowercase : Optional[Any] = 0.1 * sample lowercase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : int = self.get_scheduler_config(**__magic_name__ ) lowercase : int = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals lowercase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) lowercase : Union[str, Any] = scheduler_class.from_pretrained(__magic_name__ ) new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals lowercase : Dict = dummy_past_residuals[:] lowercase : Optional[int] = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Dict = new_scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Union[str, Any] = scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : int = new_scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case ( self :Optional[Any] ) ->Tuple: pass def __snake_case ( self :List[str] , __magic_name__ :str=0 , **__magic_name__ :Tuple ) ->Any: lowercase : List[str] = dict(self.forward_default_kwargs ) lowercase : Optional[Any] = kwargs.pop("""num_inference_steps""" , __magic_name__ ) lowercase : Any = self.dummy_sample lowercase : Optional[Any] = 0.1 * sample lowercase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.get_scheduler_config() lowercase : Optional[Any] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals (must be after setting timesteps) lowercase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) lowercase : Dict = scheduler_class.from_pretrained(__magic_name__ ) # copy over dummy past residuals new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residual (must be after setting timesteps) lowercase : int = dummy_past_residuals[:] lowercase : List[str] = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Any = new_scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Any = scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : int = new_scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case ( self :List[Any] , **__magic_name__ :Optional[int] ) ->int: lowercase : Any = self.scheduler_classes[0] lowercase : Optional[int] = self.get_scheduler_config(**__magic_name__ ) lowercase : List[Any] = scheduler_class(**__magic_name__ ) lowercase : int = 10 lowercase : Union[str, Any] = self.dummy_model() lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(__magic_name__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase : Any = model(__magic_name__ , __magic_name__ ) lowercase : Union[str, Any] = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase : str = model(__magic_name__ , __magic_name__ ) lowercase : int = scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample return sample def __snake_case ( self :List[Any] ) ->List[Any]: lowercase : str = dict(self.forward_default_kwargs ) lowercase : Dict = kwargs.pop("""num_inference_steps""" , __magic_name__ ) for scheduler_class in self.scheduler_classes: lowercase : str = self.get_scheduler_config() lowercase : str = scheduler_class(**__magic_name__ ) lowercase : List[Any] = self.dummy_sample lowercase : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ): scheduler.set_timesteps(__magic_name__ ) elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ): lowercase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase : Union[str, Any] = dummy_past_residuals[:] lowercase : Any = scheduler.step_prk(__magic_name__ , 0 , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Union[str, Any] = scheduler.step_prk(__magic_name__ , 1 , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase : List[Any] = scheduler.step_plms(__magic_name__ , 0 , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Optional[int] = scheduler.step_plms(__magic_name__ , 1 , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self :Optional[Any] ) ->Optional[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __snake_case ( self :int ) ->Tuple: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__magic_name__ ) lowercase : Optional[int] = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config(steps_offset=1 ) lowercase : str = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __snake_case ( self :int ) ->int: for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __snake_case ( self :Tuple ) ->Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __snake_case ( self :Optional[int] ) ->Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __snake_case ( self :Optional[int] ) ->Any: for t in [1, 5, 10]: self.check_over_forward(time_step=__magic_name__ ) def __snake_case ( self :List[Any] ) ->Any: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__magic_name__ ) def __snake_case ( self :Optional[Any] ) ->int: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowercase : List[Any] = 27 for scheduler_class in self.scheduler_classes: lowercase : List[Any] = self.dummy_sample lowercase : Tuple = 0.1 * sample lowercase : int = self.get_scheduler_config() lowercase : str = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase : int = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample def __snake_case ( self :int ) ->Dict: with self.assertRaises(__magic_name__ ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : List[Any] = self.get_scheduler_config() lowercase : Dict = scheduler_class(**__magic_name__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __snake_case ( self :List[str] ) ->List[str]: lowercase : Tuple = self.full_loop() lowercase : Optional[Any] = torch.sum(torch.abs(__magic_name__ ) ) lowercase : Tuple = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def __snake_case ( self :str ) ->Union[str, Any]: lowercase : Tuple = self.full_loop(prediction_type="""v_prediction""" ) lowercase : Dict = torch.sum(torch.abs(__magic_name__ ) ) lowercase : Any = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def __snake_case ( self :List[Any] ) ->List[str]: # We specify different beta, so that the first alpha is 0.99 lowercase : Tuple = self.full_loop(set_alpha_to_one=__magic_name__ , beta_start=0.01 ) lowercase : Optional[int] = torch.sum(torch.abs(__magic_name__ ) ) lowercase : int = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def __snake_case ( self :Optional[int] ) ->Tuple: # We specify different beta, so that the first alpha is 0.99 lowercase : str = self.full_loop(set_alpha_to_one=__magic_name__ , beta_start=0.01 ) lowercase : int = torch.sum(torch.abs(__magic_name__ ) ) lowercase : Optional[Any] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
348
0
def lowerCamelCase__ ( _a): if len(_a) <= 1: return lst SCREAMING_SNAKE_CASE : List[str] = 1 while i < len(_a): if lst[i - 1] <= lst[i]: i += 1 else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: SCREAMING_SNAKE_CASE : Optional[Any] = 1 return lst if __name__ == "__main__": a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
25
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Dict = BertJapaneseTokenizer __lowercase : List[str] = False __lowercase : List[Any] = True def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.get_input_output_texts(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) return text, ids def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""") self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic_lite""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国""", """人""", """参政""", """権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人""", """参政権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人参政権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(normalize_text=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(trim_whitespace=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""") , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こんにちは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは""") , ["""こん""", """##ばんは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""") , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""") __SCREAMING_SNAKE_CASE = tokenizer.subword_tokenizer __SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""") self.assertListEqual(lowerCAmelCase__ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""]) __SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""") self.assertListEqual(lowerCAmelCase__ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : str = BertJapaneseTokenizer __lowercase : int = False def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def snake_case_ ( self , **lowerCAmelCase__): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""") __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""") self.assertListEqual( lowerCAmelCase__ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こ""", """ん""", """に""", """ち""", """は"""]) self.assertListEqual(tokenizer.tokenize("""こんにちほ""") , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""")) __SCREAMING_SNAKE_CASE = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from."""))
155
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _A = logging.get_logger(__name__) _A = 'T5Config' def lowerCamelCase__ ( __lowerCAmelCase : jnp.array , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: """simple docstring""" lowerCAmelCase_ = jnp.zeros_like(__lowerCAmelCase ) lowerCAmelCase_ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCAmelCase_ = shifted_input_ids.at[:, 0].set(__lowerCAmelCase ) lowerCAmelCase_ = jnp.where(shifted_input_ids == -100 , __lowerCAmelCase , __lowerCAmelCase ) return shifted_input_ids class _lowerCAmelCase ( __a ): _lowercase ='''mt5''' _lowercase =MTaConfig class _lowerCAmelCase ( __a ): _lowercase ='''mt5''' _lowercase =MTaConfig class _lowerCAmelCase ( __a ): _lowercase ='''mt5''' _lowercase =MTaConfig
709
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''transfo-xl''' _lowercase =['''mems'''] _lowercase ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=267_735 , _UpperCamelCase=[20_000, 40_000, 200_000] , _UpperCamelCase=1_024 , _UpperCamelCase=1_024 , _UpperCamelCase=16 , _UpperCamelCase=64 , _UpperCamelCase=4_096 , _UpperCamelCase=4 , _UpperCamelCase=False , _UpperCamelCase=18 , _UpperCamelCase=1_600 , _UpperCamelCase=1_000 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=-1 , _UpperCamelCase=True , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase="normal" , _UpperCamelCase=0.01 , _UpperCamelCase=0.01 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = [] self.cutoffs.extend(_UpperCamelCase ) if proj_share_all_but_first: lowerCAmelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase_ = [False] + [False] * len(self.cutoffs ) lowerCAmelCase_ = d_model lowerCAmelCase_ = d_embed lowerCAmelCase_ = d_head lowerCAmelCase_ = d_inner lowerCAmelCase_ = div_val lowerCAmelCase_ = pre_lnorm lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = mem_len lowerCAmelCase_ = same_length lowerCAmelCase_ = attn_type lowerCAmelCase_ = clamp_len lowerCAmelCase_ = sample_softmax lowerCAmelCase_ = adaptive lowerCAmelCase_ = dropout lowerCAmelCase_ = dropatt lowerCAmelCase_ = untie_r lowerCAmelCase_ = init lowerCAmelCase_ = init_range lowerCAmelCase_ = proj_init_std lowerCAmelCase_ = init_std lowerCAmelCase_ = layer_norm_epsilon super().__init__(eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def __a ( self ) -> List[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __a ( self , _UpperCamelCase ) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
279
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( __snake_case :int ) -> Optional[int]: """simple docstring""" def is_in_circle(__snake_case :float , __snake_case :float ) -> bool: __SCREAMING_SNAKE_CASE = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __SCREAMING_SNAKE_CASE = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__snake_case ) ) # The ratio of the area for circle to square is pi/4. __SCREAMING_SNAKE_CASE = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _A ( __snake_case :int , __snake_case :Callable[[float], float] , __snake_case :float = 0.0 , __snake_case :float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(__snake_case , __snake_case ) ) for _ in range(__snake_case ) ) * (max_value - min_value) def _A ( __snake_case :int , __snake_case :float = 0.0 , __snake_case :float = 1.0 ) -> None: """simple docstring""" def identity_function(__snake_case :float ) -> float: return x __SCREAMING_SNAKE_CASE = area_under_curve_estimator( __snake_case , __snake_case , __snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def _A ( __snake_case :int ) -> None: """simple docstring""" def function_to_integrate(__snake_case :float ) -> float: return sqrt(4.0 - x * x ) __SCREAMING_SNAKE_CASE = area_under_curve_estimator( __snake_case , __snake_case , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
693
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: __SCREAMING_SNAKE_CASE = ksize + 1 __SCREAMING_SNAKE_CASE = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center __SCREAMING_SNAKE_CASE = x - ksize // 2 __SCREAMING_SNAKE_CASE = y - ksize // 2 # degree to radiant __SCREAMING_SNAKE_CASE = theta / 180 * np.pi __SCREAMING_SNAKE_CASE = np.cos(_theta ) __SCREAMING_SNAKE_CASE = np.sin(_theta ) # get kernel x __SCREAMING_SNAKE_CASE = cos_theta * px + sin_theta * py # get kernel y __SCREAMING_SNAKE_CASE = -sin_theta * px + cos_theta * py # fill kernel __SCREAMING_SNAKE_CASE = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case : Union[str, Any] = imread('../image_data/lena.jpg') # turn image in gray scale value _snake_case : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case : int = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: _snake_case : List[str] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case : Optional[Any] = out / out.max() * 2_55 _snake_case : Union[str, Any] = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
693
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: _lowerCamelCase : List[str] = _modexpt(_lowerCamelCase , exponent // 2 , _lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCamelCase , exponent - 1 , _lowerCamelCase )) % modulo_value def lowerCamelCase_( _lowerCamelCase = 1777 , _lowerCamelCase = 1855 , _lowerCamelCase = 8 ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = base for _ in range(1 , _lowerCamelCase ): _lowerCamelCase : Optional[int] = _modexpt(_lowerCamelCase , _lowerCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
386
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : int = logging.get_logger(__name__) class A_ ( _a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self: List[str] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Dict[str, int] = None ,__lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Union[int, float] = 1 / 255 ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Union[float, List[float]]] = None ,__lowerCAmelCase: Optional[Union[float, List[float]]] = None ,__lowerCAmelCase: bool = True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) _lowerCamelCase : int = size if size is not None else {"height": 384, "width": 384} _lowerCamelCase : Optional[int] = get_size_dict(__lowerCAmelCase ,default_to_square=__lowerCAmelCase ) _lowerCamelCase : str = do_resize _lowerCamelCase : List[str] = size _lowerCamelCase : Optional[Any] = resample _lowerCamelCase : str = do_rescale _lowerCamelCase : int = rescale_factor _lowerCamelCase : int = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCamelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCamelCase : Optional[Any] = do_convert_rgb def _lowercase ( self: Dict ,__lowerCAmelCase: np.ndarray ,__lowerCAmelCase: Dict[str, int] ,__lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC ,__lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None ,**__lowerCAmelCase: Optional[Any] ,): '''simple docstring''' _lowerCamelCase : Optional[int] = get_size_dict(__lowerCAmelCase ,default_to_square=__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _lowerCamelCase : Dict = (size["height"], size["width"]) return resize(__lowerCAmelCase ,size=__lowerCAmelCase ,resample=__lowerCAmelCase ,data_format=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: np.ndarray ,__lowerCAmelCase: Union[int, float] ,__lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None ,**__lowerCAmelCase: List[str] ,): '''simple docstring''' return rescale(__lowerCAmelCase ,scale=__lowerCAmelCase ,data_format=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: np.ndarray ,__lowerCAmelCase: Union[float, List[float]] ,__lowerCAmelCase: Union[float, List[float]] ,__lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' return normalize(__lowerCAmelCase ,mean=__lowerCAmelCase ,std=__lowerCAmelCase ,data_format=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: ImageInput ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[Dict[str, int]] = None ,__lowerCAmelCase: PILImageResampling = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[float] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[Union[float, List[float]]] = None ,__lowerCAmelCase: Optional[Union[float, List[float]]] = None ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,__lowerCAmelCase: bool = None ,__lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST ,**__lowerCAmelCase: Tuple ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : Optional[int] = resample if resample is not None else self.resample _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase : Dict = size if size is not None else self.size _lowerCamelCase : Tuple = get_size_dict(__lowerCAmelCase ,default_to_square=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase : Union[str, Any] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase : List[Any] = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: _lowerCamelCase : Tuple = [self.resize(image=__lowerCAmelCase ,size=__lowerCAmelCase ,resample=__lowerCAmelCase ) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=__lowerCAmelCase ,scale=__lowerCAmelCase ) for image in images] if do_normalize: _lowerCamelCase : Dict = [self.normalize(image=__lowerCAmelCase ,mean=__lowerCAmelCase ,std=__lowerCAmelCase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(__lowerCAmelCase ,__lowerCAmelCase ) for image in images] _lowerCamelCase : str = BatchFeature(data={"pixel_values": images} ,tensor_type=__lowerCAmelCase ) return encoded_outputs
386
1
import argparse from collections import defaultdict def _lowercase( __a : Union[str, Any] , __a : Dict , __a : Union[str, Any] , __a : Optional[int] , __a : Optional[int] ): a__ =f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__a , 'r' ) as f: a__ =f.readlines() a__ =f"""class {class_name}(""" a__ =f"""{4 * ' '}def {test_name}(""" a__ =f"""{8 * ' '}{correct_line.split()[0]}""" a__ =f"""{16 * ' '}{correct_line.split()[0]}""" a__ =False a__ =False a__ =False a__ =False a__ =0 a__ =0 a__ =[] for line in lines: if line.startswith(__a ): a__ =True elif in_class and line.startswith(__a ): a__ =True elif in_class and in_func and (line.startswith(__a ) or line.startswith(__a )): a__ =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: a__ =True if in_class and in_func and in_line: if ")" not in line: continue else: a__ =True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) a__ =a__ =a__ =a__ =False else: new_lines.append(__a ) with open(__a , 'w' ) as f: for line in new_lines: f.write(__a ) def _lowercase( __a : int , __a : Union[str, Any]=None ): if fail is not None: with open(__a , 'r' ) as f: a__ ={l.strip() for l in f.readlines()} else: a__ =None with open(__a , 'r' ) as f: a__ =f.readlines() a__ =defaultdict(__a ) for line in correct_lines: a__ , a__ , a__ , a__ =line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__a , __a , __a , __a , __a ) if __name__ == "__main__": _lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _lowerCAmelCase: int = parser.parse_args() main(args.correct_filename, args.fail_filename)
20
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : list[str] | None = None ): _A : str = word_bank or [] # create a table _A : int = len(lowerCamelCase ) + 1 _A : list[list[list[str]]] = [] for _ in range(lowerCamelCase ): table.append([] ) # seed value _A : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase )]: combination.reverse() return table[len(lowerCamelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
128
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
327
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase () -> List[Any]: raise RuntimeError('CUDA out of memory.' ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def __A ( self , lowerCAmelCase__ ) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [128, 64, 32, 16, 8] ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def __A ( self ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __A ( self ) -> List[Any]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __A ( self ) -> str: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def __A ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
327
1
import re def __lowerCAmelCase ( _A ): """simple docstring""" _lowercase = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(snake_case__ ,snake_case__ ) ) if __name__ == "__main__": A_: Optional[Any] = '0094702343221' print(is_sri_lankan_phone_number(phone))
398
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''transfo-xl''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''mems'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] ,__A : Union[str, Any]=26_7735 ,__A : List[Any]=[2_0000, 4_0000, 20_0000] ,__A : Dict=1024 ,__A : str=1024 ,__A : Dict=16 ,__A : int=64 ,__A : Dict=4096 ,__A : List[Any]=4 ,__A : Optional[int]=False ,__A : Union[str, Any]=18 ,__A : Tuple=1600 ,__A : str=1000 ,__A : Dict=True ,__A : Dict=True ,__A : int=0 ,__A : Optional[int]=-1 ,__A : int=True ,__A : List[str]=0.1 ,__A : Optional[int]=0.0 ,__A : str=True ,__A : Tuple="normal" ,__A : Union[str, Any]=0.01 ,__A : Tuple=0.01 ,__A : Any=0.02 ,__A : Union[str, Any]=1e-5 ,__A : List[Any]=0 ,**__A : str ,) -> List[Any]: _lowercase = vocab_size _lowercase = [] self.cutoffs.extend(__A ) if proj_share_all_but_first: _lowercase = [False] + [True] * len(self.cutoffs ) else: _lowercase = [False] + [False] * len(self.cutoffs ) _lowercase = d_model _lowercase = d_embed _lowercase = d_head _lowercase = d_inner _lowercase = div_val _lowercase = pre_lnorm _lowercase = n_layer _lowercase = n_head _lowercase = mem_len _lowercase = same_length _lowercase = attn_type _lowercase = clamp_len _lowercase = sample_softmax _lowercase = adaptive _lowercase = dropout _lowercase = dropatt _lowercase = untie_r _lowercase = init _lowercase = init_range _lowercase = proj_init_std _lowercase = init_std _lowercase = layer_norm_epsilon super().__init__(eos_token_id=__A ,**__A ) @property def __UpperCAmelCase ( self : str ) -> Optional[int]: # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __UpperCAmelCase ( self : Any ,__A : Dict ) -> Optional[Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
67
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A=None , __A=None , *__A , **__A ): """simple docstring""" super().__init__(*__A , **__A ) if config is None: assert isinstance(self.model , __A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) lowerCamelCase : List[str] = self.model.config else: lowerCamelCase : Union[str, Any] = config lowerCamelCase : Optional[int] = data_args lowerCamelCase : Any = self.config.tgt_vocab_size if isinstance(self.config , __A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: lowerCamelCase : Dict = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCamelCase : str = label_smoothed_nll_loss def _snake_case ( self , __A ): """simple docstring""" if self.optimizer is None: lowerCamelCase : Optional[int] = ["bias", "LayerNorm.weight"] lowerCamelCase : int = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] lowerCamelCase : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCamelCase : List[Any] = Adafactor lowerCamelCase : Union[str, Any] = {"scale_parameter": False, "relative_step": False} else: lowerCamelCase : List[Any] = AdamW lowerCamelCase : int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } lowerCamelCase : Optional[int] = self.args.learning_rate if self.sharded_ddp: lowerCamelCase : Optional[int] = OSS( params=__A , optim=__A , **__A , ) else: lowerCamelCase : Union[str, Any] = optimizer_cls(__A , **__A ) if self.lr_scheduler is None: lowerCamelCase : Optional[int] = self._get_lr_scheduler(__A ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCamelCase : Any = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCamelCase : List[str] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCamelCase : Tuple = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__A ) return scheduler def _snake_case ( self ): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCamelCase : List[str] = model(**__A , use_cache=__A )[0] lowerCamelCase : List[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCamelCase , lowerCamelCase : List[Any] = model(**__A , labels=__A , use_cache=__A )[:2] else: # compute label smoothed loss lowerCamelCase : int = model(**__A , use_cache=__A )[0] lowerCamelCase : Dict = torch.nn.functional.log_softmax(__A , dim=-1 ) lowerCamelCase , lowerCamelCase : Dict = self.loss_fn(__A , __A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _snake_case ( self , __A , __A ): """simple docstring""" lowerCamelCase : Optional[Any] = inputs.pop("labels" ) lowerCamelCase , lowerCamelCase : Union[str, Any] = self._compute_loss(__A , __A , __A ) return loss def _snake_case ( self , __A , __A , __A , __A = None , ): """simple docstring""" lowerCamelCase : Dict = self._prepare_inputs(__A ) lowerCamelCase : List[str] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCamelCase : Any = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **__A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCamelCase : Optional[Any] = self._pad_tensors_to_max_len(__A , gen_kwargs["max_length"] ) lowerCamelCase : Dict = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data lowerCamelCase , lowerCamelCase : List[Any] = self._compute_loss(__A , __A , __A ) lowerCamelCase : List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCamelCase : Any = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCamelCase : Dict = self._pad_tensors_to_max_len(__A , gen_kwargs["max_length"] ) return (loss, logits, labels) def _snake_case ( self , __A , __A ): """simple docstring""" lowerCamelCase : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F""" padded to `max_length`={max_length}""" ) lowerCamelCase : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCamelCase : str = tensor return padded_tensor
231
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _snake_case = parser.parse_args() _snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _snake_case = CLIPImageProcessor() _snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
231
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Union[str, Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["ConditionalDetrFeatureExtractor"] UpperCAmelCase_ : str = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCamelCase : '''simple docstring''' @property def snake_case__ ( self ): """simple docstring""" return self.get_dummy_input() @property def snake_case__ ( self ): """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def snake_case__ ( self , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , ): """simple docstring""" __A : List[str] = 4 __A : List[Any] = 32 __A : Optional[Any] = (32, 32) __A : List[str] = torch.manual_seed(0 ) __A : Union[str, Any] = torch.device(__lowercase ) __A : Optional[int] = (batch_size, num_channels) + sizes __A : str = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase ) __A : int = {'hidden_states': hidden_states} if include_temb: __A : Optional[Any] = 128 __A : Any = randn_tensor((batch_size, temb_channels) , generator=__lowercase , device=__lowercase ) if include_res_hidden_states_tuple: __A : Any = torch.manual_seed(1 ) __A : List[Any] = (randn_tensor(__lowercase , generator=__lowercase , device=__lowercase ),) if include_encoder_hidden_states: __A : str = floats_tensor((batch_size, 32, 32) ).to(__lowercase ) if include_skip_sample: __A : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=__lowercase , device=__lowercase ) return dummy_input def snake_case__ ( self ): """simple docstring""" __A : Tuple = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": __A : int = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) __A : Optional[int] = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self , __lowercase ): """simple docstring""" __A ,__A : List[Any] = self.prepare_init_args_and_inputs_for_common() __A : int = self.block_class(**__lowercase ) unet_block.to(__lowercase ) unet_block.eval() with torch.no_grad(): __A : List[Any] = unet_block(**__lowercase ) if isinstance(__lowercase , __lowercase ): __A : Tuple = output[0] self.assertEqual(output.shape , self.output_shape ) __A : Any = output[0, -1, -3:, -3:] __A : Dict = torch.tensor(__lowercase ).to(__lowercase ) assert torch_all_close(output_slice.flatten() , __lowercase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def snake_case__ ( self ): """simple docstring""" __A ,__A : str = self.prepare_init_args_and_inputs_for_common() __A : Optional[Any] = self.block_class(**__lowercase ) model.to(__lowercase ) model.train() __A : Any = model(**__lowercase ) if isinstance(__lowercase , __lowercase ): __A : Any = output[0] __A : int = torch.device(__lowercase ) __A : Dict = randn_tensor(output.shape , device=__lowercase ) __A : Dict = torch.nn.functional.mse_loss(__lowercase , __lowercase ) loss.backward()
365
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ) -> str: UpperCAmelCase_ : Tuple = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCAmelCase_ : List[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : List[str] = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCAmelCase_ : Tuple = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() )
717
from sklearn.metrics import fa_score import datasets UpperCamelCase_ = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' UpperCamelCase_ = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' UpperCamelCase_ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: Tuple ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] ,) def A__ ( self: int ,lowerCamelCase_: Dict ,lowerCamelCase_: str ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: List[str]=1 ,lowerCamelCase_: Union[str, Any]="binary" ,lowerCamelCase_: Any=None ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = fa_score( lowerCamelCase_ ,lowerCamelCase_ ,labels=lowerCamelCase_ ,pos_label=lowerCamelCase_ ,average=lowerCamelCase_ ,sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
322
0
def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case__ ) ) return round(snake_case__, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
382
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _snake_case = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = torch.load(snake_case__, map_location="cpu" ) return sd def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=rename_keys_prefix ) -> List[Any]: __UpperCAmelCase : Optional[int] = OrderedDict() __UpperCAmelCase : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCAmelCase : Optional[int] = key for name_pair in rename_keys_prefix: __UpperCAmelCase : List[Any] = new_key.replace(name_pair[0], name_pair[1] ) __UpperCAmelCase : Optional[Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCAmelCase : Optional[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __UpperCAmelCase : int = "pretraining" if "vcr" in checkpoint_path: __UpperCAmelCase : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase : int = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __UpperCAmelCase : Tuple = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __UpperCAmelCase : Optional[Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __UpperCAmelCase : Optional[int] = {"visual_embedding_dim": 512} __UpperCAmelCase : List[str] = "multichoice" elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase : Optional[int] = {"visual_embedding_dim": 2048} __UpperCAmelCase : str = "vqa_advanced" elif "vqa" in checkpoint_path: __UpperCAmelCase : str = {"visual_embedding_dim": 2048, "num_labels": 3129} __UpperCAmelCase : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __UpperCAmelCase : str = { "visual_embedding_dim": 1024, "num_labels": 2, } __UpperCAmelCase : Optional[int] = "nlvr" __UpperCAmelCase : Optional[int] = VisualBertConfig(**snake_case__ ) # Load State Dict __UpperCAmelCase : str = load_state_dict(snake_case__ ) __UpperCAmelCase : int = get_new_dict(snake_case__, snake_case__ ) if model_type == "pretraining": __UpperCAmelCase : Union[str, Any] = VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": __UpperCAmelCase : Union[str, Any] = VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": __UpperCAmelCase : str = VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": __UpperCAmelCase : int = VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
382
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : def __init__( self ,A__ ,A__=2 ,A__=8 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=99 ,A__=16 ,A__=5 ,A__=2 ,A__=36 ,A__="gelu" ,A__=0.0 ,A__=0.0 ,A__=512 ,A__=16 ,A__=2 ,A__=0.02 ,A__=3 ,A__=4 ,A__=None ,): _A : Optional[int] = parent _A : Any = batch_size _A : str = seq_length _A : List[str] = is_training _A : str = use_input_mask _A : Any = use_token_type_ids _A : Dict = use_labels _A : Optional[Any] = vocab_size _A : Tuple = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Tuple = intermediate_size _A : str = hidden_act _A : int = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Tuple = type_vocab_size _A : Union[str, Any] = type_sequence_label_size _A : Any = initializer_range _A : Optional[Any] = num_labels _A : Union[str, Any] = num_choices _A : str = scope def A__ ( self ): _A : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _A : str = None if self.use_input_mask: _A : str = random_attention_mask([self.batch_size, self.seq_length] ) _A : int = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _A : Union[str, Any] = None _A : List[Any] = None _A : Optional[Any] = None if self.use_labels: _A : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _A : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) _A : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A__ ,initializer_range=self.initializer_range ,) def A__ ( self ): _A : Tuple = self.get_config() _A : List[str] = 300 return config def A__ ( self ): ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Optional[Any] = self.prepare_config_and_inputs() _A : Optional[int] = True _A : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): _A : Optional[int] = MraModel(config=A__ ) model.to(A__ ) model.eval() _A : Optional[int] = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ) _A : List[Any] = model(A__ ,token_type_ids=A__ ) _A : Optional[Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,): _A : Optional[int] = True _A : List[Any] = MraModel(A__ ) model.to(A__ ) model.eval() _A : Optional[Any] = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,encoder_hidden_states=A__ ,encoder_attention_mask=A__ ,) _A : Tuple = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,encoder_hidden_states=A__ ,) _A : str = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): _A : Optional[int] = MraForMaskedLM(config=A__ ) model.to(A__ ) model.eval() _A : Tuple = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): _A : str = MraForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() _A : str = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,start_positions=A__ ,end_positions=A__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): _A : Union[str, Any] = self.num_labels _A : str = MraForSequenceClassification(A__ ) model.to(A__ ) model.eval() _A : Optional[int] = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): _A : Tuple = self.num_labels _A : Any = MraForTokenClassification(config=A__ ) model.to(A__ ) model.eval() _A : List[Any] = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): _A : Tuple = self.num_choices _A : Optional[int] = MraForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() _A : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _A : Dict = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _A : Dict = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _A : str = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self ): _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Union[str, Any] = config_and_inputs _A : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __snake_case , unittest.TestCase ): __snake_case : List[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __snake_case : Optional[int] = False __snake_case : str = False __snake_case : List[Any] = False __snake_case : str = False __snake_case : List[Any] = () def A__ ( self ): _A : List[Any] = MraModelTester(self ) _A : int = ConfigTester(self ,config_class=A__ ,hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def A__ ( self ): _A : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Any = type self.model_tester.create_and_check_model(*A__ ) def A__ ( self ): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def A__ ( self ): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def A__ ( self ): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def A__ ( self ): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def A__ ( self ): _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def A__ ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Tuple = MraModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason='''MRA does not output attentions''' ) def A__ ( self ): return @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def A__ ( self ): _A : List[str] = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _A : Optional[int] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _A : Union[str, Any] = model(A__ )[0] _A : Tuple = torch.Size((1, 256, 768) ) self.assertEqual(output.shape ,A__ ) _A : int = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A__ ,atol=1E-4 ) ) @slow def A__ ( self ): _A : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _A : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _A : str = model(A__ )[0] _A : str = 50265 _A : Any = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape ,A__ ) _A : str = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A__ ,atol=1E-4 ) ) @slow def A__ ( self ): _A : Dict = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _A : List[str] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _A : Union[str, Any] = model(A__ )[0] _A : Tuple = 50265 _A : List[str] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape ,A__ ) _A : int = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A__ ,atol=1E-4 ) )
332
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase : int =logging.get_logger(__name__) class UpperCAmelCase__ ( __snake_case ): __snake_case : Optional[int] = ["pixel_values"] def __init__( self ,A__ = True ,A__ = None ,A__ = PILImageResampling.BICUBIC ,A__ = True ,A__ = None ,A__ = True ,A__ = 1 / 255 ,A__ = True ,A__ = IMAGENET_DEFAULT_MEAN ,A__ = IMAGENET_DEFAULT_STD ,**A__ ,): super().__init__(**A__ ) _A : List[Any] = size if size is not None else {'''shortest_edge''': 224} _A : int = get_size_dict(A__ ,default_to_square=A__ ) _A : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _A : Dict = get_size_dict(A__ ,param_name='''crop_size''' ) _A : Any = do_resize _A : Union[str, Any] = size _A : List[str] = resample _A : Dict = do_center_crop _A : int = crop_size _A : Tuple = do_rescale _A : Optional[Any] = rescale_factor _A : Optional[Any] = do_normalize _A : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _A : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self ,A__ ,A__ ,A__ = PILImageResampling.BICUBIC ,A__ = None ,**A__ ,): _A : Optional[Any] = get_size_dict(A__ ,default_to_square=A__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _A : Union[str, Any] = int((256 / 224) * size['''shortest_edge'''] ) _A : List[str] = get_resize_output_image_size(A__ ,size=A__ ,default_to_square=A__ ) _A : Optional[int] = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A__ ,size=(size_dict['''height'''], size_dict['''width''']) ,resample=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ = None ,**A__ ,): _A : Optional[int] = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A__ ,size=(size['''height'''], size['''width''']) ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ = None ,**A__ ,): return rescale(A__ ,scale=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ ,A__ = None ,**A__ ,): return normalize(A__ ,mean=A__ ,std=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = ChannelDimension.FIRST ,**A__ ,): _A : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _A : List[Any] = resample if resample is not None else self.resample _A : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : Any = do_rescale if do_rescale is not None else self.do_rescale _A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : int = do_normalize if do_normalize is not None else self.do_normalize _A : Optional[Any] = image_mean if image_mean is not None else self.image_mean _A : Optional[Any] = image_std if image_std is not None else self.image_std _A : str = size if size is not None else self.size _A : Optional[Any] = get_size_dict(A__ ,default_to_square=A__ ) _A : Tuple = crop_size if crop_size is not None else self.crop_size _A : str = get_size_dict(A__ ,param_name='''crop_size''' ) _A : Optional[int] = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _A : List[Any] = [to_numpy_array(A__ ) for image in images] if do_resize: _A : Tuple = [self.resize(A__ ,A__ ,A__ ) for image in images] if do_center_crop: _A : str = [self.center_crop(A__ ,A__ ) for image in images] if do_rescale: _A : List[Any] = [self.rescale(A__ ,A__ ) for image in images] if do_normalize: _A : List[Any] = [self.normalize(A__ ,A__ ,A__ ) for image in images] _A : Any = [to_channel_dimension_format(A__ ,A__ ) for image in images] _A : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=A__ ,tensor_type=A__ )
332
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _snake_case = pytest.mark.integration _snake_case = {'''comet'''} _snake_case = importlib.util.find_spec('''fairseq''') is not None _snake_case = {'''code_eval'''} _snake_case = os.name == '''nt''' _snake_case = {'''bertscore''', '''frugalscore''', '''perplexity'''} _snake_case = importlib.util.find_spec('''transformers''') is not None def __lowerCamelCase ( _lowercase ) -> int: @wraps(lowerCAmelCase__ ) def wrapper(self , _lowercase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('\"test requires Fairseq\"' ) else: test_case(self , lowerCAmelCase__ ) return wrapper def __lowerCamelCase ( _lowercase ) -> str: @wraps(lowerCAmelCase__ ) def wrapper(self , _lowercase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('\"test requires transformers\"' ) else: test_case(self , lowerCAmelCase__ ) return wrapper def __lowerCamelCase ( _lowercase ) -> int: @wraps(lowerCAmelCase__ ) def wrapper(self , _lowercase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('\"test not supported on Windows\"' ) else: test_case(self , lowerCAmelCase__ ) return wrapper def __lowerCamelCase ( ) -> Optional[int]: UpperCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __A , __A , __A ) @local class _lowerCAmelCase ( parameterized.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ={} SCREAMING_SNAKE_CASE_ : Tuple =None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" UpperCamelCase = '[...]' UpperCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __A ) ).module_path ) UpperCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=__A ) # check parameters UpperCamelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__A , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCamelCase = doctest.testmod(__A , verbose=__A , raise_on_error=__A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" UpperCamelCase = '[...]' UpperCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __A ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCamelCase = doctest.testmod(__A , verbose=__A , raise_on_error=__A ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__A ): yield else: yield @contextmanager def __lowerCAmelCase ( self : str ): """simple docstring""" def load_local_metric(SCREAMING_SNAKE_CASE__ : List[Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[str] ): return load_metric(os.path.join('metrics' , __A ) , *__A , **__A ) with patch('datasets.load_metric' ) as mock_load_metric: UpperCamelCase = load_local_metric yield @classmethod def __lowerCAmelCase ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" def wrapper(SCREAMING_SNAKE_CASE__ : Optional[Any] ): UpperCamelCase = contextmanager(__A ) UpperCamelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class _lowerCAmelCase ( __A ): """simple docstring""" def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: UpperCamelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: import torch def bert_cos_score_idf(_lowercase , _lowercase , *_lowercase , **_lowercase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCAmelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: UpperCamelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCamelCase ( _lowercase ) -> Any: def load_from_checkpoint(_lowercase ): class _lowerCAmelCase : """simple docstring""" def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" assert len(__A ) == 2 UpperCamelCase = [0.19, 0.92] return scores, sum(__A ) / len(__A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: UpperCamelCase = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: UpperCamelCase = load_from_checkpoint yield def __lowerCamelCase ( ) -> Tuple: UpperCamelCase = load_metric(os.path.join('metrics' , 'seqeval' ) ) UpperCamelCase = 'ERROR' UpperCamelCase = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(lowerCAmelCase__ , match=re.escape(lowerCAmelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCAmelCase__ )
282
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=13 , __A=3 , __A=224 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , ): __a = size if size is not None else {"""height""": 18, """width""": 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std def snake_case_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self ): __a = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self ): return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self ): __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def snake_case_ ( self ): pass def snake_case_ ( self ): # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched __a = image_processor(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def snake_case_ ( self ): # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched __a = image_processor(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def snake_case_ ( self ): # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched __a = image_processor(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
99
0
import os import sys import unittest A_ :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A_ :List[str] = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') A_ :List[str] = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =get_test_to_tester_mapping(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =get_test_to_tester_mapping(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={'BertModelTest': 'BertModelTester'} __UpperCamelCase : str ={ 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =get_model_to_test_mapping(lowerCamelCase__ ) __UpperCamelCase : List[Any] =get_model_to_test_mapping(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] ={ 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __UpperCamelCase : int ={ 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =get_model_to_tester_mapping(lowerCamelCase__ ) __UpperCamelCase : int =get_model_to_tester_mapping(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={ 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __UpperCamelCase : str ={ 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) , lowerCamelCase__ )
154
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A_ :int = logging.get_logger(__name__) class __A : """simple docstring""" def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if not conversation_id: __UpperCamelCase : int =uuid.uuida() if past_user_inputs is None: __UpperCamelCase : int =[] if generated_responses is None: __UpperCamelCase : Union[str, Any] =[] __UpperCamelCase : uuid.UUID =conversation_id __UpperCamelCase : List[str] =past_user_inputs __UpperCamelCase : List[str] =generated_responses __UpperCamelCase : Optional[str] =text def __eq__( self , lowerCamelCase__ ): """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) __UpperCamelCase : Any =text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __UpperCamelCase : Optional[int] =text def __lowercase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __UpperCamelCase : List[Any] =None def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" self.generated_responses.append(lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" __UpperCamelCase : Any =f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __UpperCamelCase : Tuple ='user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( a , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __A ( a ): """simple docstring""" def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.tokenizer.pad_token_id is None: __UpperCamelCase : int =self.tokenizer.eos_token def __lowercase ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int ={} __UpperCamelCase : Tuple ={} __UpperCamelCase : Union[str, Any] ={} if min_length_for_response is not None: __UpperCamelCase : Union[str, Any] =min_length_for_response if minimum_tokens is not None: __UpperCamelCase : Tuple =minimum_tokens if "max_length" in generate_kwargs: __UpperCamelCase : Optional[Any] =generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __UpperCamelCase : Any =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCamelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCamelCase__ , lowerCamelCase__=0 , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Tuple =super().__call__(lowerCamelCase__ , num_workers=lowerCamelCase__ , **lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) == 1: return outputs[0] return outputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=32 ): """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): __UpperCamelCase : List[str] =self.tokenizer._build_conversation_input_ids(lowerCamelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __UpperCamelCase : List[Any] =self._legacy_parse_and_tokenize(lowerCamelCase__ ) if self.framework == "pt": __UpperCamelCase : Any =torch.LongTensor([input_ids] ) elif self.framework == "tf": __UpperCamelCase : Any =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=10 , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =generate_kwargs.get('max_length' , self.model.config.max_length ) __UpperCamelCase : Dict =model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __UpperCamelCase : str =max_length - minimum_tokens __UpperCamelCase : Optional[Any] =model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: __UpperCamelCase : Any =model_inputs['attention_mask'][:, -trim:] __UpperCamelCase : List[str] =model_inputs.pop('conversation' ) __UpperCamelCase : int =max_length __UpperCamelCase : Optional[int] =self.model.generate(**lowerCamelCase__ , **lowerCamelCase__ ) if self.model.config.is_encoder_decoder: __UpperCamelCase : Tuple =1 else: __UpperCamelCase : List[Any] =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : Any =model_outputs['output_ids'] __UpperCamelCase : Dict =self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ , ) __UpperCamelCase : str =model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCamelCase__ ) return conversation def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.tokenizer.eos_token_id __UpperCamelCase : Any =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) if len(lowerCamelCase__ ) > self.tokenizer.model_max_length: __UpperCamelCase : Tuple =input_ids[-self.tokenizer.model_max_length :] return input_ids
154
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=__magic_name__ ): SCREAMING_SNAKE_CASE_ =['''onnx'''] def __init__( self : Dict , *snake_case__ : str , **snake_case__ : Any ): '''simple docstring''' requires_backends(self , ["onnx"] ) @classmethod def __a ( cls : int , *snake_case__ : List[str] , **snake_case__ : Tuple ): '''simple docstring''' requires_backends(cls , ["onnx"] ) @classmethod def __a ( cls : Dict , *snake_case__ : str , **snake_case__ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["onnx"] )
438
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _lowerCAmelCase : Dict = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } _lowerCAmelCase : str = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } _lowerCAmelCase : Dict = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } _lowerCAmelCase : int = { """num_train_timesteps""": 40, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 201, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 151, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' if isinstance(snake_case , snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Any , snake_case : str=False )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Dict = checkpoint[f'{old_prefix}.in_layers.0.weight'] UpperCAmelCase__ : List[Any] = checkpoint[f'{old_prefix}.in_layers.0.bias'] UpperCAmelCase__ : Dict = checkpoint[f'{old_prefix}.in_layers.2.weight'] UpperCAmelCase__ : List[Any] = checkpoint[f'{old_prefix}.in_layers.2.bias'] UpperCAmelCase__ : Optional[int] = checkpoint[f'{old_prefix}.emb_layers.1.weight'] UpperCAmelCase__ : Dict = checkpoint[f'{old_prefix}.emb_layers.1.bias'] UpperCAmelCase__ : Any = checkpoint[f'{old_prefix}.out_layers.0.weight'] UpperCAmelCase__ : List[Any] = checkpoint[f'{old_prefix}.out_layers.0.bias'] UpperCAmelCase__ : int = checkpoint[f'{old_prefix}.out_layers.3.weight'] UpperCAmelCase__ : int = checkpoint[f'{old_prefix}.out_layers.3.bias'] if has_skip: UpperCAmelCase__ : str = checkpoint[f'{old_prefix}.skip_connection.weight'] UpperCAmelCase__ : Any = checkpoint[f'{old_prefix}.skip_connection.bias'] return new_checkpoint def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Tuple , snake_case : Dict=None )-> Tuple: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) UpperCAmelCase__ : Dict = checkpoint[f'{old_prefix}.norm.weight'] UpperCAmelCase__ : Tuple = checkpoint[f'{old_prefix}.norm.bias'] UpperCAmelCase__ : Tuple = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : int = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Optional[Any] = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Optional[int] = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Optional[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Union[str, Any] = ( checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase__ : List[str] = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Union[str, Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = torch.load(snake_case , map_location="cpu" ) UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Any = checkpoint["time_embed.0.weight"] UpperCAmelCase__ : Optional[int] = checkpoint["time_embed.0.bias"] UpperCAmelCase__ : Any = checkpoint["time_embed.2.weight"] UpperCAmelCase__ : Optional[Any] = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: UpperCAmelCase__ : List[Any] = checkpoint["label_emb.weight"] UpperCAmelCase__ : Dict = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase__ : List[Any] = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase__ : Any = unet_config["down_block_types"] UpperCAmelCase__ : Tuple = unet_config["layers_per_block"] UpperCAmelCase__ : str = unet_config["attention_head_dim"] UpperCAmelCase__ : str = unet_config["block_out_channels"] UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : Tuple = channels_list[0] for i, layer_type in enumerate(snake_case ): UpperCAmelCase__ : List[str] = channels_list[i] UpperCAmelCase__ : Optional[int] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case ): UpperCAmelCase__ : int = f'down_blocks.{i}.resnets.{j}' UpperCAmelCase__ : Union[str, Any] = f'input_blocks.{current_layer}.0' UpperCAmelCase__ : List[str] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase__ : Optional[Any] = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case ): UpperCAmelCase__ : List[str] = f'down_blocks.{i}.resnets.{j}' UpperCAmelCase__ : Optional[Any] = f'input_blocks.{current_layer}.0' UpperCAmelCase__ : Optional[int] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase__ : Any = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case ) UpperCAmelCase__ : Dict = f'down_blocks.{i}.attentions.{j}' UpperCAmelCase__ : List[Any] = f'input_blocks.{current_layer}.1' UpperCAmelCase__ : Optional[Any] = convert_attention( snake_case , snake_case , snake_case , snake_case , snake_case ) current_layer += 1 if i != len(snake_case ) - 1: UpperCAmelCase__ : Dict = f'down_blocks.{i}.downsamplers.0' UpperCAmelCase__ : Optional[int] = f'input_blocks.{current_layer}.0' UpperCAmelCase__ : Tuple = convert_resnet(snake_case , snake_case , snake_case , snake_case ) current_layer += 1 UpperCAmelCase__ : Dict = current_channels # hardcoded the mid-block for now UpperCAmelCase__ : int = "mid_block.resnets.0" UpperCAmelCase__ : Optional[int] = "middle_block.0" UpperCAmelCase__ : Any = convert_resnet(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Optional[int] = "mid_block.attentions.0" UpperCAmelCase__ : Tuple = "middle_block.1" UpperCAmelCase__ : Any = convert_attention(snake_case , snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Optional[int] = "mid_block.resnets.1" UpperCAmelCase__ : Union[str, Any] = "middle_block.2" UpperCAmelCase__ : Optional[int] = convert_resnet(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : int = unet_config["up_block_types"] for i, layer_type in enumerate(snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase__ : Optional[Any] = f'up_blocks.{i}.resnets.{j}' UpperCAmelCase__ : List[str] = f'output_blocks.{current_layer}.0' UpperCAmelCase__ : List[str] = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case ) current_layer += 1 if i != len(snake_case ) - 1: UpperCAmelCase__ : Dict = f'up_blocks.{i}.upsamplers.0' UpperCAmelCase__ : Optional[Any] = f'output_blocks.{current_layer-1}.1' UpperCAmelCase__ : Optional[Any] = convert_resnet(snake_case , snake_case , snake_case , snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase__ : Optional[Any] = f'up_blocks.{i}.resnets.{j}' UpperCAmelCase__ : Tuple = f'output_blocks.{current_layer}.0' UpperCAmelCase__ : Union[str, Any] = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case ) UpperCAmelCase__ : Optional[int] = f'up_blocks.{i}.attentions.{j}' UpperCAmelCase__ : List[Any] = f'output_blocks.{current_layer}.1' UpperCAmelCase__ : Any = convert_attention( snake_case , snake_case , snake_case , snake_case , snake_case ) current_layer += 1 if i != len(snake_case ) - 1: UpperCAmelCase__ : Dict = f'up_blocks.{i}.upsamplers.0' UpperCAmelCase__ : Any = f'output_blocks.{current_layer-1}.2' UpperCAmelCase__ : int = convert_resnet(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = checkpoint["out.0.weight"] UpperCAmelCase__ : Any = checkpoint["out.0.bias"] UpperCAmelCase__ : int = checkpoint["out.2.weight"] UpperCAmelCase__ : str = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : Optional[int] = strabool(args.class_cond) _lowerCAmelCase : Optional[Any] = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: _lowerCAmelCase : Dict = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase : Dict = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _lowerCAmelCase : str = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: _lowerCAmelCase : int = None _lowerCAmelCase : Optional[int] = con_pt_to_diffuser(args.unet_path, unet_config) _lowerCAmelCase : Optional[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _lowerCAmelCase : Optional[int] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _lowerCAmelCase : str = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase : Any = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") _lowerCAmelCase : Dict = CMStochasticIterativeScheduler(**scheduler_config) _lowerCAmelCase : Tuple = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
438
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''MobileViTFeatureExtractor'''] __lowerCamelCase = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
from scipy.stats import spearmanr import datasets UpperCamelCase = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCamelCase = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" UpperCamelCase = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def __a ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def __a ( self :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=False ): UpperCamelCase__ :Any = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = OpenAIGPTTokenizer a = OpenAIGPTTokenizerFast a = True a = False def A ( self : Any): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _A : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE)))) _A : Dict = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _A : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE)) def A ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any]): return "lower newer", "lower newer" def A ( self : Optional[int]): _A : Tuple = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) _A : int = 'lower' _A : Any = ['low', 'er</w>'] _A : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Optional[Any] = tokens + ['<unk>'] _A : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) def A ( self : Any , SCREAMING_SNAKE_CASE : Tuple=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): _A : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) # Simple input _A : Dict = 'This is a simple input' _A : Dict = ['This is a simple input 1', 'This is a simple input 2'] _A : Any = ('This is a simple input', 'This is a pair') _A : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length') # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length') # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length') # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length') # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) def A ( self : Any): pass @require_ftfy @require_spacy @require_tokenizers class __lowerCamelCase ( a_ ): """simple docstring""" pass
128
0
"""simple docstring""" from __future__ import annotations class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> None: A = order # a_{0} ... a_{k} A = [1.0] + [0.0] * order # b_{0} ... b_{k} A = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A = [0.0] * self.order # y[n-1] ... y[n-k] A = [0.0] * self.order def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> None: if len(lowerCamelCase_ ) < self.order: A = [1.0, *a_coeffs] if len(lowerCamelCase_ ) != self.order + 1: A = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(lowerCamelCase_ )}' ) raise ValueError(lowerCamelCase_ ) if len(lowerCamelCase_ ) != self.order + 1: A = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(lowerCamelCase_ )}' ) raise ValueError(lowerCamelCase_ ) A = a_coeffs A = b_coeffs def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> float: A = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 ,self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A = self.input_history[:-1] A = self.output_history[:-1] A = sample A = result return result
714
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({'''labels''': ClassLabel} ) _lowerCamelCase = "text" _lowerCamelCase = "labels" def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> int: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] ,lowerCamelCase_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) A = copy.deepcopy(self ) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
255
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCamelCase : Any = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''input_features''', '''attention_mask'''] def __init__( self , _snake_case=80 , _snake_case=1_60_00 , _snake_case=80 , _snake_case=0.0 , _snake_case=True , _snake_case=True , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) lowerCAmelCase = num_mel_bins lowerCAmelCase = do_ceptral_normalize lowerCAmelCase = normalize_means lowerCAmelCase = normalize_vars lowerCAmelCase = True def UpperCamelCase__ ( self , _snake_case , ): """simple docstring""" lowerCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCAmelCase = torch.from_numpy(_snake_case ).unsqueeze(0 ) lowerCAmelCase = ta_kaldi.fbank(_snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCamelCase__ ( _snake_case , _snake_case , _snake_case = True , _snake_case = True , _snake_case = 0.0 , ): """simple docstring""" if normalize_means: lowerCAmelCase = x[:input_length].mean(axis=0 ) lowerCAmelCase = np.subtract(_snake_case , _snake_case ) if normalize_vars: lowerCAmelCase = x[:input_length].std(axis=0 ) lowerCAmelCase = np.divide(_snake_case , _snake_case ) if input_length < x.shape[0]: lowerCAmelCase = padding_value # make sure array is in float32 lowerCAmelCase = x.astype(np.floataa ) return x def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_snake_case , _snake_case , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_snake_case , _snake_case ) ] def __call__( self , _snake_case , _snake_case = False , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [raw_speech] # extract fbank features lowerCAmelCase = [self._extract_fbank_features(_snake_case ) for waveform in raw_speech] # convert into correct format for padding lowerCAmelCase = BatchFeature({'input_features': features} ) lowerCAmelCase = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) # make sure list is in array format lowerCAmelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , _snake_case ): lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] lowerCAmelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCAmelCase = ( np.array(_snake_case , dtype=np.intaa ) if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase = self.normalize( padded_inputs['input_features'] , attention_mask=_snake_case ) if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs
4
"""simple docstring""" import os def lowercase ( ): """simple docstring""" A__ : List[Any] =os.path.dirname(os.path.realpath(UpperCamelCase ) ) A__ : str =os.path.join(UpperCamelCase , "triangle.txt" ) with open(UpperCamelCase ) as f: A__ : Optional[int] =f.readlines() A__ : str =[] for line in triangle: A__ : Union[str, Any] =[] for number in line.strip().split(" " ): numbers_from_line.append(int(UpperCamelCase ) ) a.append(UpperCamelCase ) for i in range(1 , len(UpperCamelCase ) ): for j in range(len(a[i] ) ): A__ : Union[str, Any] =a[i - 1][j] if j != len(a[i - 1] ) else 0 A__ : Union[str, Any] =a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(UpperCamelCase , UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
656
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = DDIMPipeline __UpperCAmelCase : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCAmelCase : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __UpperCAmelCase : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase : int = False def __snake_case ( self : Optional[Any] ) -> Tuple: torch.manual_seed(0 ) __snake_case : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) __snake_case : Optional[Any] = DDIMScheduler() __snake_case : int = {'''unet''': unet, '''scheduler''': scheduler} return components def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Tuple=0 ) -> Dict: if str(UpperCAmelCase__ ).startswith("mps" ): __snake_case : int = torch.manual_seed(UpperCAmelCase__ ) else: __snake_case : Dict = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __snake_case : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : int ) -> List[Any]: __snake_case : Dict = '''cpu''' __snake_case : Any = self.get_dummy_components() __snake_case : int = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __snake_case : Any = self.get_dummy_inputs(UpperCAmelCase__ ) __snake_case : Optional[int] = pipe(**UpperCAmelCase__ ).images __snake_case : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __snake_case : Dict = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) __snake_case : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1E-3 ) def __snake_case ( self : Union[str, Any] ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def __snake_case ( self : Tuple ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __snake_case ( self : List[Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any ) -> int: __snake_case : List[str] = '''google/ddpm-cifar10-32''' __snake_case : str = UNetaDModel.from_pretrained(UpperCAmelCase__ ) __snake_case : List[Any] = DDIMScheduler() __snake_case : Tuple = DDIMPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) ddim.to(UpperCAmelCase__ ) ddim.set_progress_bar_config(disable=UpperCAmelCase__ ) __snake_case : Optional[int] = torch.manual_seed(0 ) __snake_case : str = ddim(generator=UpperCAmelCase__ , eta=0.0 , output_type="numpy" ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : int = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : Dict ) -> Union[str, Any]: __snake_case : str = '''google/ddpm-ema-bedroom-256''' __snake_case : Optional[int] = UNetaDModel.from_pretrained(UpperCAmelCase__ ) __snake_case : Optional[int] = DDIMScheduler.from_pretrained(UpperCAmelCase__ ) __snake_case : Tuple = DDIMPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) ddpm.to(UpperCAmelCase__ ) ddpm.set_progress_bar_config(disable=UpperCAmelCase__ ) __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : str = ddpm(generator=UpperCAmelCase__ , output_type="numpy" ).images __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __snake_case : Optional[Any] = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
718
from __future__ import annotations _snake_case : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class a : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : dict[str, list[str]] , lowerCamelCase : str ) -> None: __snake_case : Tuple = graph # mapping node to its parent in resulting breadth first tree __snake_case : dict[str, str | None] = {} __snake_case : Dict = source_vertex def __snake_case ( self : Optional[int] ) -> None: __snake_case : Dict = {self.source_vertex} __snake_case : List[str] = None __snake_case : Optional[Any] = [self.source_vertex] # first in first out queue while queue: __snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase ) __snake_case : Any = vertex queue.append(lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : str ) -> str: if target_vertex == self.source_vertex: return self.source_vertex __snake_case : Optional[Any] = self.parent.get(lowerCamelCase ) if target_vertex_parent is None: __snake_case : Optional[Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(lowerCamelCase ) return self.shortest_path(lowerCamelCase ) + F'->{target_vertex}' if __name__ == "__main__": _snake_case : Optional[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
203
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """audio-spectrogram-transformer""" def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=16 , snake_case=True , snake_case=10 , snake_case=10 , snake_case=1024 , snake_case=128 , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = patch_size lowercase = qkv_bias lowercase = frequency_stride lowercase = time_stride lowercase = max_length lowercase = num_mel_bins
84
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 0 for ch in input_str: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ord(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = pow(2 , lowerCamelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
105
0
class a_ : def __init__( self :Any , _lowercase :int , _lowercase :List[Any]=None , _lowercase :Tuple=None) -> str: UpperCAmelCase_ = data UpperCAmelCase_ = previous UpperCAmelCase_ = next_node def __str__( self :Union[str, Any]) -> str: return f"{self.data}" def __a ( self :Optional[int]) -> int: return self.data def __a ( self :Any) -> int: return self.next def __a ( self :Union[str, Any]) -> Optional[int]: return self.previous class a_ : def __init__( self :Union[str, Any] , _lowercase :str) -> str: UpperCAmelCase_ = head def __iter__( self :Any) -> List[str]: return self def __a ( self :str) -> Dict: if not self.current: raise StopIteration else: UpperCAmelCase_ = self.current.get_data() UpperCAmelCase_ = self.current.get_next() return value class a_ : def __init__( self :Union[str, Any]) -> str: UpperCAmelCase_ = None # First node in list UpperCAmelCase_ = None # Last node in list def __str__( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = self.head UpperCAmelCase_ = [] while current is not None: nodes.append(current.get_data()) UpperCAmelCase_ = current.get_next() return " ".join(str(_lowercase) for node in nodes) def __contains__( self :Union[str, Any] , _lowercase :int) -> Any: UpperCAmelCase_ = self.head while current: if current.get_data() == value: return True UpperCAmelCase_ = current.get_next() return False def __iter__( self :int) -> int: return LinkedListIterator(self.head) def __a ( self :Any) -> Any: if self.head: return self.head.get_data() return None def __a ( self :Optional[Any]) -> Any: if self.tail: return self.tail.get_data() return None def __a ( self :Union[str, Any] , _lowercase :Node) -> None: if self.head is None: UpperCAmelCase_ = node UpperCAmelCase_ = node else: self.insert_before_node(self.head , _lowercase) def __a ( self :int , _lowercase :Node) -> None: if self.head is None: self.set_head(_lowercase) else: self.insert_after_node(self.tail , _lowercase) def __a ( self :Tuple , _lowercase :int) -> None: UpperCAmelCase_ = Node(_lowercase) if self.head is None: self.set_head(_lowercase) else: self.set_tail(_lowercase) def __a ( self :Optional[int] , _lowercase :Node , _lowercase :Node) -> None: UpperCAmelCase_ = node UpperCAmelCase_ = node.previous if node.get_previous() is None: UpperCAmelCase_ = node_to_insert else: UpperCAmelCase_ = node_to_insert UpperCAmelCase_ = node_to_insert def __a ( self :Dict , _lowercase :Node , _lowercase :Node) -> None: UpperCAmelCase_ = node UpperCAmelCase_ = node.next if node.get_next() is None: UpperCAmelCase_ = node_to_insert else: UpperCAmelCase_ = node_to_insert UpperCAmelCase_ = node_to_insert def __a ( self :Tuple , _lowercase :int , _lowercase :int) -> None: UpperCAmelCase_ = 1 UpperCAmelCase_ = Node(_lowercase) UpperCAmelCase_ = self.head while node: if current_position == position: self.insert_before_node(_lowercase , _lowercase) return current_position += 1 UpperCAmelCase_ = node.next self.insert_after_node(self.tail , _lowercase) def __a ( self :Tuple , _lowercase :int) -> Node: UpperCAmelCase_ = self.head while node: if node.get_data() == item: return node UpperCAmelCase_ = node.get_next() raise Exception('''Node not found''') def __a ( self :Any , _lowercase :Any) -> Optional[Any]: if (node := self.get_node(_lowercase)) is not None: if node == self.head: UpperCAmelCase_ = self.head.get_next() if node == self.tail: UpperCAmelCase_ = self.tail.get_previous() self.remove_node_pointers(_lowercase) @staticmethod def __a ( _lowercase :Node) -> None: if node.get_next(): UpperCAmelCase_ = node.previous if node.get_previous(): UpperCAmelCase_ = node.next UpperCAmelCase_ = None UpperCAmelCase_ = None def __a ( self :List[str]) -> Union[str, Any]: return self.head is None def A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
561
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def A ( ) -> Optional[int]: '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class a_ ( nn.Module ): def __init__( self :Dict) -> Any: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :str , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( unittest.TestCase ): def __a ( self :Any) -> int: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[str]): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :Optional[int] , _lowercase :str): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase_ , UpperCAmelCase_ = mock_training_loop_function('''hello''') self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def __a ( self :Optional[Any]) -> str: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(_lowercase :Optional[Any]): pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :Any) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :Tuple): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :str) -> Dict: @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :Tuple): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase) as cm: mock_training_loop_function(128 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def __a ( self :Optional[int]) -> Any: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :List[str]): raise ValueError('''Oops, we had an error!''') with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = torch.cuda.memory_allocated() UpperCAmelCase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase) UpperCAmelCase_ = release_memory(_lowercase) self.assertEqual(torch.cuda.memory_allocated() , _lowercase)
561
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _UpperCamelCase : List[Any] =logging.get_logger(__name__) def a__ (__lowercase :Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(__lowercase , np.ndarray ): return list(tensor.shape ) _A : Tuple = tf.shape(__lowercase ) if tensor.shape == tf.TensorShape(__lowercase ): return dynamic _A : Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowercase )] def a__ (__lowercase :tf.Tensor , __lowercase :Optional[int] = None , __lowercase :Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowercase , name=__lowercase ) def a__ (__lowercase :Optional[Any] , __lowercase :Optional[Any] , __lowercase :str , __lowercase :Tuple=1e-5 , __lowercase :Dict=-1 ) -> str: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowercase , __lowercase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized _A , _A : Dict = tf.nn.moments(__lowercase , axes=[axis] , keepdims=__lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _A : Dict = [1] * inputs.shape.rank _A : Optional[int] = shape_list(__lowercase )[axis] _A : Optional[int] = tf.reshape(__lowercase , __lowercase ) _A : Any = tf.reshape(__lowercase , __lowercase ) # Compute layer normalization using the batch_normalization # function. _A : str = tf.nn.batch_normalization( __lowercase , __lowercase , __lowercase , offset=__lowercase , scale=__lowercase , variance_epsilon=__lowercase , ) return outputs def a__ (__lowercase :Any , __lowercase :str=0 , __lowercase :List[str]=-1 ) -> Optional[Any]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _A : List[str] = tf.shape(__lowercase ) _A : int = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _A : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowercase , __lowercase ) def a__ (__lowercase :tf.Tensor ) -> tf.Tensor: if not isinstance(__lowercase , tf.Tensor ): _A : Union[str, Any] = tf.convert_to_tensor(__lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _A : str = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _A : int = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _A : List[str] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def a__ (__lowercase :tf.Tensor , __lowercase :int , __lowercase :str = "input_ids" ) -> None: tf.debugging.assert_less( __lowercase , tf.cast(__lowercase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(__lowercase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def a__ (__lowercase :Dict , __lowercase :Any , __lowercase :Dict ) -> int: _A : Union[str, Any] = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _A : Optional[Any] = [x for x in data if len(__lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) _A : Any = np.asarray(__lowercase ) _A : Optional[Any] = 1 _A : Union[str, Any] = np.array_split(__lowercase , __lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _A : List[str] = np.array_split(__lowercase , __lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowercase ): _A : Tuple = chunk_data else: _A : Optional[int] = data def a__ (__lowercase :Optional[Any] , __lowercase :List[str] ) -> Optional[Any]: if name in group.attrs: _A : List[str] = [n.decode('''utf8''' ) if hasattr(__lowercase , '''decode''' ) else n for n in group.attrs[name]] else: _A : Optional[Any] = [] _A : Tuple = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__lowercase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def a__ (__lowercase :List[Any] ) -> Optional[Any]: def _expand_single_ad_tensor(__lowercase :Union[str, Any] ): if isinstance(__lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowercase )
206
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Any ={ 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] =[ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
206
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase : Optional[int] =[ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] lowerCAmelCase : Any =[ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] lowerCAmelCase : Any =( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) lowerCAmelCase : Tuple =( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) lowerCAmelCase : List[Any] =[ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def A__ ( __A , __A ): '''simple docstring''' for tf_name, hf_name in patterns: _lowerCamelCase : List[Any] = k.replace(__A , __A ) return k def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = BigBirdPegasusConfig(**__A ) _lowerCamelCase : str = BigBirdPegasusForConditionalGeneration(__A ) _lowerCamelCase : Optional[Any] = torch_model.state_dict() _lowerCamelCase : Any = {} # separating decoder weights _lowerCamelCase : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} _lowerCamelCase : int = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): _lowerCamelCase : List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue _lowerCamelCase : Any = DECODER_PATTERNS _lowerCamelCase : str = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _lowerCamelCase : Optional[Any] = v.T _lowerCamelCase : Optional[int] = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): _lowerCamelCase : int = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue _lowerCamelCase : int = REMAINING_PATTERNS _lowerCamelCase : Dict = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _lowerCamelCase : str = v.T _lowerCamelCase : int = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _lowerCamelCase : List[str] = mapping["""model.embed_positions.weight"""] _lowerCamelCase : int = mapping.pop("""model.embed_positions.weight""" ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = torch_model.load_state_dict(__A , strict=__A ) _lowerCamelCase : Any = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[Any] = tf.train.list_variables(__A ) _lowerCamelCase : Dict = {} _lowerCamelCase : Any = ["""global_step"""] for name, shape in tqdm(__A , desc="""converting tf checkpoint to dict""" ): _lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCamelCase : Optional[Any] = tf.train.load_variable(__A , __A ) _lowerCamelCase : Union[str, Any] = array return tf_weights def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : str = get_tf_weights_as_numpy(__A ) _lowerCamelCase : int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") lowerCAmelCase : int =parser.parse_args() lowerCAmelCase : List[str] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
15
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=False , snake_case=True , snake_case=False , snake_case=True , snake_case=33 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = EsmModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case ) lowercase = model(snake_case ) lowercase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = EsmForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = self.num_labels lowercase = EsmForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : str = False _UpperCamelCase : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase : Any = () _UpperCamelCase : Optional[Any] = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self ): lowercase = EsmModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = EsmModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs()[0] lowercase = EsmEmbeddings(config=snake_case ) lowercase = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase = create_position_ids_from_input_ids(snake_case , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case , snake_case ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs()[0] lowercase = EsmEmbeddings(config=snake_case ) lowercase = torch.empty(2 , 4 , 30 ) lowercase = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase = embeddings.create_position_ids_from_inputs_embeds(snake_case ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case , snake_case ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_torch class A_ ( __lowerCamelCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self ): with torch.no_grad(): lowercase = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase = model(snake_case )[0] lowercase = 33 lowercase = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , snake_case ) lowercase = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): with torch.no_grad(): lowercase = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase = model(snake_case )[0] # compare the actual values for a slice. lowercase = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1E-4 ) )
84
# Algorithm for the pigeonhole sorting def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= min(lowercase__ ) # min() finds the minimum value __lowercase= max(lowercase__ ) # max() finds the maximum value __lowercase= max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowercase= [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowercase__ , lowercase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowercase= 0 for count in range(lowercase__ ): while holes[count] > 0: holes[count] -= 1 __lowercase= count + min_val i += 1 def _lowerCamelCase( ) -> Dict: '''simple docstring''' __lowercase= [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowercase__ ) print('Sorted order is:' , ' '.join(lowercase__ ) ) if __name__ == "__main__": main()
230
0
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , **lowerCAmelCase__ , ) -> Tuple: super().__init__(features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Sql( cache_dir=lowerCAmelCase__ , features=lowerCAmelCase__ , sql=lowerCAmelCase__ , con=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , ) # Build dataset for splits SCREAMING_SNAKE_CASE = self.builder.as_dataset( split='train' , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = name SCREAMING_SNAKE_CASE = con SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE = num_proc SCREAMING_SNAKE_CASE = to_sql_kwargs def __A ( self ) -> int: SCREAMING_SNAKE_CASE = self.to_sql_kwargs.pop('sql' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.to_sql_kwargs.pop('con' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.to_sql_kwargs.pop('index' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self._write(index=lowerCAmelCase__ , **self.to_sql_kwargs ) return written def __A ( self , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = args SCREAMING_SNAKE_CASE = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE = query_table( table=self.dataset.data , key=slice(lowerCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE = batch.to_pandas() SCREAMING_SNAKE_CASE = df.to_sql(self.name , self.con , index=lowerCAmelCase__ , **lowerCAmelCase__ ) return num_rows or len(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCAmelCase__ , lowerCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
327
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __UpperCamelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=lowerCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=lowerCamelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=lowerCamelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) SCREAMING_SNAKE_CASE_ : bool = field( default=lowerCamelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=lowerCamelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=lowerCamelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=lowerCamelCase_ , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=lowerCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=lowerCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __A ( self ) -> Tuple: if self.train_file is not None: SCREAMING_SNAKE_CASE = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: SCREAMING_SNAKE_CASE = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None def __call__( self , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE = 'label' if 'label' in features[0].keys() else 'labels' SCREAMING_SNAKE_CASE = [feature.pop(lowerCAmelCase__ ) for feature in features] SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = len(features[0]['input_ids'] ) SCREAMING_SNAKE_CASE = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] SCREAMING_SNAKE_CASE = list(chain(*lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten SCREAMING_SNAKE_CASE = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels SCREAMING_SNAKE_CASE = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def lowercase () -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: SCREAMING_SNAKE_CASE = {} if data_args.train_file is not None: SCREAMING_SNAKE_CASE = data_args.train_file if data_args.validation_file is not None: SCREAMING_SNAKE_CASE = data_args.validation_file SCREAMING_SNAKE_CASE = data_args.train_file.split('.' )[-1] SCREAMING_SNAKE_CASE = load_dataset( SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. SCREAMING_SNAKE_CASE = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. SCREAMING_SNAKE_CASE = [F'ending{i}' for i in range(4 )] SCREAMING_SNAKE_CASE = 'sent1' SCREAMING_SNAKE_CASE = 'sent2' if data_args.max_seq_length is None: SCREAMING_SNAKE_CASE = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) SCREAMING_SNAKE_CASE = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE_ : Dict ): SCREAMING_SNAKE_CASE = [[context] * 4 for context in examples[context_name]] SCREAMING_SNAKE_CASE = examples[question_header_name] SCREAMING_SNAKE_CASE = [ [F'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(SCREAMING_SNAKE_CASE_ ) ] # Flatten out SCREAMING_SNAKE_CASE = list(chain(*SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = list(chain(*SCREAMING_SNAKE_CASE_ ) ) # Tokenize SCREAMING_SNAKE_CASE = tokenizer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) SCREAMING_SNAKE_CASE = raw_datasets['train'] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE = train_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): SCREAMING_SNAKE_CASE = train_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) SCREAMING_SNAKE_CASE = raw_datasets['validation'] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE = eval_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): SCREAMING_SNAKE_CASE = eval_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator SCREAMING_SNAKE_CASE = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE_ : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = eval_predictions SCREAMING_SNAKE_CASE = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() # Saves the tokenizer too for easy upload SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('train' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('train' , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
def _lowerCamelCase( __snake_case , __snake_case ) -> List[Any]: if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def _lowerCamelCase( __snake_case , __snake_case ) -> float: if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
524
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase__ = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase__ = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def _lowerCamelCase( __snake_case ) -> Tuple: __snake_case = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __snake_case ) return [m.group(0 ) for m in matches] def _lowerCamelCase( ) -> Optional[int]: __snake_case = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __snake_case = collections.defaultdict(__snake_case ) __snake_case = collections.defaultdict(__snake_case ) __snake_case = collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__snake_case ): __snake_case = None if _re_tf_models.match(__snake_case ) is not None: __snake_case = tf_models __snake_case = _re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: __snake_case = flax_models __snake_case = _re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: __snake_case = pt_models __snake_case = _re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_prefix_to_model_type: __snake_case = True break # Try again after removing the last word in the name __snake_case = "".join(camel_case_split(__snake_case )[:-1] ) __snake_case = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __snake_case = list(__snake_case ) all_models.sort() __snake_case = {"model_type": all_models} __snake_case = [pt_models[t] for t in all_models] __snake_case = [tf_models[t] for t in all_models] __snake_case = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __snake_case = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __snake_case = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __snake_case = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __snake_case = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __snake_case = "AutoTokenizer" __snake_case = [processors[t] for t in all_models] return pd.DataFrame(__snake_case ) def _lowerCamelCase( __snake_case ) -> List[Any]: __snake_case = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __snake_case = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __snake_case = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(__snake_case , __snake_case , __snake_case ): # The type of pipeline may not exist in this framework if not hasattr(__snake_case , __snake_case ): continue # First extract all model_names __snake_case = [] for name in getattr(__snake_case , __snake_case ).values(): if isinstance(__snake_case , __snake_case ): model_names.append(__snake_case ) else: model_names.extend(list(__snake_case ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _lowerCamelCase( __snake_case , __snake_case ) -> Union[str, Any]: __snake_case = get_frameworks_table() __snake_case = Dataset.from_pandas(__snake_case ) __snake_case = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__snake_case ) __snake_case = Dataset.from_json(__snake_case ) __snake_case = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__snake_case ) ) } __snake_case = update_pipeline_and_auto_class_table(__snake_case ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __snake_case = sorted(table.keys() ) __snake_case = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) __snake_case = Dataset.from_pandas(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__snake_case , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__snake_case , "pipeline_tags.json" ) ) if commit_sha is not None: __snake_case = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __snake_case = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__snake_case , repo_type="dataset" , token=__snake_case , commit_message=__snake_case , ) def _lowerCamelCase( ) -> Union[str, Any]: __snake_case = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __snake_case = transformers_module.pipelines.SUPPORTED_TASKS __snake_case = [] for key in pipeline_tasks: if key not in in_table: __snake_case = pipeline_tasks[key]["pt"] if isinstance(__snake_case , (list, tuple) ): __snake_case = model[0] __snake_case = model.__name__ if model not in in_table.values(): missing.append(__snake_case ) if len(__snake_case ) > 0: __snake_case = ", ".join(__snake_case ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase__ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
524
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {"vocab_file": "spiece.model"} lowerCamelCase__ : Tuple = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[int]="<s>" , lowerCamelCase_ :int="</s>" , lowerCamelCase_ :Dict="<unk>" , lowerCamelCase_ :Tuple="<sep>" , lowerCamelCase_ :Union[str, Any]="<pad>" , lowerCamelCase_ :str="<cls>" , lowerCamelCase_ :Union[str, Any]="<mask>" , lowerCamelCase_ :List[Any]=["<eop>", "<eod>"] , lowerCamelCase_ :Optional[Dict[str, Any]] = None , **lowerCamelCase_ :int , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : List[str] = do_lower_case SCREAMING_SNAKE_CASE : int = remove_space SCREAMING_SNAKE_CASE : Tuple = keep_accents SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) SCREAMING_SNAKE_CASE : List[str] = jieba SCREAMING_SNAKE_CASE : Any = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.__dict__.copy() SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self :Any , lowerCamelCase_ :Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' if self.remove_space: SCREAMING_SNAKE_CASE : Optional[int] = ''' '''.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE : List[str] = inputs SCREAMING_SNAKE_CASE : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: SCREAMING_SNAKE_CASE : Union[str, Any] = unicodedata.normalize('''NFKD''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE : List[str] = outputs.lower() return outputs def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_text(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE : List[str] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str ) -> Optional[Any]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ''''''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None , lowerCamelCase_ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Dict = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def __lowerCAmelCase ( self :Optional[int] , *lowerCamelCase_ :str , **lowerCamelCase_ :Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super()._decode(*lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
701
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( a_ : Optional[int] )-> Dict: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int] )-> Dict: '''simple docstring''' return max(metric_fn(a_ , a_ ) for gt in ground_truths ) def __A ( a_ : List[Any] , a_ : Union[str, Any] , a_ : str )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Optional[Any] = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE : List[Any] = pd.read_csv(a_ , sep='''\t''' , header=a_ ) for answer_list in data[1]: SCREAMING_SNAKE_CASE : str = ast.literal_eval(a_ ) answers.append(a_ ) else: SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = [[reference] for reference in references] SCREAMING_SNAKE_CASE : Dict = 0 for prediction, ground_truths in zip(a_ , a_ ): total += 1 em += metric_max_over_ground_truths(a_ , a_ , a_ ) fa += metric_max_over_ground_truths(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Any = 100.0 * em / total SCREAMING_SNAKE_CASE : Optional[int] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __A ( a_ : Any , a_ : Any , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = args.k SCREAMING_SNAKE_CASE : Tuple = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = 0 for hypo, reference in zip(a_ , a_ ): SCREAMING_SNAKE_CASE : Optional[int] = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE : List[str] = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE : Dict = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __A ( a_ : Any , a_ : List[str] , a_ : str )-> int: '''simple docstring''' def strip_title(a_ : Optional[Any] ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE : Tuple = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE : Any = title[:-1] return title SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE : Any = rag_model.rag.question_encoder(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = question_enc_outputs[0] SCREAMING_SNAKE_CASE : Dict = rag_model.retriever( a_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE : Dict = [] for docs in all_docs: SCREAMING_SNAKE_CASE : List[Any] = [strip_title(a_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(a_ ) ) return provenance_strings def __A ( a_ : List[Any] , a_ : int , a_ : str )-> Tuple: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : Dict = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE : Any = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE : Tuple = rag_model.generate( # rag_model overwrites generate a_ , attention_mask=a_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE : Dict = rag_model.retriever.generator_tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) if args.print_predictions: for q, a in zip(a_ , a_ ): logger.info('''Q: {} - A: {}'''.format(a_ , a_ ) ) return answers def __A ( )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=a_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=a_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=a_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=a_ , type=a_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=a_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=a_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=a_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=a_ , type=a_ , required=a_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=a_ , type=a_ , required=a_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=a_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=a_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=a_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=a_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=a_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=a_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __A ( a_ : Optional[Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {} if args.model_type is None: SCREAMING_SNAKE_CASE : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : List[str] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE : Optional[Any] = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE : Tuple = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE : List[Any] = args.index_path else: SCREAMING_SNAKE_CASE : str = BartForConditionalGeneration SCREAMING_SNAKE_CASE : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , a_ ) SCREAMING_SNAKE_CASE : int = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(a_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(a_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : Dict = RagRetriever.from_pretrained(a_ , **a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(a_ , retriever=a_ , **a_ ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(a_ , **a_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE : Dict = [] for line in tqdm(a_ ): questions.append(line.strip() ) if len(a_ ) == args.eval_batch_size: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE : Union[str, Any] = [] if len(a_ ) > 0: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) ) preds_file.flush() score_fn(a_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ : List[str] = get_args() main(args)
18
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class lowercase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A=1 , _A=False , **_A ): '''simple docstring''' super().__init__(**_A ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : Optional[Any] = d_embed UpperCamelCase : List[Any] = d_proj UpperCamelCase : List[Any] = cutoffs + [vocab_size] UpperCamelCase : Any = [0] + self.cutoffs UpperCamelCase : Union[str, Any] = div_val UpperCamelCase : Dict = self.cutoffs[0] UpperCamelCase : Any = len(self.cutoffs ) - 1 UpperCamelCase : Optional[Any] = self.shortlist_size + self.n_clusters UpperCamelCase : int = keep_order UpperCamelCase : Any = [] UpperCamelCase : Optional[int] = [] def _a ( self , _A ): '''simple docstring''' if self.n_clusters > 0: UpperCamelCase : int = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=_A , name="""cluster_weight""" ) UpperCamelCase : Optional[int] = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=_A , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase : Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=_A , name=f"""out_projs_._{i}""" , ) self.out_projs.append(_A ) else: self.out_projs.append(_A ) UpperCamelCase : List[str] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._weight""" , ) UpperCamelCase : int = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase : int = self.d_embed // (self.div_val**i) UpperCamelCase : Any = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=_A , name=f"""out_projs_._{i}""" ) self.out_projs.append(_A ) UpperCamelCase : int = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._weight""" , ) UpperCamelCase : Optional[Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def _a ( _A , _A , _A , _A=None ): '''simple docstring''' UpperCamelCase : List[str] = x if proj is not None: UpperCamelCase : List[str] = tf.einsum("""ibd,ed->ibe""" , _A , _A ) return tf.einsum("""ibd,nd->ibn""" , _A , _A ) + b @staticmethod def _a ( _A , _A ): '''simple docstring''' UpperCamelCase : Optional[Any] = shape_list(_A ) UpperCamelCase : Any = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase : str = tf.stack([r, target] , 1 ) return tf.gather_nd(_A , _A ) def _a ( self , _A , _A , _A=True , _A=False ): '''simple docstring''' UpperCamelCase : int = 0 if self.n_clusters == 0: UpperCamelCase : Dict = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase : Optional[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A ) UpperCamelCase : List[str] = tf.nn.log_softmax(_A , axis=-1 ) else: UpperCamelCase : Any = shape_list(_A ) UpperCamelCase : Any = [] UpperCamelCase : Optional[int] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase : List[str] = (target >= l_idx) & (target < r_idx) UpperCamelCase : List[str] = tf.where(_A ) UpperCamelCase : Union[str, Any] = tf.boolean_mask(_A , _A ) - l_idx if self.div_val == 1: UpperCamelCase : str = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase : Union[str, Any] = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase : Tuple = self.out_layers[i][0] UpperCamelCase : Optional[Any] = self.out_layers[i][1] if i == 0: UpperCamelCase : str = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase : List[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase : Optional[int] = self._logit(_A , _A , _A , self.out_projs[0] ) UpperCamelCase : Optional[int] = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase : Dict = tf.boolean_mask(_A , _A ) UpperCamelCase : Optional[Any] = self._gather_logprob(_A , _A ) else: UpperCamelCase : Tuple = self._logit(_A , _A , _A , self.out_projs[i] ) UpperCamelCase : str = tf.nn.log_softmax(_A ) UpperCamelCase : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase : Tuple = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: UpperCamelCase : List[Any] = tf.boolean_mask(_A , _A ) UpperCamelCase : int = tf.boolean_mask(_A , _A ) UpperCamelCase : Optional[Any] = self._gather_logprob(_A , _A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) ) UpperCamelCase : int = tf.concat(_A , axis=-1 ) if target is not None: if return_mean: UpperCamelCase : Union[str, Any] = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
102
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
from __future__ import annotations from collections.abc import Iterator class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = value lowercase__ = None lowercase__ = None class _a : def __init__( self: Any , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = tree def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: Any ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : str = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
284
0
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> bool: # Base Case if curr_ind == len(__SCREAMING_SNAKE_CASE ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__SCREAMING_SNAKE_CASE ) ): if valid_connection(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Insert current vertex into path as next transition _SCREAMING_SNAKE_CASE : Dict = next_ver # Validate created path if util_hamilton_cycle(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , curr_ind + 1 ): return True # Backtrack _SCREAMING_SNAKE_CASE : int = -1 return False def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 )-> list[int]: _SCREAMING_SNAKE_CASE : Tuple = [-1] * (len(__SCREAMING_SNAKE_CASE ) + 1) # initialize start and end of path with starting index _SCREAMING_SNAKE_CASE : int = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) else []
635
"""simple docstring""" import argparse from collections import defaultdict def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> int: _SCREAMING_SNAKE_CASE : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: _SCREAMING_SNAKE_CASE : Union[str, Any] = f.readlines() _SCREAMING_SNAKE_CASE : Optional[Any] = F"""class {class_name}(""" _SCREAMING_SNAKE_CASE : List[Any] = F"""{4 * " "}def {test_name}(""" _SCREAMING_SNAKE_CASE : Tuple = F"""{8 * " "}{correct_line.split()[0]}""" _SCREAMING_SNAKE_CASE : List[Any] = F"""{16 * " "}{correct_line.split()[0]}""" _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : Dict = [] for line in lines: if line.startswith(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = True elif in_class and line.startswith(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = True elif in_class and in_func and (line.startswith(__SCREAMING_SNAKE_CASE ) or line.startswith(__SCREAMING_SNAKE_CASE )): _SCREAMING_SNAKE_CASE : Dict = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _SCREAMING_SNAKE_CASE : int = True if in_class and in_func and in_line: if ")" not in line: continue else: _SCREAMING_SNAKE_CASE : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _SCREAMING_SNAKE_CASE : Optional[int] = False else: new_lines.append(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None )-> Optional[Any]: if fail is not None: with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: _SCREAMING_SNAKE_CASE : Union[str, Any] = {l.strip() for l in f.readlines()} else: _SCREAMING_SNAKE_CASE : str = None with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: _SCREAMING_SNAKE_CASE : str = f.readlines() _SCREAMING_SNAKE_CASE : str = defaultdict(__SCREAMING_SNAKE_CASE ) for line in correct_lines: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) lowerCAmelCase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
635
1
'''simple docstring''' UpperCamelCase : Optional[int] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCamelCase : Tuple = ['a', 'b', 'c', 'd', 'e'] def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): lowerCamelCase__ = start # add current to visited visited.append(__lowerCAmelCase ) lowerCamelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase__ = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase__ = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": UpperCamelCase : int = topological_sort('a', [], []) print(sort)
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
1
"""simple docstring""" import cmath import math def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->complex: """simple docstring""" __UpperCAmelCase : Optional[int] = math.radians(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = math.radians(UpperCAmelCase_ ) # Convert voltage and current to rectangular form __UpperCAmelCase : Dict = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=0 ) ->Dict: """simple docstring""" return sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[column] ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Tuple = current_dis return min_dis def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=float('''inf''' ) ) ->str: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , UpperCAmelCase_ ): for j in range(max(0 , i - 6 ) , UpperCAmelCase_ ): __UpperCAmelCase : Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Tuple = current_dis return min_dis def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(UpperCAmelCase_ , UpperCAmelCase_ ) # recursion __UpperCAmelCase : Any = points_counts // 2 __UpperCAmelCase : Any = closest_pair_of_points_sqr( UpperCAmelCase_ , points_sorted_on_y[:mid] , UpperCAmelCase_ ) __UpperCAmelCase : Tuple = closest_pair_of_points_sqr( UpperCAmelCase_ , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCAmelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : int = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = dis_between_closest_in_strip( UpperCAmelCase_ , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return min(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: """simple docstring""" __UpperCAmelCase : str = column_based_sort(UpperCAmelCase_ , column=0 ) __UpperCAmelCase : Any = column_based_sort(UpperCAmelCase_ , column=1 ) return ( closest_pair_of_points_sqr( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) ** 0.5 if __name__ == "__main__": lowercase__ :Optional[Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
374
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case :int ={ 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A = {} state_dict.pop('pixel_mean' , lowerCAmelCase__ ) state_dict.pop('pixel_std' , lowerCAmelCase__ ) A = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): A = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(2 ) ) if layer_nb == 0: A = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: A = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: A = key.replace('layers.2' , 'proj_out' ) A = value A = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict="ybelkada/segment-anything" ) -> Dict: '''simple docstring''' A = hf_hub_download(lowerCAmelCase__ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: A = SamConfig() elif "sam_vit_l" in model_name: A = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) A = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: A = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) A = SamConfig( vision_config=lowerCAmelCase__ , ) A = torch.load(lowerCAmelCase__ , map_location='cpu' ) A = replace_keys(lowerCAmelCase__ ) A = SamImageProcessor() A = SamProcessor(image_processor=lowerCAmelCase__ ) A = SamModel(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) A = hf_model.to('cuda' ) A = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) A = [[[400, 650]]] A = [[1]] A = processor(images=np.array(lowerCAmelCase__ ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A = hf_model(**lowerCAmelCase__ ) A = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 A = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A = hf_model(**lowerCAmelCase__ ) A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 A = ((75, 275, 1725, 850),) A = processor(images=np.array(lowerCAmelCase__ ) , input_boxes=lowerCAmelCase__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A = hf_model(**lowerCAmelCase__ ) A = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. A = [[[400, 650], [800, 650]]] A = [[1, 1]] A = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A = hf_model(**lowerCAmelCase__ ) A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": __snake_case :int =argparse.ArgumentParser() __snake_case :str =['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __snake_case :List[Any] =parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
106
import re def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
106
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = VQModel __A = '''sample''' @property def __UpperCAmelCase ( self : int , lowercase_ : Any=(32, 32)) -> List[str]: """simple docstring""" _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes).to(lowercase_) return {"sample": image} @property def __UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (3, 32, 32) @property def __UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) def __UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" _UpperCamelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCamelCase = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" pass def __UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" pass def __UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(lowercase_) _UpperCamelCase = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def __UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCamelCase = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(lowercase_).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _UpperCamelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _UpperCamelCase = image.to(lowercase_) with torch.no_grad(): _UpperCamelCase = model(lowercase_).sample _UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43]) # fmt: on self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3))
82
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") lowerCamelCase__ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCamelCase__ = requests.get(image_url).content lowerCamelCase__ = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
82
1
"""simple docstring""" class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = 0 A__ = 0 A__ = {} def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if vertex not in self.adjacency: A__ = {} self.num_vertices += 1 def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' self.add_vertex(UpperCamelCase__ ) self.add_vertex(UpperCamelCase__ ) if head == tail: return A__ = weight A__ = weight def lowercase_ ( self ): '''simple docstring''' A__ = self.get_edges() for edge in edges: A__ , A__ , A__ = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCamelCase__ ) ): A__ = list(edges[i] ) edges.sort(key=lambda UpperCamelCase__ : e[2] ) for i in range(len(UpperCamelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A__ = edges[i][2] + 1 for edge in edges: A__ , A__ , A__ = edge A__ = weight A__ = weight def __str__( self ): '''simple docstring''' A__ = "" for tail in self.adjacency: for head in self.adjacency[tail]: A__ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("\n" ) def lowercase_ ( self ): '''simple docstring''' A__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase_ ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def lowercase_ ( UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' A__ = Graph() if vertices is None: A__ = [] if edges is None: A__ = [] for vertex in vertices: g.add_vertex(UpperCamelCase__ ) for edge in edges: g.add_edge(*UpperCamelCase__ ) return g class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = {} A__ = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if item in self.parent: return self.find(UpperCamelCase__ ) A__ = item A__ = 0 return item def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if item not in self.parent: return self.make_set(UpperCamelCase__ ) if item != self.parent[item]: A__ = self.find(self.parent[item] ) return self.parent[item] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.find(UpperCamelCase__ ) A__ = self.find(UpperCamelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A__ = roota return roota if self.rank[roota] < self.rank[roota]: A__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A__ = roota return roota return None @staticmethod def lowercase_ ( UpperCamelCase__ ): '''simple docstring''' A__ = graph.num_vertices A__ = Graph.UnionFind() A__ = [] while num_components > 1: A__ = {} for vertex in graph.get_vertices(): A__ = -1 A__ = graph.get_edges() for edge in edges: A__ , A__ , A__ = edge edges.remove((tail, head, weight) ) for edge in edges: A__ , A__ , A__ = edge A__ = union_find.find(UpperCamelCase__ ) A__ = union_find.find(UpperCamelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A__ , A__ , A__ = cheap_edge[vertex] if union_find.find(UpperCamelCase__ ) != union_find.find(UpperCamelCase__ ): union_find.union(UpperCamelCase__ , UpperCamelCase__ ) mst_edges.append(cheap_edge[vertex] ) A__ = num_components - 1 A__ = Graph.build(edges=UpperCamelCase__ ) return mst
337
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=5_12 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = weight_tying A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def lowercase_ ( self ): '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = self.get_config() return config, input_ids, input_mask, token_labels def lowercase_ ( self ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = GPTNeoXJapaneseModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = True A__ = GPTNeoXJapaneseModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = True A__ = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = torch.cat([input_mask, next_mask] , dim=-1 ) A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) A__ = output_from_no_past["hidden_states"][0] A__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["hidden_states"][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowercase_ ( self ): '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowercase__ : Optional[int] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowercase__ : Optional[Any] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowercase__ : Any = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : str = False def lowercase_ ( self ): '''simple docstring''' A__ = GPTNeoXJapaneseModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = "abeja/gpt-neox-japanese-2.7b" A__ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] A__ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] A__ = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) A__ = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase__ ) A__ = [] for prompt in prompts: A__ = tokenizer(UpperCamelCase__ , return_tensors="pt" ).input_ids A__ = model.generate(UpperCamelCase__ , max_length=50 ) A__ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
337
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _UpperCamelCase : Tuple = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _lowerCAmelCase( _a): """simple docstring""" lowerCamelCase__ = '''facebook/nllb-200-distilled-600M''' lowerCamelCase__ = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowerCamelCase__ = '''translator''' lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ['''text''', '''text''', '''text'''] lowerCamelCase__ = ['''text'''] def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Any: if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language." ) __A = self.lang_to_code[src_lang] __A = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors='''pt''' , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Optional[Any]: return self.model.generate(**UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Union[str, Any]: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
712
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def __UpperCamelCase ( snake_case ) -> Union[str, Any]: '''simple docstring''' __A = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"{test_file} instead." ) __A = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) __A = components[:-1] + [test_fn.replace('''.py''' , '''''' )] __A = '''.'''.join(snake_case ) return test_module_path def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = get_module_path(snake_case ) __A = importlib.import_module(snake_case ) return test_module def __UpperCamelCase ( snake_case ) -> List[str]: '''simple docstring''' __A = [] __A = get_test_module(snake_case ) for attr in dir(snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(snake_case , snake_case ) ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = [] __A = get_test_module(snake_case ) for attr in dir(snake_case ): __A = getattr(snake_case , snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __A = getattr(snake_case , '''all_model_classes''' , [] ) if len(snake_case ) > 0: test_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def __UpperCamelCase ( snake_case ) -> str: '''simple docstring''' __A = get_test_classes(snake_case ) __A = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def __UpperCamelCase ( snake_case ) -> List[str]: '''simple docstring''' __A = test_class() if hasattr(snake_case , '''setUp''' ): test.setUp() __A = None if hasattr(snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __A = test.model_tester.__class__ return model_tester def __UpperCamelCase ( snake_case , snake_case ) -> Dict: '''simple docstring''' __A = get_test_classes(snake_case ) __A = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def __UpperCamelCase ( snake_case , snake_case ) -> Union[str, Any]: '''simple docstring''' __A = get_test_classes_for_model(snake_case , snake_case ) __A = [] for test_class in test_classes: __A = get_model_tester_from_test_class(snake_case ) if tester_class is not None: tester_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def __UpperCamelCase ( snake_case ) -> Optional[Any]: '''simple docstring''' __A = get_test_classes(snake_case ) __A = {test_class: get_model_tester_from_test_class(snake_case ) for test_class in test_classes} return test_tester_mapping def __UpperCamelCase ( snake_case ) -> Optional[Any]: '''simple docstring''' __A = get_model_classes(snake_case ) __A = { model_class: get_test_classes_for_model(snake_case , snake_case ) for model_class in model_classes } return model_test_mapping def __UpperCamelCase ( snake_case ) -> Optional[int]: '''simple docstring''' __A = get_model_classes(snake_case ) __A = { model_class: get_tester_classes_for_model(snake_case , snake_case ) for model_class in model_classes } return model_to_tester_mapping def __UpperCamelCase ( snake_case ) -> Tuple: '''simple docstring''' if isinstance(snake_case , snake_case ): return o elif isinstance(snake_case , snake_case ): return o.__name__ elif isinstance(snake_case , (list, tuple) ): return [to_json(snake_case ) for x in o] elif isinstance(snake_case , snake_case ): return {to_json(snake_case ): to_json(snake_case ) for k, v in o.items()} else: return o
341
0
'''simple docstring''' lowercase : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): A : Any = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(snake_case__ ) A : List[Any] = ''''''.join(bin(snake_case__ )[2:].zfill(8 ) for byte in data ) A : Any = len(snake_case__ ) % 6 != 0 if padding_needed: # The padding that will be added later A : Optional[int] = B'''=''' * ((6 - len(snake_case__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case__ ) % 6) else: A : Tuple = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(snake_case__ ) , 6 ) ).encode() + padding ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ): A : Optional[Any] = ( '''argument should be a bytes-like object or ASCII string, ''' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(snake_case__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case__ , snake_case__ ): try: A : Tuple = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) A : Optional[int] = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one A : Tuple = encoded_data[:-padding] A : Tuple = ''''''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: A : int = ''''''.join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data ) A : Tuple = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(snake_case__ ) , 8 ) ] return bytes(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
634
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A ( nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" super().__init__() A : List[Any] = module A : Any = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) , nn.Linear(SCREAMING_SNAKE_CASE , module.out_features , bias=SCREAMING_SNAKE_CASE ) , ) A : List[str] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.module(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) + self.adapter(SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __magic_name__ = '''bigscience/bloom-1b7''' # Constant values __magic_name__ = 2.1_09_65_95_52_69_25_74 __magic_name__ = '''Hello my name is''' __magic_name__ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) __magic_name__ = 10 def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Any = AutoTokenizer.from_pretrained(self.model_name ) class A ( __snake_case ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer A : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Any = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A : List[str] = config.to_dict() A : List[Any] = config.to_diff_dict() A : Union[str, Any] = config.to_json_string() def __lowerCAmelCase ( self ) -> int: """simple docstring""" from bitsandbytes.nn import Paramsabit A : Optional[Any] = self.model_fpaa.get_memory_footprint() A : Any = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) A : List[str] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = BitsAndBytesConfig() A : Optional[Any] = True A : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE , device_map='''auto''' ) A : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) A : Tuple = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Union[str, Any] = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE ): A : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A : int = self.tokenizer(self.input_text , return_tensors='''pt''' ) A : Dict = self.model_fpaa.to(torch.floataa ) A : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A : List[str] = self.model_fpaa.half() # Check this does not throw an error A : Tuple = self.model_fpaa.float() def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: """simple docstring""" A : int = '''t5-small''' A : Any = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A : List[Any] = AutoTokenizer.from_pretrained(cls.model_name ) A : List[str] = '''Translate in German: Hello, my dog is cute''' def __lowerCAmelCase ( self ) -> str: """simple docstring""" gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" from transformers import TaForConditionalGeneration A : int = TaForConditionalGeneration._keep_in_fpaa_modules A : Optional[Any] = None # test with `t5-small` A : Optional[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) A : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A : List[Any] = model.generate(**SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A : Any = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) A : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A : List[Any] = model.generate(**SCREAMING_SNAKE_CASE ) A : str = modules def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A : List[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A : Any = model.generate(**SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A : str = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) A : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A : Tuple = model.generate(**SCREAMING_SNAKE_CASE ) class A ( __snake_case ): def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" super().setUp() # model_name A : Tuple = '''bigscience/bloom-560m''' A : int = '''t5-small''' # Different types of model A : Optional[int] = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A ( __snake_case ): def __lowerCAmelCase ( self ) -> Any: """simple docstring""" super().setUp() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[Any] = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A : str = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A ( __snake_case ): def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" super().setUp() def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A : Optional[Any] = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class A ( __snake_case ): def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : int = '''facebook/opt-350m''' super().setUp() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A : Optional[int] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE ) ): A : Tuple = LoRALayer(module.q_proj , rank=16 ) A : Tuple = LoRALayer(module.k_proj , rank=16 ) A : str = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A : Dict = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A : str = model.forward(**SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A ( __snake_case ): __magic_name__ = '''gpt2-xl''' __magic_name__ = 3.31_91_85_48_54_15_21_87
634
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ) -> Tuple: '''simple docstring''' UpperCamelCase : Tuple = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Any = image_size UpperCamelCase : Dict = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Optional[int] = is_training UpperCamelCase : Tuple = use_labels UpperCamelCase : Dict = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Any = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : int = initializer_range UpperCamelCase : int = mask_ratio UpperCamelCase : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase : Any = (image_size // patch_size) ** 2 UpperCamelCase : List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Tuple = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCamelCase : List[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' UpperCamelCase : Dict = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : List[Any] = model(lowerCamelCase ) UpperCamelCase : List[Any] = (self.image_size // self.patch_size) ** 2 UpperCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase : Dict = 1 UpperCamelCase : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = model(lowerCamelCase ) UpperCamelCase : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = config_and_inputs UpperCamelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __SCREAMING_SNAKE_CASE = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Optional[Any] = ViTMAEModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase ) UpperCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[Any] = [*signature.parameters.keys()] UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase : Optional[int] = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase : Dict = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase : Any = outputs[0].cpu().numpy() UpperCamelCase : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) UpperCamelCase : str = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans UpperCamelCase : Optional[Any] = after_outputs[0].cpu().numpy() UpperCamelCase : List[str] = 0 UpperCamelCase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' np.random.seed(2 ) UpperCamelCase : Tuple = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) UpperCamelCase : str = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : int = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase : List[str] = ViTMAEConfig() UpperCamelCase : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits UpperCamelCase : Any = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) UpperCamelCase : Optional[int] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1e-4 ) )
435
'''simple docstring''' lowerCAmelCase_ = 0 # The first color of the flag. lowerCAmelCase_ = 1 # The second color of the flag. lowerCAmelCase_ = 2 # The third color of the flag. lowerCAmelCase_ = (red, white, blue) def A__ ( A : list): '''simple docstring''' if not sequence: return [] if len(A) == 1: return list(A) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Any = len(A) - 1 UpperCamelCase : Union[str, Any] = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCamelCase , UpperCamelCase : List[str] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCamelCase , UpperCamelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: UpperCamelCase : Union[str, Any] = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(A) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = input('Enter numbers separated by commas:\n').strip() lowerCAmelCase_ = [int(item.strip()) for item in user_input.split(',')] print(f"""{dutch_national_flag_sort(unsorted)}""")
435
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''input_values''', '''attention_mask'''] def __init__( self : Tuple , _A : int = 1 , _A : int = 1_6000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7600 , _A : float = 1e-10 , _A : int = 2 , _A : bool = True , **_A : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = do_normalize __SCREAMING_SNAKE_CASE : Optional[Any] = return_attention_mask __SCREAMING_SNAKE_CASE : Optional[Any] = num_mel_bins __SCREAMING_SNAKE_CASE : Dict = hop_length __SCREAMING_SNAKE_CASE : Any = win_length __SCREAMING_SNAKE_CASE : Union[str, Any] = win_function __SCREAMING_SNAKE_CASE : str = frame_signal_scale __SCREAMING_SNAKE_CASE : Tuple = fmin __SCREAMING_SNAKE_CASE : Any = fmax __SCREAMING_SNAKE_CASE : Dict = mel_floor __SCREAMING_SNAKE_CASE : Union[str, Any] = reduction_factor __SCREAMING_SNAKE_CASE : List[str] = win_length * sampling_rate // 1000 __SCREAMING_SNAKE_CASE : List[Any] = hop_length * sampling_rate // 1000 __SCREAMING_SNAKE_CASE : Union[str, Any] = optimal_fft_length(self.sample_size ) __SCREAMING_SNAKE_CASE : str = (self.n_fft // 2) + 1 __SCREAMING_SNAKE_CASE : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase__ ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ): """simple docstring""" if attention_mask is not None: __SCREAMING_SNAKE_CASE : Optional[int] = np.array(_A , np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): __SCREAMING_SNAKE_CASE : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __SCREAMING_SNAKE_CASE : Any = padding_value normed_input_values.append(_A ) else: __SCREAMING_SNAKE_CASE : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase__ ( self : Any , _A : np.ndarray , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Dict , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : str , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : str = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None if audio_target is not None: __SCREAMING_SNAKE_CASE : List[Any] = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: __SCREAMING_SNAKE_CASE : str = inputs_target['''input_values'''] __SCREAMING_SNAKE_CASE : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Tuple = decoder_attention_mask return inputs def UpperCAmelCase__ ( self : Tuple , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : Tuple = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Tuple = speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : Optional[int] = [speech] # needed to make pad() work on spectrogram inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_size # convert into correct format for padding if is_target: __SCREAMING_SNAKE_CASE : Tuple = [self._extract_mel_features(_A ) for waveform in speech] __SCREAMING_SNAKE_CASE : Tuple = BatchFeature({'''input_values''': features} ) __SCREAMING_SNAKE_CASE : Any = self.num_mel_bins else: __SCREAMING_SNAKE_CASE : Dict = BatchFeature({'''input_values''': speech} ) __SCREAMING_SNAKE_CASE : Dict = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) __SCREAMING_SNAKE_CASE : List[Any] = feature_size_hack # convert input values to correct format __SCREAMING_SNAKE_CASE : str = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __SCREAMING_SNAKE_CASE : List[Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Any = input_values.astype(np.floataa ) # convert attention_mask to correct format __SCREAMING_SNAKE_CASE : List[str] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __SCREAMING_SNAKE_CASE : Optional[Any] = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) __SCREAMING_SNAKE_CASE : List[str] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : str = padded_inputs.convert_to_tensors(_A ) return padded_inputs def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = super().to_dict() # Don't serialize these as they are derived from the other properties. __SCREAMING_SNAKE_CASE : int = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
74
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : Optional[Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
495
0
"""simple docstring""" import argparse from collections import defaultdict import yaml A : Tuple = "docs/source/en/_toctree.yml" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = defaultdict(UpperCamelCase__ ) __lowerCAmelCase = [] __lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(UpperCamelCase__ ) __lowerCAmelCase = new_doc_list __lowerCAmelCase = [key for key, value in counts.items() if value > 1] __lowerCAmelCase = [] for duplicate_key in duplicates: __lowerCAmelCase = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) __lowerCAmelCase = sorted(UpperCamelCase__ , key=lambda _UpperCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase__ ) > 1: raise ValueError("{doc_list} has two \'overview\' docs which is not allowed." ) overview_doc.extend(UpperCamelCase__ ) # Sort return overview_doc def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' with open(UpperCamelCase__ , encoding="utf-8" ) as f: __lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCAmelCase = content[api_idx]["sections"] # Then to the model doc __lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __lowerCAmelCase = api_doc[scheduler_idx]["sections"] __lowerCAmelCase = clean_doc_toc(UpperCamelCase__ ) __lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: __lowerCAmelCase = True if overwrite: __lowerCAmelCase = new_scheduler_doc if diff: if overwrite: __lowerCAmelCase = api_doc with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' with open(UpperCamelCase__ , encoding="utf-8" ) as f: __lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCAmelCase = content[api_idx]["sections"] # Then to the model doc __lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __lowerCAmelCase = False __lowerCAmelCase = api_doc[pipeline_idx]["sections"] __lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __lowerCAmelCase = pipeline_doc["section"] __lowerCAmelCase = clean_doc_toc(UpperCamelCase__ ) if overwrite: __lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__ ) # sort overall pipeline doc __lowerCAmelCase = clean_doc_toc(UpperCamelCase__ ) if new_pipeline_docs != pipeline_docs: __lowerCAmelCase = True if overwrite: __lowerCAmelCase = new_pipeline_docs if diff: if overwrite: __lowerCAmelCase = api_doc with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A : Tuple = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
703
"""simple docstring""" import cmath import math def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = math.radians(_UpperCamelCase ) __lowerCAmelCase = math.radians(_UpperCamelCase ) # Convert voltage and current to rectangular form __lowerCAmelCase = cmath.rect(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = cmath.rect(_UpperCamelCase , _UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
282
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = 0 def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : int = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : List[Any] = Path(_lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Optional[int] = Path(_lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Optional[int] = Path(_lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE__ : str = AutoImageProcessor.from_pretrained(_lowercase ).to_dict() config_dict.pop('''image_processor_type''' ) SCREAMING_SNAKE_CASE__ : List[str] = CLIPImageProcessor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ : List[str] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = Path(_lowercase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( _lowercase , '''clip-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained('''clip-base''' ) def lowercase__ ( self : str ): with self.assertRaisesRegex( _lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoImageProcessor.from_pretrained(_lowercase , revision='''aaaaaa''' ) def lowercase__ ( self : List[str] ): with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase__ ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def lowercase__ ( self : List[str] ): try: AutoConfig.register('''custom''' , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoImageProcessor.register(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : int = Path(_lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = CustomImageProcessor.from_pretrained(_lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Optional[Any] ): class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = True try: AutoConfig.register('''custom''' , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_lowercase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
35
'''simple docstring''' def lowerCamelCase__ ( a ): __snake_case = int(a ) if n_element < 1: __snake_case = ValueError('a should be a positive number' ) raise my_error __snake_case = [1] __snake_case , __snake_case , __snake_case = (0, 0, 0) __snake_case = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowercase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") _lowercase = hamming(int(n)) print("""-----------------------------------------------------""") print(f'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
356
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : str = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } lowerCAmelCase : Union[str, Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def A__ ( ): '''simple docstring''' _lowerCamelCase : Any = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCamelCase : int = bs[:] _lowerCamelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 _lowerCamelCase : Any = [chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = set() _lowerCamelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : str = char return pairs class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] def __init__( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any]="replace" , _UpperCamelCase : Tuple="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : Dict="<s>" , _UpperCamelCase : str="<unk>" , _UpperCamelCase : str="<pad>" , _UpperCamelCase : List[str]="<mask>" , _UpperCamelCase : Tuple=False , **_UpperCamelCase : int , ) ->Dict: """simple docstring""" _lowerCamelCase : str = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else bos_token _lowerCamelCase : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else eos_token _lowerCamelCase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else sep_token _lowerCamelCase : Any = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else cls_token _lowerCamelCase : Optional[int] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else unk_token _lowerCamelCase : List[str] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Any = json.load(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : int = errors # how to handle errors in decoding _lowerCamelCase : Any = bytes_to_unicode() _lowerCamelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding="""utf-8""") as merges_handle: _lowerCamelCase : Optional[int] = merges_handle.read().split("""\n""")[1:-1] _lowerCamelCase : Optional[int] = [tuple(merge.split()) for merge in bpe_merges] _lowerCamelCase : int = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase : Optional[Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str) ->List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] _lowerCamelCase : List[str] = tuple(_UpperCamelCase) _lowerCamelCase : str = get_pairs(_UpperCamelCase) if not pairs: return token while True: _lowerCamelCase : int = min(_UpperCamelCase , key=lambda _UpperCamelCase: self.bpe_ranks.get(_UpperCamelCase , float("""inf"""))) if bigram not in self.bpe_ranks: break _lowerCamelCase : Optional[Any] = bigram _lowerCamelCase : int = [] _lowerCamelCase : Any = 0 while i < len(_UpperCamelCase): try: _lowerCamelCase : Union[str, Any] = word.index(_UpperCamelCase , _UpperCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCamelCase : Optional[int] = j if word[i] == first and i < len(_UpperCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCamelCase : Optional[Any] = tuple(_UpperCamelCase) _lowerCamelCase : List[Any] = new_word if len(_UpperCamelCase) == 1: break else: _lowerCamelCase : Dict = get_pairs(_UpperCamelCase) _lowerCamelCase : List[Any] = """ """.join(_UpperCamelCase) _lowerCamelCase : Optional[Any] = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = [] for token in re.findall(self.pat , _UpperCamelCase): _lowerCamelCase : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase).split(""" """)) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Union[str, Any]) ->List[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : List[Any]) ->List[Any]: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[int] = """""".join(_UpperCamelCase) _lowerCamelCase : List[Any] = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return _lowerCamelCase : Dict = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Any = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") _lowerCamelCase : Union[str, Any] = 0 with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase: kv[1]): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""") _lowerCamelCase : Dict = token_index writer.write(""" """.join(_UpperCamelCase) + """\n""") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] _lowerCamelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase)) + [1] return [1] + ([0] * len(_UpperCamelCase)) + [1, 1] + ([0] * len(_UpperCamelCase)) + [1] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False , **_UpperCamelCase : str) ->int: """simple docstring""" _lowerCamelCase : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase) > 0 and not text[0].isspace()): _lowerCamelCase : Dict = """ """ + text return (text, kwargs)
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCAmelCase_ ( __a=None ) -> Tuple: """simple docstring""" lowerCamelCase__: str =argparse.ArgumentParser(add_help=__a , allow_abbrev=__a ) # The main config parser lowerCamelCase__: Any =config_command_parser(__a ) # The subparser to add commands to lowerCamelCase__: int =config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(__a , parents=[parent_parser] ) update_command_parser(__a , parents=[parent_parser] ) return config_parser def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =get_config_parser() lowerCamelCase__: Dict =config_parser.parse_args() if not hasattr(__a , "func" ): config_parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
59
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : int = 384 if "tiny" in model_name: _lowercase : Tuple = [3, 3, 9, 3] _lowercase : List[str] = [96, 192, 384, 768] if "small" in model_name: _lowercase : List[str] = [3, 3, 27, 3] _lowercase : Union[str, Any] = [96, 192, 384, 768] if "base" in model_name: _lowercase : List[Any] = [3, 3, 27, 3] _lowercase : Dict = [128, 256, 512, 1_024] _lowercase : Optional[int] = 512 if "large" in model_name: _lowercase : List[str] = [3, 3, 27, 3] _lowercase : List[Any] = [192, 384, 768, 1_536] _lowercase : Tuple = 768 if "xlarge" in model_name: _lowercase : str = [3, 3, 27, 3] _lowercase : List[str] = [256, 512, 1_024, 2_048] _lowercase : Tuple = 1_024 # set label information _lowercase : Dict = 150 _lowercase : Union[str, Any] = 'huggingface/label-files' _lowercase : str = 'ade20k-id2label.json' _lowercase : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : Dict = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : Tuple = {v: k for k, v in idalabel.items()} _lowercase : List[str] = ConvNextConfig( depths=SCREAMING_SNAKE_CASE , hidden_sizes=SCREAMING_SNAKE_CASE , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _lowercase : Union[str, Any] = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE , auxiliary_in_channels=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , ) return config def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Any = dct.pop(SCREAMING_SNAKE_CASE ) _lowercase : Any = val def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : List[Any] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } _lowercase : Optional[int] = model_name_to_url[model_name] _lowercase : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] _lowercase : Optional[int] = get_upernet_config(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowercase : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE ) if "bn" in key: _lowercase : Any = key.replace('bn' , 'batch_norm' ) _lowercase : Any = val # rename keys _lowercase : int = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify on image _lowercase : Union[str, Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _lowercase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) _lowercase : Tuple = SegformerImageProcessor() _lowercase : Tuple = processor(SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowercase : Dict = model(SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": _lowercase : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": _lowercase : Union[str, Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": _lowercase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": _lowercase : Optional[int] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": _lowercase : str = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def _A ( lowerCAmelCase_ : Dict ): """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = job['''started_at'''] lowerCAmelCase__ = job['''completed_at'''] lowerCAmelCase__ = date_parser.parse(a_ ) lowerCAmelCase__ = date_parser.parse(a_ ) lowerCAmelCase__ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCAmelCase__ = start lowerCAmelCase__ = end lowerCAmelCase__ = duration_in_min return job_info def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" lowerCAmelCase__ = None if token is not None: lowerCAmelCase__ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'Bearer {token}'} lowerCAmelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' lowerCAmelCase__ = requests.get(a_ , headers=a_ ).json() lowerCAmelCase__ = {} try: job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) lowerCAmelCase__ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(a_ ): lowerCAmelCase__ = requests.get(url + F'&page={i + 2}' , headers=a_ ).json() job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') UpperCamelCase = parser.parse_args() UpperCamelCase = get_job_time(args.workflow_run_id) UpperCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v['duration']}""")
705
from __future__ import annotations def _A ( lowerCAmelCase_ : list[int | str] ): """simple docstring""" create_state_space_tree(lowerCAmelCase_ , [] , 0 , [0 for i in range(len(lowerCAmelCase_ ) )] ) def _A ( lowerCAmelCase_ : list[int | str] , lowerCAmelCase_ : list[int | str] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] , ): """simple docstring""" if index == len(lowerCAmelCase_ ): print(lowerCAmelCase_ ) return for i in range(len(lowerCAmelCase_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCAmelCase__ = True create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , lowerCAmelCase_ ) current_sequence.pop() lowerCAmelCase__ = False UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
125
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : List[Any] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'xlm-roberta' def __init__( self : List[Any] , lowerCamelCase : str=3_05_22 , lowerCamelCase : int=7_68 , lowerCamelCase : Tuple=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=30_72 , lowerCamelCase : Any="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=5_12 , lowerCamelCase : List[str]=2 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1E-12 , lowerCamelCase : List[Any]=1 , lowerCamelCase : List[Any]=0 , lowerCamelCase : List[str]=2 , lowerCamelCase : Any="absolute" , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Dict=None , **lowerCamelCase : List[Any] , ) -> List[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : List[str] = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : Tuple = classifier_dropout class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @property def __lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
275
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
275
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "spiece.model"} UpperCamelCase__ = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCamelCase__ = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } UpperCamelCase__ = "▁" class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[int] = VOCAB_FILES_NAMES snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase = None , **__lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCamelCase__ = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = remove_space UpperCamelCase__ = keep_accents UpperCamelCase__ = vocab_file UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): UpperCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): UpperCamelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , __lowerCAmelCase ): if self.remove_space: UpperCamelCase__ = """ """.join(inputs.strip().split() ) else: UpperCamelCase__ = inputs UpperCamelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCamelCase__ = unicodedata.normalize("""NFKD""" , __lowerCAmelCase ) UpperCamelCase__ = """""".join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: UpperCamelCase__ = outputs.lower() return outputs def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.preprocess_text(__lowerCAmelCase ) UpperCamelCase__ = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) UpperCamelCase__ = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCamelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase__ = cur_pieces[1:] else: UpperCamelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def _lowerCamelCase ( self , __lowerCAmelCase ): return self.sp_model.PieceToId(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): return self.sp_model.IdToPiece(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] UpperCamelCase__ = """""" UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) UpperCamelCase__ = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(__lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , """wb""" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
548
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
548
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase__( ): """simple docstring""" __A= ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores',type=_SCREAMING_SNAKE_CASE,default=1,help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script',type=_SCREAMING_SNAKE_CASE,help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ),) # rest from the training program parser.add_argument('training_script_args',nargs=_SCREAMING_SNAKE_CASE ) return parser.parse_args() def UpperCAmelCase__( ): """simple docstring""" __A= parse_args() # Import training_script as a module. __A= Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A= script_fpath.stem __A= importlib.import_module(_SCREAMING_SNAKE_CASE ) # Patch sys.argv __A= [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn,args=(),nprocs=args.num_cores ) if __name__ == "__main__": main()
186
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class a__ ( a_ ): '''simple docstring''' A : Union[str, Any] = '''roberta''' def __init__( self : Any , lowerCAmelCase_ : int=50_265 , lowerCAmelCase_ : int=768 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[int]=3_072 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[Any]=512 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=1E-12 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[str]="absolute" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Any , ) -> int: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __A= vocab_size __A= hidden_size __A= num_hidden_layers __A= num_attention_heads __A= hidden_act __A= intermediate_size __A= hidden_dropout_prob __A= attention_probs_dropout_prob __A= max_position_embeddings __A= type_vocab_size __A= initializer_range __A= layer_norm_eps __A= position_embedding_type __A= use_cache __A= classifier_dropout class a__ ( a_ ): '''simple docstring''' @property def lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __A= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
186
1
def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = 0, 0, 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE__ : int = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE__ : Tuple = ugly_nums[ia] * 5 for _ in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = min(A__ , A__ , A__ ) ugly_nums.append(A__ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : int = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Tuple = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_00) = }''')
250
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ :Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp a_ :Union[str, Any] = 5 a_ :int = 10 @require_sentencepiece @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = SpeechaTextTokenizer lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[str] = True def lowercase__ ( self : int ): super().setUp() SCREAMING_SNAKE_CASE__ : Any = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) SCREAMING_SNAKE_CASE__ : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : str = '''<pad>''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowercase ) , 10_01 ) def lowercase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def lowercase__ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = {'''input_ids''': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase : List[Any] = '''C\'est trop cool''' lowerCamelCase : Any = '''Esto es genial''' @classmethod def lowercase__ ( cls : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self : str ): self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11 ) def lowercase__ ( self : Tuple ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def lowercase__ ( self : Optional[int] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : Tuple = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''fr''' SCREAMING_SNAKE_CASE__ : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ : int = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
250
1
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowerCamelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __lowerCamelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __lowerCamelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def a ( __snake_case : Tuple, __snake_case : str ): '''simple docstring''' for tf_name, hf_name in patterns: UpperCAmelCase_ :Optional[int] = k.replace(__snake_case, __snake_case ) return k def a ( __snake_case : dict, __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ :str = BigBirdPegasusConfig(**__snake_case ) UpperCAmelCase_ :Optional[Any] = BigBirdPegasusForConditionalGeneration(__snake_case ) UpperCAmelCase_ :Dict = torch_model.state_dict() UpperCAmelCase_ :List[Any] = {} # separating decoder weights UpperCAmelCase_ :Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCAmelCase_ :Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): UpperCAmelCase_ :int = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue UpperCAmelCase_ :Union[str, Any] = DECODER_PATTERNS UpperCAmelCase_ :Any = rename_state_dict_key(__snake_case, __snake_case ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase_ :Tuple = v.T UpperCAmelCase_ :str = torch.from_numpy(__snake_case ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): UpperCAmelCase_ :Any = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue UpperCAmelCase_ :str = REMAINING_PATTERNS UpperCAmelCase_ :Dict = rename_state_dict_key(__snake_case, __snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase_ :Tuple = v.T UpperCAmelCase_ :Any = torch.from_numpy(__snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCAmelCase_ :Optional[int] = mapping['''model.embed_positions.weight'''] UpperCAmelCase_ :Tuple = mapping.pop('''model.embed_positions.weight''' ) UpperCAmelCase_ ,UpperCAmelCase_ :List[str] = torch_model.load_state_dict(__snake_case, strict=__snake_case ) UpperCAmelCase_ :List[Any] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def a ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :Tuple = tf.train.list_variables(__snake_case ) UpperCAmelCase_ :Optional[int] = {} UpperCAmelCase_ :Optional[Any] = ['''global_step'''] for name, shape in tqdm(__snake_case, desc='''converting tf checkpoint to dict''' ): UpperCAmelCase_ :int = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase_ :List[str] = tf.train.load_variable(__snake_case, __snake_case ) UpperCAmelCase_ :str = array return tf_weights def a ( __snake_case : str, __snake_case : str, __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ :Any = get_tf_weights_as_numpy(__snake_case ) UpperCAmelCase_ :Union[str, Any] = convert_bigbird_pegasus(__snake_case, __snake_case ) torch_model.save_pretrained(__snake_case ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __lowerCamelCase = parser.parse_args() __lowerCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
608
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase : int = logging.get_logger(__name__) class _A ( lowerCAmelCase__): SCREAMING_SNAKE_CASE : Dict = ["input_features", "attention_mask"] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=1_6000 , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = num_mel_bins SCREAMING_SNAKE_CASE_ : Any = do_ceptral_normalize SCREAMING_SNAKE_CASE_ : List[str] = normalize_means SCREAMING_SNAKE_CASE_ : Optional[Any] = normalize_vars SCREAMING_SNAKE_CASE_ : Optional[int] = True def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE_ : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = ta_kaldi.fbank(_SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0.0 , ): """simple docstring""" if normalize_means: SCREAMING_SNAKE_CASE_ : Any = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE_ : int = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if normalize_vars: SCREAMING_SNAKE_CASE_ : Any = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE_ : Dict = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE_ : Optional[Any] = x.astype(np.floataa ) return x def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE_ : Any = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE_ : Tuple = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ : Dict = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : Optional[int] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE_ : str = [self._extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE_ : List[str] = BatchFeature({'input_features': features} ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format SCREAMING_SNAKE_CASE_ : Tuple = padded_inputs.get('input_features' ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE_ : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE_ : Any = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE_ : str = self.normalize( padded_inputs['input_features'] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ : Dict = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
709
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase : Optional[int] = logging.get_logger(__name__) @dataclass class _A : def __init__( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=6.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="fp4" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = load_in_abit SCREAMING_SNAKE_CASE_ : Tuple = load_in_abit SCREAMING_SNAKE_CASE_ : Dict = llm_inta_threshold SCREAMING_SNAKE_CASE_ : Tuple = llm_inta_skip_modules SCREAMING_SNAKE_CASE_ : Optional[int] = llm_inta_enable_fpaa_cpu_offload SCREAMING_SNAKE_CASE_ : Optional[Any] = llm_inta_has_fpaa_weight SCREAMING_SNAKE_CASE_ : List[str] = bnb_abit_quant_type SCREAMING_SNAKE_CASE_ : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: SCREAMING_SNAKE_CASE_ : List[Any] = torch.floataa elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.dtype ): SCREAMING_SNAKE_CASE_ : Optional[int] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def UpperCAmelCase ( self ): """simple docstring""" if not isinstance(self.llm_inta_threshold , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def UpperCAmelCase ( self ): """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCAmelCase ( self ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = cls(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) to_remove.append(_SCREAMING_SNAKE_CASE ) for key in to_remove: kwargs.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: SCREAMING_SNAKE_CASE_ : Optional[int] = self.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : str = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ): """simple docstring""" return f"{self.__class__.__name__} {self.to_json_string()}" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = True ): """simple docstring""" if use_diff is True: SCREAMING_SNAKE_CASE_ : int = self.to_diff_dict() else: SCREAMING_SNAKE_CASE_ : List[str] = self.to_dict() return json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.to_dict() # get the default config dict SCREAMING_SNAKE_CASE_ : Optional[Any] = BitsAndBytesConfig().to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: SCREAMING_SNAKE_CASE_ : int = value return serializable_config_dict
353
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Any: UpperCamelCase__ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> List[str]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Optional[int] = '' else: UpperCamelCase__ : Union[str, Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) UpperCamelCase__ : str = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : Any = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : str = in_proj_bias[-config.hidden_size :] def _lowercase ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCamelCase__ : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. UpperCamelCase__ : str = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCamelCase__ : List[str] = dct.pop(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = val def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCamelCase__ : Optional[Any] = ViTMSNConfig() UpperCamelCase__ : Dict = 1000 UpperCamelCase__ : Optional[Any] = 'datasets/huggingface/label-files' UpperCamelCase__ : int = 'imagenet-1k-id2label.json' UpperCamelCase__ : List[str] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 'r' ) ) UpperCamelCase__ : Optional[Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ : Tuple = idalabel UpperCamelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase__ : Tuple = 384 UpperCamelCase__ : Union[str, Any] = 1536 UpperCamelCase__ : int = 6 elif "l16" in checkpoint_url: UpperCamelCase__ : Dict = 1024 UpperCamelCase__ : Union[str, Any] = 4096 UpperCamelCase__ : str = 24 UpperCamelCase__ : str = 16 UpperCamelCase__ : Union[str, Any] = 0.1 elif "b4" in checkpoint_url: UpperCamelCase__ : str = 4 elif "l7" in checkpoint_url: UpperCamelCase__ : List[str] = 7 UpperCamelCase__ : int = 1024 UpperCamelCase__ : List[Any] = 4096 UpperCamelCase__ : Any = 24 UpperCamelCase__ : List[Any] = 16 UpperCamelCase__ : Union[str, Any] = 0.1 UpperCamelCase__ : Optional[int] = ViTMSNModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['target_encoder'] UpperCamelCase__ : str = ViTImageProcessor(size=config.image_size ) remove_projection_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : Optional[Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ : Union[str, Any] = ViTImageProcessor( size=config.image_size , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase__ : Tuple = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: UpperCamelCase__ : int = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: UpperCamelCase__ : Tuple = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: UpperCamelCase__ : Any = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
410
import math def _lowercase ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCamelCase__ : Tuple = [] UpperCamelCase__ : int = 2 UpperCamelCase__ : str = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCamelCase__ : Optional[int] = [True] * (end + 1) UpperCamelCase__ : Dict = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = False start += 1 prime += in_prime UpperCamelCase__ : Union[str, Any] = end + 1 UpperCamelCase__ : Optional[Any] = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCamelCase__ : Dict = [True] * (high - low + 1) for each in in_prime: UpperCamelCase__ : Any = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[int] = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCamelCase__ : Optional[int] = high + 1 UpperCamelCase__ : List[Any] = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
410
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: snake_case_ = set() snake_case_ = 0 snake_case_ = n + 1 # maximum limit for a in range(2 , _SCREAMING_SNAKE_CASE ): for b in range(2 , _SCREAMING_SNAKE_CASE ): snake_case_ = a**b # calculates the current power collect_powers.add(_SCREAMING_SNAKE_CASE ) # adds the result to the set return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
2
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a : Union[str, Any] = 1_6 __a : int = 3_2 def UpperCAmelCase ( lowercase , lowercase = 16 ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase = datasets.map( lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase = 16 elif accelerator.mixed_precision != "no": __lowercase = 8 else: __lowercase = None return tokenizer.pad( lowercase , padding='''longest''' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='''pt''' , ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a : List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase ) == "1": __lowercase = 2 # Initialize accelerator __lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase = batch_size // MAX_GPU_BATCH_SIZE __lowercase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) __lowercase , __lowercase = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase = model.to(accelerator.device ) # Instantiate optimizer __lowercase = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler __lowercase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase = model(**lowercase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowercase = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowercase ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase , references=lowercase , ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase , default=lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
534
0
def __lowerCAmelCase ( A ): UpperCAmelCase_ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ = 1 for n in range(m + 1 ): for k in range(1 , __lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _a: Optional[int] = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: _a: int = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
709
def __lowerCAmelCase ( A ): UpperCAmelCase_ = generate_pascal_triangle(A ) for row_idx in range(A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __lowerCAmelCase ( A ): if not isinstance(A , A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase_ = [] for current_row_idx in range(A ): UpperCAmelCase_ = populate_current_row(A , A ) triangle.append(A ) return triangle def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 for current_col_idx in range(1 , A ): calculate_current_element( A , A , A , A ) return current_row def __lowerCAmelCase ( A , A , A , A , ): UpperCAmelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase_ = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase_ = above_to_left_elt + above_to_right_elt def __lowerCAmelCase ( A ): if not isinstance(A , A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase_ = [[1]] for row_index in range(1 , A ): UpperCAmelCase_ = [0] + result[-1] + [0] UpperCAmelCase_ = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase_ = sum(divmod(A , 2 ) ) UpperCAmelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase_ = row_first_half + row_second_half result.append(A ) return result def __lowerCAmelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(A , A ) -> None: UpperCAmelCase_ = F"{func.__name__}({value})" UpperCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
268
0
from __future__ import annotations from collections.abc import Generator def _lowercase ( ) -> Dict: UpperCamelCase__ : int = {} UpperCamelCase__ : Optional[int] = 2 while True: UpperCamelCase__ : List[str] = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: UpperCamelCase__ : List[str] = factor + prime while x in factor_map: x += factor UpperCamelCase__ : List[str] = factor else: UpperCamelCase__ : Union[str, Any] = prime yield prime prime += 1 def _lowercase ( __SCREAMING_SNAKE_CASE = 1E10 ) -> Dict: UpperCamelCase__ : Dict = sieve() UpperCamelCase__ : Optional[int] = 1 while True: UpperCamelCase__ : str = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
410
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase : Any = random.Random() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : str=None , __UpperCamelCase : Tuple=None ): '''simple docstring''' if rng is None: snake_case_ : Union[str, Any] = global_rng snake_case_ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=4_0_0 , _lowercase=2_0_0_0 , _lowercase=1_0 , _lowercase=1_6_0 , _lowercase=8 , _lowercase=0.0 , _lowercase=4_0_0_0 , _lowercase=False , _lowercase=True , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Optional[int] = min_seq_length snake_case_ : Optional[Any] = max_seq_length snake_case_ : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : str = padding_value snake_case_ : Tuple = sampling_rate snake_case_ : List[str] = return_attention_mask snake_case_ : Optional[Any] = do_normalize snake_case_ : List[Any] = feature_size snake_case_ : List[Any] = chunk_length snake_case_ : int = hop_length def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self , _lowercase=False , _lowercase=False ) -> List[str]: '''simple docstring''' def _flatten(_lowercase ): return list(itertools.chain(*_lowercase ) ) if equal_length: snake_case_ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : List[Any] = [np.asarray(_lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Any = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Any = feat_extract_first.save_pretrained(_lowercase )[0] check_json_file_has_correct_format(_lowercase ) snake_case_ : Dict = self.feature_extraction_class.from_pretrained(_lowercase ) snake_case_ : List[Any] = feat_extract_first.to_dict() snake_case_ : Tuple = feat_extract_second.to_dict() snake_case_ : Tuple = feat_extract_first.mel_filters snake_case_ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[str] = os.path.join(_lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowercase ) snake_case_ : Tuple = self.feature_extraction_class.from_json_file(_lowercase ) snake_case_ : Dict = feat_extract_first.to_dict() snake_case_ : str = feat_extract_second.to_dict() snake_case_ : Any = feat_extract_first.mel_filters snake_case_ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ : Union[str, Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs] # Test feature size snake_case_ : List[str] = feature_extractor(_lowercase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features snake_case_ : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test batched snake_case_ : int = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : Optional[int] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case_ : Tuple = np.asarray(_lowercase ) snake_case_ : Dict = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test truncation required snake_case_ : List[Any] = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] snake_case_ : str = [np.asarray(_lowercase ) for speech_input in speech_inputs] snake_case_ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : List[Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs_truncated] snake_case_ : Optional[Any] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' import torch snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Tuple = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) snake_case_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Dict = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech snake_case_ : Optional[int] = ds.sort("""id""" ).select(range(_lowercase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on snake_case_ : Tuple = self._load_datasamples(1 ) snake_case_ : Dict = WhisperFeatureExtractor() snake_case_ : List[str] = feature_extractor(_lowercase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , _lowercase , atol=1E-4 ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Dict = self._load_datasamples(1 )[0] snake_case_ : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue snake_case_ : int = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowercase )[0] self.assertTrue(np.all(np.mean(_lowercase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowercase ) - 1 ) < 1E-3 ) )
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case__ , snake_case__ = array[indexa], array[indexa] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: snake_case__ = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: snake_case__ = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ : int = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
33
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down snake_case__ : List[str] = mock.Mock() snake_case__ : Optional[int] = 5_0_0 snake_case__ : int = {} snake_case__ : List[Any] = HTTPError snake_case__ : List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ : List[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__A ) as mock_head: snake_case__ : List[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowercase ( self : Dict ): # A mock response for an HTTP head request to emulate server down snake_case__ : Optional[Any] = mock.Mock() snake_case__ : str = 5_0_0 snake_case__ : Union[str, Any] = {} snake_case__ : Optional[int] = HTTPError snake_case__ : List[str] = {} # Download this model to make sure it's in the cache. snake_case__ : Dict = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__A ) as mock_head: snake_case__ : str = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Tuple ): # This test is for deprecated behavior and can be removed in v5 try: snake_case__ : int = tempfile.mktemp() with open(__A , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , __A ) snake_case__ : Optional[int] = AlbertTokenizer.from_pretrained(__A ) finally: os.remove(__A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , __A ) snake_case__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def _lowercase ( self : Tuple ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : int = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _lowercase ( cls : str ): snake_case__ : Union[str, Any] = TOKEN HfFolder.save_token(__A ) @classmethod def _lowercase ( cls : str ): try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def _lowercase ( self : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Union[str, Any] = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : int = BertTokenizer(__A ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case__ : Any = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A , repo_id="test-tokenizer" , push_to_hub=__A , use_auth_token=self._token ) snake_case__ : Any = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _lowercase ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Any = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : int = BertTokenizer(__A ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case__ : Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __A , repo_id="valid_org/test-tokenizer-org" , push_to_hub=__A , use_auth_token=self._token ) snake_case__ : int = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _lowercase ( self : List[str] ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[Any] = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : Optional[int] = CustomTokenizer(__A ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case__ : Tuple = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Any = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : Optional[Any] = BertTokenizerFast.from_pretrained(__A ) bert_tokenizer.save_pretrained(__A ) snake_case__ : Union[str, Any] = CustomTokenizerFast.from_pretrained(__A ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case__ : int = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=__A , trust_remote_code=__A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ): snake_case__ : List[Any] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def _lowercase ( self : Union[str, Any] ): snake_case__ : int = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Tuple = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def _lowercase ( self : List[str] ): snake_case__ : Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _lowercase ( self : Dict ): snake_case__ : Union[str, Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _lowercase ( self : List[str] ): snake_case__ : List[Any] = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def _lowercase ( self : Optional[int] ): # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ : Dict = Trie() snake_case__ : Tuple = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__A , ["AB", "C"] )
297
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCAmelCase : Union[str, Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCamelCase ( lowercase_ : List[str] ) -> Dict: '''simple docstring''' lowercase =torch.load(lowercase_ , map_location='''cpu''' ) return sd def UpperCamelCase ( lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any]=rename_keys_prefix ) -> Tuple: '''simple docstring''' lowercase =OrderedDict() lowercase =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase =key for name_pair in rename_keys_prefix: lowercase =new_key.replace(name_pair[0] , name_pair[1] ) lowercase =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase =new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : List[str] ) -> List[Any]: '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: lowercase ='''pretraining''' if "vcr" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 5_1_2} lowercase ='''multichoice''' elif "vqa_advanced" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 2_0_4_8} lowercase ='''vqa_advanced''' elif "vqa" in checkpoint_path: lowercase ={'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} lowercase ='''vqa''' elif "nlvr" in checkpoint_path: lowercase ={ '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } lowercase ='''nlvr''' lowercase =VisualBertConfig(**lowercase_ ) # Load State Dict lowercase =load_state_dict(lowercase_ ) lowercase =get_new_dict(lowercase_ , lowercase_ ) if model_type == "pretraining": lowercase =VisualBertForPreTraining(lowercase_ ) elif model_type == "vqa": lowercase =VisualBertForQuestionAnswering(lowercase_ ) elif model_type == "nlvr": lowercase =VisualBertForVisualReasoning(lowercase_ ) elif model_type == "multichoice": lowercase =VisualBertForMultipleChoice(lowercase_ ) model.load_state_dict(lowercase_ ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCAmelCase : List[str] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
145
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase ='''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase =Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) lowercase =transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) lowercase =transform(lowercase_ ).unsqueeze(0 ).to(lowercase_ ) return image def UpperCamelCase ( lowercase_ : Optional[int] ) -> Tuple: '''simple docstring''' if "visual_encoder" in key: lowercase =re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowercase_ ) if "blocks" in key: lowercase =re.sub(R'''blocks''' , '''layers''' , lowercase_ ) if "attn" in key: lowercase =re.sub(R'''attn''' , '''self_attn''' , lowercase_ ) if "norm1" in key: lowercase =re.sub(R'''norm1''' , '''layer_norm1''' , lowercase_ ) if "norm2" in key: lowercase =re.sub(R'''norm2''' , '''layer_norm2''' , lowercase_ ) if "encoder.norm" in key: lowercase =re.sub(R'''encoder.norm''' , '''post_layernorm''' , lowercase_ ) if "encoder.patch_embed.proj" in key: lowercase =re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowercase_ ) if "encoder.pos_embed" in key: lowercase =re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowercase_ ) if "encoder.cls_token" in key: lowercase =re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowercase_ ) if "self_attn" in key: lowercase =re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , lowercase_ ) return key @torch.no_grad() def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : int=None ) -> str: '''simple docstring''' if config_path is not None: lowercase =BlipConfig.from_pretrained(lowercase_ ) else: lowercase =BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) lowercase =BlipForConditionalGeneration(lowercase_ ).eval() lowercase ='''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase =blip_decoder(pretrained=lowercase_ , image_size=3_8_4 , vit='''base''' ) lowercase =pt_model.eval() lowercase =pt_model.state_dict() for key in modified_state_dict.copy(): lowercase =modified_state_dict.pop(lowercase_ ) lowercase =rename_key(lowercase_ ) lowercase =value hf_model.load_state_dict(lowercase_ ) lowercase =3_8_4 lowercase =load_demo_image(image_size=lowercase_ , device='''cpu''' ) lowercase =BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase =tokenizer(['''a picture of'''] ).input_ids lowercase =hf_model.generate(lowercase_ , lowercase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] lowercase =hf_model.generate(lowercase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase =( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase =blip_vqa(pretrained=lowercase_ , image_size=lowercase_ , vit='''base''' ) vqa_model.eval() lowercase =vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase =modified_state_dict.pop(lowercase_ ) lowercase =rename_key(lowercase_ ) lowercase =value lowercase =BlipForQuestionAnswering(lowercase_ ) hf_vqa_model.load_state_dict(lowercase_ ) lowercase =['''How many dogs are in this image?'''] lowercase =tokenizer(lowercase_ , return_tensors='''pt''' ).input_ids lowercase =hf_vqa_model.generate(lowercase_ , lowercase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase ='''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase =blip_itm(pretrained=lowercase_ , image_size=lowercase_ , vit='''base''' ) itm_model.eval() lowercase =itm_model.state_dict() for key in modified_state_dict.copy(): lowercase =modified_state_dict.pop(lowercase_ ) lowercase =rename_key(lowercase_ ) lowercase =value lowercase =BlipForImageTextRetrieval(lowercase_ ) lowercase =['''A picture of a woman with a dog sitting in a beach'''] lowercase =tokenizer( lowercase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowercase_ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase_ ) hf_itm_model.eval() lowercase =hf_itm_model(lowercase_ , lowercase_ , use_itm_head=lowercase_ ) lowercase =hf_itm_model(lowercase_ , lowercase_ , use_itm_head=lowercase_ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
145
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCamelCase : Optional[int] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
297
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "" a_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) a_ = None # compression type in fsspec. ex: "gzip" a_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Tuple , __A : str = "" , __A : Optional[str] = None , __A : Optional[dict] = None , **__A : Optional[int] ): super().__init__(self , **__A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ : Any = fsspec.open( __A , mode="rb" , protocol=__A , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case__ : Dict = os.path.basename(self.file.path.split("::" )[0] ) snake_case__ : Tuple = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) snake_case__ : Union[str, Any] = None @classmethod def _lowercase ( cls : Union[str, Any] , __A : Optional[int] ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__A ).lstrip("/" ) def _lowercase ( self : Dict ): if self.dir_cache is None: snake_case__ : int = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} snake_case__ : Optional[Any] = {f["name"]: f} def _lowercase ( self : Union[str, Any] , __A : str ): return self.file.open().read() def _lowercase ( self : str , __A : str , __A : str = "rb" , __A : str=None , __A : Tuple=True , __A : Optional[Any]=None , **__A : Optional[int] , ): snake_case__ : Optional[Any] = self._strip_protocol(__A ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bz2" a_ = "bz2" a_ = ".bz2" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "gzip" a_ = "gzip" a_ = ".gz" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "lz4" a_ = "lz4" a_ = ".lz4" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "xz" a_ = "xz" a_ = ".xz" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "zstd" a_ = "zstd" a_ = ".zst" def __init__( self : Union[str, Any] , __A : str , __A : str = "rb" , __A : Optional[str] = None , __A : Optional[dict] = None , __A : int = DEFAULT_BLOCK_SIZE , **__A : Tuple , ): super().__init__( fo=__A , mode=__A , target_protocol=__A , target_options=__A , block_size=__A , **__A , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ : Union[str, Any] = self.file.__enter__ class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : Dict ): snake_case__ : Tuple = file_ def __enter__( self : str ): self._file.__enter__() return self def __exit__( self : List[Any] , *__A : List[Any] , **__A : Union[str, Any] ): self._file.__exit__(*__A , **__A ) def __iter__( self : List[Any] ): return iter(self._file ) def _lowercase ( self : Optional[Any] ): return next(self._file ) def __getattr__( self : Union[str, Any] , __A : Optional[int] ): return getattr(self._file , __A ) def fixed_enter(*__A : Tuple , **__A : Dict ): return WrappedFile(_enter(*__A , **__A ) ) snake_case__ : List[Any] = fixed_enter
297
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowerCAmelCase =[1_44, 1_92, 2_40] _lowerCAmelCase =[16, 32, 64, 96, 1_28, 1_60, 6_40] elif "mobilevit_xs" in mobilevit_name: _lowerCAmelCase =[96, 1_20, 1_44] _lowerCAmelCase =[16, 32, 48, 64, 80, 96, 3_84] elif "mobilevit_xxs" in mobilevit_name: _lowerCAmelCase =[64, 80, 96] _lowerCAmelCase =[16, 16, 24, 48, 64, 80, 3_20] _lowerCAmelCase =0.0_5 _lowerCAmelCase =2.0 if mobilevit_name.startswith("""deeplabv3_""" ): _lowerCAmelCase =5_12 _lowerCAmelCase =16 _lowerCAmelCase =21 _lowerCAmelCase ="""pascal-voc-id2label.json""" else: _lowerCAmelCase =10_00 _lowerCAmelCase ="""imagenet-1k-id2label.json""" _lowerCAmelCase ="""huggingface/label-files""" _lowerCAmelCase =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase ={int(lowercase__ ): v for k, v in idalabel.items()} _lowerCAmelCase =idalabel _lowerCAmelCase ={v: k for k, v in idalabel.items()} return config def snake_case_ ( lowercase__ : str , lowercase__ : str=False ): '''simple docstring''' for i in range(1 , 6 ): if f"layer_{i}." in name: _lowerCAmelCase =name.replace(f"layer_{i}." , f"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowerCAmelCase =name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: _lowerCAmelCase =name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: _lowerCAmelCase =name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: _lowerCAmelCase =name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: _lowerCAmelCase =name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: _lowerCAmelCase =name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: _lowerCAmelCase =name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: _lowerCAmelCase =name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: _lowerCAmelCase =name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: _lowerCAmelCase =name.replace(f".{i}.{j}." , f".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: _lowerCAmelCase =name.replace(f".{i}.{j}." , f".{i}." ) if "expand_1x1" in name: _lowerCAmelCase =name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: _lowerCAmelCase =name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: _lowerCAmelCase =name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f".global_rep.{i}.weight" in name: _lowerCAmelCase =name.replace(f".global_rep.{i}.weight" , """.layernorm.weight""" ) if f".global_rep.{i}.bias" in name: _lowerCAmelCase =name.replace(f".global_rep.{i}.bias" , """.layernorm.bias""" ) if ".global_rep." in name: _lowerCAmelCase =name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: _lowerCAmelCase =name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: _lowerCAmelCase =name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: _lowerCAmelCase =name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: _lowerCAmelCase =name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: _lowerCAmelCase =name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: _lowerCAmelCase =name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: _lowerCAmelCase =name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: _lowerCAmelCase =name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: _lowerCAmelCase =name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: _lowerCAmelCase =name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: _lowerCAmelCase =name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): _lowerCAmelCase ="""mobilevit.""" + name return name def snake_case_ ( lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Optional[int]=False ): '''simple docstring''' if base_model: _lowerCAmelCase ="""""" else: _lowerCAmelCase ="""mobilevit.""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase =orig_state_dict.pop(lowercase__ ) if key[:8] == "encoder.": _lowerCAmelCase =key[8:] if "qkv" in key: _lowerCAmelCase =key.split(""".""" ) _lowerCAmelCase =int(key_split[0][6:] ) - 1 _lowerCAmelCase =int(key_split[3] ) _lowerCAmelCase =model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}" ) _lowerCAmelCase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowerCAmelCase =( f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowerCAmelCase =val[:dim, :] _lowerCAmelCase =val[dim : dim * 2, :] _lowerCAmelCase =val[-dim:, :] else: _lowerCAmelCase =val[:dim] _lowerCAmelCase =val[dim : dim * 2] _lowerCAmelCase =val[-dim:] else: _lowerCAmelCase =val return orig_state_dict def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def snake_case_ ( lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str]=False ): '''simple docstring''' _lowerCAmelCase =get_mobilevit_config(lowercase__ ) # load original state_dict _lowerCAmelCase =torch.load(lowercase__ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): _lowerCAmelCase =MobileViTForSemanticSegmentation(lowercase__ ).eval() else: _lowerCAmelCase =MobileViTForImageClassification(lowercase__ ).eval() _lowerCAmelCase =convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowerCAmelCase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowerCAmelCase =image_processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCAmelCase =model(**lowercase__ ) _lowerCAmelCase =outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowerCAmelCase =torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowerCAmelCase =torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowerCAmelCase =torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.8_6_2_4, -9.5_9_6_4], [-10.88_40, -10.81_58, -10.66_59]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1e-4 ) else: assert logits.shape == (1, 10_00) if mobilevit_name == "mobilevit_s": _lowerCAmelCase =torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": _lowerCAmelCase =torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": _lowerCAmelCase =torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , lowercase__ , atol=1e-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: _lowerCAmelCase ={ """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) _lowerCAmelCase =model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase__ , organization="""apple""" ) model.push_to_hub(lowercase__ , organization="""apple""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
710
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowercase__ : Any , lowercase__ : List[str] , lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =BertConfig.from_json_file(lowercase__ ) print(f"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase =BertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
149
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__: Any = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: Union[str, Any] = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowerCAmelCase__: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
345
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__: int = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__: Any = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__: Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[str, float]: SCREAMING_SNAKE_CASE_ : Any = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[str, str]: SCREAMING_SNAKE_CASE_ : Tuple = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) SCREAMING_SNAKE_CASE_ : str = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE_ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : Optional[Any] = list(SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE_ : Any = random.choice(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> list[str]: SCREAMING_SNAKE_CASE_ : List[str] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE_ : Dict = int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE_ : str = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[int] = population_score[random.randint(0 , SCREAMING_SNAKE_CASE )][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = crossover(parent_a[0] , SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return pop def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE_ : List[Any] = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE_ : Tuple = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(SCREAMING_SNAKE_CASE ) # Generate random starting population. SCREAMING_SNAKE_CASE_ : int = [] for _ in range(SCREAMING_SNAKE_CASE ): population.append(''.join([random.choice(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE_ : Optional[Any] = [evaluate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE_ : int = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] , reverse=SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE_ : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE_ : Dict = [ (item, score / len(SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__: Optional[Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCAmelCase__: List[Any] = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__: Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
345
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
716
import os from collections.abc import Iterator def _lowerCamelCase ( __A : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__A ): _UpperCAmelCase : List[Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__A )[1] in (".py", ".ipynb"): yield os.path.join(__A , __A ).lstrip('''./''' ) def _lowerCamelCase ( __A : Dict ) -> List[Any]: return f'''{i * ' '}*''' if i else "\n##" def _lowerCamelCase ( __A : str , __A : str ) -> str: _UpperCAmelCase : int = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__A ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(__A )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def _lowerCamelCase ( __A : str = "." ) -> None: _UpperCAmelCase : List[str] = '''''' for filepath in sorted(good_file_paths(__A ) ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = os.path.split(__A ) if filepath != old_path: _UpperCAmelCase : Optional[int] = print_path(__A , __A ) _UpperCAmelCase : Dict = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase : Union[str, Any] = f'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) _UpperCAmelCase : List[Any] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'''{md_prefix(__A )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('.')
186
0
def UpperCamelCase ( _A ): """simple docstring""" if not numbers: return 0 if not isinstance(snake_case__, (list, tuple) ) or not all( isinstance(snake_case__, snake_case__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __magic_name__ : str = numbers[0] for i in range(1, len(snake_case__ ) ): # update the maximum and minimum subarray products __magic_name__ : str = numbers[i] if number < 0: __magic_name__ : Dict = min_till_now, max_till_now __magic_name__ : str = max(snake_case__, max_till_now * number ) __magic_name__ : List[str] = min(snake_case__, min_till_now * number ) # update the maximum product found till now __magic_name__ : Optional[Any] = max(snake_case__, snake_case__ ) return max_prod
324
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "open-llama" def __init__( self: int, a_: List[str]=100_000, a_: List[str]=4_096, a_: int=11_008, a_: Tuple=32, a_: Any=32, a_: Optional[Any]="silu", a_: Any=2_048, a_: List[Any]=0.02, a_: int=1E-6, a_: Optional[int]=True, a_: List[str]=0, a_: Any=1, a_: Optional[int]=2, a_: Tuple=False, a_: List[Any]=True, a_: Optional[int]=0.1, a_: Tuple=0.1, a_: List[Any]=True, a_: Optional[int]=True, a_: Dict=None, **a_: int, ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : str = hidden_size _snake_case : Dict = intermediate_size _snake_case : str = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : Dict = initializer_range _snake_case : Tuple = rms_norm_eps _snake_case : Dict = use_cache _snake_case : Optional[int] = kwargs.pop( """use_memorry_efficient_attention""", a_ ) _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_dropout_prob _snake_case : Optional[int] = use_stable_embedding _snake_case : int = shared_input_output_embedding _snake_case : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, tie_word_embeddings=a_, **a_, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling, a_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) _snake_case : Optional[int] = self.rope_scaling.get("""type""", a_ ) _snake_case : Optional[int] = self.rope_scaling.get("""factor""", a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(a_, a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
609
0
'''simple docstring''' from string import ascii_uppercase snake_case = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 3_6: raise ValueError("base must be <= 36" ) lowerCAmelCase__ : Dict = "" lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : str = 0 while div != 1: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = divmod(lowerCamelCase_ , lowerCamelCase_ ) if base >= 1_1 and 9 < mod < 3_6: lowerCAmelCase__ : Optional[Any] = ALPHABET_VALUES[str(lowerCamelCase_ )] else: lowerCAmelCase__ : Any = str(lowerCamelCase_ ) new_value += actual_value lowerCAmelCase__ : List[str] = num // base lowerCAmelCase__ : Tuple = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowerCamelCase_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
568
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm snake_case = 20_48 snake_case = 40_96 snake_case = 42 snake_case = os.environ.pop("""PROCESS_TRAIN""", """false""") snake_case = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def choose_first(lowerCamelCase_ , lowerCamelCase_=False ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: lowerCAmelCase__ : Union[str, Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCAmelCase__ : str = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a lowerCAmelCase__ : Dict = {"id": example["id"]} lowerCAmelCase__ : Optional[int] = example["annotations"] lowerCAmelCase__ : Dict = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCAmelCase__ : str = ["yes"] if 1 in yes_no_answer else ["no"] lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[str] = ["<cls>"] else: lowerCAmelCase__ : Optional[Any] = ["short"] lowerCAmelCase__ : Tuple = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available lowerCAmelCase__ : str = ["long"] lowerCAmelCase__ : Tuple = choose_first(annotation["long_answer"] , is_long_answer=lowerCamelCase_ ) lowerCAmelCase__ : Any = [] answer.update(lowerCamelCase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: lowerCAmelCase__ : Any = True else: lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Tuple = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , lowerCamelCase_ ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = _get_single_answer(lowerCamelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : Dict = example["document"]["tokens"] lowerCAmelCase__ : Union[str, Any] = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCAmelCase__ : List[Any] = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowerCAmelCase__ : List[str] = example["document"]["tokens"] lowerCAmelCase__ : Union[str, Any] = answer["start_token"] lowerCAmelCase__ : str = answer["end_token"] lowerCAmelCase__ : str = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCAmelCase__ : str = " ".join(context[start_token:end_token] ) # checking above code if assertion: lowerCAmelCase__ : str = doc["is_html"][answer["start_token"] : answer["end_token"]] lowerCAmelCase__ : str = doc["token"][answer["start_token"] : answer["end_token"]] lowerCAmelCase__ : Optional[int] = " ".join([old[i] for i in range(len(lowerCamelCase_ ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowerCamelCase_ , end="\n" ) print("Old:" , lowerCamelCase_ , end="\n\n" ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=True ): """simple docstring""" lowerCAmelCase__ : Optional[int] = get_context_and_ans(lowerCamelCase_ , assertion=lowerCamelCase_ ) lowerCAmelCase__ : int = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCAmelCase__ : int = tokenizer(example["question"]["text"] , out["context"] ).input_ids lowerCAmelCase__ : List[str] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[Any] = input_ids[:q_len] lowerCAmelCase__ : List[str] = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: lowerCAmelCase__ : int = i + max_length - q_len lowerCAmelCase__ : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowerCamelCase_ ), "end_token": [-1_0_0] * len(lowerCamelCase_ ), "category": category, }, } lowerCAmelCase__ : Optional[Any] = out["context"].split() lowerCAmelCase__ : Dict = splitted_context[answer["end_token"]] lowerCAmelCase__ : Union[str, Any] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowerCamelCase_ , ).input_ids ) lowerCAmelCase__ : List[str] = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowerCamelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCAmelCase__ : Optional[Any] = len(tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCAmelCase__ : str = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive lowerCAmelCase__ : str = answer["start_token"] lowerCAmelCase__ : Union[str, Any] = answer["end_token"] if assertion: lowerCAmelCase__ : Union[str, Any] = tokenizer.decode(lowerCamelCase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowerCamelCase_ , end="\n\n" ) if len(lowerCamelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCAmelCase__ : int = input_ids[:q_len] lowerCAmelCase__ : List[str] = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Optional[int] = [] # null, yes, no, long, short for i in doc_start_indices: lowerCAmelCase__ : Optional[Any] = i + max_length - q_len lowerCAmelCase__ : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCAmelCase__ : Any = start_token - i + q_len lowerCAmelCase__ : Optional[Any] = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: lowerCAmelCase__ : Union[str, Any] = -1_0_0 lowerCAmelCase__ : Optional[Any] = -1_0_0 answers_category.append("null" ) lowerCAmelCase__ : Any = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_ ) answers_end_token.append(lowerCamelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowerCamelCase_ ) ) print("Old:" , tokenizer.decode(lowerCamelCase_ ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : Any = get_strided_contexts_and_ans( lowerCamelCase_ , lowerCamelCase_ , doc_stride=lowerCamelCase_ , max_length=lowerCamelCase_ , assertion=lowerCamelCase_ , ) return example def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" with jsonlines.open(lowerCamelCase_ , "a" ) as writer: for example in tqdm(lowerCamelCase_ , total=len(lowerCamelCase_ ) , desc="Saving samples ... " ): lowerCAmelCase__ : List[str] = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer snake_case = load_dataset("""natural_questions""") snake_case = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") snake_case = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] snake_case = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } snake_case = data.map(prepare_inputs, fn_kwargs=fn_kwargs) snake_case = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) snake_case = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
568
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase_ ( __lowercase ): __lowerCamelCase = 42 __lowerCamelCase = None def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=0.999 , __lowerCamelCase="cosine" , ) -> int: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCAmelCase__ : Dict = [] for i in range(_lowerCamelCase ): UpperCAmelCase__ : List[Any] = i / num_diffusion_timesteps UpperCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class UpperCAmelCase_ ( __lowercase , __lowercase ): @register_to_config def __init__( self , _lowerCAmelCase = 1000 , _lowerCAmelCase = "fixed_small_log" , _lowerCAmelCase = True , _lowerCAmelCase = 1.0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase__ : Optional[int] = betas_for_alpha_bar(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = 1.0 - self.betas UpperCAmelCase__ : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase__ : int = 1.0 # setable values UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Any = torch.from_numpy(np.arange(0 , _lowerCAmelCase )[::-1].copy() ) UpperCAmelCase__ : Optional[Any] = variance_type def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : Optional[Any] = num_inference_steps UpperCAmelCase__ : Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase__ : int = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase__ : str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ): if prev_timestep is None: UpperCAmelCase__ : Union[str, Any] = t - 1 UpperCAmelCase__ : Optional[int] = self.alphas_cumprod[t] UpperCAmelCase__ : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ : Union[str, Any] = self.betas[t] else: UpperCAmelCase__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase__ : Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase__ : int = torch.log(torch.clamp(_lowerCAmelCase , min=1e-20 ) ) UpperCAmelCase__ : List[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase__ : Tuple = variance.log() UpperCAmelCase__ : str = beta.log() UpperCAmelCase__ : int = (predicted_variance + 1) / 2 UpperCAmelCase__ : Tuple = frac * max_log + (1 - frac) * min_log return variance def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase=None , _lowerCAmelCase = True , ): UpperCAmelCase__ : Any = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase__ : Optional[Any] = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 ) else: UpperCAmelCase__ : Tuple = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase__ : Tuple = t - 1 UpperCAmelCase__ : Union[str, Any] = self.alphas_cumprod[t] UpperCAmelCase__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ : Optional[int] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ : List[Any] = self.betas[t] UpperCAmelCase__ : List[Any] = self.alphas[t] else: UpperCAmelCase__ : int = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase__ : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Tuple = torch.clamp( _lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase__ : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase__ : List[str] = 0 if t > 0: UpperCAmelCase__ : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase , device=model_output.device ) UpperCAmelCase__ : Union[str, Any] = self._get_variance( _lowerCAmelCase , predicted_variance=_lowerCAmelCase , prev_timestep=_lowerCAmelCase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = variance elif self.variance_type == "learned_range": UpperCAmelCase__ : int = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" """ for the UnCLIPScheduler.""" ) UpperCAmelCase__ : List[Any] = variance * variance_noise UpperCAmelCase__ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): UpperCAmelCase__ : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase__ : Tuple = timesteps.to(original_samples.device ) UpperCAmelCase__ : List[str] = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
79
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from __future__ import annotations from typing import Generic, TypeVar __UpperCAmelCase : Optional[Any] = TypeVar('T') class lowerCamelCase ( Generic[T] ): def __init__( self : List[str] , __snake_case : T ) -> None: _a : Dict = data _a : List[str] = self _a : Tuple = 0 class lowerCamelCase ( Generic[T] ): def __init__( self : List[Any] ) -> None: # map from node name to the node object _a : dict[T, DisjointSetTreeNode[T]] = {} def snake_case_ ( self : str , __snake_case : T ) -> None: # create a new set with x as its member _a : int = DisjointSetTreeNode(__snake_case ) def snake_case_ ( self : Optional[int] , __snake_case : T ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) _a : Optional[Any] = self.map[data] if elem_ref != elem_ref.parent: _a : List[Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case_ ( self : List[str] , __snake_case : DisjointSetTreeNode[T] , __snake_case : DisjointSetTreeNode[T] ) -> None: # helper function for union operation if nodea.rank > nodea.rank: _a : Union[str, Any] = nodea else: _a : List[str] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case_ ( self : Any , __snake_case : T , __snake_case : T ) -> None: # merge 2 disjoint sets self.link(self.find_set(__snake_case ) , self.find_set(__snake_case ) ) class lowerCamelCase ( Generic[T] ): def __init__( self : Dict ) -> None: # connections: map from the node to the neighbouring nodes (with weights) _a : dict[T, dict[T, int]] = {} def snake_case_ ( self : Tuple , __snake_case : T ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: _a : List[Any] = {} def snake_case_ ( self : Any , __snake_case : T , __snake_case : T , __snake_case : int ) -> None: # add an edge with the given weight self.add_node(__snake_case ) self.add_node(__snake_case ) _a : Dict = weight _a : List[Any] = weight def snake_case_ ( self : Optional[Any] ) -> GraphUndirectedWeighted[T]: _a : Any = [] _a : Dict = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __snake_case : x[2] ) # creating the disjoint set _a : Any = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__snake_case ) # MST generation _a : Any = 0 _a : List[Any] = 0 _a : int = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _a , _a , _a : Union[str, Any] = edges[index] index += 1 _a : Any = disjoint_set.find_set(__snake_case ) _a : List[str] = disjoint_set.find_set(__snake_case ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__snake_case , __snake_case , __snake_case ) disjoint_set.union(__snake_case , __snake_case ) return graph
249
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Dict = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
1