code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import heapq import sys import numpy as np snake_case : List[Any] = tuple[int, int] class _snake_case : def __init__( self ): __magic_name__ : Any = [] __magic_name__ : List[Any] = set() def SCREAMING_SNAKE_CASE ( self ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def SCREAMING_SNAKE_CASE ( self ): return len(self.elements ) == 0 def SCREAMING_SNAKE_CASE ( self , _a , _a ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_a ) else: # update # print("update", item) __magic_name__ : Dict = [] ((__magic_name__) , (__magic_name__)) : Tuple = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__magic_name__) , (__magic_name__)) : Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def SCREAMING_SNAKE_CASE ( self , _a ): if item in self.set: self.set.remove(_a ) __magic_name__ : int = [] ((__magic_name__) , (__magic_name__)) : int = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__magic_name__) , (__magic_name__)) : Dict = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def SCREAMING_SNAKE_CASE ( self ): return self.elements[0][1] def SCREAMING_SNAKE_CASE ( self ): ((__magic_name__) , (__magic_name__)) : Union[str, Any] = heapq.heappop(self.elements ) self.set.remove(_a ) return (priority, item) def lowerCAmelCase_ ( _snake_case : TPos , _snake_case : TPos ) -> Any: '''simple docstring''' __magic_name__ : int = np.array(_snake_case ) __magic_name__ : Any = np.array(_snake_case ) return np.linalg.norm(a - b ) def lowerCAmelCase_ ( _snake_case : TPos , _snake_case : TPos ) -> str: '''simple docstring''' return consistent_heuristic(_snake_case , _snake_case ) // t def lowerCAmelCase_ ( _snake_case : TPos , _snake_case : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase_ ( _snake_case : TPos , _snake_case : int , _snake_case : TPos , _snake_case : dict[TPos, float] ) -> int: '''simple docstring''' __magic_name__ : Tuple = g_function[start] + Wa * heuristics[i](_snake_case , _snake_case ) return ans def lowerCAmelCase_ ( _snake_case : str , _snake_case : List[Any] , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : Any = np.chararray((n, n) ) for i in range(_snake_case ): for j in range(_snake_case ): __magic_name__ : List[str] = "*" for i in range(_snake_case ): for j in range(_snake_case ): if (j, (n - 1) - i) in blocks: __magic_name__ : str = "#" __magic_name__ : int = "-" __magic_name__ : List[Any] = back_pointer[goal] while x != start: ((__magic_name__) , (__magic_name__)) : Tuple = x # print(x) __magic_name__ : List[Any] = "-" __magic_name__ : Dict = back_pointer[x] __magic_name__ : Optional[Any] = "-" for i in range(_snake_case ): for j in range(_snake_case ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) __magic_name__ : List[str] = back_pointer[goal] while x != start: print(_snake_case , end=" " ) __magic_name__ : Optional[int] = back_pointer[x] print(_snake_case ) sys.exit() def lowerCAmelCase_ ( _snake_case : TPos ) -> Optional[int]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : Any , _snake_case : str , ) -> List[str]: '''simple docstring''' for itera in range(_snake_case ): open_list[itera].remove_element(_snake_case ) # print("s", s) # print("j", j) ((__magic_name__) , (__magic_name__)) : List[str] = s __magic_name__ : Optional[int] = (x - 1, y) __magic_name__ : Tuple = (x + 1, y) __magic_name__ : List[Any] = (x, y + 1) __magic_name__ : Optional[Any] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_snake_case ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_snake_case ) __magic_name__ : Any = -1 __magic_name__ : Tuple = float("inf" ) if valid(_snake_case ) and g_function[neighbours] > g_function[s] + 1: __magic_name__ : List[Any] = g_function[s] + 1 __magic_name__ : Optional[int] = s if neighbours not in close_list_anchor: open_list[0].put(_snake_case , key(_snake_case , 0 , _snake_case , _snake_case ) ) if neighbours not in close_list_inad: for var in range(1 , _snake_case ): if key(_snake_case , _snake_case , _snake_case , _snake_case ) <= Wa * key( _snake_case , 0 , _snake_case , _snake_case ): open_list[j].put( _snake_case , key(_snake_case , _snake_case , _snake_case , _snake_case ) ) def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case : str = make_common_ground() snake_case : Dict = blocks_blk # hyper parameters snake_case : Union[str, Any] = 1 snake_case : Optional[int] = 1 snake_case : Dict = 20 snake_case : Optional[int] = 3 # one consistent and two other inconsistent # start and end destination snake_case : Optional[Any] = (0, 0) snake_case : Any = (n - 1, n - 1) snake_case : Any = 1 def lowerCAmelCase_ ( _snake_case : TPos , _snake_case : TPos , _snake_case : int ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = {start: 0, goal: float("inf" )} __magic_name__ : Optional[int] = {start: -1, goal: -1} __magic_name__ : Union[str, Any] = [] __magic_name__ : Tuple = set() for i in range(_snake_case ): open_list.append(PriorityQueue() ) open_list[i].put(_snake_case , key(_snake_case , _snake_case , _snake_case , _snake_case ) ) __magic_name__ : list[int] = [] __magic_name__ : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , _snake_case ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(_snake_case , _snake_case , _snake_case ) else: __magic_name__ , __magic_name__ : Optional[Any] = open_list[i].top_show() visited.add(_snake_case ) expand_state( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) close_list_inad.append(_snake_case ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(_snake_case , _snake_case , _snake_case ) else: __magic_name__ : Tuple = open_list[0].top_show() visited.add(_snake_case ) expand_state( _snake_case , 0 , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) close_list_anchor.append(_snake_case ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_snake_case ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
124
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() snake_case : Any = logging.get_logger(__name__) snake_case : Optional[int] = "Hello, World!" snake_case : Optional[int] = "en_XX" def lowerCAmelCase_ ( _snake_case : str , _snake_case : str , _snake_case : bool ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = Path("data_bin" ) __magic_name__ : List[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_snake_case ).parent ) , checkpoint_file=Path(_snake_case ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(_snake_case ) , bpe="sentencepiece" , sentencepiece_model=str(Path(_snake_case ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(_snake_case ) __magic_name__ : Optional[int] = xmod.model.encoder.sentence_encoder __magic_name__ : int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __magic_name__ : List[Any] = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , _snake_case ) __magic_name__ : str = XmodForSequenceClassification(_snake_case ) if classification_head else XmodForMaskedLM(_snake_case ) model.eval() # Now let's copy all the weights. # Embeddings __magic_name__ : str = xmod_sent_encoder.embed_tokens.weight __magic_name__ : List[Any] = xmod_sent_encoder.embed_positions.weight __magic_name__ : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __magic_name__ : Any = xmod_sent_encoder.layernorm_embedding.weight __magic_name__ : List[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __magic_name__ : str = model.roberta.encoder.layer[i] __magic_name__ : Tuple = xmod_sent_encoder.layers[i] # self attention __magic_name__ : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __magic_name__ : List[Any] = xmod_layer.self_attn.q_proj.weight __magic_name__ : Union[str, Any] = xmod_layer.self_attn.q_proj.bias __magic_name__ : Optional[int] = xmod_layer.self_attn.k_proj.weight __magic_name__ : Any = xmod_layer.self_attn.k_proj.bias __magic_name__ : Dict = xmod_layer.self_attn.v_proj.weight __magic_name__ : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output __magic_name__ : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __magic_name__ : Optional[Any] = xmod_layer.self_attn.out_proj.weight __magic_name__ : List[Any] = xmod_layer.self_attn.out_proj.bias __magic_name__ : Tuple = xmod_layer.self_attn_layer_norm.weight __magic_name__ : Union[str, Any] = xmod_layer.self_attn_layer_norm.bias # intermediate __magic_name__ : Any = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __magic_name__ : List[Any] = xmod_layer.fca.weight __magic_name__ : List[str] = xmod_layer.fca.bias # output __magic_name__ : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __magic_name__ : Optional[Any] = xmod_layer.fca.weight __magic_name__ : List[str] = xmod_layer.fca.bias __magic_name__ : Optional[int] = xmod_layer.final_layer_norm.weight __magic_name__ : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __magic_name__ : Dict = xmod_layer.adapter_layer_norm.weight __magic_name__ : Dict = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __magic_name__ : Optional[int] = bert_output.adapter_modules[lang_code] __magic_name__ : Union[str, Any] = xmod_layer.adapter_modules[lang_code] __magic_name__ : Any = from_adapter.fca.weight __magic_name__ : str = from_adapter.fca.bias __magic_name__ : Optional[int] = from_adapter.fca.weight __magic_name__ : Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __magic_name__ : List[Any] = xmod_sent_encoder.layer_norm.weight __magic_name__ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: __magic_name__ : Optional[int] = xmod.model.classification_heads["mnli"].dense.weight __magic_name__ : List[Any] = xmod.model.classification_heads["mnli"].dense.bias __magic_name__ : Union[str, Any] = xmod.model.classification_heads["mnli"].out_proj.weight __magic_name__ : Optional[int] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __magic_name__ : List[Any] = xmod.model.encoder.lm_head.dense.weight __magic_name__ : Dict = xmod.model.encoder.lm_head.dense.bias __magic_name__ : int = xmod.model.encoder.lm_head.layer_norm.weight __magic_name__ : int = xmod.model.encoder.lm_head.layer_norm.bias __magic_name__ : List[Any] = xmod.model.encoder.lm_head.weight __magic_name__ : List[str] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __magic_name__ : Optional[int] = xmod.encode(_snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_snake_case ) __magic_name__ : Tuple = model(_snake_case )[0] if classification_head: __magic_name__ : Optional[Any] = xmod.model.classification_heads["mnli"](xmod.extract_features(_snake_case ) ) else: __magic_name__ : List[Any] = xmod.model(_snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __magic_name__ : Union[str, Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 __magic_name__ : List[str] = torch.allclose(_snake_case , _snake_case , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(_snake_case ).mkdir(parents=_snake_case , exist_ok=_snake_case ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) snake_case : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
124
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Union[str, Any] = (32, 32) UpperCAmelCase_ : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ ) return image @property def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__magic_name__ ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" def extract(*__magic_name__ : int , **__magic_name__ : Optional[Any] ): class __a : def __init__( self : Any ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = torch.ones([0] ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple ) -> Dict: """simple docstring""" self.pixel_values.to(__magic_name__ ) return self return Out() return extract def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" UpperCAmelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.dummy_cond_unet UpperCAmelCase_ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) UpperCAmelCase_ : List[str] = self.dummy_vae UpperCAmelCase_ : Any = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Dict = StableDiffusionPipeline( unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : Tuple = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Union[str, Any] = self.dummy_cond_unet UpperCAmelCase_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__magic_name__ ) UpperCAmelCase_ : Tuple = self.dummy_vae UpperCAmelCase_ : List[Any] = self.dummy_text_encoder UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : int = StableDiffusionPipeline( unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : Union[str, Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : str = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : List[str] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0] UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(pipe.scheduler , __magic_name__ ) assert pipe.safety_checker is None UpperCAmelCase_ : Tuple = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : str = self.dummy_cond_unet UpperCAmelCase_ : Optional[int] = PNDMScheduler(skip_prk_steps=__magic_name__ ) UpperCAmelCase_ : Optional[int] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase_ : Tuple = unet.half() UpperCAmelCase_ : List[str] = vae.half() UpperCAmelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline( unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Any = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : Optional[int] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Tuple = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase_ : Dict = 40_03_66_03_46 UpperCAmelCase_ : Optional[int] = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ ) UpperCAmelCase_ : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : List[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase_ : Union[str, Any] = 27_34_97_17_55 UpperCAmelCase_ : str = 7 UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : int = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : str = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase_ : Any = 10_44_35_52_34 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : int = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) UpperCAmelCase_ : Union[str, Any] = output.images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(__magic_name__ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[int] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
704
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase = 256 class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["melgan"] def __init__( self :List[Any] , __A :SpectrogramNotesEncoder , __A :SpectrogramContEncoder , __A :TaFilmDecoder , __A :DDPMScheduler , __A :OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN SCREAMING_SNAKE_CASE__ = math.log(1E-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE__ = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE__ = 128 self.register_modules( notes_encoder=__A , continuous_encoder=__A , decoder=__A , scheduler=__A , melgan=__A , ) def _snake_case ( self :str , __A :List[Any] , __A :Optional[int]=(-1.0, 1.0) , __A :Optional[Any]=False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = output_range if clip: SCREAMING_SNAKE_CASE__ = torch.clip(__A , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self :Dict , __A :Tuple , __A :str=(-1.0, 1.0) , __A :List[str]=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input_range SCREAMING_SNAKE_CASE__ = torch.clip(__A , __A , __A ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self :Union[str, Any] , __A :Any , __A :List[Any] , __A :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = input_tokens > 0 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.notes_encoder( encoder_input_tokens=__A , encoder_inputs_mask=__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.continuous_encoder( encoder_inputs=__A , encoder_inputs_mask=__A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self :Any , __A :int , __A :str , __A :Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = noise_time if not torch.is_tensor(__A ): SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE__ = self.decoder( encodings_and_masks=__A , decoder_input_tokens=__A , decoder_noise_time=__A ) return logits @torch.no_grad() def __call__( self :Dict , __A :List[List[int]] , __A :Optional[torch.Generator] = None , __A :int = 100 , __A :bool = True , __A :str = "numpy" , __A :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A :int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__A )}.''' ) SCREAMING_SNAKE_CASE__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__A , device=self.device ) for i, encoder_input_tokens in enumerate(__A ): if i == 0: SCREAMING_SNAKE_CASE__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE__ = ones SCREAMING_SNAKE_CASE__ = self.scale_features( __A , output_range=[-1.0, 1.0] , clip=__A ) SCREAMING_SNAKE_CASE__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__A , continuous_mask=__A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE__ = self.decode( encodings_and_masks=__A , input_tokens=__A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , generator=__A ).prev_sample SCREAMING_SNAKE_CASE__ = self.scale_to_features(__A , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE__ = mel[:1] SCREAMING_SNAKE_CASE__ = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A ) logger.info("""Generated segment""" , __A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": SCREAMING_SNAKE_CASE__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__A )
6
_SCREAMING_SNAKE_CASE : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _SCREAMING_SNAKE_CASE : int = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _SCREAMING_SNAKE_CASE : Optional[Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _SCREAMING_SNAKE_CASE : Tuple = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _SCREAMING_SNAKE_CASE : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _SCREAMING_SNAKE_CASE : str = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _SCREAMING_SNAKE_CASE : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
493
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase = logging.get_logger(__name__) class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Tuple = ['''pixel_values'''] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BILINEAR , a__ = True , a__ = None , a__ = True , a__ = 1 / 255 , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {"shortest_edge": 256} __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a__ , default_to_square=a__ ) __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} __SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(a__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE : int = do_resize __SCREAMING_SNAKE_CASE : List[str] = size __SCREAMING_SNAKE_CASE : Optional[Any] = resample __SCREAMING_SNAKE_CASE : Dict = do_center_crop __SCREAMING_SNAKE_CASE : Optional[Any] = crop_size __SCREAMING_SNAKE_CASE : str = do_rescale __SCREAMING_SNAKE_CASE : int = rescale_factor __SCREAMING_SNAKE_CASE : int = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a_ ( self , a__ , a__ , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): __SCREAMING_SNAKE_CASE : List[str] = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(a__ , size=size["shortest_edge"] , default_to_square=a__ ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def a_ ( self , a__ , a__ , a__ = None , **a__ , ): __SCREAMING_SNAKE_CASE : int = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(a__ , size=(size["height"], size["width"]) , data_format=a__ , **a__ ) def a_ ( self , a__ , a__ , a__ = None , **a__ ): return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def a_ ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def a_ ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): __SCREAMING_SNAKE_CASE : List[str] = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a__ , default_to_square=a__ ) __SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : List[Any] = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(a__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : Tuple = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : int = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Optional[Any] = [to_numpy_array(a__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : List[Any] = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE : Dict = [self.center_crop(image=a__ , size=a__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Dict = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : Dict = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] __SCREAMING_SNAKE_CASE : List[Any] = [to_channel_dimension_format(a__ , a__ ) for image in images] __SCREAMING_SNAKE_CASE : Dict = {"pixel_values": images} return BatchFeature(data=a__ , tensor_type=a__ ) def a_ ( self , a__ , a__ = None ): __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a__ ) != len(a__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a__ ): __SCREAMING_SNAKE_CASE : Tuple = target_sizes.numpy() __SCREAMING_SNAKE_CASE : Any = [] for idx in range(len(a__ ) ): __SCREAMING_SNAKE_CASE : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a__ ) __SCREAMING_SNAKE_CASE : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
564
'''simple docstring''' import os import numpy import onnx def __A ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = a.name __SCREAMING_SNAKE_CASE : List[Any] = b.name __SCREAMING_SNAKE_CASE : int = "" __SCREAMING_SNAKE_CASE : str = "" __SCREAMING_SNAKE_CASE : List[Any] = a == b __SCREAMING_SNAKE_CASE : Any = name_a __SCREAMING_SNAKE_CASE : Optional[Any] = name_b return res def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = list(model.graph.initializer ) __SCREAMING_SNAKE_CASE : Tuple = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __SCREAMING_SNAKE_CASE : str = inits[i].name __SCREAMING_SNAKE_CASE : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = os.path.dirname(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = os.path.basename(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = onnx.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE : Dict = list(model.graph.initializer ) __SCREAMING_SNAKE_CASE : int = set() __SCREAMING_SNAKE_CASE : Optional[Any] = {} __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : str = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_SCREAMING_SNAKE_CASE ) dup_set.add(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = inits[j].data_type __SCREAMING_SNAKE_CASE : Any = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("unexpected data type: " , _SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size __SCREAMING_SNAKE_CASE : Any = inits[i].name __SCREAMING_SNAKE_CASE : Optional[int] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE : List[Any] = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , "GB" ) __SCREAMING_SNAKE_CASE : Optional[int] = sorted(_SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Any = "optimized_" + model_file_name __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) onnx.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return new_model
564
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class a_ ( A__ ): UpperCamelCase_ : Dict = 42 UpperCamelCase_ : List[str] = 42 UpperCamelCase_ : str = None class a_ ( A__ , A__ ): UpperCamelCase_ : int = 2 @register_to_config def __init__( self : List[Any] , snake_case__ : float = 0.02 , snake_case__ : float = 100 , snake_case__ : float = 1.007 , snake_case__ : float = 80 , snake_case__ : float = 0.05 , snake_case__ : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase__ = sigma_max # setable values lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): return sample def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): lowerCAmelCase__ = num_inference_steps lowerCAmelCase__ = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase__ = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) lowerCAmelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase__ = torch.tensor(lowerCamelCase__ , dtype=torch.floataa , device=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase__ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase__ = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCamelCase__ ).to(sample.device ) lowerCAmelCase__ = sigma + gamma * sigma lowerCAmelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : float , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): lowerCAmelCase__ = sample_hat + sigma_hat * model_output lowerCAmelCase__ = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : float , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): lowerCAmelCase__ = sample_prev + sigma_prev * model_output lowerCAmelCase__ = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): raise NotImplementedError()
644
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( __A ): __UpperCamelCase = 42 class lowercase__ ( __A , __A ): @register_to_config def __init__( self , _lowercase = 3 , _lowercase = 3 , _lowercase = ("DownEncoderBlock2D",) , _lowercase = ("UpDecoderBlock2D",) , _lowercase = (64,) , _lowercase = 1 , _lowercase = "silu" , _lowercase = 3 , _lowercase = 32 , _lowercase = 256 , _lowercase = 32 , _lowercase = None , _lowercase = 0.1_8215 , _lowercase = "group" , ): super().__init__() # pass init params to Encoder lowerCAmelCase_ : Dict = Encoder( in_channels=_lowercase , out_channels=_lowercase , down_block_types=_lowercase , block_out_channels=_lowercase , layers_per_block=_lowercase , act_fn=_lowercase , norm_num_groups=_lowercase , double_z=_lowercase , ) lowerCAmelCase_ : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase_ : Tuple = nn.Convad(_lowercase , _lowercase , 1 ) lowerCAmelCase_ : Tuple = VectorQuantizer(_lowercase , _lowercase , beta=0.25 , remap=_lowercase , sane_index_shape=_lowercase ) lowerCAmelCase_ : Tuple = nn.Convad(_lowercase , _lowercase , 1 ) # pass init params to Decoder lowerCAmelCase_ : Optional[Any] = Decoder( in_channels=_lowercase , out_channels=_lowercase , up_block_types=_lowercase , block_out_channels=_lowercase , layers_per_block=_lowercase , act_fn=_lowercase , norm_num_groups=_lowercase , norm_type=_lowercase , ) @apply_forward_hook def UpperCAmelCase__ ( self , _lowercase , _lowercase = True ): lowerCAmelCase_ : str = self.encoder(_lowercase ) lowerCAmelCase_ : Optional[Any] = self.quant_conv(_lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowercase ) @apply_forward_hook def UpperCAmelCase__ ( self , _lowercase , _lowercase = False , _lowercase = True ): # also go through quantization layer if not force_not_quantize: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.quantize(_lowercase ) else: lowerCAmelCase_ : Optional[int] = h lowerCAmelCase_ : Tuple = self.post_quant_conv(_lowercase ) lowerCAmelCase_ : str = self.decoder(_lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = True ): lowerCAmelCase_ : Dict = sample lowerCAmelCase_ : List[str] = self.encode(_lowercase ).latents lowerCAmelCase_ : List[Any] = self.decode(_lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase )
440
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase__ ( unittest.TestCase ): __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __UpperCamelCase = ["""accelerate""", """launch"""] __UpperCamelCase = Path.home() / """.cache/huggingface/accelerate""" __UpperCamelCase = """default_config.yaml""" __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / """_default_config.yaml""" __UpperCamelCase = Path("""tests/test_configs""" ) @classmethod def UpperCAmelCase__ ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase__ ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self ): for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self ): execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class lowercase__ ( unittest.TestCase ): __UpperCamelCase = """test-tpu""" __UpperCamelCase = """us-central1-a""" __UpperCamelCase = """ls""" __UpperCamelCase = ["""accelerate""", """tpu-config"""] __UpperCamelCase = """cd /usr/share""" __UpperCamelCase = """tests/test_samples/test_command_file.sh""" __UpperCamelCase = """Running gcloud compute tpus tpu-vm ssh""" def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=_lowercase ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Any = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , )
440
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ =StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ =sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =sd_pipe([prompt] ,generator=__lowerCAmelCase ,guidance_scale=9.0 ,num_inference_steps=2_0 ,output_type="""np""" ) SCREAMING_SNAKE_CASE__ =output.images SCREAMING_SNAKE_CASE__ =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE__ =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ =sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =sd_pipe([prompt] ,generator=__lowerCAmelCase ,guidance_scale=9.0 ,num_inference_steps=2_0 ,output_type="""np""" ) SCREAMING_SNAKE_CASE__ =output.images SCREAMING_SNAKE_CASE__ =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE__ =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __A ( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ =sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=7.5 ,num_inference_steps=1_5 ,output_type="""np""" ,use_karras_sigmas=__lowerCAmelCase ,) SCREAMING_SNAKE_CASE__ =output.images SCREAMING_SNAKE_CASE__ =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE__ =np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
151
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Dict = '''Wav2Vec2FeatureExtractor''' __lowerCamelCase : str = '''AutoTokenizer''' def __init__( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase ) A__ = self.feature_extractor A__ = False @classmethod def a_ ( cls : Union[str, Any] , __lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" try: return super().from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , __lowerCAmelCase , ) A__ = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) A__ = WavaVecaCTCTokenizer.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) return cls(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) def __call__( self : Any , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) A__ = kwargs.pop("""raw_speech""" ) else: A__ = kwargs.pop("""audio""" , __lowerCAmelCase ) A__ = kwargs.pop("""sampling_rate""" , __lowerCAmelCase ) A__ = kwargs.pop("""text""" , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: A__ = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: A__ = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings["""input_ids"""] return inputs def a_ ( self : List[str] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*__lowerCAmelCase , **__lowerCAmelCase ) A__ = kwargs.pop("""input_features""" , __lowerCAmelCase ) A__ = kwargs.pop("""labels""" , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: A__ = args[0] A__ = args[1:] if input_features is not None: A__ = self.feature_extractor.pad(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) if labels is not None: A__ = self.tokenizer.pad(__lowerCAmelCase , **__lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: A__ = labels["""input_ids"""] return input_features def a_ ( self : Optional[int] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def a_ ( self : Union[str, Any] ) -> int: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
176
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __snake_case ): '''simple docstring''' snake_case_ : Optional[int] = ['image_processor', 'tokenizer'] snake_case_ : Tuple = 'BlipImageProcessor' snake_case_ : Optional[int] = 'AutoTokenizer' def __init__( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" _snake_case : str = False super().__init__(A_ , A_) _snake_case : str = self.image_processor def __call__( self : Tuple , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : str = None , lowerCAmelCase : Optional[int] = True , lowerCAmelCase : List[str] = False , lowerCAmelCase : Any = None , lowerCAmelCase : str = None , lowerCAmelCase : str = 0 , lowerCAmelCase : int = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : Any = False , lowerCAmelCase : Tuple = False , lowerCAmelCase : Union[str, Any] = False , lowerCAmelCase : Union[str, Any] = False , lowerCAmelCase : Union[str, Any] = False , lowerCAmelCase : str = True , lowerCAmelCase : Optional[Any] = None , **lowerCAmelCase : str , ) -> Any: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""") # Get only text if images is None: _snake_case : int = self.tokenizer _snake_case : Optional[int] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values _snake_case : int = self.image_processor(A_ , return_tensors=A_) if text is not None: _snake_case : Dict = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: _snake_case : Dict = None if text_encoding is not None: encoding_image_processor.update(A_) return encoding_image_processor def UpperCamelCase_ ( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_) def UpperCamelCase_ ( self : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : str) -> Any: """simple docstring""" return self.tokenizer.decode(*A_ , **A_) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self : Optional[Any]) -> Any: """simple docstring""" _snake_case : List[str] = self.tokenizer.model_input_names _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
716
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
198
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : Union[str, Any] = CLIPTokenizer __magic_name__ : int = CLIPTokenizerFast __magic_name__ : Optional[Any] = True __magic_name__ : int = {} __magic_name__ : List[str] = False def lowercase_ ( self : Tuple ): '''simple docstring''' super().setUp() # fmt: off a_ : Union[str, Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a_ : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) a_ : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] a_ : Union[str, Any] = {"""unk_token""": """<unk>"""} a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def lowercase_ ( self : str , **lowercase__ : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase_ ( self : Tuple , **lowercase__ : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase_ ( self : str , lowercase__ : Union[str, Any] ): '''simple docstring''' a_ : List[str] = """lower newer""" a_ : Optional[int] = """lower newer""" return input_text, output_text def lowercase_ ( self : Dict ): '''simple docstring''' a_ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : int = """lower newer""" a_ : Optional[int] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] a_ : List[str] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) a_ : List[str] = tokens + [tokenizer.unk_token] a_ : Optional[int] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def lowercase_ ( self : str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a_ : Dict = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) a_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) a_ : Optional[int] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" a_ : List[Any] = tokenizer_s.tokenize(lowercase__ ) a_ : Union[str, Any] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a_ : int = """xa\u0303y""" + """ """ + """x\xe3y""" a_ : Any = tokenizer_s.tokenize(lowercase__ ) a_ : Dict = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type a_ : List[str] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a_ : Union[str, Any] = tokenizer_s.tokenize(lowercase__ ) a_ : List[Any] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type a_ : Tuple = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a_ : int = tokenizer_s.tokenize(lowercase__ ) a_ : Tuple = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def lowercase_ ( self : List[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a_ : Any = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` a_ : Any = F"{text_of_1_token} {text_of_1_token}" a_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) a_ : str = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) a_ : Any = F" {text}" a_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) a_ : Optional[int] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowercase_ ( self : str ): '''simple docstring''' super().test_tokenization_python_rust_equals() def lowercase_ ( self : str ): '''simple docstring''' pass
442
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowerCAmelCase_ : List[str] = 'sshleifer/mar_enro_6_3_student' class SCREAMING_SNAKE_CASE ( snake_case_ ): def lowercase_ ( self : int ): '''simple docstring''' super().setUp() a_ : Optional[int] = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowercase__ , ) a_ : List[Any] = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' MarianMTModel.from_pretrained(lowercase__ ) @slow @require_torch_gpu def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : Union[str, Any] = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script a_ : Optional[int] = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() a_ : List[str] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): a_ : Optional[Any] = bash_script.replace(lowercase__ , str(lowercase__ ) ) a_ : Union[str, Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") a_ : List[str] = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future a_ : Dict = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowercase__ , """argv""" , lowercase__ ): a_ : List[Any] = argparse.ArgumentParser() a_ : int = pl.Trainer.add_argparse_args(lowercase__ ) a_ : Dict = SummarizationModule.add_model_specific_args(lowercase__ , os.getcwd() ) a_ : List[str] = parser.parse_args() a_ : List[Any] = main(lowercase__ ) # Check metrics a_ : List[str] = load_json(model.metrics_save_path ) a_ : Any = metrics["""val"""][0] a_ : int = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , lowercase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict a_ : Dict = os.listdir(lowercase__ ) a_ : Union[str, Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] a_ : Optional[Any] = os.path.join(args.output_dir , lowercase__ ) a_ : Dict = torch.load(lowercase__ , map_location="""cpu""" ) a_ : Tuple = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a_ : int = {os.path.basename(lowercase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class SCREAMING_SNAKE_CASE ( snake_case_ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : int = F"{self.test_file_dir_str}/test_data/wmt_en_ro" a_ : Dict = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script a_ : List[str] = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) a_ : List[str] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) a_ : Tuple = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): a_ : Union[str, Any] = bash_script.replace(lowercase__ , str(lowercase__ ) ) a_ : List[str] = self.get_auto_remove_tmp_dir() a_ : List[str] = bash_script.replace("""--fp16""" , """""" ) a_ : str = 6 a_ : Union[str, Any] = ( ["""distillation.py"""] + bash_script.split() + [ F"--output_dir={output_dir}", """--gpus=1""", """--learning_rate=1e-3""", F"--num_train_epochs={epochs}", """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowercase__ , """argv""" , lowercase__ ): a_ : Dict = argparse.ArgumentParser() a_ : Tuple = pl.Trainer.add_argparse_args(lowercase__ ) a_ : int = SummarizationDistiller.add_model_specific_args(lowercase__ , os.getcwd() ) a_ : List[Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu a_ : Union[str, Any] = distill_main(lowercase__ ) # Check metrics a_ : Union[str, Any] = load_json(model.metrics_save_path ) a_ : List[str] = metrics["""val"""][0] a_ : Optional[Any] = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , lowercase__ ) # check lightning ckpt can be loaded and has a reasonable statedict a_ : Optional[int] = os.listdir(lowercase__ ) a_ : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] a_ : Optional[Any] = os.path.join(args.output_dir , lowercase__ ) a_ : Optional[Any] = torch.load(lowercase__ , map_location="""cpu""" ) a_ : List[str] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a_ : int = {os.path.basename(lowercase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
442
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) # TODO Update this UpperCamelCase_ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = 'esm' def __init__( self : Tuple , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Union[str, Any]=7_68 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : Optional[int]=30_72 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=10_26 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[str]=1e-12 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : int=True , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : str=None , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : List[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCamelCase_ , mask_token_id=UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = vocab_size SCREAMING_SNAKE_CASE__ :Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ :Dict = num_hidden_layers SCREAMING_SNAKE_CASE__ :Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ :Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ :str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ :List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ :str = max_position_embeddings SCREAMING_SNAKE_CASE__ :Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ :Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ :List[Any] = position_embedding_type SCREAMING_SNAKE_CASE__ :Union[str, Any] = use_cache SCREAMING_SNAKE_CASE__ :Optional[Any] = emb_layer_norm_before SCREAMING_SNAKE_CASE__ :Optional[Any] = token_dropout SCREAMING_SNAKE_CASE__ :Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) SCREAMING_SNAKE_CASE__ :Dict = EsmFoldConfig() elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :str = EsmFoldConfig(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) SCREAMING_SNAKE_CASE__ :Tuple = get_default_vocab_list() else: SCREAMING_SNAKE_CASE__ :int = vocab_list else: SCREAMING_SNAKE_CASE__ :List[str] = None SCREAMING_SNAKE_CASE__ :List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , UpperCamelCase_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Tuple = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :str = self.esmfold_config.to_dict() return output @dataclass class _SCREAMING_SNAKE_CASE: A_ : str = None A_ : bool = True A_ : bool = False A_ : bool = False A_ : bool = False A_ : float = 0 A_ : bool = True A_ : bool = False A_ : int = 128 A_ : "TrunkConfig" = None def __lowerCamelCase ( self : Tuple ) -> Optional[int]: if self.trunk is None: SCREAMING_SNAKE_CASE__ :Dict = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :int = TrunkConfig(**self.trunk ) def __lowerCamelCase ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ :List[Any] = asdict(self ) SCREAMING_SNAKE_CASE__ :Optional[Any] = self.trunk.to_dict() return output @dataclass class _SCREAMING_SNAKE_CASE: A_ : int = 48 A_ : int = 1_024 A_ : int = 128 A_ : int = 32 A_ : int = 32 A_ : int = 32 A_ : float = 0 A_ : float = 0 A_ : bool = False A_ : int = 4 A_ : Optional[int] = 128 A_ : "StructureModuleConfig" = None def __lowerCamelCase ( self : Optional[int] ) -> int: if self.structure_module is None: SCREAMING_SNAKE_CASE__ :Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :Tuple = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) SCREAMING_SNAKE_CASE__ :List[Any] = self.sequence_state_dim // self.sequence_head_width SCREAMING_SNAKE_CASE__ :str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def __lowerCamelCase ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :List[Any] = asdict(self ) SCREAMING_SNAKE_CASE__ :List[Any] = self.structure_module.to_dict() return output @dataclass class _SCREAMING_SNAKE_CASE: A_ : int = 384 A_ : int = 128 A_ : int = 16 A_ : int = 128 A_ : int = 12 A_ : int = 4 A_ : int = 8 A_ : float = 0.1 A_ : int = 8 A_ : int = 1 A_ : int = 2 A_ : int = 7 A_ : int = 10 A_ : float = 1e-8 A_ : float = 1e5 def __lowerCamelCase ( self : Optional[Any] ) -> List[str]: return asdict(self ) def lowerCamelCase ( ) -> List[str]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
320
'''simple docstring''' import collections import os import re from pathlib import Path UpperCamelCase_ = '''src/transformers''' # Matches is_xxx_available() UpperCamelCase_ = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} UpperCamelCase_ = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCamelCase_ = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available UpperCamelCase_ = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") UpperCamelCase_ = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCamelCase_ = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", UpperCamelCase_ = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCamelCase_ = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo UpperCamelCase_ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: UpperCamelCase_ = re.compile(R'''^\s*try:''') # Catches a line with else: UpperCamelCase_ = re.compile(R'''^\s*else:''') def lowerCamelCase ( UpperCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' if _re_test_backend.search(UpperCAmelCase__ ) is None: return None SCREAMING_SNAKE_CASE__ :List[str] = [b[0] for b in _re_backend.findall(UpperCAmelCase__ )] backends.sort() return "_and_".join(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' with open(UpperCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE__ :Tuple = f.readlines() SCREAMING_SNAKE_CASE__ :Optional[int] = 0 while line_index < len(UpperCAmelCase__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE__ :int = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE__ :int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :List[str] = _re_one_line_import_struct.search(UpperCAmelCase__ ).groups()[0] SCREAMING_SNAKE_CASE__ :List[str] = re.findall(r'\[([^\]]+)\]' , UpperCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue SCREAMING_SNAKE_CASE__ :Optional[int] = _re_import_struct_key_value.search(UpperCAmelCase__ ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ :Tuple = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ :List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ :List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(UpperCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCAmelCase__ ) is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = _re_import_struct_add_many.search(UpperCAmelCase__ ).groups()[0].split(', ' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif _re_between_brackets.search(UpperCAmelCase__ ) is not None: SCREAMING_SNAKE_CASE__ :List[str] = _re_between_brackets.search(UpperCAmelCase__ ).groups()[0].split(', ' ) SCREAMING_SNAKE_CASE__ :List[str] = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif _re_quote_object.search(UpperCAmelCase__ ) is not None: objects.append(_re_quote_object.search(UpperCAmelCase__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 1_2 + '"' ): objects.append(line[1_3:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ :List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE__ :int = [] while ( line_index < len(UpperCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): SCREAMING_SNAKE_CASE__ :Optional[int] = lines[line_index] SCREAMING_SNAKE_CASE__ :Dict = _re_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ :Optional[int] = {'none': objects} # Let's continue with backend-specific objects while line_index < len(UpperCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ :Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ :Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ :Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): SCREAMING_SNAKE_CASE__ :int = lines[line_index] SCREAMING_SNAKE_CASE__ :List[Any] = _re_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ :List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ) -> Tuple: '''simple docstring''' def find_duplicates(UpperCAmelCase__ : Optional[Any] ): return [k for k, v in collections.Counter(UpperCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE__ :int = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE__ :Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE__ :Dict = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowerCamelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = [] for root, _, files in os.walk(UpperCAmelCase__ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE__ :Dict = os.path.join(UpperCAmelCase__ , '__init__.py' ) SCREAMING_SNAKE_CASE__ :Optional[int] = parse_init(UpperCAmelCase__ ) if objects is not None: SCREAMING_SNAKE_CASE__ :Tuple = analyze_results(*UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE__ :Any = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) > 0: raise ValueError('\n\n'.join(UpperCAmelCase__ ) ) def lowerCamelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = [] for path, directories, files in os.walk(UpperCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(UpperCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCAmelCase__ ) / folder).glob('*.py' ) ) ) == 0: continue SCREAMING_SNAKE_CASE__ :Union[str, Any] = str((Path(UpperCAmelCase__ ) / folder).relative_to(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE__ :Any = short_path.replace(os.path.sep , '.' ) submodules.append(UpperCAmelCase__ ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE__ :Optional[int] = str((Path(UpperCAmelCase__ ) / fname).relative_to(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE__ :List[Any] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(UpperCAmelCase__ ) return submodules UpperCamelCase_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def lowerCamelCase ( ) -> Dict: '''simple docstring''' from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE__ :Dict = direct_transformers_import(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(UpperCAmelCase__ , '__init__.py' ) , 'r' ) as f: SCREAMING_SNAKE_CASE__ :Tuple = f.read() import_structure_keys.update(set(re.findall(r'import_structure\[\"([^\"]*)\"\]' , UpperCAmelCase__ ) ) ) SCREAMING_SNAKE_CASE__ :int = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(UpperCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE__ :List[Any] = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
320
1
"""simple docstring""" from numpy import exp, pi, sqrt def lowerCamelCase__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : float = 0.0 , _lowerCamelCase : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
549
"""simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = 8.314_4598 def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float: if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _SCREAMING_SNAKE_CASE : List[Any] = 300 _SCREAMING_SNAKE_CASE : Dict = 28 _SCREAMING_SNAKE_CASE : List[str] = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
549
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a ( A_ , A_ , A_ , unittest.TestCase ): A_ : str = StableDiffusionControlNetImgaImgPipeline A_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) A_ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase_ ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) __a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __a = CLIPTextModel(UpperCamelCase_ ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any]=0 ) -> Dict: if str(UpperCamelCase_ ).startswith("""mps""" ): __a = torch.manual_seed(UpperCamelCase_ ) else: __a = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __a = 2 __a = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ) __a = floats_tensor(control_image.shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __a = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def lowerCAmelCase_ ( self : List[Any] ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCAmelCase_ ( self : Dict ) -> Any: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class a ( A_ , A_ , unittest.TestCase ): A_ : Any = StableDiffusionControlNetImgaImgPipeline A_ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Union[str, Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCamelCase_ : Optional[int] ): if isinstance(UpperCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) __a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __a = CLIPTextModel(UpperCamelCase_ ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = MultiControlNetModel([controlneta, controlneta] ) __a = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase_ ( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple=0 ) -> int: if str(UpperCamelCase_ ).startswith("""mps""" ): __a = torch.manual_seed(UpperCamelCase_ ) else: __a = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __a = 2 __a = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), ] __a = floats_tensor(control_image[0].shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __a = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def lowerCAmelCase_ ( self : Tuple ) -> str: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) __a = 10.0 __a = 4 __a = self.get_dummy_inputs(UpperCamelCase_ ) __a = steps __a = scale __a = pipe(**UpperCamelCase_ )[0] __a = self.get_dummy_inputs(UpperCamelCase_ ) __a = steps __a = scale __a = pipe(**UpperCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __a = self.get_dummy_inputs(UpperCamelCase_ ) __a = steps __a = scale __a = pipe(**UpperCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __a = self.get_dummy_inputs(UpperCamelCase_ ) __a = steps __a = scale __a = pipe(**UpperCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowerCAmelCase_ ( self : Optional[int] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase_ ( self : Optional[int] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCAmelCase_ ( self : List[str] ) -> Dict: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowerCAmelCase_ ( self : Dict ) -> List[Any]: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : str ) -> Optional[Any]: __a = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) __a = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCamelCase_ , controlnet=UpperCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __a = torch.Generator(device="""cpu""" ).manual_seed(0 ) __a = 'evil space-punk bird' __a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_12, 5_12) ) __a = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_12, 5_12) ) __a = pipe( UpperCamelCase_ , UpperCamelCase_ , control_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) __a = output.images[0] assert image.shape == (5_12, 5_12, 3) __a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
704
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class a ( A_ ): A_ : str = '''open-llama''' def __init__( self : Tuple , lowerCamelCase_ : Tuple=10_00_00 , lowerCamelCase_ : Union[str, Any]=40_96 , lowerCamelCase_ : Any=1_10_08 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Tuple="silu" , lowerCamelCase_ : Dict=20_48 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : List[Any]=1E-6 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : int , ) -> List[Any]: __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = initializer_range __a = rms_norm_eps __a = use_cache __a = kwargs.pop( """use_memorry_efficient_attention""" , lowerCamelCase_ ) __a = hidden_dropout_prob __a = attention_dropout_prob __a = use_stable_embedding __a = shared_input_output_embedding __a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"""got {self.rope_scaling}""" ) __a = self.rope_scaling.get("""type""" , lowerCamelCase_ ) __a = self.rope_scaling.get("""factor""" , lowerCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
173
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _snake_case ( UpperCAmelCase__ ): lowerCAmelCase_ : Optional[int] = "audio-spectrogram-transformer" def __init__( self , a__=768 , a__=12 , a__=12 , a__=3_072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-12 , a__=16 , a__=True , a__=10 , a__=10 , a__=1_024 , a__=128 , **a__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__ ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = patch_size snake_case_ = qkv_bias snake_case_ = frequency_stride snake_case_ = time_stride snake_case_ = max_length snake_case_ = num_mel_bins
400
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str=False) ->Optional[Any]: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class in get_values(UpperCAmelCase__): A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int=13 , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=99 , UpperCAmelCase__ : List[str]=32 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Optional[Any]=37 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[Any]=512 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Tuple=None , ) ->Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = embedding_size def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]) ->Any: '''simple docstring''' A__ = TFMobileBertModel(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) A__ = [input_ids, input_mask] A__ = model(UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple) ->Optional[Any]: '''simple docstring''' A__ = TFMobileBertForMaskedLM(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' A__ = TFMobileBertForNextSentencePrediction(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->List[Any]: '''simple docstring''' A__ = TFMobileBertForPreTraining(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple) ->Dict: '''simple docstring''' A__ = self.num_labels A__ = TFMobileBertForSequenceClassification(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int) ->Dict: '''simple docstring''' A__ = self.num_choices A__ = TFMobileBertForMultipleChoice(config=UpperCAmelCase__) A__ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1) , (1, self.num_choices, 1)) A__ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1) , (1, self.num_choices, 1)) A__ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1) , (1, self.num_choices, 1)) A__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->int: '''simple docstring''' A__ = self.num_labels A__ = TFMobileBertForTokenClassification(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = TFMobileBertForQuestionAnswering(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = TFMobileBertModelTest.TFMobileBertModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: A__ = TFMobileBertModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' A__ = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''') A__ = tf.constant([[0, 1, 2, 3, 4, 5]]) A__ = model(UpperCAmelCase__)[0] A__ = [1, 6, 30_522] self.assertEqual(output.shape , UpperCAmelCase__) A__ = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4)
87
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( _snake_case : Optional[int] ,_snake_case : Dict ): '''simple docstring''' if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ ,n - 1 ) rec_insertion_sort(lowercase__ ,n - 1 ) def lowerCamelCase ( _snake_case : List[str] ,_snake_case : Union[str, Any] ): '''simple docstring''' if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowercase__ , lowercase__ = ( collection[index], collection[index - 1], ) insert_next(lowercase__ ,index + 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("Enter integers separated by spaces: ") SCREAMING_SNAKE_CASE__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
702
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase ( _snake_case : str=None ): '''simple docstring''' if subparsers is not None: lowercase__ = subparsers.add_parser("env" ) else: lowercase__ = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" ,default=_snake_case ,help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_snake_case ) return parser def lowerCamelCase ( _snake_case : Tuple ): '''simple docstring''' lowercase__ = torch.__version__ lowercase__ = torch.cuda.is_available() lowercase__ = is_xpu_available() lowercase__ = is_npu_available() lowercase__ = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_snake_case ): lowercase__ = load_config_from_file(args.config_file ).to_dict() lowercase__ = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "PyTorch XPU available": str(_snake_case ), "PyTorch NPU available": str(_snake_case ), "System RAM": f'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: lowercase__ = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) lowercase__ = ( "\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_snake_case ,_snake_case ) else f'''\t{accelerate_config}''' ) print(_snake_case ) lowercase__ = accelerate_config return info def lowerCamelCase ( ): '''simple docstring''' lowercase__ = env_command_parser() lowercase__ = parser.parse_args() env_command(_snake_case ) return 0 if __name__ == "__main__": raise SystemExit(main())
539
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Any = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
def _A ( lowerCamelCase ): a__ : Tuple = [] a__ : str = set({"(", "[", "{"} ) a__ : List[str] = set({")", "]", "}"} ) a__ : int = {"{": "}", "[": "]", "(": ")"} for i in range(len(lowerCamelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase ) == 0 or (len(lowerCamelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase ) == 0 def _A ( ): a__ : Optional[int] = input("Enter sequence of brackets: " ) if is_balanced(lowerCamelCase ): print(lowerCamelCase , "is balanced" ) else: print(lowerCamelCase , "is not balanced" ) if __name__ == "__main__": main()
112
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( A__ , A__ , A__ , unittest.TestCase ): __lowerCamelCase = StableDiffusionInpaintPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase = frozenset([] ) def lowerCamelCase_ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) lowerCamelCase__: Optional[Any] = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) lowerCamelCase__: Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCamelCase__: str = CLIPTextModel(__a ) lowerCamelCase__: Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase_ ( self : Tuple , __a : Union[str, Any] , __a : Tuple=0 ): '''simple docstring''' lowerCamelCase__: List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowerCamelCase__: Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: Union[str, Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) lowerCamelCase__: int = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(__a ).startswith("""mps""" ): lowerCamelCase__: Union[str, Any] = torch.manual_seed(__a ) else: lowerCamelCase__: str = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase__: Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Union[str, Any] = self.get_dummy_components() lowerCamelCase__: Tuple = StableDiffusionInpaintPipeline(**__a ) lowerCamelCase__: Optional[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: int = self.get_dummy_inputs(__a ) lowerCamelCase__: Optional[Any] = sd_pipe(**__a ).images lowerCamelCase__: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__: int = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase__: str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase__: Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowerCamelCase__: Dict = """stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase__: int = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: Tuple = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase__: Any = torch.manual_seed(0 ) lowerCamelCase__: Dict = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type="""np""" , ) lowerCamelCase__: Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase__: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase__: List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowerCamelCase__: Dict = """stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase__: List[str] = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase__: int = torch.manual_seed(0 ) lowerCamelCase__: int = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type="""np""" , ) lowerCamelCase__: Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__: Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase__: Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase__: List[Any] = PNDMScheduler.from_pretrained(__a , subfolder="""scheduler""" ) lowerCamelCase__: Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__: Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase__: List[str] = torch.manual_seed(0 ) lowerCamelCase__: str = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: str = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
242
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( _UpperCamelCase ) -> int: '''simple docstring''' for param in module.parameters(): lowerCamelCase__: Optional[int] = False def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Any = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCamelCase__: Dict = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def __lowerCAmelCase ( _UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' lowerCamelCase__: List[Any] = datetime.now() lowerCamelCase__: int = current_time.strftime("""%H:%M:%S""" ) return timestamp
242
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCamelCase = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __lowerCamelCase = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("utf-8").split() __lowerCamelCase = """|""".join(sys.argv[1:]) __lowerCamelCase = re.compile(rf"""^({joined_dirs}).*?\.py$""") __lowerCamelCase = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
490
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" __a = 10 __a = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) __a = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(_A ) ), } , features=_A , ) return dataset @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=_A ) return filename # FILE_CONTENT + files SCREAMING_SNAKE_CASE : Tuple = """\ Text data. Second line of data.""" @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "file.txt" __a = FILE_CONTENT with open(_A , "w" ) as f: f.write(_A ) return filename @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" import bza __a = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" __a = bytes(_A , "utf-8" ) with bza.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" import gzip __a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) __a = bytes(_A , "utf-8" ) with gzip.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __a = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" __a = bytes(_A , "utf-8" ) with lza.frame.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __a = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(_A , "w" ) as archive: archive.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import tarfile __a = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" import lzma __a = tmp_path_factory.mktemp("data" ) / "file.txt.xz" __a = bytes(_A , "utf-8" ) with lzma.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import zipfile __a = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __a = tmp_path_factory.mktemp("data" ) / "file.txt.zst" __a = bytes(_A , "utf-8" ) with zstd.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "file.xml" __a = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(_A , "w" ) as f: f.write(_A ) return filename SCREAMING_SNAKE_CASE : Any = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] SCREAMING_SNAKE_CASE : Optional[int] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] SCREAMING_SNAKE_CASE : Any = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } SCREAMING_SNAKE_CASE : int = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] SCREAMING_SNAKE_CASE : List[Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = datasets.Dataset.from_dict(_A ) __a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(_A ) ) as con: __a = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(_A , "w" , newline="" ) as f: __a = csv.DictWriter(_A , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(_A , "w" , newline="" ) as f: __a = csv.DictWriter(_A , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import bza __a = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(_A , "rb" ) as f: __a = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(_A , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) __a = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(_A , "wb" ) as f: __a = pq.ParquetWriter(_A , schema=_A ) __a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_A ) )] for k in DATA[0]} , schema=_A ) writer.write_table(_A ) writer.close() return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __a = {"data": DATA} with open(_A , "w" ) as f: json.dump(_A , _A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __a = {"data": DATA_DICT_OF_LISTS} with open(_A , "w" ) as f: json.dump(_A , _A ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(_A , "w" ) as f: for item in DATA: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(_A , "w" ) as f: for item in DATA: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(_A , "w" ) as f: for item in DATA_312: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(_A , "w" ) as f: for item in DATA_STR: f.write(json.dumps(_A ) + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import gzip __a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(_A , "rb" ) as orig_file: with gzip.open(_A , "wb" ) as zipped_file: zipped_file.writelines(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" import gzip __a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(_A , "rb" ) as orig_file: with gzip.open(_A , "wb" ) as zipped_file: zipped_file.writelines(_A ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("nested" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.basename(_A ) ) f.add(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.join("nested" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = ["0", "1", "2", "3"] __a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(_A , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = ["0", "1", "2", "3"] __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(_A , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = ["0", "1", "2", "3"] __a = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(_A , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) f.write(_A , arcname=os.path.join("main_dir" , os.path.basename(_A ) ) ) return path @pytest.fixture(scope="session" ) def __A ( _A , _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename("unsupported.ext" ) ) f.write(_A , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) __a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(_A ) return path @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __A ( ): """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __A ( _A , _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(_A , "w" ) as f: f.write(_A , arcname=os.path.basename(_A ) ) f.write(_A , arcname=os.path.basename(_A ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __A ( _A ): """simple docstring""" __a = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
197
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") lowercase = parser.parse_args() if args.model_type == "roberta": lowercase = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase = """roberta""" elif args.model_type == "gpt2": lowercase = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase = """transformer""" lowercase = model.state_dict() lowercase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase = state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase = f'{prefix}.embeddings.{w}.weight' lowercase = state_dict[param_name] for w in ["weight", "bias"]: lowercase = f'{prefix}.embeddings.LayerNorm.{w}' lowercase = state_dict[param_name] # Transformer Blocks # lowercase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase = state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowercase = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase = state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase = state_dict[f'lm_head.dense.{w}'] lowercase = state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase = state_dict[f'{prefix}.ln_f.{w}'] lowercase = state_dict["""lm_head.weight"""] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
721
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowercase ( A, A, A, unittest.TestCase ): '''simple docstring''' _A : List[Any] = StableDiffusionControlNetImgaImgPipeline _A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _A : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self : Optional[Any] ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ = CLIPTextModel(_a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Optional[Any] , _a : Optional[int] , _a : Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = 2 UpperCamelCase__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) UpperCamelCase__ = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def A_ ( self : Union[str, Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def A_ ( self : Any ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : int = StableDiffusionControlNetImgaImgPipeline _A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A_ ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a : List[str] ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ = CLIPTextModel(_a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ = MultiControlNetModel([controlneta, controlneta] ) UpperCamelCase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Tuple , _a : Dict , _a : Optional[int]=0 ): if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = 2 UpperCamelCase__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] UpperCamelCase__ = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def A_ ( self : str ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) pipe.to(_a ) UpperCamelCase__ = 10.0 UpperCamelCase__ = 4 UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def A_ ( self : int ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def A_ ( self : int ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def A_ ( self : Dict ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict ): UpperCamelCase__ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCamelCase__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase__ = '''evil space-punk bird''' UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) UpperCamelCase__ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) UpperCamelCase__ = pipe( _a , _a , control_image=_a , generator=_a , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) UpperCamelCase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
591
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __A = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __A = parser.parse_args() if args.model_type == "bert": __A = BertForMaskedLM.from_pretrained(args.model_name) __A = 'bert' else: raise ValueError('args.model_type should be "bert".') __A = model.state_dict() __A = {} for w in ["word_embeddings", "position_embeddings"]: __A = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: __A = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] __A = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 __A = state_dict['cls.predictions.decoder.weight'] __A = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __A = state_dict[f'cls.predictions.transform.dense.{w}'] __A = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
484
def __A ( _lowercase ): '''simple docstring''' _A = [] _A = [] _A = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator _A = len(_lowercase ) if (len(_lowercase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(_lowercase ) , '''Postfix'''.center(_lowercase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowercase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowercase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowercase ) == 0: stack.append(_lowercase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowercase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowercase ) # push x to stack print( x.center(8 ) , (''''''.join(_lowercase )).ljust(_lowercase ) , (''''''.join(_lowercase )).ljust(_lowercase ) , sep=''' | ''' , ) # Output in tabular format while len(_lowercase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(_lowercase )).ljust(_lowercase ) , (''''''.join(_lowercase )).ljust(_lowercase ) , sep=''' | ''' , ) # Output in tabular format return "".join(_lowercase ) # return Postfix as str def __A ( _lowercase ): '''simple docstring''' _A = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowercase ) ): if infix[i] == "(": _A = ''')''' # change "(" to ")" elif infix[i] == ")": _A = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_lowercase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __A = input('\nEnter an Infix Equation = ') # Input an Infix equation __A = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
484
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'vocab_file': 'vocab.txt'} __UpperCamelCase : int = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __UpperCamelCase : Optional[Any] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def lowercase ( lowerCAmelCase : Tuple): """simple docstring""" with open(lowerCamelCase_ , '''r''') as f: _A : str = f.read().splitlines() return [l.strip() for l in lines] class lowerCamelCase__ ( lowerCamelCase__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase__ , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<cls>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__="<eos>" , **UpperCAmelCase__ , ) -> Dict: super().__init__(**__lowerCamelCase ) _A : Union[str, Any] = load_vocab_file(__lowerCamelCase ) _A : List[Any] = dict(enumerate(self.all_tokens ) ) _A : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} _A : int = unk_token _A : str = cls_token _A : List[Any] = pad_token _A : int = mask_token _A : str = eos_token _A : Optional[int] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCamelCase ( self , UpperCAmelCase__ ) -> str: return self._id_to_token.get(__lowerCamelCase , self.unk_token ) def _lowerCamelCase ( self , UpperCAmelCase__ ) -> int: return self._token_to_id.get(__lowerCamelCase , self._token_to_id.get(self.unk_token ) ) def _lowerCamelCase ( self , UpperCAmelCase__ , **UpperCAmelCase__ ) -> Union[str, Any]: return text.split() def _lowerCamelCase ( self , UpperCAmelCase__=False ) -> Optional[int]: return len(self._id_to_token ) def _lowerCamelCase ( self ) -> str: return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCamelCase ( self , UpperCAmelCase__ ) -> int: return self._token_to_id.get(__lowerCamelCase , self._token_to_id.get(self.unk_token ) ) def _lowerCamelCase ( self , UpperCAmelCase__ ) -> str: return self._id_to_token.get(__lowerCamelCase , self.unk_token ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: _A : Optional[int] = [self.cls_token_id] _A : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _A : Tuple = [1] + ([0] * len(__lowerCamelCase )) + [1] if token_ids_a is not None: mask += [0] * len(__lowerCamelCase ) + [1] return mask def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: _A : Union[str, Any] = os.path.join(__lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCamelCase ( self ) -> int: return self.get_vocab_size(with_added_tokens=__lowerCamelCase ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> int: return super()._add_tokens(__lowerCamelCase , special_tokens=__lowerCamelCase )
702
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=1_3 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=9_9 , UpperCAmelCase__=3_2 , UpperCAmelCase__=5 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__=True , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=1_6 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=3 , UpperCAmelCase__=4 , UpperCAmelCase__=None , ) -> int: _A : Dict = parent _A : Tuple = batch_size _A : Optional[Any] = seq_length _A : Dict = is_training _A : Tuple = use_input_mask _A : int = use_token_type_ids _A : Tuple = use_labels _A : Optional[int] = vocab_size _A : List[Any] = hidden_size _A : List[Any] = num_hidden_layers _A : Union[str, Any] = num_attention_heads _A : int = intermediate_multiple_size _A : Optional[int] = hidden_act _A : Any = hidden_dropout _A : Union[str, Any] = attention_dropout _A : Tuple = weight_tying _A : Dict = max_position_embeddings _A : Tuple = type_vocab_size _A : Optional[int] = type_sequence_label_size _A : str = initializer_range _A : str = num_labels _A : int = num_choices _A : Optional[int] = scope def _lowerCamelCase ( self ) -> Dict: _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Any = None if self.use_input_mask: _A : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _A : List[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : int = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ) -> List[Any]: _A , _A , _A , _A : Optional[Any] = self.prepare_config_and_inputs() _A : List[Any] = True return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: _A : Dict = GPTNeoXJapaneseModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _A : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: _A : int = True _A : Tuple = GPTNeoXJapaneseModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> str: _A : int = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: _A : str = True _A : List[str] = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass _A : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) _A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Dict = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) _A : str = output_from_no_past['''hidden_states'''][0] _A : Optional[int] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice _A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : int = output_from_no_past[:, -3:, random_slice_idx].detach() _A : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def _lowerCamelCase ( self ) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A , _A : Tuple = config_and_inputs _A : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" __magic_name__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __magic_name__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __magic_name__ = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _lowerCamelCase ( self ) -> List[str]: _A : Dict = GPTNeoXJapaneseModelTester(self ) _A : Any = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Tuple: _A , _A , _A , _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Dict: _A , _A , _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 _A , _A , _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _A : Tuple = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: _A , _A , _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase__ ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: _A : Union[str, Any] = '''abeja/gpt-neox-japanese-2.7b''' _A : Optional[Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _A : List[str] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _A : int = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCAmelCase__ ) _A : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCAmelCase__ ) _A : Union[str, Any] = [] for prompt in prompts: _A : int = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' ).input_ids _A : Optional[int] = model.generate(UpperCAmelCase__ , max_length=5_0 ) _A : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
417
0
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : str = 2 while i * i <= n: SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(_a) > 500: break return t_num if __name__ == "__main__": print(solution())
25
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=None ) -> int: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' a__ = nn.Parameter(UpperCAmelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' a__ = nn.Parameter(UpperCAmelCase__ ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = np.asarray(weights[0] ) a__ = np.asarray(weights[1] ) a__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.self_attention.value,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.output.dense,torch.tensor(UpperCAmelCase__ ).view(-1,UpperCAmelCase__ ).contiguous().transpose(0,1 ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = np.asarray(weights[0] ) a__ = np.asarray(weights[1] ) a__ = np.asarray(weights[2] ) a__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.self_attention.key,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.self_attention.value,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.output.dense,torch.tensor(UpperCAmelCase__ ).view(-1,UpperCAmelCase__ ).contiguous().transpose(0,1 ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ = weights[0][0][0] a__ = np.asarray(layer_norm_a[0] ) a__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm,torch.tensor(UpperCAmelCase__ ),torch.tensor(UpperCAmelCase__ ),) # lsh weights + output a__ = weights[0][1] if len(UpperCAmelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase__,torch_block.attention,UpperCAmelCase__ ) else: set_layer_weights_in_torch_local(UpperCAmelCase__,torch_block.attention,UpperCAmelCase__ ) # intermediate weighs a__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase__ ) == 4: a__ = intermediate_weights[2] # layernorm 2 a__ = np.asarray(intermediate_weights[0][0] ) a__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm,torch.tensor(UpperCAmelCase__ ),torch.tensor(UpperCAmelCase__ ),) # intermediate dense a__ = np.asarray(intermediate_weights[1][0] ) a__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense,torch.tensor(UpperCAmelCase__ ).transpose(0,1 ).contiguous(),torch.tensor(UpperCAmelCase__ ),) # intermediate out a__ = np.asarray(intermediate_weights[4][0] ) a__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense,torch.tensor(UpperCAmelCase__ ).transpose(0,1 ).contiguous(),torch.tensor(UpperCAmelCase__ ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = torch_model.reformer # word embeds a__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings,torch.tensor(UpperCAmelCase__ ),) if isinstance(weights[3],UpperCAmelCase__ ): a__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): a__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' a__ = nn.Parameter(torch.tensor(UpperCAmelCase__ ) ) a__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): a__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) # output layer norm a__ = np.asarray(weights[7][0] ) a__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm,torch.tensor(UpperCAmelCase__ ),torch.tensor(UpperCAmelCase__ ),) # output embeddings a__ = np.asarray(weights[9][0] ) a__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder,torch.tensor(UpperCAmelCase__ ).transpose(0,1 ).contiguous(),torch.tensor(UpperCAmelCase__ ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ = ReformerConfig.from_json_file(UpperCAmelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) a__ = ReformerModelWithLMHead(UpperCAmelCase__ ) with open(UpperCAmelCase__,'rb' ) as f: a__ = pickle.load(UpperCAmelCase__ )['weights'] set_model_weights_in_torch(UpperCAmelCase__,UpperCAmelCase__,config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),UpperCAmelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
232
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Optional[Any] = None , __lowercase : Tuple = None , __lowercase : List[str] = None , ) -> str: """simple docstring""" if config_name_or_path is None: __A = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: __A = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __A = question_encoder_name_or_path __A = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. __A = RagConfig.from_pretrained(_lowerCAmelCase ) __A = AutoConfig.from_pretrained(_lowerCAmelCase ) __A = AutoConfig.from_pretrained(_lowerCAmelCase ) __A = gen_config __A = question_encoder_config __A = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. __A = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __A = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __a : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) __a : Dict = parser.parse_args() __a : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
716
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> str: """simple docstring""" if "cls_token" in name: __A = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: __A = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: __A = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __A = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __A = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __A = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: __A = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __A = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: __A = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __A = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __A = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __A = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __A = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __A = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __A = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __A = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __A = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: __A = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: __A = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _SCREAMING_SNAKE_CASE ( __lowercase : Any , __lowercase : Dict ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(__lowercase ) if "qkv" in key: __A = key.split(""".""" ) __A = int(key_split[1] ) if "decoder_blocks" in key: __A = config.decoder_hidden_size __A = """decoder.decoder_layers.""" if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] elif "bias" in key: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] else: __A = config.hidden_size __A = """vit.encoder.layer.""" if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] elif "bias" in key: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] else: __A = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple , __lowercase : str ) -> Optional[Any]: """simple docstring""" __A = ViTMAEConfig() if "large" in checkpoint_url: __A = 1_0_2_4 __A = 4_0_9_6 __A = 2_4 __A = 1_6 elif "huge" in checkpoint_url: __A = 1_4 __A = 1_2_8_0 __A = 5_1_2_0 __A = 3_2 __A = 1_6 __A = ViTMAEForPreTraining(__lowercase ) __A = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" )["""model"""] __A = ViTMAEImageProcessor(size=config.image_size ) __A = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() __A = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" __A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) __A = ViTMAEImageProcessor(size=config.image_size ) __A = image_processor(images=__lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __A = model(**__lowercase ) __A = outputs.logits if "large" in checkpoint_url: __A = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: __A = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: __A = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a : List[str] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
199
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[Any] = None def _a ( self ): lowerCAmelCase_: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase_: Any = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_: List[str] = os.path.join(lowerCamelCase__ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCamelCase__ ) lowerCAmelCase_: Any = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _a ( self ): lowerCAmelCase_: Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_: str = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) lowerCAmelCase_: List[Any] = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _a ( self ): lowerCAmelCase_: Dict = self.feature_extraction_class() self.assertIsNotNone(lowerCamelCase__ )
613
def snake_case__ ( lowercase ): lowerCAmelCase_: Union[str, Any] = [1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: int = 0, 0, 0 lowerCAmelCase_: Union[str, Any] = ugly_nums[ia] * 2 lowerCAmelCase_: str = ugly_nums[ia] * 3 lowerCAmelCase_: Dict = ugly_nums[ia] * 5 for _ in range(1 , lowercase ): lowerCAmelCase_: Any = min(lowercase , lowercase , lowercase ) ugly_nums.append(lowercase ) if next_num == next_a: ia += 1 lowerCAmelCase_: str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase_: Optional[int] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase_: int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
613
1
"""simple docstring""" __lowerCamelCase = [0, 2, 4, 6, 8] __lowerCamelCase = [1, 3, 5, 7, 9] def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ = 0 for digit in range(10 ): __magic_name__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __UpperCamelCase , __UpperCamelCase ) return result __magic_name__ = 0 for digita in range(10 ): __magic_name__ = digita if (remainder + digita) % 2 == 0: __magic_name__ = ODD_DIGITS else: __magic_name__ = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __UpperCamelCase , __UpperCamelCase , ) return result def lowercase ( __UpperCamelCase = 9 ) -> int: __magic_name__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCamelCase , 0 , [0] * length , __UpperCamelCase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
190
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCamelCase = TypeVar("T") def lowercase ( __UpperCamelCase ) -> int: return (position - 1) // 2 def lowercase ( __UpperCamelCase ) -> int: return (2 * position) + 1 def lowercase ( __UpperCamelCase ) -> int: return (2 * position) + 2 class _lowercase ( Generic[T] ): def __init__( self ): __magic_name__ = [] __magic_name__ = {} __magic_name__ = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def lowerCAmelCase__ ( self ): # Check if the priority queue is empty return self.elements == 0 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) __magic_name__ = self.elements self.elements += 1 self._bubble_up(UpperCamelCase_ ) def lowerCAmelCase__ ( self ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __magic_name__ , __magic_name__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __magic_name__ , __magic_name__ = self.heap[0] self._bubble_down(UpperCamelCase_ ) return elem def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): # Update the weight of the given key __magic_name__ = self.position_map[elem] __magic_name__ = (elem, weight) if position > 0: __magic_name__ = get_parent_position(UpperCamelCase_ ) __magic_name__ , __magic_name__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): # Place a node at the proper position (upward movement) [to be used internally # only] __magic_name__ = self.position_map[elem] if curr_pos == 0: return None __magic_name__ = get_parent_position(UpperCamelCase_ ) __magic_name__ , __magic_name__ = self.heap[curr_pos] __magic_name__ , __magic_name__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_up(UpperCamelCase_ ) return None def lowerCAmelCase__ ( self , UpperCamelCase_ ): # Place a node at the proper position (downward movement) [to be used # internally only] __magic_name__ = self.position_map[elem] __magic_name__ , __magic_name__ = self.heap[curr_pos] __magic_name__ = get_child_left_position(UpperCamelCase_ ) __magic_name__ = get_child_right_position(UpperCamelCase_ ) if child_left_position < self.elements and child_right_position < self.elements: __magic_name__ , __magic_name__ = self.heap[child_left_position] __magic_name__ , __magic_name__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) if child_left_position < self.elements: __magic_name__ , __magic_name__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) else: return None if child_right_position < self.elements: __magic_name__ , __magic_name__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) return None def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): # Swap the nodes at the given positions __magic_name__ = self.heap[nodea_pos][0] __magic_name__ = self.heap[nodea_pos][0] __magic_name__ , __magic_name__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __magic_name__ = nodea_pos __magic_name__ = nodea_pos class _lowercase ( Generic[T] ): def __init__( self ): __magic_name__ = {} __magic_name__ = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def lowerCAmelCase__ ( self , UpperCamelCase_ ): # Add a node in the graph if it is not in the graph if node not in self.connections: __magic_name__ = {} self.nodes += 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # Add an edge between 2 nodes in the graph self.add_node(UpperCamelCase_ ) self.add_node(UpperCamelCase_ ) __magic_name__ = weight __magic_name__ = weight def lowercase ( __UpperCamelCase , ) -> tuple[dict[T, int], dict[T, T | None]]: __magic_name__ = {node: maxsize for node in graph.connections} __magic_name__ = {node: None for node in graph.connections} __magic_name__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCamelCase , __UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization __magic_name__ = priority_queue.extract_min() __magic_name__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __magic_name__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase , dist[neighbour] ) __magic_name__ = node # running prim's algorithm while not priority_queue.is_empty(): __magic_name__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __magic_name__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase , dist[neighbour] ) __magic_name__ = node return dist, parent
190
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
def __magic_name__ ( __a : list[int] ): '''simple docstring''' UpperCamelCase__ = len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
513
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __snake_case : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __snake_case : List[Any] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/")) __lowerCAmelCase : Optional[int] = self.diffusers_dir shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , "src/diffusers/schedulers/scheduling_ddpm.py") , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py") , ) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = "src/diffusers" shutil.rmtree(self.diffusers_dir) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: str=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __lowerCAmelCase : int = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __lowerCAmelCase : str = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) __lowerCAmelCase : Tuple = black.format_str(_SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = os.path.join(self.diffusers_dir , "new_code.py") with open(_SCREAMING_SNAKE_CASE , "w" , newline="\n") as f: f.write(_SCREAMING_SNAKE_CASE) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_SCREAMING_SNAKE_CASE)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=_SCREAMING_SNAKE_CASE) with open(_SCREAMING_SNAKE_CASE , "r") as f: self.assertTrue(f.read() , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput") self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Tuple: """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _SCREAMING_SNAKE_CASE) , ) # Copy consistency with a really long name __lowerCAmelCase : int = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _SCREAMING_SNAKE_CASE , overwrite_result=re.sub("DDPM" , "Test" , _SCREAMING_SNAKE_CASE) , )
721
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __snake_case : str = pytest.mark.integration @pytest.mark.parametrize("path" ,["paws", "csv"] ) def _lowercase ( __snake_case ,__snake_case ) -> Any: inspect_dataset(__snake_case ,__snake_case ) __lowerCAmelCase : str = path + ".py" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" ,["accuracy"] ) def _lowercase ( __snake_case ,__snake_case ) -> int: inspect_metric(__snake_case ,__snake_case ) __lowerCAmelCase : str = path + ".py" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( "path, config_name, expected_splits" ,[ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[int]: __lowerCAmelCase : str = get_dataset_config_info(__snake_case ,config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" ,[ ("paws", None, ValueError), ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> List[str]: with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case ,config_name=__snake_case ) @pytest.mark.parametrize( "path, expected" ,[ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] ,) def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : Dict = get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" ,[ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: __lowerCAmelCase : List[Any] = get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase : List[Any] = expected_configs[0] assert expected_config in infos __lowerCAmelCase : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" ,[ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : Tuple = get_dataset_infos(__snake_case ) assert expected_config in infos __lowerCAmelCase : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" ,[ ("paws", None, ValueError), ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case ,config_name=__snake_case )
615
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase ( yaml.SafeLoader ): def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case = [tuple(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else key for key in keys] _snake_case = Counter(__lowerCamelCase ) _snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=False ): """simple docstring""" _snake_case = super().construct_mapping(__lowerCamelCase , deep=__lowerCamelCase ) self._check_no_duplicates_on_constructed_node(__lowerCamelCase ) return mapping def snake_case ( lowerCAmelCase_ ) -> Tuple[Optional[str], str]: _snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case = full_content[1:].index('''---''' ) + 1 _snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): # class attributes A__ : int = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCAmelCase ( cls : str , __lowerCamelCase : Path ): """simple docstring""" with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case , _snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__lowerCamelCase ) else: return cls() def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Path ): """simple docstring""" if path.exists(): with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case = readme_file.read() else: _snake_case = None _snake_case = self._to_readme(__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if readme_content is not None: _snake_case , _snake_case = _split_yaml_from_readme(__lowerCamelCase ) _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __UpperCAmelCase ( cls : Tuple , __lowerCamelCase : str ): """simple docstring""" _snake_case = yaml.load(__lowerCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__lowerCamelCase , allow_unicode=__lowerCamelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) snake_case = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser snake_case = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') snake_case = ap.parse_args() snake_case = Path(args.readme_filepath) snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
103
import math def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 while num > 0: UpperCAmelCase = num % 8 UpperCAmelCase = octal + (remainder * math.floor(math.pow(10 , UpperCamelCase__ ) )) counter += 1 UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(UpperCamelCase__ )}""" def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
130
0
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase__( UpperCamelCase__ : Callable[[int | float], int | float] , UpperCamelCase__ : int | float , UpperCamelCase__ : int | float , UpperCamelCase__ : int = 1_00 , )->float: A__ = x_start A__ = fnc(UpperCamelCase__ ) A__ = 0.0 for _ in range(UpperCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length A__ = (x_end - x_start) / steps + xa A__ = fnc(UpperCamelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A__ = xa A__ = fxa return length if __name__ == "__main__": def UpperCamelCase__( UpperCamelCase__ : Dict )->List[Any]: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') a__: List[str] = 10 while i <= 100_000: print(F"With {i} steps: {line_length(f, -10, 10, i)}") i *= 10
704
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase=13,__lowerCamelCase=30,__lowerCamelCase=2,__lowerCamelCase=3,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=32,__lowerCamelCase=5,__lowerCamelCase=4,__lowerCamelCase=37,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=10,__lowerCamelCase=0.02,__lowerCamelCase=None,__lowerCamelCase=2,): A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 1 def UpperCamelCase ( self ): A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=__lowerCamelCase,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = ViTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = ViTForMaskedImageModeling(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = ViTForMaskedImageModeling(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self.type_sequence_label_size A__ = ViTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = ViTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ): A__ = ViTModelTester(self ) A__ = ConfigTester(self,config_class=__lowerCamelCase,has_text_modality=__lowerCamelCase,hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase,nn.Linear ) ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1],__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def UpperCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase__( )->int: A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ): A__ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(__lowerCamelCase ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): A__ = model(**__lowerCamelCase ) # verify the logits A__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape,__lowerCamelCase ) A__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__lowerCamelCase,atol=1E-4 ) ) @slow def UpperCamelCase ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. A__ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(__lowerCamelCase ) A__ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''',size=480 ) A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase,return_tensors='''pt''' ) A__ = inputs.pixel_values.to(__lowerCamelCase ) # forward pass with torch.no_grad(): A__ = model(__lowerCamelCase,interpolate_pos_encoding=__lowerCamelCase ) # verify the logits A__ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape,__lowerCamelCase ) A__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3],__lowerCamelCase,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase ( self ): A__ = ViTModel.from_pretrained('''facebook/dino-vits8''',torch_dtype=torch.floataa,device_map='''auto''' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase,return_tensors='''pt''' ) A__ = inputs.pixel_values.to(__lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A__ = model(__lowerCamelCase )
212
0
import os def SCREAMING_SNAKE_CASE( ) -> List[Any]: with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: a__ : Any = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) a__ : Optional[int] = 0 # right for i in range(20 ): for j in range(17 ): a__ : Optional[int] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a__ : Union[str, Any] = temp # down for i in range(17 ): for j in range(20 ): a__ : Union[str, Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a__ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a__ : Optional[int] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a__ : Tuple = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a__ : Optional[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a__ : Any = temp return maximum if __name__ == "__main__": print(solution())
191
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
191
1
class __magic_name__ : """simple docstring""" def __init__( self : Tuple ): """simple docstring""" _UpperCamelCase: int = '''''' _UpperCamelCase: List[str] = '''''' _UpperCamelCase: Optional[Any] = [] def lowerCAmelCase ( self : Tuple , _lowercase : int , _lowercase : int ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _UpperCamelCase: int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _UpperCamelCase: Optional[Any] = self.__min_dist_top_down_dp(lowercase_ , n - 1 ) _UpperCamelCase: Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , lowercase_ ) _UpperCamelCase: Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _UpperCamelCase: List[str] = 1 + min(lowercase_ , lowercase_ , lowercase_ ) return self.dp[m][n] def lowerCAmelCase ( self : List[Any] , _lowercase : str , _lowercase : str ): """simple docstring""" _UpperCamelCase: Optional[Any] = worda _UpperCamelCase: List[str] = worda _UpperCamelCase: Optional[int] = [[-1 for _ in range(len(lowercase_ ) )] for _ in range(len(lowercase_ ) )] return self.__min_dist_top_down_dp(len(lowercase_ ) - 1 , len(lowercase_ ) - 1 ) def lowerCAmelCase ( self : Optional[Any] , _lowercase : str , _lowercase : str ): """simple docstring""" _UpperCamelCase: Union[str, Any] = worda _UpperCamelCase: Tuple = worda _UpperCamelCase: Optional[Any] = len(lowercase_ ) _UpperCamelCase: Optional[Any] = len(lowercase_ ) _UpperCamelCase: Optional[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _UpperCamelCase: Tuple = j elif j == 0: # second string is empty _UpperCamelCase: Optional[int] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _UpperCamelCase: List[Any] = self.dp[i - 1][j - 1] else: _UpperCamelCase: Dict = self.dp[i][j - 1] _UpperCamelCase: Any = self.dp[i - 1][j] _UpperCamelCase: int = self.dp[i - 1][j - 1] _UpperCamelCase: Optional[int] = 1 + min(lowercase_ , lowercase_ , lowercase_ ) return self.dp[m][n] if __name__ == "__main__": UpperCAmelCase_ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() UpperCAmelCase_ = input('''Enter the first string: ''').strip() UpperCAmelCase_ = input('''Enter the second string: ''').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
716
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( lowercase: ndarray ) -> float: '''simple docstring''' return np.dot(lowercase , lowercase ) class __magic_name__ : """simple docstring""" def __init__( self : int , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): """simple docstring""" _UpperCamelCase: int = regularization _UpperCamelCase: Optional[int] = gamma if kernel == "linear": _UpperCamelCase: Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) _UpperCamelCase: Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _UpperCamelCase: Optional[int] = f"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.dot(_lowercase , _lowercase ) def lowerCAmelCase ( self : str , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : str , _lowercase : list[ndarray] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: List[str] = observations _UpperCamelCase: Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_UpperCamelCase) , ): Any = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: _UpperCamelCase: Optional[int] = 0 ((_UpperCamelCase) , ): str = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) _UpperCamelCase: Optional[Any] = LinearConstraint(_lowercase , 0 , 0 ) _UpperCamelCase: Optional[int] = Bounds(0 , self.regularization ) _UpperCamelCase: Dict = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x _UpperCamelCase: Union[str, Any] = l_star # calculating mean offset of separation plane to points _UpperCamelCase: List[str] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _UpperCamelCase: str = s / n def lowerCAmelCase ( self : Optional[Any] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
264
0
class _UpperCamelCase : def __init__( self , __UpperCamelCase )-> None: __lowerCAmelCase = size __lowerCAmelCase = [0] * size __lowerCAmelCase = [0] * size @staticmethod def __UpperCAmelCase ( __UpperCamelCase )-> int: return index | (index + 1) @staticmethod def __UpperCAmelCase ( __UpperCamelCase )-> int: return (index & (index + 1)) - 1 def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase )-> None: __lowerCAmelCase = value while index < self.size: __lowerCAmelCase = self.get_prev(UpperCamelCase__ ) + 1 if current_left_border == index: __lowerCAmelCase = value else: __lowerCAmelCase = max(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCAmelCase = self.get_next(UpperCamelCase__ ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase )-> int: right -= 1 # Because of right is exclusive __lowerCAmelCase = 0 while left <= right: __lowerCAmelCase = self.get_prev(UpperCamelCase__ ) if left <= current_left: __lowerCAmelCase = max(UpperCamelCase__ , self.tree[right] ) __lowerCAmelCase = current_left else: __lowerCAmelCase = max(UpperCamelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : List[Any] = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['''LayoutLMv2FeatureExtractor'''] _UpperCAmelCase : str = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = [] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = [] for d in reversed(UpperCAmelCase_ ): idx.append(flat_idx % d ) UpperCAmelCase : Tuple = flat_idx // d return tuple(reversed(UpperCAmelCase_ ) ) @torch.jit.ignore def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(UpperCAmelCase_ ) -> None: UpperCAmelCase : str = True for i in range(len(UpperCAmelCase_ ) ): UpperCAmelCase : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase : int = l[reversed_idx] if start_edges is None: UpperCAmelCase : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(UpperCAmelCase_ ) if end_edges is None: UpperCAmelCase : List[str] = [e == (d - 1) for e, d in zip(UpperCAmelCase_ , UpperCAmelCase_ )] reduce_edge_list(UpperCAmelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCAmelCase_ ) == 0: return [()] elif len(UpperCAmelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase : List[Tuple[slice, ...]] = [] UpperCAmelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if s == e: path_list.append(slice(UpperCAmelCase_ , s + 1 ) ) else: break UpperCAmelCase : Tuple[slice, ...] = tuple(UpperCAmelCase_ ) UpperCAmelCase : Tuple = len(UpperCAmelCase_ ) # start == end, and we're done if divergence_idx == len(UpperCAmelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase : int = start[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase : List[str] = end[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Dict = t.shape[:no_batch_dims] UpperCAmelCase : int = list(_flat_idx_to_idx(UpperCAmelCase_ , UpperCAmelCase_ ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase : Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , UpperCAmelCase_ ) ) # Get an ordered list of slices to perform UpperCAmelCase : Any = _get_minimal_slice_set( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCAmelCase : str = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = False , ): if not (len(UpperCAmelCase_ ) > 0): raise ValueError('Must provide at least one input' ) UpperCAmelCase : List[str] = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCAmelCase_ )] UpperCAmelCase : Optional[Any] = tuple([max(UpperCAmelCase_ ) for s in zip(*UpperCAmelCase_ )] ) def _prep_inputs(UpperCAmelCase_ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase : Tuple = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , UpperCAmelCase_ ) UpperCAmelCase : Dict = None if _out is not None: UpperCAmelCase : Dict = tensor_tree_map(lambda UpperCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase : List[str] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCAmelCase_ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase : List[str] = 0 UpperCAmelCase : Tuple = prepped_outputs for _ in range(UpperCAmelCase_ ): # Chunk the input if not low_mem: UpperCAmelCase : Optional[Any] = _select_chunk else: UpperCAmelCase : Any = partial( _chunk_slice , flat_start=UpperCAmelCase_ , flat_end=min(UpperCAmelCase_ , i + chunk_size ) , no_batch_dims=len(UpperCAmelCase_ ) , ) UpperCAmelCase : Dict[str, Any] = tensor_tree_map(UpperCAmelCase_ , UpperCAmelCase_ ) # Run the layer on the chunk UpperCAmelCase : Dict = layer(**UpperCAmelCase_ ) # Allocate space for the output if out is None: UpperCAmelCase : Union[str, Any] = tensor_tree_map(lambda UpperCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCAmelCase_ ) # Put the chunk in its pre-allocated space if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): def assign(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: for k, v in da.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): assign(UpperCAmelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase : int = da[k] assign(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for xa, xa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase : Optional[int] = xa elif isinstance(UpperCAmelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase : Tuple = output_chunk else: raise ValueError('Not supported' ) i += chunk_size UpperCAmelCase : List[str] = tensor_tree_map(lambda UpperCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCAmelCase_ ) return out class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : int = 512 , ) -> int: UpperCAmelCase : Any = max_chunk_size UpperCAmelCase : Optional[int] = None UpperCAmelCase : Optional[tuple] = None def UpperCAmelCase_ ( self : str , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase : Optional[int] = [c for c in candidates if c > min_chunk_size] UpperCAmelCase : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase_ : int ) -> bool: try: with torch.no_grad(): fn(*lowercase_ , chunk_size=lowercase_ ) return True except RuntimeError: return False UpperCAmelCase : List[Any] = 0 UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase : Optional[Any] = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase : str = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase : Union[str, Any] = i UpperCAmelCase : str = (i + len(lowercase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Iterable , lowercase_ : Iterable ) -> bool: UpperCAmelCase : Optional[int] = True for aa, aa in zip(lowercase_ , lowercase_ ): assert type(lowercase_ ) == type(lowercase_ ) if isinstance(lowercase_ , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Tuple = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] UpperCAmelCase : Optional[int] = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) else: consistent &= aa == aa return consistent def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int , ) -> int: UpperCAmelCase : str = True UpperCAmelCase : tuple = tree_map(lambda lowercase_ : a.shape if isinstance(lowercase_ , torch.Tensor ) else a , lowercase_ , lowercase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase_ ) UpperCAmelCase : int = self._compare_arg_caches(self.cached_arg_data , lowercase_ ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase : Union[str, Any] = False if not consistent: UpperCAmelCase : Any = self._determine_favorable_chunk_size( lowercase_ , lowercase_ , lowercase_ , ) UpperCAmelCase : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
396
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): # Load checkpoint __UpperCAmelCase = torch.load(lowerCAmelCase , map_location='cpu' ) __UpperCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCAmelCase = v else: __UpperCAmelCase = v __UpperCAmelCase = chkpt['params'] __UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase , (torch.FloatTensor, numpy.ndarray) )} __UpperCAmelCase = chkpt['dico_word2id'] __UpperCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase , lowerCAmelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase , indent=2 ) + '\n' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase , indent=2 ) + '\n' ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : List[str] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
396
1
"""simple docstring""" import heapq def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->str: UpperCAmelCase__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_SCREAMING_SNAKE_CASE , [-1 * len(_SCREAMING_SNAKE_CASE ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase__ = heapq.heappop(_SCREAMING_SNAKE_CASE )[1][0] chosen_vertices.add(_SCREAMING_SNAKE_CASE ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase__ = elem[1][1].index(_SCREAMING_SNAKE_CASE ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_SCREAMING_SNAKE_CASE ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() a : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
706
"""simple docstring""" def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Tuple: # noqa: E741 UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] * n UpperCAmelCase__ = [False] * n UpperCAmelCase__ = [False] * n def dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if parent == root: out_edge_count += 1 UpperCAmelCase__ = True UpperCAmelCase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase__ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase__ = True # AP found via cycle if at == low[to]: UpperCAmelCase__ = True else: UpperCAmelCase__ = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: UpperCAmelCase__ = 0 UpperCAmelCase__ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph a : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
422
0
from collections.abc import Iterable from typing import Generic, TypeVar __A = TypeVar('_T') class SCREAMING_SNAKE_CASE ( Generic[_T] ): """simple docstring""" def __init__( self: Optional[Any] , __A: Iterable[_T] | None = None ) -> None: _A = list(iterable or [] ) _A = [] def __len__( self: Optional[Any] ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self: Dict ) -> str: return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def __A ( self: int , __A: _T ) -> None: self._stacka.append(__A ) def __A ( self: Any ) -> _T: _A = self._stacka.pop _A = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
484
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __A = 'scheduler_config.json' class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 1 A_ = 2 A_ = 3 A_ = 4 A_ = 5 A_ = 6 A_ = 7 A_ = 8 A_ = 9 A_ = 10 A_ = 11 A_ = 12 A_ = 13 A_ = 14 @dataclass class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = SCHEDULER_CONFIG_NAME A_ = [] A_ = True @classmethod def __A ( cls: str , __A: Dict[str, Any] = None , __A: Optional[str] = None , __A: List[Any]=False , **__A: str , ) -> List[str]: _A ,_A ,_A = cls.load_config( pretrained_model_name_or_path=__A , subfolder=__A , return_unused_kwargs=__A , return_commit_hash=__A , **__A , ) return cls.from_config(__A , return_unused_kwargs=__A , **__A ) def __A ( self: List[Any] , __A: Union[str, os.PathLike] , __A: bool = False , **__A: Dict ) -> Dict: self.save_config(save_directory=__A , push_to_hub=__A , **__A ) @property def __A ( self: Optional[Any] ) -> Any: return self._get_compatibles() @classmethod def __A ( cls: Optional[int] ) -> List[str]: _A = list(set([cls.__name__] + cls._compatibles ) ) _A = importlib.import_module(__name__.split('''.''' )[0] ) _A = [ getattr(__A , __A ) for c in compatible_classes_str if hasattr(__A , __A ) ] return compatible_classes
484
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Union[str, Any] = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _snake_case : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = state_dict.pop(UpperCamelCase ) A = val def A__ ( UpperCamelCase ): A = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) A = value else: A = value return new_state_dict def A__ ( UpperCamelCase ): A = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) A = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) A = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict A = in_proj_weight_cross_attn[:256, :] A = in_proj_bias_cross_attn[:256] A = in_proj_weight_cross_attn[256:512, :] A = in_proj_bias_cross_attn[256:512] A = in_proj_weight_cross_attn[-256:, :] A = in_proj_bias_cross_attn[-256:] def A__ ( UpperCamelCase , UpperCamelCase ): A, A = image.size A = max(UpperCamelCase , UpperCamelCase ) A = 800 if "detection" in checkpoint_url else 1_000 A = target_max_size / current_max_size A = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A__ ( UpperCamelCase ): A = F.to_tensor(UpperCamelCase ) A = F.normalize(UpperCamelCase , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): logger.info("Converting model..." ) # load original state dict A = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = rename_backbone_keys(UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): A = state_dict.pop(UpperCamelCase ) A = val # create HuggingFace model and load state dict A = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A = 15 A = 2 A = {0: "table", 1: "table rotated"} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 125 A = 6 A = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } A = idalabel A = {v: k for k, v in idalabel.items()} A = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1_000 ) A = TableTransformerForObjectDetection(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # verify our conversion A = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" A = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=UpperCamelCase ) A = Image.open(UpperCamelCase ).convert("RGB" ) A = normalize(resize(UpperCamelCase , UpperCamelCase ) ).unsqueeze(0 ) A = model(UpperCamelCase ) if "detection" in checkpoint_url: A = (1, 15, 3) A = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) A = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: A = (1, 125, 7) A = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) A = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) A = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(UpperCamelCase ) image_processor.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : Any = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
524
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __A: """simple docstring""" SCREAMING_SNAKE_CASE__ = PegasusConfig SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = """gelu""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=40 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = TFPegasusModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder() UpperCamelCase__ = inputs_dict["""input_ids"""] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase__ = inputs_dict["""head_mask"""] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) def __magic_name__ ( __a : List[str] , __a : Any , __a : Tuple , __a : int=None , __a : Union[str, Any]=None , __a : int=None , __a : Union[str, Any]=None , __a : List[str]=None , ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = TFPegasusModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_tf class __A( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] SCREAMING_SNAKE_CASE__ = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers SCREAMING_SNAKE_CASE__ = """google/pegasus-xsum""" @cached_property def UpperCAmelCase_ (self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ (self ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.translate_src_text(**SCREAMING_SNAKE_CASE_ ) assert self.expected_text == generated_words def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.tokenizer(self.src_text , **SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""" ) UpperCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) return generated_words @slow def UpperCAmelCase_ (self ): self._assert_generated_batch_equal_expected()
513
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
513
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __snake_case = logging.get_logger(__name__) def a ( __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[int] = R'''\w+[.]\d+''' UpperCamelCase__ :Tuple = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ :Dict = key.replace(__a , '''_'''.join(pat.split('''.''' ) ) ) return key def a ( __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ :Tuple = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ :Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ :Optional[int] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ :Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ :List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ :int = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCamelCase__ :Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ :Optional[Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ :Any = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a ( __a , __a , __a=42 ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ :Optional[int] = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ :int = flatten_dict(__a ) UpperCamelCase__ :Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ :List[Any] = rename_key(__a ) UpperCamelCase__ :Union[str, Any] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ :Any = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCamelCase__ :Optional[Any] = jnp.asarray(__a ) return unflatten_dict(__a )
280
'''simple docstring''' import sys __snake_case = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = 1 for digit in s: product *= int(__a ) return product def a ( __a = N ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = -sys.maxsize - 1 UpperCamelCase__ :Dict = n[:13] UpperCamelCase__ :Dict = 13 while cur_index < len(__a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase__ :Dict = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase__ :List[str] = max(__a , str_eval(__a ) ) UpperCamelCase__ :Union[str, Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
280
1
'''simple docstring''' def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) snake_case: Optional[Any] =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
350
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase ( __lowerCamelCase : str ) -> None: __lowerCAmelCase , __lowerCAmelCase =analyze_text(__lowerCamelCase ) __lowerCAmelCase =list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __lowerCAmelCase =sum(single_char_strings.values() ) # one length string __lowerCAmelCase =0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowerCAmelCase =single_char_strings[ch] __lowerCAmelCase =my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __lowerCAmelCase =sum(two_char_strings.values() ) __lowerCAmelCase =0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowerCAmelCase =cha + cha if sequence in two_char_strings: __lowerCAmelCase =two_char_strings[sequence] __lowerCAmelCase =int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __lowerCAmelCase ( __lowerCamelCase : str ) -> tuple[dict, dict]: __lowerCAmelCase =Counter() # type: ignore __lowerCAmelCase =Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase ( ) -> str: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
354
0
from __future__ import annotations from math import gcd def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : int = 2 , UpperCamelCase : int = 1 , UpperCamelCase : int = 3 , ) -> int | None: """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ) -> int: return (pow(UpperCamelCase , 2 ) + step) % modulus for _ in range(UpperCamelCase ): # These track the position within the cycle detection logic. a_ = seed a_ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. a_ = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) a_ = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) a_ = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. a_ = gcd(hare - tortoise , UpperCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. a_ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _A = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) _A = parser.parse_args() _A = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'{args.num} is probably prime') else: _A = args.num // divisor print(f'{args.num} = {divisor} * {quotient}')
403
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int = 10**9 ) -> int: """simple docstring""" a_ = 1 a_ = 2 a_ = 0 a_ = 0 a_ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value a_ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'{solution() = }')
403
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCamelCase = logging.get_logger(__name__) # General docstring _UpperCamelCase = """RegNetConfig""" # Base docstring _UpperCamelCase = """facebook/regnet-y-040""" _UpperCamelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCamelCase = """facebook/regnet-y-040""" _UpperCamelCase = """tabby, tabby cat""" _UpperCamelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase = 3 , lowerCamelCase = 1 , lowerCamelCase = 1 , lowerCamelCase = "relu" , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __A : str = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __A : List[str] = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=lowerCamelCase , strides=lowerCamelCase , padding="VALID" , groups=lowerCamelCase , use_bias=lowerCamelCase , name="convolution" , ) __A : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) __A : Tuple = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = self.convolution(self.padding(lowerCamelCase ) ) __A : Union[str, Any] = self.normalization(lowerCamelCase ) __A : Any = self.activation(lowerCamelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Optional[Any] = config.num_channels __A : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Optional[int] = shape_list(lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __A : Optional[Any] = tf.transpose(lowerCamelCase , perm=(0, 2, 3, 1) ) __A : int = self.embedder(lowerCamelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase = 2 , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=1 , strides=lowerCamelCase , use_bias=lowerCamelCase , name="convolution" ) __A : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase ) , training=lowerCamelCase ) class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name="pooler" ) __A : List[str] = [ tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = self.pooler(lowerCamelCase ) for layer_module in self.attention: __A : List[Any] = layer_module(lowerCamelCase ) __A : int = hidden_state * pooled return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Optional[int] = in_channels != out_channels or stride != 1 __A : List[str] = max(1 , out_channels // config.groups_width ) __A : int = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __A : Optional[Any] = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name="layer.2" ), ] __A : str = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = hidden_state for layer_module in self.layers: __A : Tuple = layer_module(lowerCamelCase ) __A : Union[str, Any] = self.shortcut(lowerCamelCase ) hidden_state += residual __A : Tuple = self.activation(lowerCamelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Union[str, Any] = in_channels != out_channels or stride != 1 __A : str = max(1 , out_channels // config.groups_width ) __A : Tuple = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __A : Tuple = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name="layer.3" ), ] __A : str = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Tuple = hidden_state for layer_module in self.layers: __A : Optional[int] = layer_module(lowerCamelCase ) __A : int = self.shortcut(lowerCamelCase ) hidden_state += residual __A : str = self.activation(lowerCamelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 2 , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Dict = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __A : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , stride=lowerCamelCase , name="layers.0" ), *[layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' for layer_module in self.layers: __A : Optional[int] = layer_module(lowerCamelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : List[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __A : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase , lowerCamelCase , lowerCamelCase , depth=lowerCamelCase , name=f"stages.{i+1}" ) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True ): '''simple docstring''' __A : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __A : Any = hidden_states + (hidden_state,) __A : List[Any] = stage_module(lowerCamelCase ) if output_hidden_states: __A : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase , hidden_states=lowerCamelCase ) @keras_serializable class __magic_name__ ( tf.keras.layers.Layer ): """simple docstring""" lowerCamelCase__ = RegNetConfig def __init__( self , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : List[str] = config __A : List[Any] = TFRegNetEmbeddings(lowerCamelCase , name="embedder" ) __A : List[Any] = TFRegNetEncoder(lowerCamelCase , name="encoder" ) __A : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ): '''simple docstring''' __A : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A : str = return_dict if return_dict is not None else self.config.use_return_dict __A : Tuple = self.embedder(lowerCamelCase , training=lowerCamelCase ) __A : Optional[int] = self.encoder( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) __A : Optional[int] = encoder_outputs[0] __A : Tuple = self.pooler(lowerCamelCase ) # Change to NCHW output format have uniformity in the modules __A : Optional[Any] = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) __A : Optional[int] = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __A : int = tuple([tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase , pooler_output=lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase__ = RegNetConfig lowerCamelCase__ = 'regnet' lowerCamelCase__ = 'pixel_values' @property def lowerCAmelCase__ ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _UpperCamelCase = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCamelCase = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase , ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) __A : int = TFRegNetMainLayer(lowerCamelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=False , ): '''simple docstring''' __A : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A : str = return_dict if return_dict is not None else self.config.use_return_dict __A : Tuple = self.regnet( pixel_values=lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase , ) class __magic_name__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) __A : List[str] = config.num_labels __A : List[str] = TFRegNetMainLayer(lowerCamelCase , name="regnet" ) # classification head __A : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=False , ): '''simple docstring''' __A : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __A : List[Any] = self.regnet( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) __A : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] __A : int = self.classifier[0](lowerCamelCase ) __A : Dict = self.classifier[1](lowerCamelCase ) __A : List[Any] = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase , logits=lowerCamelCase ) if not return_dict: __A : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states )
111
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in range(0 , SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") _UpperCamelCase = 1 while K: _UpperCamelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _UpperCamelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
111
1
'''simple docstring''' def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [False] * len(lowerCamelCase_ ) lowerCAmelCase__ : List[str] = [] queue.append(lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = True while queue: lowerCAmelCase__ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase_ ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : List[str] = u return visited[t] def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[int] = [-1] * (len(lowerCamelCase_ )) lowerCAmelCase__ : Tuple = 0 while bfs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : int = float("Inf" ) lowerCAmelCase__ : Union[str, Any] = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ : Dict = min(lowerCamelCase_ , graph[parent[s]][s] ) lowerCAmelCase__ : Optional[int] = parent[s] max_flow += path_flow lowerCAmelCase__ : List[str] = sink while v != source: lowerCAmelCase__ : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ : Optional[int] = parent[v] return max_flow snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] snake_case , snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
714
'''simple docstring''' from __future__ import annotations class lowerCAmelCase : def __init__( self : List[str] , a__ : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = data lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def UpperCAmelCase_ ( lowerCamelCase_ ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCAmelCase_ ( ): # Main function for testing. """simple docstring""" lowerCAmelCase__ : Tuple = Node(1 ) lowerCAmelCase__ : List[str] = Node(2 ) lowerCAmelCase__ : str = Node(3 ) lowerCAmelCase__ : Any = Node(4 ) lowerCAmelCase__ : Union[str, Any] = Node(5 ) lowerCAmelCase__ : int = Node(6 ) lowerCAmelCase__ : Any = Node(7 ) lowerCAmelCase__ : Any = Node(8 ) lowerCAmelCase__ : Optional[Any] = Node(9 ) print(is_full_binary_tree(lowerCamelCase_ ) ) print(depth_of_tree(lowerCamelCase_ ) ) print("Tree is: " ) display(lowerCamelCase_ ) if __name__ == "__main__": main()
568
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass A__ : Tuple = (3, 9, -1_1, 0, 7, 5, 1, -1) A__ : List[str] = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class lowercase : __a = 42 __a = 42 class lowercase : def __init__( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Node | None = None for i in sorted(SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ : List[Any] = Node(SCREAMING_SNAKE_CASE__ , self.head ) def __iter__( self ): """simple docstring""" lowerCAmelCase__ : Tuple = self.head while node: yield node.data lowerCAmelCase__ : Dict = node.next_node def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __str__( self ): """simple docstring""" return " -> ".join([str(SCREAMING_SNAKE_CASE__ ) for node in self] ) def _a ( __UpperCamelCase : SortedLinkedList ,__UpperCamelCase : SortedLinkedList ): return SortedLinkedList(list(__UpperCamelCase ) + list(__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() A__ : Optional[int] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
233
from bisect import bisect from itertools import accumulate def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): lowerCAmelCase__ : int = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase__ : Tuple = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ ='''char''' lowerCAmelCase__ ='''bpe''' lowerCAmelCase__ ='''wp''' lowerCamelCase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ =['''image_processor''', '''char_tokenizer'''] lowerCAmelCase__ ='''ViTImageProcessor''' lowerCAmelCase__ ='''MgpstrTokenizer''' def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" snake_case__ : str =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) snake_case__ : Any =kwargs.pop('''feature_extractor''' ) snake_case__ : Union[str, Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) snake_case__ : Dict =tokenizer snake_case__ : Optional[Any] =AutoTokenizer.from_pretrained('''gpt2''' ) snake_case__ : int =AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ : str =self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None: snake_case__ : int =self.char_tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: snake_case__ : Dict =encodings['''input_ids'''] return inputs def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] =sequences snake_case__ : Tuple =char_preds.size(0 ) snake_case__ : str =self._decode_helper(__SCREAMING_SNAKE_CASE , '''char''' ) snake_case__ : List[str] =self._decode_helper(__SCREAMING_SNAKE_CASE , '''bpe''' ) snake_case__ : Any =self._decode_helper(__SCREAMING_SNAKE_CASE , '''wp''' ) snake_case__ : List[str] =[] snake_case__ : List[Any] =[] for i in range(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] =[char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ : int =[char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ : Optional[Any] =scores.index(max(__SCREAMING_SNAKE_CASE ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ : Optional[Any] ={} snake_case__ : List[str] =final_strs snake_case__ : Optional[int] =final_scores snake_case__ : Optional[Any] =char_strs snake_case__ : Dict =bpe_strs snake_case__ : List[str] =wp_strs return out def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if format == DecodeType.CHARACTER: snake_case__ : Dict =self.char_decode snake_case__ : List[Any] =1 snake_case__ : List[str] ='''[s]''' elif format == DecodeType.BPE: snake_case__ : str =self.bpe_decode snake_case__ : str =2 snake_case__ : Tuple ='''#''' elif format == DecodeType.WORDPIECE: snake_case__ : Optional[Any] =self.wp_decode snake_case__ : Optional[Any] =102 snake_case__ : List[str] ='''[SEP]''' else: raise ValueError(f'''Format {format} is not supported.''' ) snake_case__ : int =[], [] snake_case__ : str =pred_logits.size(0 ) snake_case__ : Optional[Any] =pred_logits.size(1 ) snake_case__ : Optional[int] =pred_logits.topk(1 , dim=-1 , largest=__SCREAMING_SNAKE_CASE , sorted=__SCREAMING_SNAKE_CASE ) snake_case__ : int =preds_index.view(-1 , __SCREAMING_SNAKE_CASE )[:, 1:] snake_case__ : List[Any] =decoder(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =torch.nn.functional.softmax(__SCREAMING_SNAKE_CASE , dim=2 ).max(dim=2 ) snake_case__ : Dict =preds_max_prob[:, 1:] for index in range(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] =preds_str[index].find(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =preds_str[index][:pred_eos] snake_case__ : int =preds_index[index].cpu().tolist() snake_case__ : Tuple =pred_index.index(__SCREAMING_SNAKE_CASE ) if eos_token in pred_index else -1 snake_case__ : Any =preds_max_prob[index][: pred_eos_index + 1] snake_case__ : Optional[int] =pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__SCREAMING_SNAKE_CASE ) conf_scores.append(__SCREAMING_SNAKE_CASE ) return dec_strs, conf_scores def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] =[seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )] return decode_strs def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.bpe_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : List[str] =[seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )] return decode_strs
712
def lowercase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients snake_case__, snake_case__, snake_case__ : List[Any] =equationa snake_case__, snake_case__, snake_case__ : Any =equationa # Calculate the determinants of the matrices snake_case__ : str =aa * ba - aa * ba snake_case__ : Any =ca * ba - ca * ba snake_case__ : Any =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: snake_case__ : str =determinant_x / determinant snake_case__ : List[str] =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
408
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : Tuple ="donut-swin" a_ : int ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , _snake_case : Dict=224 , _snake_case : Any=4 , _snake_case : Union[str, Any]=3 , _snake_case : List[str]=96 , _snake_case : Union[str, Any]=[2, 2, 6, 2] , _snake_case : int=[3, 6, 12, 24] , _snake_case : List[str]=7 , _snake_case : List[str]=4.0 , _snake_case : Union[str, Any]=True , _snake_case : Union[str, Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : int=0.1 , _snake_case : List[Any]="gelu" , _snake_case : str=False , _snake_case : int=0.02 , _snake_case : Dict=1E-5 , **_snake_case : Any , ) -> List[str]: '''simple docstring''' super().__init__(**_snake_case ) a__ = image_size a__ = patch_size a__ = num_channels a__ = embed_dim a__ = depths a__ = len(_snake_case ) a__ = num_heads a__ = window_size a__ = mlp_ratio a__ = qkv_bias a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = drop_path_rate a__ = hidden_act a__ = use_absolute_embeddings a__ = layer_norm_eps a__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ = int(embed_dim * 2 ** (len(_snake_case ) - 1) )
232
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' for attribute in key.split('.' ): a__ = getattr(UpperCAmelCase__,UpperCAmelCase__ ) if weight_type is not None: a__ = getattr(UpperCAmelCase__,UpperCAmelCase__ ).shape else: a__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ = value elif weight_type == "weight_g": a__ = value elif weight_type == "weight_v": a__ = value elif weight_type == "bias": a__ = value else: a__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' a__ = [] a__ = fairseq_model.state_dict() a__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a__ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,hf_model.config.feat_extract_norm == 'group',) a__ = True else: for key, mapped_key in MAPPING.items(): a__ = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): a__ = True if "*" in mapped_key: a__ = name.split(UpperCAmelCase__ )[0].split('.' )[-2] a__ = mapped_key.replace('*',UpperCAmelCase__ ) if "weight_g" in name: a__ = 'weight_g' elif "weight_v" in name: a__ = 'weight_v' elif "weight" in name: a__ = 'weight' elif "bias" in name: a__ = 'bias' else: a__ = None set_recursively(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = full_name.split('conv_layers.' )[-1] a__ = name.split('.' ) a__ = int(items[0] ) a__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=None,UpperCAmelCase__=None,UpperCAmelCase__=True ) -> int: '''simple docstring''' if config_path is not None: a__ = HubertConfig.from_pretrained(UpperCAmelCase__ ) else: a__ = HubertConfig() if is_finetuned: if dict_path: a__ = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ = target_dict.pad_index a__ = target_dict.bos_index a__ = target_dict.eos_index a__ = len(target_dict.symbols ) a__ = os.path.join(UpperCAmelCase__,'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__,exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__,'w',encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices,UpperCAmelCase__ ) a__ = WavaVecaCTCTokenizer( UpperCAmelCase__,unk_token=target_dict.unk_word,pad_token=target_dict.pad_word,bos_token=target_dict.bos_word,eos_token=target_dict.eos_word,word_delimiter_token='|',do_lower_case=UpperCAmelCase__,) a__ = True if config.feat_extract_norm == 'layer' else False a__ = WavaVecaFeatureExtractor( feature_size=1,sampling_rate=1_60_00,padding_value=0,do_normalize=UpperCAmelCase__,return_attention_mask=UpperCAmelCase__,) a__ = WavaVecaProcessor(feature_extractor=UpperCAmelCase__,tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) a__ = HubertForCTC(UpperCAmelCase__ ) else: a__ = HubertModel(UpperCAmelCase__ ) if is_finetuned: a__ , a__ , a__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path],arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ , a__ , a__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a__ = model[0].eval() recursively_load_weights(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __magic_name__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
232
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A__= 1 @register_to_config def __init__( self : Optional[Any] , _lowercase : int = 10_00 , _lowercase : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(_lowercase ) # standard deviation of the initial noise distribution UpperCAmelCase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase__ = 4 # running values UpperCAmelCase__ = [] def _UpperCAmelCase ( self : List[Any] , _lowercase : int , _lowercase : Union[str, torch.device] = None ): """simple docstring""" UpperCAmelCase__ = num_inference_steps UpperCAmelCase__ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase__ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase__ = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase__ = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase__ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase__ = timesteps.to(_lowercase ) UpperCAmelCase__ = [] def _UpperCAmelCase ( self : str , _lowercase : torch.FloatTensor , _lowercase : int , _lowercase : torch.FloatTensor , _lowercase : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) UpperCAmelCase__ = (self.timesteps == timestep).nonzero().item() UpperCAmelCase__ = timestep_index + 1 UpperCAmelCase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowercase ) if len(self.ets ) == 1: UpperCAmelCase__ = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCAmelCase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase__ = self._get_prev_sample(_lowercase , _lowercase , _lowercase , _lowercase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowercase ) def _UpperCAmelCase ( self : Dict , _lowercase : torch.FloatTensor , *_lowercase : List[str] , **_lowercase : Optional[Any] ): """simple docstring""" return sample def _UpperCAmelCase ( self : Optional[int] , _lowercase : List[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.alphas[timestep_index] UpperCAmelCase__ = self.betas[timestep_index] UpperCAmelCase__ = self.alphas[prev_timestep_index] UpperCAmelCase__ = self.betas[prev_timestep_index] UpperCAmelCase__ = (sample - sigma * ets) / max(_lowercase , 1E-8 ) UpperCAmelCase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
277
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __UpperCAmelCase ( __A = True , *__A , **__A ) -> Any: '''simple docstring''' if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) UpperCAmelCase__ = False if main_process_only: UpperCAmelCase__ = PartialState().local_process_index == 0 return _tqdm(*__A , **__A , disable=__A )
277
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __lowercase ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_a ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def __lowercase ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def __lowercase ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_a ): http_head('''https://huggingface.co''' )
123
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[str] = KandinskyInpaintPipeline _lowerCAmelCase : Tuple = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowerCAmelCase : Optional[int] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowerCAmelCase : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCAmelCase : List[str] = False @property def _snake_case ( self : Optional[Any] ): return 32 @property def _snake_case ( self : List[Any] ): return 32 @property def _snake_case ( self : List[Any] ): return self.time_input_dim @property def _snake_case ( self : Any ): return self.time_input_dim * 4 @property def _snake_case ( self : Any ): return 100 @property def _snake_case ( self : str ): snake_case_ : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _snake_case ( self : Dict ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) snake_case_ : Tuple = MultilingualCLIP(lowercase_ ) snake_case_ : List[Any] = text_encoder.eval() return text_encoder @property def _snake_case ( self : int ): torch.manual_seed(0 ) snake_case_ : Dict = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**lowercase_ ) return model @property def _snake_case ( self : int ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self : Optional[int] ): torch.manual_seed(0 ) snake_case_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self : Optional[int] ): snake_case_ : Any = self.dummy_text_encoder snake_case_ : Optional[int] = self.dummy_tokenizer snake_case_ : Any = self.dummy_unet snake_case_ : Tuple = self.dummy_movq snake_case_ : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase_ , ) snake_case_ : int = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self : int , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=0 ): snake_case_ : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase_ ) # create init_image snake_case_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Any = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask snake_case_ : Tuple = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : Dict = 0 if str(lowercase_ ).startswith('''mps''' ): snake_case_ : List[Any] = torch.manual_seed(lowercase_ ) else: snake_case_ : List[str] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ : List[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _snake_case ( self : str ): snake_case_ : Any = '''cpu''' snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Tuple = self.pipeline_class(**lowercase_ ) snake_case_ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : str = pipe(**self.get_dummy_inputs(lowercase_ ) ) snake_case_ : int = output.images snake_case_ : Tuple = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] snake_case_ : Optional[int] = image[0, -3:, -3:, -1] snake_case_ : Tuple = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) snake_case_ : str = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _snake_case ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Dict ): snake_case_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) snake_case_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case_ : int = np.ones((768, 768) , dtype=np.floataa ) snake_case_ : str = 0 snake_case_ : Tuple = '''a hat''' snake_case_ : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) snake_case_ : List[str] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) snake_case_ : Optional[Any] = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_, snake_case_ : Tuple = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case_ : Any = pipeline( lowercase_ , image=lowercase_ , mask_image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) snake_case_ : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
123
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = False ) -> Union[str, Any]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ = f"""Expected string as input, found {type(lowerCamelCase_ )}""" raise ValueError(lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ = f"""Expected boolean as use_pascal parameter, found {type(lowerCamelCase_ )}""" raise ValueError(lowerCamelCase_ ) A__ = input_str.split('''_''' ) A__ = 0 if use_pascal else 1 A__ = words[start_index:] A__ = [word[0].upper() + word[1:] for word in words_to_capitalize] A__ = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
712
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" A__ = factorial(lowercase_ ) A__ = split_and_add(lowercase_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
177
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : List[Any], A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(A_, config=A_ ) _lowerCamelCase : List[str] = downstream_dict['''projector.weight'''] _lowerCamelCase : Union[str, Any] = downstream_dict['''projector.bias'''] _lowerCamelCase : Union[str, Any] = downstream_dict['''model.post_net.linear.weight'''] _lowerCamelCase : int = downstream_dict['''model.post_net.linear.bias'''] return model def snake_case_ ( A_ : List[str], A_ : Optional[Any], A_ : Dict ): '''simple docstring''' _lowerCamelCase : int = UniSpeechSatForAudioFrameClassification.from_pretrained(A_, config=A_ ) _lowerCamelCase : Dict = downstream_dict['''model.linear.weight'''] _lowerCamelCase : int = downstream_dict['''model.linear.bias'''] return model def snake_case_ ( A_ : int, A_ : str, A_ : Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = UniSpeechSatForXVector.from_pretrained(A_, config=A_ ) _lowerCamelCase : Tuple = downstream_dict['''connector.weight'''] _lowerCamelCase : Any = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCamelCase : Dict = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _lowerCamelCase : int = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _lowerCamelCase : str = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] _lowerCamelCase : Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] _lowerCamelCase : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] _lowerCamelCase : int = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] _lowerCamelCase : Dict = downstream_dict['''objective.W'''] return model @torch.no_grad() def snake_case_ ( A_ : Union[str, Any], A_ : Optional[int], A_ : Union[str, Any], A_ : str ): '''simple docstring''' _lowerCamelCase : Optional[Any] = torch.load(A_, map_location='''cpu''' ) _lowerCamelCase : str = checkpoint['''Downstream'''] _lowerCamelCase : Any = UniSpeechSatConfig.from_pretrained(A_ ) _lowerCamelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained( A_, return_attention_mask=A_, do_normalize=A_ ) _lowerCamelCase : Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): _lowerCamelCase : Union[str, Any] = convert_classification(A_, A_, A_ ) elif arch.endswith('''ForAudioFrameClassification''' ): _lowerCamelCase : int = convert_diarization(A_, A_, A_ ) elif arch.endswith('''ForXVector''' ): _lowerCamelCase : Tuple = convert_xvector(A_, A_, A_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _lowerCamelCase : Tuple = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
83
"""simple docstring""" import argparse import json import subprocess def UpperCamelCase ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _UpperCAmelCase : List[str] = subprocess.run(_lowerCAmelCase, shell=_lowerCAmelCase, stdout=subprocess.PIPE ) _UpperCAmelCase : List[str] = output.stdout.decode("""utf-8""" ) _UpperCAmelCase : Optional[int] = json.loads(_lowerCAmelCase ) _UpperCAmelCase : Dict = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCAmelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""", """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: _UpperCAmelCase : List[str] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def UpperCamelCase ( _lowerCAmelCase : List[Any] ) -> Any: return values.split(""",""" ) lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowerCamelCase__ : Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
238
0
'''simple docstring''' class lowerCAmelCase__ : def __init__( self : Dict , lowerCamelCase__ : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = n _UpperCAmelCase : List[str] = [None] * self.n _UpperCAmelCase : List[str] = 0 # index of the first element _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[Any] = 0 def __len__( self : Optional[int] ) ->int: '''simple docstring''' return self.size def lowerCAmelCase__ ( self : Any ) ->bool: '''simple docstring''' return self.size == 0 def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) _UpperCAmelCase : List[str] = data _UpperCAmelCase : Dict = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) _UpperCAmelCase : Dict = self.array[self.front] _UpperCAmelCase : str = None _UpperCAmelCase : List[Any] = (self.front + 1) % self.n self.size -= 1 return temp
40
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = ["image_processor", "tokenizer"] lowerCAmelCase : List[Any] = "BlipImageProcessor" lowerCAmelCase : Union[str, Any] = "AutoTokenizer" def __init__( self : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = False super().__init__(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.image_processor def __call__( self : Dict , lowerCamelCase__ : ImageInput = None , lowerCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : Tuple , ) ->BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _UpperCAmelCase : Optional[int] = self.tokenizer _UpperCAmelCase : List[Any] = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) return text_encoding # add pixel_values _UpperCAmelCase : Optional[int] = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) if text is not None: _UpperCAmelCase : Dict = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) else: _UpperCAmelCase : int = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase__ ) return encoding_image_processor def lowerCAmelCase__ ( self : List[Any] , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Dict ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , *lowerCamelCase__ : Dict , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase__ ( self : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.tokenizer.model_input_names _UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
40
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class a ( a__ ): snake_case__ = '''dpt''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=3_84 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=True , _snake_case=[2, 5, 8, 11] , _snake_case="project" , _snake_case=[4, 2, 1, 0.5] , _snake_case=[96, 1_92, 3_84, 7_68] , _snake_case=2_56 , _snake_case=-1 , _snake_case=False , _snake_case=True , _snake_case=0.4 , _snake_case=2_55 , _snake_case=0.1 , _snake_case=[1, 10_24, 24, 24] , _snake_case=[0, 1] , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCAmelCase = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): lowerCAmelCase = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
4
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase__ = os.path.join(git_repo_path, "src", "diffusers") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase = find_backend(" if not is_torch_available():" ) self.assertEqual(lowerCAmelCase__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowerCAmelCase__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowerCAmelCase__ , "torch_and_transformers_and_onnx" ) def _UpperCamelCase ( self : Optional[int] ) -> List[str]: UpperCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowerCAmelCase__ ) self.assertIn("torch_and_transformers" , lowerCAmelCase__ ) self.assertIn("flax_and_transformers" , lowerCAmelCase__ ) self.assertIn("torch_and_transformers_and_onnx" , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _UpperCamelCase ( self : Optional[Any] ) -> int: UpperCAmelCase = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowerCAmelCase__ , "\nCONSTANT = None\n" ) UpperCAmelCase = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowerCAmelCase__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCAmelCase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCAmelCase = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Any ) -> int: UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCAmelCase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowerCAmelCase__ )
1
lowerCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowerCAmelCase__ = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase( __A ): UpperCAmelCase = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _lowerCAmelCase( __A ): if set(__A ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCAmelCase = "" for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __a: Union[str, Any] = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _lowerCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) _lowerCamelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase = self.task_name.lower() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''train''' _lowerCamelCase = '''dev''' _lowerCamelCase = '''test''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self : Any , lowerCamelCase : GlueDataTrainingArguments , lowerCamelCase : PreTrainedTokenizerBase , lowerCamelCase : Optional[int] = None , lowerCamelCase : Union[str, Split] = Split.train , lowerCamelCase : Optional[str] = None , ) -> int: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCamelCase , ) _UpperCAmelCase = args _UpperCAmelCase = glue_processors[args.task_name]() _UpperCAmelCase = glue_output_modes[args.task_name] if isinstance(lowerCamelCase , lowerCamelCase ): try: _UpperCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file _UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _UpperCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase = cached_features_file + """.lock""" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: _UpperCAmelCase = time.time() _UpperCAmelCase = torch.load(lowerCamelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _UpperCAmelCase = self.processor.get_test_examples(args.data_dir ) else: _UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _UpperCAmelCase = examples[:limit_length] _UpperCAmelCase = glue_convert_examples_to_features( lowerCamelCase , lowerCamelCase , max_length=args.max_seq_length , label_list=lowerCamelCase , output_mode=self.output_mode , ) _UpperCAmelCase = time.time() torch.save(self.features , lowerCamelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Union[str, Any] ) -> Any: """simple docstring""" return len(self.features ) def __getitem__( self : str , lowerCamelCase : Any ) -> InputFeatures: """simple docstring""" return self.features[i] def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" return self.label_list
108
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' def __lt__( self: List[Any] , _lowerCamelCase: List[Any] ): return self[-1] < other[-1] def __eq__( self: Optional[int] , _lowerCamelCase: int ): return self[-1] == other[-1] def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [] # sort into stacks for element in collection: SCREAMING_SNAKE_CASE_ = Stack([element] ) SCREAMING_SNAKE_CASE_ = bisect_left(_lowerCAmelCase , _lowerCAmelCase ) if i != len(_lowerCAmelCase ): stacks[i].append(_lowerCAmelCase ) else: stacks.append(_lowerCAmelCase ) # use a heap-based merge to merge stack efficiently SCREAMING_SNAKE_CASE_ = merge(*(reversed(_lowerCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("""Enter numbers separated by a comma:\n""").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
234
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase = logging.get_logger(__name__) class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : str = ["pixel_values"] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PIL.Image.BICUBIC , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 / 255 , UpperCAmelCase__ = True , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PIL.Image.BICUBIC , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( UpperCAmelCase__ , size=(size["height"], size["width"]) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__=None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ): SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE__ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE__ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
112
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowercase ( ): SCREAMING_SNAKE_CASE__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCamelCase_ ) env_command_parser(subparsers=lowerCamelCase_ ) launch_command_parser(subparsers=lowerCamelCase_ ) tpu_command_parser(subparsers=lowerCamelCase_ ) test_command_parser(subparsers=lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE__ = parser.parse_args() if not hasattr(lowerCamelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCamelCase_ ) if __name__ == "__main__": main()
112
1
def __lowerCAmelCase ( UpperCamelCase ) -> Tuple: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowerCAmelCase__ : List[Any] = len(UpperCamelCase ) lowerCAmelCase__ : Dict = max(UpperCamelCase ) lowerCAmelCase__ : int = min(UpperCamelCase ) # create the counting array lowerCAmelCase__ : Optional[int] = coll_max + 1 - coll_min lowerCAmelCase__ : List[str] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase ): lowerCAmelCase__ : str = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCAmelCase__ : List[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase ) ): lowerCAmelCase__ : Optional[int] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __lowerCAmelCase ( UpperCamelCase ) -> Optional[int]: return "".join([chr(UpperCamelCase ) for i in counting_sort([ord(UpperCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowerCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
678
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _lowerCAmelCase ( _lowercase ): A__ = 'donut-swin' A__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : List[str] = patch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Optional[Any] = embed_dim lowerCAmelCase__ : int = depths lowerCAmelCase__ : Dict = len(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : str = mlp_ratio lowerCAmelCase__ : Optional[int] = qkv_bias lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : List[str] = use_absolute_embeddings lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ : List[Any] = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
678
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ , a_ , a_ , a_ = None , ) -> Optional[Any]: super().__init__() self.register_modules(transformer=a_ , vae=a_ , scheduler=a_ ) # create a imagenet -> id dictionary for easier use lowercase : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): lowercase : List[Any] = int(a_ ) lowercase : Dict = dict(sorted(self.labels.items() ) ) def a__ ( self , a_ ) -> List[int]: if not isinstance(a_ , a_ ): lowercase : Optional[Any] = list(a_ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , a_ , a_ = 4.0 , a_ = None , a_ = 5_0 , a_ = "pil" , a_ = True , ) -> Union[ImagePipelineOutput, Tuple]: lowercase : Tuple = len(a_ ) lowercase : List[Any] = self.transformer.config.sample_size lowercase : str = self.transformer.config.in_channels lowercase : Optional[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=a_ , device=self.device , dtype=self.transformer.dtype , ) lowercase : Any = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase : Union[str, Any] = torch.tensor(a_ , device=self.device ).reshape(-1 ) lowercase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device ) lowercase : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase : Optional[Any] = latent_model_input[: len(a_ ) // 2] lowercase : Tuple = torch.cat([half, half] , dim=0 ) lowercase : Optional[int] = self.scheduler.scale_model_input(a_ , a_ ) lowercase : List[Any] = t if not torch.is_tensor(a_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase : int = latent_model_input.device.type == "mps" if isinstance(a_ , a_ ): lowercase : List[Any] = torch.floataa if is_mps else torch.floataa else: lowercase : Dict = torch.intaa if is_mps else torch.intaa lowercase : Optional[Any] = torch.tensor([timesteps] , dtype=a_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase : Tuple = self.transformer( a_ , timestep=a_ , class_labels=a_ ).sample # perform guidance if guidance_scale > 1: lowercase , lowercase : Tuple = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase , lowercase : str = torch.split(a_ , len(a_ ) // 2 , dim=0 ) lowercase : Union[str, Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) lowercase : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase , lowercase : Union[str, Any] = torch.split(a_ , a_ , dim=1 ) else: lowercase : str = noise_pred # compute previous image: x_t -> x_t-1 lowercase : Optional[int] = self.scheduler.step(a_ , a_ , a_ ).prev_sample if guidance_scale > 1: lowercase , lowercase : Any = latent_model_input.chunk(2 , dim=0 ) else: lowercase : List[str] = latent_model_input lowercase : List[str] = 1 / self.vae.config.scaling_factor * latents lowercase : str = self.vae.decode(a_ ).sample lowercase : Union[str, Any] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase : Union[str, Any] = self.numpy_to_pil(a_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=a_ )
425
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Dict = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( A ,A ,A ,A ,A ) -> str: for attribute in key.split("." ): lowercase : Any = getattr(A ,A ) if weight_type is not None: lowercase : Optional[Any] = getattr(A ,A ).shape else: lowercase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : Any = value elif weight_type == "weight_g": lowercase : Optional[Any] = value elif weight_type == "weight_v": lowercase : Tuple = value elif weight_type == "bias": lowercase : int = value else: lowercase : int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( A ,A ) -> int: lowercase : List[Any] = [] lowercase : int = fairseq_model.state_dict() lowercase : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase : List[str] = False if "conv_layers" in name: load_conv_layer( A ,A ,A ,A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : Union[str, Any] = True if "*" in mapped_key: lowercase : Dict = name.split(A )[0].split("." )[-2] lowercase : Union[str, Any] = mapped_key.replace("*" ,A ) if "weight_g" in name: lowercase : Union[str, Any] = "weight_g" elif "weight_v" in name: lowercase : Tuple = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase : Union[str, Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : Any = "weight" else: lowercase : Tuple = None set_recursively(A ,A ,A ,A ,A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> Any: lowercase : Optional[int] = full_name.split("conv_layers." )[-1] lowercase : Any = name.split("." ) lowercase : Dict = int(items[0] ) lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def _A ( A ,A ,A=None ) -> Optional[Any]: # load the pre-trained checkpoints lowercase : Union[str, Any] = torch.load(A ) lowercase : List[Any] = WavLMConfigOrig(checkpoint["cfg"] ) lowercase : Tuple = WavLMOrig(A ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase : List[str] = WavLMConfig.from_pretrained(A ) else: lowercase : Union[str, Any] = WavLMConfig() lowercase : Optional[Any] = WavLMModel(A ) recursively_load_weights(A ,A ) hf_wavlm.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase : int = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
425
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''input_features''', '''is_longer'''] def __init__( self , _snake_case=64 , _snake_case=4_80_00 , _snake_case=4_80 , _snake_case=10 , _snake_case=10_24 , _snake_case=0.0 , _snake_case=False , _snake_case = 0 , _snake_case = 1_40_00 , _snake_case = None , _snake_case = "fusion" , _snake_case = "repeatpad" , **_snake_case , ): """simple docstring""" super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) lowerCAmelCase = top_db lowerCAmelCase = truncation lowerCAmelCase = padding lowerCAmelCase = fft_window_size lowerCAmelCase = (fft_window_size >> 1) + 1 lowerCAmelCase = hop_length lowerCAmelCase = max_length_s lowerCAmelCase = max_length_s * sampling_rate lowerCAmelCase = sampling_rate lowerCAmelCase = frequency_min lowerCAmelCase = frequency_max lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm=_snake_case , mel_scale='htk' , ) lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = spectrogram( _snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase = [0] # randomly choose index for each part lowerCAmelCase = np.random.choice(ranges[0] ) lowerCAmelCase = np.random.choice(ranges[1] ) lowerCAmelCase = np.random.choice(ranges[2] ) lowerCAmelCase = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase = torch.tensor(mel[None, None, :] ) lowerCAmelCase = torch.nn.functional.interpolate( _snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_snake_case ) lowerCAmelCase = mel_shrink[0][0].numpy() lowerCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase = len(_snake_case ) - max_length lowerCAmelCase = np.random.randint(0 , overflow + 1 ) lowerCAmelCase = waveform[idx : idx + max_length] lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters ) lowerCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase = False else: lowerCAmelCase = self._random_mel_fusion(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: lowerCAmelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase = int(max_length / len(_snake_case ) ) lowerCAmelCase = np.stack(np.tile(_snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase = int(max_length / len(_snake_case ) ) lowerCAmelCase = np.stack(np.tile(_snake_case , _snake_case ) ) lowerCAmelCase = np.pad(_snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters ) lowerCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = truncation if truncation is not None else self.truncation lowerCAmelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray(_snake_case )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase = [ self._get_input_mel(_snake_case , max_length if max_length else self.nb_max_samples , _snake_case , _snake_case ) for waveform in raw_speech ] lowerCAmelCase = [] lowerCAmelCase = [] for mel, longer in padded_inputs: input_mel.append(_snake_case ) is_longer.append(_snake_case ) if truncation == "fusion" and sum(_snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase = np.random.randint(0 , len(_snake_case ) ) lowerCAmelCase = True if isinstance(input_mel[0] , _snake_case ): lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase = [[longer] for longer in is_longer] lowerCAmelCase = {'input_features': input_mel, 'is_longer': is_longer} lowerCAmelCase = BatchFeature(_snake_case ) if return_tensors is not None: lowerCAmelCase = input_features.convert_to_tensors(_snake_case ) return input_features
4
import requests a__ : Any = 'YOUR API KEY' def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :str = giphy_api_key ) -> list: '''simple docstring''' A_ = '''+'''.join(query.split() ) A_ = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' A_ = requests.get(_UpperCAmelCase ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
188
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : str = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Optional[Any] = ["pixel_values"] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : List[str] = size if size is not None else {"shortest_edge": 2_56} __UpperCAmelCase : int = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __UpperCAmelCase : str = get_size_dict(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Dict = resample __UpperCAmelCase : str = do_center_crop __UpperCAmelCase : Union[str, Any] = crop_size __UpperCAmelCase : List[str] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : List[Any] = do_normalize __UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __UpperCAmelCase : Optional[int] = get_resize_output_image_size(UpperCamelCase_ , size=size["shortest_edge"] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ ) return center_crop(UpperCamelCase_ , size=(size["height"], size["width"]) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): __UpperCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Union[str, Any] = size if size is not None else self.size __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : Tuple = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : List[Any] = get_size_dict(UpperCamelCase_ ) __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCAmelCase : List[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __UpperCAmelCase : Tuple = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: __UpperCAmelCase : Optional[int] = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: __UpperCAmelCase : Optional[Any] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __UpperCAmelCase : List[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __UpperCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
from __future__ import annotations def snake_case( __magic_name__ , __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : list[list[int]] = [] lowercase : list[int] = [] lowercase : int = 0 lowercase : Union[str, Any] = sum(_UpperCAmelCase ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return result def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> None: '''simple docstring''' if sum(_UpperCAmelCase ) > max_sum or (remaining_nums_sum + sum(_UpperCAmelCase )) < max_sum: return if sum(_UpperCAmelCase ) == max_sum: result.append(_UpperCAmelCase ) return for index in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): create_state_space_tree( _UpperCAmelCase , _UpperCAmelCase , index + 1 , [*path, nums[index]] , _UpperCAmelCase , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
217
def UpperCamelCase ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _lowercase : List[str] = [int(_UpperCAmelCase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(_UpperCAmelCase ) == 4 and all(0 <= int(_UpperCAmelCase ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCamelCase_ : Dict = input().strip() UpperCamelCase_ : List[Any] = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
461
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """imagegpt""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __A=512 + 1 , __A=32 * 32 , __A=512 , __A=24 , __A=8 , __A=None , __A="quick_gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=1E-5 , __A=0.02 , __A=True , __A=True , __A=False , __A=False , __A=False , **__A , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = scale_attn_by_inverse_layer_idx __a = reorder_and_upcast_attn __a = tie_word_embeddings super().__init__(tie_word_embeddings=__A , **__A ) class __UpperCAmelCase ( __A ): """simple docstring""" @property def snake_case_ ( self ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def snake_case_ ( self , __A , __A = 1 , __A = -1 , __A = False , __A = None , __A = 3 , __A = 32 , __A = 32 , ): __a = self._generate_dummy_images(__A , __A , __A , __A ) __a = dict(preprocessor(images=__A , return_tensors=__A ) ) return inputs
209
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = LDMTextToImagePipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = False def snake_case_ ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a = CLIPTextModel(__A ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def snake_case_ ( self , __A , __A=0 ): if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = LDMTextToImagePipeline(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_dummy_inputs(__A ) __a = pipe(**__A ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __a = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __A , __A=torch.floataa , __A=0 ): __a = torch.manual_seed(__A ) __a = np.random.RandomState(__A ).standard_normal((1, 4, 32, 32) ) __a = torch.from_numpy(__A ).to(device=__A , dtype=__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_inputs(__A ) __a = pipe(**__A ).images __a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __a = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __a = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __A , __A=torch.floataa , __A=0 ): __a = torch.manual_seed(__A ) __a = np.random.RandomState(__A ).standard_normal((1, 4, 32, 32) ) __a = torch.from_numpy(__A ).to(device=__A , dtype=__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_inputs(__A ) __a = pipe(**__A ).images[0] __a = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __a = np.abs(expected_image - image ).max() assert max_diff < 1E-3
209
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( A , A , A , A , A ) -> List[str]: '''simple docstring''' with open(A ) as metadata_file: A__ = json.load(A ) A__ = LukeConfig(use_entity_aware_attention=A , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A__ = torch.load(A , map_location="cpu" )["module"] # Load the entity vocab file A__ = load_original_entity_vocab(A ) # add an entry for [MASK2] A__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A__ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A__ = AddedToken("<ent>" , lstrip=A , rstrip=A ) A__ = AddedToken("<ent2>" , lstrip=A , rstrip=A ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(A ) with open(os.path.join(A , "tokenizer_config.json" ) , "r" ) as f: A__ = json.load(A ) A__ = "MLukeTokenizer" with open(os.path.join(A , "tokenizer_config.json" ) , "w" ) as f: json.dump(A , A ) with open(os.path.join(A , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(A , A ) A__ = MLukeTokenizer.from_pretrained(A ) # Initialize the embeddings of the special tokens A__ = tokenizer.convert_tokens_to_ids(["@"] )[0] A__ = tokenizer.convert_tokens_to_ids(["#"] )[0] A__ = state_dict["embeddings.word_embeddings.weight"] A__ = word_emb[ent_init_index].unsqueeze(0 ) A__ = word_emb[enta_init_index].unsqueeze(0 ) A__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A__ = state_dict[bias_name] A__ = decoder_bias[ent_init_index].unsqueeze(0 ) A__ = decoder_bias[enta_init_index].unsqueeze(0 ) A__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A__ = f"""encoder.layer.{layer_index}.attention.self.""" A__ = state_dict[prefix + matrix_name] A__ = state_dict[prefix + matrix_name] A__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A__ = state_dict["entity_embeddings.entity_embeddings.weight"] A__ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) A__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A__ = state_dict["entity_predictions.bias"] A__ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) A__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A__ = LukeForMaskedLM(config=A ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) A__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): A__ = state_dict[key] else: A__ = state_dict[key] A__ , A__ = model.load_state_dict(A , strict=A ) if set(A ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A__ = MLukeTokenizer.from_pretrained(A , task="entity_classification" ) A__ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." A__ = (0, 9) A__ = tokenizer(A , entity_spans=[span] , return_tensors="pt" ) A__ = model(**A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A__ = torch.Size((1, 33, 768) ) A__ = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A__ = torch.Size((1, 1, 768) ) A__ = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction A__ = MLukeTokenizer.from_pretrained(A ) A__ = "Tokyo is the capital of <mask>." A__ = (24, 30) A__ = tokenizer(A , entity_spans=[span] , return_tensors="pt" ) A__ = model(**A ) A__ = encoding["input_ids"][0].tolist() A__ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) A__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A ) A__ = outputs.entity_logits[0][0].argmax().item() A__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(A ) ) model.save_pretrained(A ) def __a ( A ) -> Any: '''simple docstring''' A__ = ["[MASK]", "[PAD]", "[UNK]"] A__ = [json.loads(A ) for line in open(A )] A__ = {} for entry in data: A__ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A__ = entity_id break A__ = f"""{language}:{entity_name}""" A__ = entity_id return new_mapping if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __UpperCAmelCase =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
337
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __a ( A ) -> List[Any]: '''simple docstring''' A__ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] A__ = True if "large" in model_name or "huge" in model_name else False A__ = True if "large" in model_name or "huge" in model_name else False A__ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: A__ = [3, 3, 3, 3] A__ = [5, 5, 5, 5] elif "fl4" in model_name: A__ = [4, 4, 4, 4] A__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: A__ = [3, 3, 3, 3] if "lrf" in model_name: A__ = [3, 3, 3, 3] else: A__ = [2, 2, 2, 2] if "tiny" in model_name: A__ = 96 elif "small" in model_name: A__ = 96 elif "base" in model_name: A__ = 128 elif "large" in model_name: A__ = 192 elif "xlarge" in model_name: A__ = 256 elif "huge" in model_name: A__ = 352 # set label information A__ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: A__ = "imagenet-22k-id2label.json" else: A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) A__ = {int(A ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = FocalNetConfig( embed_dim=A , depths=A , focal_levels=A , focal_windows=A , use_conv_embed=A , idalabel=A , labelaid=A , use_post_layernorm=A , use_layerscale=A , ) return config def __a ( A ) -> int: '''simple docstring''' if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: A__ = "encoder." + name if "encoder.layers" in name: A__ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: A__ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: A__ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: A__ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: A__ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: A__ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": A__ = "layernorm.weight" if name == "norm.bias": A__ = "layernorm.bias" if "head" in name: A__ = name.replace("head" , "classifier" ) else: A__ = "focalnet." + name return name def __a ( A , A , A=False ) -> Tuple: '''simple docstring''' A__ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on A__ = model_name_to_url[model_name] print("Checkpoint URL: " , A ) A__ = torch.hub.load_state_dict_from_url(A , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): A__ = state_dict.pop(A ) A__ = val A__ = get_focalnet_config(A ) A__ = FocalNetForImageClassification(A ) model.eval() # load state dict model.load_state_dict(A ) # verify conversion A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = BitImageProcessor( do_resize=A , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=A , crop_size=224 , do_normalize=A , image_mean=A , image_std=A , ) A__ = Image.open(requests.get(A , stream=A ).raw ) A__ = processor(images=A , return_tensors="pt" ) A__ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) A__ = image_transforms(A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , A , atol=1E-4 ) A__ = model(**A ) A__ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": A__ = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": A__ = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": A__ = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": A__ = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": A__ = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": A__ = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) __UpperCAmelCase =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
337
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
640
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
1
'''simple docstring''' def A_( A : int , A : int): if not isinstance(UpperCamelCase__ , UpperCamelCase__): raise ValueError('iterations must be defined as integers') if not isinstance(UpperCamelCase__ , UpperCamelCase__) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0') if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz') UpperCamelCase = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
3
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : Dict = RoCBertTokenizer _A : Optional[Any] = None _A : Dict = False _A : List[str] = True _A : Optional[int] = filter_non_english def A_ ( self : int ): super().setUp() UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] UpperCamelCase__ = {} UpperCamelCase__ = {} for i, value in enumerate(_a ): UpperCamelCase__ = i UpperCamelCase__ = i UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_a , _a , ensure_ascii=_a ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_a , _a , ensure_ascii=_a ) def A_ ( self : List[str] ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_a , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_a ) , [5, 6, 2, 5, 7, 8] ) def A_ ( self : Tuple ): UpperCamelCase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A_ ( self : Optional[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A_ ( self : List[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : Any ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : str ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : List[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : Any ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCamelCase__ = {} for i, token in enumerate(_a ): UpperCamelCase__ = i UpperCamelCase__ = RoCBertWordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A_ ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A_ ( self : Optional[Any] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A_ ( self : List[str] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A_ ( self : Union[str, Any] ): UpperCamelCase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: UpperCamelCase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def A_ ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCamelCase__ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) UpperCamelCase__ = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False UpperCamelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A_ ( self : Any ): UpperCamelCase__ = ['''的''', '''人''', '''有'''] UpperCamelCase__ = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = True UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = tokenizer_p.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(_a ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) UpperCamelCase__ = False UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = tokenizer_r.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_p.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(_a ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase__ = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) @slow def A_ ( self : str ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.encode('''你好''' , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.encode('''你是谁''' , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCamelCase__ = '''你好,你是谁''' UpperCamelCase__ = tokenizer.tokenize(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_shape_ids(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_pronunciation_ids(_a ) UpperCamelCase__ = tokenizer.prepare_for_model( _a , _a , _a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.encode_plus(_a , add_special_tokens=_a ) self.assertEqual(_a , _a )
240
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_, UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(UpperCAmelCase_, UpperCAmelCase_, bias=UpperCAmelCase_ ) A__ = emb.weight.data return lin_layer def _lowerCamelCase ( UpperCAmelCase_ : Any, UpperCAmelCase_ : str=None ) -> Any: """simple docstring""" A__ = {} for old_key in state_dict.keys(): A__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: A__ = key.replace("moe_layer.experts.0", F"""ffn.experts.expert_{expert_idx}""" ) else: A__ = key.replace("moe_layer.experts.", "ffn.experts.expert_" ) if "gate" in key: A__ = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier" ) if "fc2" and "experts" not in key: A__ = key.replace(".fc2.", ".ffn.fc2." ) if "fc1" and "experts" not in key: A__ = key.replace(".fc1.", ".ffn.fc1." ) if ".encoder_attn." in key: A__ = key.replace(".encoder_attn.", ".cross_attention." ) if "encoder_attn_layer_norm" in key: A__ = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm" ) if "final_layer_norm" in key: A__ = key.replace("final_layer_norm", "ff_layer_norm" ) A__ = state_dict[old_key] return new_dict def _lowerCamelCase ( UpperCAmelCase_ : List[Any], UpperCAmelCase_ : Tuple, UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : List[Any], UpperCAmelCase_ : str = WEIGHTS_NAME ) -> str: """simple docstring""" A__ = [] A__ = 0 os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) for expert in range(UpperCAmelCase_ ): A__ = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(UpperCAmelCase_ ): A__ = torch.load(UpperCAmelCase_ )["model"] remove_ignore_keys_(UpperCAmelCase_ ) A__ = rename_fairseq_keys(UpperCAmelCase_, UpperCAmelCase_ ) A__ = os.path.join( UpperCAmelCase_, weights_name.replace(".bin", F"""-{len(UpperCAmelCase_ )+1:05d}-of-???.bin""" ) ) torch.save(UpperCAmelCase_, UpperCAmelCase_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(UpperCAmelCase_ )[0]].dtype ) # Add the last block A__ = os.path.join(UpperCAmelCase_, weights_name.replace(".bin", F"""-{len(UpperCAmelCase_ )+1:05d}-of-???.bin""" ) ) A__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(UpperCAmelCase_ ) A__ = rename_fairseq_keys(UpperCAmelCase_, UpperCAmelCase_ ) A__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(UpperCAmelCase_ ) == 1: A__ = os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) torch.save(UpperCAmelCase_, UpperCAmelCase_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(UpperCAmelCase_, UpperCAmelCase_ ) # Otherwise, let's build the index A__ = {} for idx, shard in enumerate(UpperCAmelCase_ ): A__ = weights_name.replace(".bin", F"""-{idx+1:05d}-of-{len(UpperCAmelCase_ ):05d}.bin""" ) A__ = os.path.join(UpperCAmelCase_, weights_name.replace(".bin", F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) for key in shard: A__ = shard_file # Add the metadata A__ = {"total_size": total_size} A__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(UpperCAmelCase_, UpperCAmelCase_ ), "w", encoding="utf-8" ) as f: A__ = json.dumps(UpperCAmelCase_, indent=2, sort_keys=UpperCAmelCase_ ) + "\n" f.write(UpperCAmelCase_ ) return metadata, index if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) UpperCamelCase = parser.parse_args() UpperCamelCase , UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
720
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm UpperCamelCase = 2048 UpperCamelCase = 4096 UpperCamelCase = 42 UpperCamelCase = os.environ.pop("""PROCESS_TRAIN""", """false""") UpperCamelCase = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def _lowerCamelCase ( UpperCAmelCase_ : Any ) -> Optional[Any]: """simple docstring""" def choose_first(UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : str=False ): assert isinstance(UpperCAmelCase_, UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: A__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: A__ = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a A__ = {"id": example["id"]} A__ = example["annotations"] A__ = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: A__ = ["yes"] if 1 in yes_no_answer else ["no"] A__ = A__ = [] A__ = A__ = [] A__ = ["<cls>"] else: A__ = ["short"] A__ = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available A__ = ["long"] A__ = choose_first(annotation["long_answer"], is_long_answer=UpperCAmelCase_ ) A__ = [] answer.update(UpperCAmelCase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: A__ = True else: A__ = False A__ = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k], UpperCAmelCase_ ) for k in cols ): raise ValueError("Issue in ID", example["id"] ) return answer def _lowerCamelCase ( UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Any=False ) -> Optional[Any]: """simple docstring""" A__ = _get_single_answer(UpperCAmelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = example["document"]["tokens"] A__ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(UpperCAmelCase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples A__ = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 A__ = example["document"]["tokens"] A__ = answer["start_token"] A__ = answer["end_token"] A__ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 A__ = " ".join(context[start_token:end_token] ) # checking above code if assertion: A__ = doc["is_html"][answer["start_token"] : answer["end_token"]] A__ = doc["token"][answer["start_token"] : answer["end_token"]] A__ = " ".join([old[i] for i in range(len(UpperCAmelCase_ ) ) if not is_html[i]] ) if new != old: print("ID:", example["id"] ) print("New:", UpperCAmelCase_, end="\n" ) print("Old:", UpperCAmelCase_, end="\n\n" ) return { "context": " ".join(UpperCAmelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : List[str]=2048, UpperCAmelCase_ : Union[str, Any]=4096, UpperCAmelCase_ : Optional[int]=True ) -> str: """simple docstring""" A__ = get_context_and_ans(UpperCAmelCase_, assertion=UpperCAmelCase_ ) A__ = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } A__ = tokenizer(example["question"]["text"], out["context"] ).input_ids A__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = [] A__ = [] A__ = input_ids[:q_len] A__ = range(UpperCAmelCase_, len(UpperCAmelCase_ ), max_length - doc_stride ) for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCAmelCase_ ), "end_token": [-100] * len(UpperCAmelCase_ ), "category": category, }, } A__ = out["context"].split() A__ = splitted_context[answer["end_token"]] A__ = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ), add_special_tokens=UpperCAmelCase_, ).input_ids ) A__ = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ), add_special_tokens=UpperCAmelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token A__ = len(tokenizer(UpperCAmelCase_, add_special_tokens=UpperCAmelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 A__ = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive A__ = answer["start_token"] A__ = answer["end_token"] if assertion: A__ = tokenizer.decode(UpperCAmelCase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:", answer["span"] ) print("NEW:", UpperCAmelCase_, end="\n\n" ) if len(UpperCAmelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } A__ = input_ids[:q_len] A__ = range(UpperCAmelCase_, len(UpperCAmelCase_ ), max_length - doc_stride ) A__ = [] A__ = [] A__ = [] A__ = [] # null, yes, no, long, short for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: A__ = start_token - i + q_len A__ = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: A__ = -100 A__ = -100 answers_category.append("null" ) A__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCAmelCase_ ) answers_end_token.append(UpperCAmelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:", example["id"] ) print("New:", tokenizer.decode(UpperCAmelCase_ ) ) print("Old:", tokenizer.decode(UpperCAmelCase_ ), end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _lowerCamelCase ( UpperCAmelCase_ : List[Any], UpperCAmelCase_ : str, UpperCAmelCase_ : Union[str, Any]=2048, UpperCAmelCase_ : Tuple=4096, UpperCAmelCase_ : int=False ) -> List[Any]: """simple docstring""" A__ = get_strided_contexts_and_ans( UpperCAmelCase_, UpperCAmelCase_, doc_stride=UpperCAmelCase_, max_length=UpperCAmelCase_, assertion=UpperCAmelCase_, ) return example def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : str ) -> Optional[Any]: """simple docstring""" with jsonlines.open(UpperCAmelCase_, "a" ) as writer: for example in tqdm(UpperCAmelCase_, total=len(UpperCAmelCase_ ), desc="Saving samples ... " ): A__ = example["labels"] for ids, start, end, cat in zip( example["input_ids"], labels["start_token"], labels["end_token"], labels["category"], ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCamelCase = load_dataset("""natural_questions""") UpperCamelCase = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") UpperCamelCase = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] UpperCamelCase = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCamelCase = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) UpperCamelCase = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
562
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def __magic_name__ ( *_a , **_a ): pass def __magic_name__ ( __snake_case : int ) -> str: lowercase : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class a__ ( unittest.TestCase ): __lowerCAmelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , _a , _a , _a ): lowercase : Optional[int] = DepthEstimationPipeline(model=a_ , image_processor=a_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , _a , _a ): lowercase : List[str] = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , a_ ) import datasets lowercase : Tuple = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase : Any = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , a_ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __magic_name__ ( self ): pass @slow @require_torch def __magic_name__ ( self ): lowercase : Any = """Intel/dpt-large""" lowercase : Optional[int] = pipeline("depth-estimation" , model=a_ ) lowercase : Optional[Any] = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) lowercase : Union[str, Any] = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_6_2 ) @require_torch def __magic_name__ ( self ): self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
361
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : str = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : List[str] = """OwlViTImageProcessor""" UpperCamelCase_ : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Any , a_ : Any=None , a_ : str=None , **a_ : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a_ , ) UpperCAmelCase_ : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Optional[int]=None , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="max_length" , a_ : List[Any]="np" , **a_ : int )-> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(a_ , a_ ) or (isinstance(a_ , a_ ) and not isinstance(text[0] , a_ )): UpperCAmelCase_ : List[str] = [self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )] elif isinstance(a_ , a_ ) and isinstance(text[0] , a_ ): UpperCAmelCase_ : Optional[int] = [] # Maximum number of queries across batch UpperCAmelCase_ : Union[str, Any] = max([len(a_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a_ ) != max_num_queries: UpperCAmelCase_ : str = t + [""" """] * (max_num_queries - len(a_ )) UpperCAmelCase_ : Optional[int] = self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ ) encodings.append(a_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase_ : List[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase_ : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase_ : str = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Union[str, Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Optional[int] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase_ : Union[str, Any] = BatchEncoding() UpperCAmelCase_ : int = input_ids UpperCAmelCase_ : List[str] = attention_mask if query_images is not None: UpperCAmelCase_ : Optional[int] = BatchEncoding() UpperCAmelCase_ : Any = self.image_processor( a_ , return_tensors=a_ , **a_ ).pixel_values UpperCAmelCase_ : Optional[Any] = query_pixel_values if images is not None: UpperCAmelCase_ : str = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: UpperCAmelCase_ : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase_ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def a ( self : Any , *a_ : Optional[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.image_processor.post_process(*a_ , **a_ ) def a ( self : Tuple , *a_ : List[str] , **a_ : Dict )-> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*a_ , **a_ ) def a ( self : Optional[int] , *a_ : Tuple , **a_ : Optional[int] )-> Optional[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*a_ , **a_ ) def a ( self : str , *a_ : Optional[int] , **a_ : str )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def a ( self : str , *a_ : List[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def a ( self : Tuple )-> int: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a_ , ) return self.image_processor_class @property def a ( self : Optional[Any] )-> int: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a_ , ) return self.image_processor
470
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : str ) -> str: SCREAMING_SNAKE_CASE__ : Any =0 def __magic_name__ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __magic_name__ ( self : str ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple =Path(UpperCAmelCase_ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Any =Path(UpperCAmelCase_ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase_ , '''w''' ) ) SCREAMING_SNAKE_CASE__ : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __magic_name__ ( self : Optional[int] ) -> Any: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int =Path(UpperCAmelCase_ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Optional[int] =Path(UpperCAmelCase_ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase_ , '''w''' ) ) SCREAMING_SNAKE_CASE__ : str =AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __magic_name__ ( self : List[str] ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Dict =CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE__ : List[str] =Path(UpperCAmelCase_ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : str =Path(UpperCAmelCase_ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase_ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE__ : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase_ ).to_dict() config_dict.pop('''image_processor_type''' ) SCREAMING_SNAKE_CASE__ : Any =CLIPImageProcessor(**UpperCAmelCase_ ) # save in new folder model_config.save_pretrained(UpperCAmelCase_ ) config.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ : List[str] =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __magic_name__ ( self : List[str] ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] =Path(UpperCAmelCase_ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase_ , '''w''' ) , ) SCREAMING_SNAKE_CASE__ : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __magic_name__ ( self : Any ) -> str: with self.assertRaisesRegex( UpperCAmelCase_ , '''clip-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ : Tuple =AutoImageProcessor.from_pretrained('''clip-base''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: with self.assertRaisesRegex( UpperCAmelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase_ , revision='''aaaaaa''' ) def __magic_name__ ( self : List[str] ) -> List[Any]: with self.assertRaisesRegex( UpperCAmelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE__ : str =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Any =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __magic_name__ ( self : List[Any] ) -> Tuple: try: AutoConfig.register('''custom''' , UpperCAmelCase_ ) AutoImageProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoImageProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[int] =Path(UpperCAmelCase_ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =Path(UpperCAmelCase_ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase_ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase_ , '''w''' ) ) SCREAMING_SNAKE_CASE__ : Any =CustomImageProcessor.from_pretrained(UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __magic_name__ ( self : Union[str, Any] ) -> str: class __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): snake_case_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase_ ) AutoImageProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ : List[Any] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ : List[Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ : str =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_neox""" def __init__( self : List[Any] , __lowercase : Union[str, Any]=5_04_32 , __lowercase : int=61_44 , __lowercase : Tuple=44 , __lowercase : List[str]=64 , __lowercase : str=2_45_76 , __lowercase : Dict="gelu" , __lowercase : Tuple=0.25 , __lowercase : Tuple=1_00_00 , __lowercase : Tuple=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Dict=20_48 , __lowercase : Any=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]=True , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : List[Any]=True , __lowercase : Optional[Any]=None , **__lowercase : Any , ) -> Dict: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Any =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Dict =hidden_act SCREAMING_SNAKE_CASE__ : str =rotary_pct SCREAMING_SNAKE_CASE__ : Optional[Any] =rotary_emb_base SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : str =classifier_dropout SCREAMING_SNAKE_CASE__ : Any =initializer_range SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE__ : Any =use_cache SCREAMING_SNAKE_CASE__ : Tuple =tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple =use_parallel_residual SCREAMING_SNAKE_CASE__ : Union[str, Any] =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE__ : int =self.rope_scaling.get('''type''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.rope_scaling.get('''factor''' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
665
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _a : Union[str, Any] = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) _a : int = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } _a : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : int = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } _a : Optional[int] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : Optional[Any] = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) _a : str = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : Any = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) _a : str = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : Any = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' _a : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' _a : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' _a : Union[str, Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' _a : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' _a : Any = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' _a : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' _a : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' _a : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' _a : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' _a : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' _a : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : str = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' _a : Union[str, Any] = '' _a : Union[str, Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' _a : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _a : str = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def a_ ( __magic_name__ , __magic_name__ ) -> int: """simple docstring""" assert ReadMe.from_string(__magic_name__ , __magic_name__ ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def a_ ( __magic_name__ , __magic_name__ ) -> int: """simple docstring""" with pytest.raises(__magic_name__ , match=re.escape(expected_error.format(path='''root''' ) ) ): snake_case : List[Any] = ReadMe.from_string(__magic_name__ , __magic_name__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __magic_name__ , __magic_name__ ) -> List[Any]: """simple docstring""" with pytest.raises(__magic_name__ , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __magic_name__ ) -> Optional[Any]: """simple docstring""" ReadMe.from_string(__magic_name__ , __magic_name__ , suppress_parsing_errors=__magic_name__ ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def a_ ( __magic_name__ , __magic_name__ ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Tuple = Path(__magic_name__ ) / '''README.md''' with open(__magic_name__ , '''w+''' ) as readme_file: readme_file.write(__magic_name__ ) snake_case : int = ReadMe.from_readme(__magic_name__ , __magic_name__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def a_ ( __magic_name__ , __magic_name__ ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Optional[Any] = Path(__magic_name__ ) / '''README.md''' with open(__magic_name__ , '''w+''' ) as readme_file: readme_file.write(__magic_name__ ) snake_case : Optional[Any] = expected_error.format(path=__magic_name__ ) with pytest.raises(__magic_name__ , match=re.escape(__magic_name__ ) ): snake_case : List[str] = ReadMe.from_readme(__magic_name__ , __magic_name__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __magic_name__ , __magic_name__ ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = Path(__magic_name__ ) / '''README.md''' with open(__magic_name__ , '''w+''' ) as readme_file: readme_file.write(__magic_name__ ) snake_case : Dict = expected_error.format(path=__magic_name__ ) with pytest.raises(__magic_name__ , match=re.escape(__magic_name__ ) ): ReadMe.from_readme(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __magic_name__ ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Optional[int] = Path(__magic_name__ ) / '''README.md''' with open(__magic_name__ , '''w+''' ) as readme_file: readme_file.write(__magic_name__ ) ReadMe.from_readme(__magic_name__ , __magic_name__ , suppress_parsing_errors=__magic_name__ )
598
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class a_ ( unittest.TestCase ): def lowerCAmelCase( self : str ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=UpperCAmelCase__ , ) assert hasattr(self , '''env''' ) def lowerCAmelCase( self : str , UpperCAmelCase__ : str=1 ): """simple docstring""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def lowerCAmelCase( self : int , UpperCAmelCase__ : Optional[Any] ): """simple docstring""" TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def lowerCAmelCase( self : Any ): """simple docstring""" # create estimator snake_case : List[Any] = self.create_estimator() # run training estimator.fit() # result dataframe snake_case : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) snake_case : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCAmelCase__ )
598
1
from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowercase : List[str] =TypeVar('''T''') class SCREAMING_SNAKE_CASE_ ( Generic[T] ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : bool = True ) -> None: A : List[Any] ={} # dictionary of lists A : Optional[int] =directed def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase ) self.adj_list[destination_vertex].append(__UpperCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase ) A : Any =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__UpperCamelCase ) A : Dict =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A : List[Any] =[destination_vertex] A : int =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase ) A : Union[str, Any] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A : Dict =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A : Any =[destination_vertex] A : Optional[Any] =[] return self def __repr__( self : List[str] ) -> str: return pformat(self.adj_list )
707
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = XLMRobertaTokenizer lowercase : Dict = XLMRobertaTokenizerFast lowercase : str = True lowercase : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: A : List[str] ='<pad>' A : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: A : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : str =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True A : Optional[int] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False A : List[Any] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return A : Union[str, Any] =self.get_tokenizer() A : int =self.get_rust_tokenizer() A : List[str] ='I was born in 92000, and this is falsé.' A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.get_rust_tokenizer() A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : Any ='Hello World!' A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: A : Any =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A : int =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: # fmt: off A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
661
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def a ( A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE__ : Tuple = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(A__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Tuple = spark.range(1_0_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : str = Spark(A__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : int = spark.range(1_0 ).repartition(2 ) SCREAMING_SNAKE_CASE__ : List[str] = [1, 0] SCREAMING_SNAKE_CASE__ : Tuple = _generate_iterable_examples(A__ , A__ ) # Reverse the partitions. SCREAMING_SNAKE_CASE__ : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , A__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE__ : Dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Dict = spark.range(1_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : List[str] = SparkExamplesIterable(A__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : str = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: SCREAMING_SNAKE_CASE__ : Optional[int] = lambda A__ : x.reverse() SCREAMING_SNAKE_CASE__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [2, 1, 0] ) SCREAMING_SNAKE_CASE__ : Any = SparkExamplesIterable(A__ ).shuffle_data_sources(A__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Union[str, Any] = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE__ : int = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE__ : Optional[Any] = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : int = spark.range(1_0_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : Dict = Spark(A__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
35
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A : Tuple = 10 def UpperCamelCase_ ( A__ : int , A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' for i in range(A__ , A__ ): if array[i] == target: return i return -1 def UpperCamelCase_ ( A__ : list[int] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Union[str, Any] = len(A__ ) while left <= right: if right - left < precision: return lin_search(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Dict = (left + right) // 3 + 1 lowerCAmelCase_ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase_ : List[str] = one_third - 1 elif array[two_third] < target: lowerCAmelCase_ : Tuple = two_third + 1 else: lowerCAmelCase_ : Tuple = one_third + 1 lowerCAmelCase_ : Any = two_third - 1 else: return -1 def UpperCamelCase_ ( A__ : int , A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Dict = (left + right) // 3 + 1 lowerCAmelCase_ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(A__ , one_third - 1 , A__ , A__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , A__ , A__ , A__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , A__ , A__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A : List[Any] = input("Enter numbers separated by comma:\n").strip() __A : Union[str, Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __A : List[Any] = int(input("Enter the number to be found in the list:\n").strip()) __A : str = ite_ternary_search(collection, target) __A : Dict = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
275
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path snake_case_ : List[Any] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def A (__A : str=True ) -> Optional[Any]: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=a__ ) ) class __snake_case ( a__ ): UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Optional[int] = None def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Tuple): """simple docstring""" with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = dataset_module_factory(lowerCamelCase_ , cache_dir=lowerCamelCase_) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=lowerCamelCase_) UpperCAmelCase_ = builder_cls( cache_dir=lowerCamelCase_ , config_name=lowerCamelCase_ , hash=dataset_module.hash , ) UpperCAmelCase_ = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCamelCase_).replace(os.sep , '''/'''), config.DATASET_INFO_FILENAME, ]) UpperCAmelCase_ = cached_path(lowerCamelCase_ , cache_dir=lowerCamelCase_) self.assertTrue(os.path.exists(lowerCamelCase_)) @pytest.mark.integration def A (__A : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' UpperCAmelCase_ = dataset_module_factory('''wikipedia''' , cache_dir=__A ) UpperCAmelCase_ = import_main_class(dataset_module.module_path ) UpperCAmelCase_ = builder_cls( cache_dir=__A , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ = None builder_instance.download_and_prepare() UpperCAmelCase_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def A (__A : List[Any] ) -> int: """simple docstring""" UpperCAmelCase_ = dataset_module_factory('''wikipedia''' , cache_dir=__A ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=__A ) UpperCAmelCase_ = builder_cls( cache_dir=__A , config_name='''20220301.frr''' , hash=dataset_module.hash , ) UpperCAmelCase_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(__A , __A ) assert "train" in ds assert isinstance(ds['''train'''] , __A ) assert next(iter(ds['''train'''] ) )
710
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor snake_case_ : Dict = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : str , *_snake_case : Optional[Any] , **_snake_case : Optional[Any]): """simple docstring""" warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
169
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: if "cls_token" in name: UpperCAmelCase_ = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: UpperCAmelCase_ = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: UpperCAmelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: UpperCAmelCase_ = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCAmelCase_ = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: UpperCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCAmelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCAmelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCAmelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "qkv" in key: UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = int(key_split[1] ) if "decoder_blocks" in key: UpperCAmelCase_ = config.decoder_hidden_size UpperCAmelCase_ = "decoder.decoder_layers." if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] elif "bias" in key: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = config.hidden_size UpperCAmelCase_ = "vit.encoder.layer." if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] elif "bias" in key: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = val return orig_state_dict def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ = ViTMAEConfig() if "large" in checkpoint_url: UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 elif "huge" in checkpoint_url: UpperCAmelCase_ = 14 UpperCAmelCase_ = 1280 UpperCAmelCase_ = 5120 UpperCAmelCase_ = 32 UpperCAmelCase_ = 16 UpperCAmelCase_ = ViTMAEForPreTraining(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] UpperCAmelCase_ = ViTMAEImageProcessor(size=config.image_size ) UpperCAmelCase_ = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" UpperCAmelCase_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) UpperCAmelCase_ = ViTMAEImageProcessor(size=config.image_size ) UpperCAmelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) UpperCAmelCase_ = model(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = outputs.logits if "large" in checkpoint_url: UpperCAmelCase_ = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: UpperCAmelCase_ = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: UpperCAmelCase_ = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
579
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=None , lowerCAmelCase=None ): if not conversation_id: UpperCAmelCase_ = uuid.uuida() if past_user_inputs is None: UpperCAmelCase_ = [] if generated_responses is None: UpperCAmelCase_ = [] UpperCAmelCase_ = conversation_id UpperCAmelCase_ = past_user_inputs UpperCAmelCase_ = generated_responses UpperCAmelCase_ = text def __eq__( self , lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) UpperCAmelCase_ = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCAmelCase_ = text def A__ ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCAmelCase_ = None def A__ ( self , lowerCAmelCase ): self.generated_responses.append(lowerCAmelCase ) def A__ ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): UpperCAmelCase_ = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCAmelCase_ = "user" if is_user else "bot" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( lowercase__, r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ', ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) if self.tokenizer.pad_token_id is None: UpperCAmelCase_ = self.tokenizer.eos_token def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = {} if min_length_for_response is not None: UpperCAmelCase_ = min_length_for_response if minimum_tokens is not None: UpperCAmelCase_ = minimum_tokens if "max_length" in generate_kwargs: UpperCAmelCase_ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCAmelCase_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase , lowerCAmelCase=0 , **lowerCAmelCase ): UpperCAmelCase_ = super().__call__(lowerCAmelCase , num_workers=lowerCAmelCase , **lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) == 1: return outputs[0] return outputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=32 ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): UpperCAmelCase_ = self.tokenizer._build_conversation_input_ids(lowerCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCAmelCase_ = self._legacy_parse_and_tokenize(lowerCAmelCase ) if self.framework == "pt": UpperCAmelCase_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCAmelCase_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def A__ ( self , lowerCAmelCase , lowerCAmelCase=10 , **lowerCAmelCase ): UpperCAmelCase_ = generate_kwargs.get("max_length" , self.model.config.max_length ) UpperCAmelCase_ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCAmelCase_ = max_length - minimum_tokens UpperCAmelCase_ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: UpperCAmelCase_ = model_inputs["attention_mask"][:, -trim:] UpperCAmelCase_ = model_inputs.pop("conversation" ) UpperCAmelCase_ = max_length UpperCAmelCase_ = self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) if self.model.config.is_encoder_decoder: UpperCAmelCase_ = 1 else: UpperCAmelCase_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A__ ( self , lowerCAmelCase , lowerCAmelCase=True ): UpperCAmelCase_ = model_outputs["output_ids"] UpperCAmelCase_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) UpperCAmelCase_ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowerCAmelCase ) return conversation def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer.eos_token_id UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) if len(lowerCAmelCase ) > self.tokenizer.model_max_length: UpperCAmelCase_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
579
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =StableDiffusionXLImgaImgPipeline a : Optional[int] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a : int =PipelineTesterMixin.required_optional_params - {"latents"} a : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a : Optional[int] =IMAGE_TO_IMAGE_IMAGE_PARAMS a : List[Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCAmelCase : Optional[int] = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=32 , ) lowerCAmelCase : Optional[Any] = CLIPTextModel(snake_case__ ) lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTextModelWithProjection(snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) lowerCAmelCase : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : int = image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : str = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : str = self.get_dummy_components() lowerCAmelCase : List[str] = StableDiffusionXLImgaImgPipeline(**snake_case__ ) lowerCAmelCase : List[str] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**snake_case__ ) lowerCAmelCase : str = sd_pipe.to(snake_case__ ) lowerCAmelCase : Dict = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Tuple = 3 * ["this is a negative prompt"] lowerCAmelCase : Tuple = negative_prompt lowerCAmelCase : Optional[Any] = 3 * [inputs["prompt"]] lowerCAmelCase : Tuple = sd_pipe(**snake_case__ ) lowerCAmelCase : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : str = 3 * ["this is a negative prompt"] lowerCAmelCase : List[Any] = 3 * [inputs.pop("prompt" )] ( lowerCAmelCase ) : Tuple = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) lowerCAmelCase : List[Any] = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self , snake_case__ , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : Dict = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_inputs(snake_case__ ) lowerCAmelCase : Dict = pipe(**snake_case__ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : List[Any] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=99 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : Tuple=37 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Any=512 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Union[str, Any]=None , ) ->Dict: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_labels a = vocab_size a = hidden_size a = projection_dim a = num_hidden_layers a = num_attention_heads a = intermediate_size a = dropout a = attention_dropout a = max_position_embeddings a = initializer_range a = scope a = bos_token_id def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: a = input_mask.numpy() a , a = input_mask.shape a = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): a = 1 a = 0 a = self.get_config() return config, input_ids, tf.convert_to_tensor(__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = TFBlipTextModel(config=__UpperCAmelCase ) a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , training=__UpperCAmelCase ) a = model(__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (TFBlipTextModel,) if is_tf_available() else () __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" a = BlipTextModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" pass @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFBlipTextModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Any=True ) ->str: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCAmelCase )
117
def _a ( a :list ) -> list: if len(a ) < 2: return collection def circle_sort_util(a :list , a :int , a :int ) -> bool: a = False if low == high: return swapped a = low a = high while left < right: if collection[left] > collection[right]: a , a = ( collection[right], collection[left], ) a = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: a , a = ( collection[right + 1], collection[left], ) a = True a = low + int((high - low) / 2 ) a = circle_sort_util(a , a , a ) a = circle_sort_util(a , mid + 1 , a ) return swapped or left_swap or right_swap a = True while is_not_sorted is True: a = circle_sort_util(a , 0 , len(a ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
117
1
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> np.array: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ya SCREAMING_SNAKE_CASE_ : str = xa for k in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : List[Any] = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
68
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = True , lowercase__ = "arrow" , **lowercase__ , ): """simple docstring""" super().__init__( split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = load_from_cache_file SCREAMING_SNAKE_CASE_ : Optional[int] = file_format SCREAMING_SNAKE_CASE_ : List[Any] = Spark( df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , ) def __lowerCamelCase ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
68
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
282
from __future__ import annotations from collections import Counter from random import random class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = {} def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = {} def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE__ ) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = probability def __lowerCAmelCase ( self : str ): """simple docstring""" return list(self.connections ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict[str, int]: UpperCamelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowercase , _lowercase , _lowercase ) UpperCamelCase = Counter(graph.get_nodes() ) UpperCamelCase = start for _ in range(_lowercase ): UpperCamelCase = graph.transition(_lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
282
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Optional[int] = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
from math import ceil def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = list(range(0 , UpperCamelCase__ ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __SCREAMING_SNAKE_CASE: List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(UpperCamelCase__ ) # Missing blocks __SCREAMING_SNAKE_CASE: Any = [i for i in blocks if i not in device_map_blocks] __SCREAMING_SNAKE_CASE: List[str] = [i for i in device_map_blocks if i not in blocks] if len(UpperCamelCase__ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: int = list(range(UpperCamelCase__ ) ) __SCREAMING_SNAKE_CASE: Optional[int] = int(ceil(n_layers / len(UpperCamelCase__ ) ) ) __SCREAMING_SNAKE_CASE: str = [layers[i : i + n_blocks] for i in range(0 , UpperCamelCase__ , UpperCamelCase__ )] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
146
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): __snake_case : Optional[int] = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): __snake_case : str = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __snake_case : List[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] __snake_case : List[Any] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_lowerCamelCase )-1}''' ) if "norm" in key: __snake_case : Union[str, Any] = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __snake_case : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] __snake_case : List[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_lowerCamelCase )-1}''' ) if "layer_norm1" in key: __snake_case : Optional[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: __snake_case : Any = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 __snake_case : Optional[int] = key[key.find("""block""" ) + len("""block""" )] __snake_case : Optional[Any] = key.replace(F'''block{idx}''' , F'''block.{int(_lowerCamelCase )-1}''' ) if "attn.q" in key: __snake_case : List[str] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: __snake_case : Union[str, Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: __snake_case : List[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: __snake_case : str = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: __snake_case : Union[str, Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: __snake_case : List[str] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: __snake_case : Any = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) __snake_case : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __snake_case : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] __snake_case : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_lowerCamelCase )-1}''' ) if "bot_conv" in key: __snake_case : Dict = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: __snake_case : List[str] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: __snake_case : Optional[int] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: __snake_case : Union[str, Any] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: __snake_case : List[Any] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: __snake_case : List[Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: __snake_case : Dict = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): __snake_case : Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) __snake_case : int = value return new_state_dict def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __snake_case : Optional[int] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) __snake_case : int = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict __snake_case : str = kv_weight[ : config.hidden_sizes[i], : ] __snake_case : Dict = kv_bias[: config.hidden_sizes[i]] __snake_case : List[Any] = kv_weight[ config.hidden_sizes[i] :, : ] __snake_case : List[str] = kv_bias[config.hidden_sizes[i] :] def _a ( ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : str = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __snake_case : List[Any] = GLPNImageProcessor() # prepare image __snake_case : str = prepare_img() __snake_case : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys __snake_case : Any = rename_keys(_lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict __snake_case : Any = GLPNForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass __snake_case : Optional[Any] = model(_lowerCamelCase ) __snake_case : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __snake_case : Any = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: __snake_case : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) __snake_case : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) __UpperCamelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = DownBlockaD # noqa F405 UpperCamelCase_ : Optional[int] = '''down''' def lowercase ( self : Union[str, Any] ) -> int: __snake_case = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ResnetDownsampleBlockaD # noqa F405 UpperCamelCase_ : str = '''down''' def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = AttnDownBlockaD # noqa F405 UpperCamelCase_ : int = '''down''' def lowercase ( self : str ) -> int: __snake_case = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = CrossAttnDownBlockaD # noqa F405 UpperCamelCase_ : Optional[int] = '''down''' def lowercase ( self : List[Any] ) -> Dict: __snake_case , __snake_case = super().prepare_init_args_and_inputs_for_common() __snake_case = 32 return init_dict, inputs_dict def lowercase ( self : Union[str, Any] ) -> Tuple: __snake_case = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = SimpleCrossAttnDownBlockaD # noqa F405 UpperCamelCase_ : Dict = '''down''' @property def lowercase ( self : Tuple ) -> Optional[Any]: return super().get_dummy_input(include_encoder_hidden_states=A_ ) def lowercase ( self : List[str] ) -> Union[str, Any]: __snake_case , __snake_case = super().prepare_init_args_and_inputs_for_common() __snake_case = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = SkipDownBlockaD # noqa F405 UpperCamelCase_ : Dict = '''down''' @property def lowercase ( self : Optional[int] ) -> Dict: return super().get_dummy_input(include_skip_sample=A_ ) def lowercase ( self : Any ) -> Dict: __snake_case = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = AttnSkipDownBlockaD # noqa F405 UpperCamelCase_ : List[str] = '''down''' @property def lowercase ( self : Union[str, Any] ) -> Tuple: return super().get_dummy_input(include_skip_sample=A_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __snake_case = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = DownEncoderBlockaD # noqa F405 UpperCamelCase_ : Optional[int] = '''down''' @property def lowercase ( self : Dict ) -> Any: return super().get_dummy_input(include_temb=A_ ) def lowercase ( self : Dict ) -> int: __snake_case = { '''in_channels''': 32, '''out_channels''': 32, } __snake_case = self.dummy_input return init_dict, inputs_dict def lowercase ( self : Optional[int] ) -> Optional[Any]: __snake_case = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = AttnDownEncoderBlockaD # noqa F405 UpperCamelCase_ : Union[str, Any] = '''down''' @property def lowercase ( self : Tuple ) -> Dict: return super().get_dummy_input(include_temb=A_ ) def lowercase ( self : Any ) -> Optional[Any]: __snake_case = { '''in_channels''': 32, '''out_channels''': 32, } __snake_case = self.dummy_input return init_dict, inputs_dict def lowercase ( self : int ) -> str: __snake_case = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = UNetMidBlockaD # noqa F405 UpperCamelCase_ : Any = '''mid''' def lowercase ( self : List[str] ) -> Dict: __snake_case = { '''in_channels''': 32, '''temb_channels''': 128, } __snake_case = self.dummy_input return init_dict, inputs_dict def lowercase ( self : Dict ) -> Union[str, Any]: __snake_case = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = UNetMidBlockaDCrossAttn # noqa F405 UpperCamelCase_ : Tuple = '''mid''' def lowercase ( self : Any ) -> str: __snake_case , __snake_case = super().prepare_init_args_and_inputs_for_common() __snake_case = 32 return init_dict, inputs_dict def lowercase ( self : int ) -> Optional[int]: __snake_case = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCamelCase_ : Optional[int] = '''mid''' @property def lowercase ( self : Dict ) -> Optional[Any]: return super().get_dummy_input(include_encoder_hidden_states=A_ ) def lowercase ( self : List[str] ) -> List[Any]: __snake_case , __snake_case = super().prepare_init_args_and_inputs_for_common() __snake_case = 32 return init_dict, inputs_dict def lowercase ( self : Optional[Any] ) -> List[str]: __snake_case = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = UpBlockaD # noqa F405 UpperCamelCase_ : str = '''up''' @property def lowercase ( self : Any ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def lowercase ( self : int ) -> Optional[Any]: __snake_case = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = ResnetUpsampleBlockaD # noqa F405 UpperCamelCase_ : int = '''up''' @property def lowercase ( self : str ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def lowercase ( self : Optional[Any] ) -> Any: __snake_case = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = CrossAttnUpBlockaD # noqa F405 UpperCamelCase_ : Dict = '''up''' @property def lowercase ( self : List[Any] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def lowercase ( self : Optional[int] ) -> Optional[Any]: __snake_case , __snake_case = super().prepare_init_args_and_inputs_for_common() __snake_case = 32 return init_dict, inputs_dict def lowercase ( self : List[Any] ) -> int: __snake_case = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 UpperCamelCase_ : Any = '''up''' @property def lowercase ( self : str ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=A_ , include_encoder_hidden_states=A_ ) def lowercase ( self : str ) -> str: __snake_case , __snake_case = super().prepare_init_args_and_inputs_for_common() __snake_case = 32 return init_dict, inputs_dict def lowercase ( self : int ) -> Optional[int]: __snake_case = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = AttnUpBlockaD # noqa F405 UpperCamelCase_ : Optional[int] = '''up''' @property def lowercase ( self : Union[str, Any] ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowercase ( self : str ) -> str: __snake_case = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = SkipUpBlockaD # noqa F405 UpperCamelCase_ : Any = '''up''' @property def lowercase ( self : Optional[int] ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def lowercase ( self : Union[str, Any] ) -> str: __snake_case = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = AttnSkipUpBlockaD # noqa F405 UpperCamelCase_ : str = '''up''' @property def lowercase ( self : Union[str, Any] ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=A_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __snake_case = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = UpDecoderBlockaD # noqa F405 UpperCamelCase_ : Tuple = '''up''' @property def lowercase ( self : List[str] ) -> Optional[int]: return super().get_dummy_input(include_temb=A_ ) def lowercase ( self : int ) -> Any: __snake_case = {'''in_channels''': 32, '''out_channels''': 32} __snake_case = self.dummy_input return init_dict, inputs_dict def lowercase ( self : List[str] ) -> Union[str, Any]: __snake_case = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(A_ ) class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = AttnUpDecoderBlockaD # noqa F405 UpperCamelCase_ : Any = '''up''' @property def lowercase ( self : List[Any] ) -> str: return super().get_dummy_input(include_temb=A_ ) def lowercase ( self : Optional[Any] ) -> Dict: __snake_case = {'''in_channels''': 32, '''out_channels''': 32} __snake_case = self.dummy_input return init_dict, inputs_dict def lowercase ( self : List[str] ) -> Any: __snake_case = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(A_ )
93
"""simple docstring""" import re def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''') if match := re.search(snake_case, snake_case): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
93
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') UpperCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : lowerCAmelCase_ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase_ = field( default=A , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase_ = field( default=A , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) lowerCAmelCase_ = field(default=A , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase_ = field(default=A , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase_ = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase_ = field(default=3_2 , metadata={"help": "The size of the square patches to use for masking."} ) lowerCAmelCase_ = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) lowerCAmelCase_ = field( default=A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase_ = field( default=A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case ( self : Tuple ): """simple docstring""" __lowercase ={} if self.train_dir is not None: __lowercase =self.train_dir if self.validation_dir is not None: __lowercase =self.validation_dir __lowercase =data_files if data_files else None @dataclass class lowerCAmelCase : lowerCAmelCase_ = field( default=A , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) lowerCAmelCase_ = field( default=A , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(A )} , ) lowerCAmelCase_ = field( default=A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase_ = field( default=A , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCAmelCase_ = field( default=A , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) lowerCAmelCase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase_ = field(default=A , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase_ = field( default=A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase_ = field( default=A , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) lowerCAmelCase_ = field( default=A , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) lowerCAmelCase_ = field( default=A , metadata={"help": "Stride to use for the encoder."} , ) class lowerCAmelCase : def __init__( self : int , __lowercase : int=192 , __lowercase : Dict=32 , __lowercase : Any=4 , __lowercase : Any=0.6 ): """simple docstring""" __lowercase =input_size __lowercase =mask_patch_size __lowercase =model_patch_size __lowercase =mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) __lowercase =self.input_size // self.mask_patch_size __lowercase =self.mask_patch_size // self.model_patch_size __lowercase =self.rand_size**2 __lowercase =int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : str ): """simple docstring""" __lowercase =np.random.permutation(self.token_count )[: self.mask_count] __lowercase =np.zeros(self.token_count , dtype=__lowercase ) __lowercase =1 __lowercase =mask.reshape((self.rand_size, self.rand_size) ) __lowercase =mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' __lowercase =torch.stack([example['pixel_values'] for example in examples] ) __lowercase =torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __UpperCamelCase ( ): '''simple docstring''' __lowercase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim', lowercase__, lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase =training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __lowercase =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __lowercase =load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, lowercase__ ) and data_args.train_val_split > 0.0: __lowercase =ds['train'].train_test_split(data_args.train_val_split ) __lowercase =split['train'] __lowercase =split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __lowercase =AutoConfig.from_pretrained(model_args.config_name_or_path, **lowercase__ ) elif model_args.model_name_or_path: __lowercase =AutoConfig.from_pretrained(model_args.model_name_or_path, **lowercase__ ) else: __lowercase =CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase__, 'decoder_type' ): __lowercase ='simmim' # adapt config __lowercase =model_args.image_size if model_args.image_size is not None else config.image_size __lowercase =model_args.patch_size if model_args.patch_size is not None else config.patch_size __lowercase =( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __lowercase =AutoImageProcessor.from_pretrained(model_args.image_processor_name, **lowercase__ ) elif model_args.model_name_or_path: __lowercase =AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **lowercase__ ) else: __lowercase ={ conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __lowercase =IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __lowercase =AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowercase__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowercase =AutoModelForMaskedImageModeling.from_config(lowercase__ ) if training_args.do_train: __lowercase =ds['train'].column_names else: __lowercase =ds['validation'].column_names if data_args.image_column_name is not None: __lowercase =data_args.image_column_name elif "image" in column_names: __lowercase ='image' elif "img" in column_names: __lowercase ='img' else: __lowercase =column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __lowercase =Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator __lowercase =MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(lowercase__ : List[Any] ): __lowercase =[transforms(lowercase__ ) for image in examples[image_column_name]] __lowercase =[mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowercase =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowercase =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Initialize our trainer __lowercase =Trainer( model=lowercase__, args=lowercase__, train_dataset=ds['train'] if training_args.do_train else None, eval_dataset=ds['validation'] if training_args.do_eval else None, tokenizer=lowercase__, data_collator=lowercase__, ) # Training if training_args.do_train: __lowercase =None if training_args.resume_from_checkpoint is not None: __lowercase =training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase =last_checkpoint __lowercase =trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train', train_result.metrics ) trainer.save_metrics('train', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase =trainer.evaluate() trainer.log_metrics('eval', lowercase__ ) trainer.save_metrics('eval', lowercase__ ) # Write model card and (optionally) push to hub __lowercase ={ 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) if __name__ == "__main__": main()
119
'''simple docstring''' def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : Tuple ): '''simple docstring''' __lowercase =[0 for i in range(r + 1 )] # nc0 = 1 __lowercase =1 for i in range(1, n + 1 ): # to compute current row from previous row. __lowercase =min(lowercase__, lowercase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
119
1
"""simple docstring""" import baseaa def __magic_name__ ( lowercase ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def __magic_name__ ( lowercase ): return baseaa.baadecode(lowercase ).decode("""utf-8""" ) if __name__ == "__main__": _UpperCAmelCase = """Hello World!""" _UpperCAmelCase = baseaa_encode(test) print(encoded) _UpperCAmelCase = baseaa_decode(encoded) print(decoded)
36
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> list[int]: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCAmelCase = i + 1 else: _UpperCAmelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
32
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase_ = logging.getLogger(__name__) def _UpperCAmelCase ( _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : int = 10 , _lowerCamelCase : int = 2 ) -> Optional[int]: def get_dataset(_lowerCamelCase : Union[str, Any] ): _lowerCAmelCase : Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCAmelCase : str = get_dataset(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_dataset(_lowerCamelCase ) _lowerCAmelCase : int = DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , batch_size=_lowerCamelCase , num_workers=4 ) _lowerCAmelCase : str = DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , batch_size=_lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Any=None ) -> List[str]: _lowerCAmelCase : List[Any] = [] for epoch in range(_lowerCamelCase ): # Train quickly model.train() for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase : Dict = batch _lowerCAmelCase : List[str] = model(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = torch.nn.functional.mse_loss(_lowerCamelCase , _lowerCamelCase ) accelerator.backward(_lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class a_ (nn.Module ): def __init__( self ): super().__init__() _lowerCAmelCase : str = nn.Parameter(torch.randn(1 ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCamelCase ( self , snake_case_ ): return x * self.a + self.b class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _lowerCAmelCase : Tuple = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = dummy_dataloaders() _lowerCAmelCase : Union[str, Any] = ProjectConfiguration(total_limit=1 , project_dir=snake_case_ , automatic_checkpoint_naming=snake_case_ ) # Train baseline _lowerCAmelCase : List[Any] = Accelerator(project_config=snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _lowerCAmelCase : int = DummyModel() _lowerCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase , _lowerCAmelCase : str = dummy_dataloaders() # Train baseline _lowerCAmelCase : Tuple = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial _lowerCAmelCase : Union[str, Any] = os.path.join(snake_case_ , """initial""" ) accelerator.save_state(snake_case_ ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : List[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Dict = optimizer.state_dict() _lowerCAmelCase : Optional[int] = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) _lowerCAmelCase : List[str] = DummyModel() _lowerCAmelCase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase , _lowerCAmelCase : Dict = dummy_dataloaders() _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(snake_case_ ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Optional[int] = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything _lowerCAmelCase : str = os.path.join(snake_case_ , """checkpoint""" ) accelerator.save_state(snake_case_ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case_ ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : str = model.a.item(), model.b.item() _lowerCAmelCase : Any = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _lowerCAmelCase : str = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = dummy_dataloaders() _lowerCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline _lowerCAmelCase : List[Any] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() ((_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = model.a.item(), model.b.item() _lowerCAmelCase : List[Any] = optimizer.state_dict() _lowerCAmelCase : Optional[Any] = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() # Train partially set_seed(4_2 ) _lowerCAmelCase : List[str] = DummyModel() _lowerCAmelCase : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = dummy_dataloaders() _lowerCAmelCase : List[str] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case_ ) _lowerCAmelCase : Optional[int] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_0""" ) ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Union[str, Any] = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = torch.tensor([1, 2, 3] ) _lowerCAmelCase : Optional[Any] = torch.tensor([2, 3, 4] ) _lowerCAmelCase : Union[str, Any] = DummyModel() _lowerCAmelCase : Tuple = torch.optim.Adam(net.parameters() ) _lowerCAmelCase : str = Accelerator() with self.assertRaises(snake_case_ ) as ve: accelerator.register_for_checkpointing(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _lowerCAmelCase : List[str] = DummyModel() _lowerCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : Tuple = torch.optim.lr_scheduler.StepLR(snake_case_ , step_size=1 , gamma=0.99 ) _lowerCAmelCase , _lowerCAmelCase : int = dummy_dataloaders() _lowerCAmelCase : Dict = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline _lowerCAmelCase : int = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() _lowerCAmelCase : Union[str, Any] = scheduler.state_dict() train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(snake_case_ , scheduler.state_dict() ) def __UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _lowerCAmelCase : str = DummyModel() _lowerCAmelCase : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ , total_limit=2 ) # Train baseline _lowerCAmelCase : Optional[Any] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) _lowerCAmelCase : Any = accelerator.prepare(snake_case_ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase_ = """/tmp/accelerate/state_checkpointing""" UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters(), lr=1e-3) UpperCamelCase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase_ = group["""params"""][0].device break assert param_device.type == accelerator.device.type UpperCamelCase_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: UpperCamelCase_ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: UpperCamelCase_ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
384
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" A__ = 42 A__ = 42 class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase ): lowerCamelCase__ = [[] for _ in range(_lowerCAmelCase )] lowerCamelCase__ = size def __getitem__( self , _lowerCAmelCase ): return iter(self._graph[vertex] ) @property def __magic_name__ ( self ): return self._size def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(_lowerCAmelCase , _lowerCAmelCase ) ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = deque([start_vertex] ) lowerCamelCase__ = [None] * self.size lowerCamelCase__ = 0 while queue: lowerCamelCase__ = queue.popleft() lowerCamelCase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase__ = current_distance + edge.weight lowerCamelCase__ = distances[edge.destination_vertex] if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
360
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __UpperCamelCase ( a, a=False) ->Optional[Any]: lowerCamelCase__ = OmegaConf.load(a) if display: print(yaml.dump(OmegaConf.to_container(a))) return config def __UpperCamelCase ( a, a=None, a=None) ->List[Any]: if conf_path is None: lowerCamelCase__ = "./model_checkpoints/vqgan_only.yaml" lowerCamelCase__ = load_config(a, display=a) lowerCamelCase__ = VQModel(**config.model.params) if ckpt_path is None: lowerCamelCase__ = "./model_checkpoints/vqgan_only.pt" lowerCamelCase__ = torch.load(a, map_location=a) if ".ckpt" in ckpt_path: lowerCamelCase__ = sd["state_dict"] model.load_state_dict(a, strict=a) model.to(a) del sd return model def __UpperCamelCase ( a, a) ->int: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model.encode(a) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}") lowerCamelCase__ = model.decode(a) return xrec def __UpperCamelCase ( a, a=False) ->Dict: lowerCamelCase__ , lowerCamelCase__ = string.rsplit(".", 1) if reload: lowerCamelCase__ = importlib.import_module(a) importlib.reload(a) return getattr(importlib.import_module(a, package=a), cls) def __UpperCamelCase ( a) ->int: if "target" not in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", {})) def __UpperCamelCase ( a, a, a=True, a=True) ->Optional[Any]: lowerCamelCase__ = instantiate_from_config(a) if sd is not None: model.load_state_dict(a) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __UpperCamelCase ( a, a, a, a) ->Dict: # load the specified checkpoint if ckpt: lowerCamelCase__ = torch.load(a, map_location="cpu") lowerCamelCase__ = pl_sd["global_step"] print(f"loaded model from global step {global_step}.") else: lowerCamelCase__ = {"state_dict": None} lowerCamelCase__ = None lowerCamelCase__ = load_model_from_config(config.model, pl_sd["state_dict"], gpu=a, eval_mode=a)["model"] return model, global_step
360
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ="""▁""" __UpperCAmelCase ={"""vocab_file""": """spiece.model"""} __UpperCAmelCase ={ """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } __UpperCAmelCase ={ """google/reformer-crime-and-punishment""": 52_4288, } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : int = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=[] , UpperCamelCase__ = None , **UpperCamelCase__ , ): '''simple docstring''' A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def lowercase_ ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def lowercase_ ( self ): '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , UpperCamelCase__ ): '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return self.sp_model.piece_to_id(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if index < self.sp_model.get_piece_size(): A__ = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = [] A__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token A__ = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
337
"""simple docstring""" import os import pytest from attr import dataclass __UpperCAmelCase ="""us-east-1""" # defaults region @dataclass class lowerCAmelCase__ : lowercase__ : str lowercase__ : List[Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" lowercase__ : Union[str, Any] = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_00, """save_steps""": 55_00, } lowercase__ : List[str] = {**hyperparameters, """max_steps""": 10_00} @property def lowercase_ ( self ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase_ ( self ): '''simple docstring''' return f"""{self.framework}-transfromers-test""" @property def lowercase_ ( self ): '''simple docstring''' return f"""./tests/sagemaker/scripts/{self.framework}""" @property def lowercase_ ( self ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def __a ( A ) -> int: '''simple docstring''' A__ = SageMakerTestEnvironment(framework=request.cls.framework )
337
1
import collections import os import re from pathlib import Path _snake_case = "src/transformers" # Matches is_xxx_available() _snake_case = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _snake_case = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _snake_case = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _snake_case = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _snake_case = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _snake_case = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _snake_case = re.compile(r"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _snake_case = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _snake_case = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _snake_case = re.compile(r"^\s*try:") # Catches a line with else: _snake_case = re.compile(r"^\s*else:") def lowerCAmelCase_ ( snake_case_ ): if _re_test_backend.search(snake_case_ ) is None: return None _A : Union[str, Any] = [b[0] for b in _re_backend.findall(snake_case_ )] backends.sort() return "_and_".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): with open(snake_case_,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : str = f.readlines() _A : Any = 0 while line_index < len(snake_case_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case_ ): return None # First grab the objects without a specific backend in _import_structure _A : Optional[int] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _A : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case_ ): _A : Optional[int] = _re_one_line_import_struct.search(snake_case_ ).groups()[0] _A : Optional[Any] = re.findall(r"""\[([^\]]+)\]""",snake_case_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _A : Union[str, Any] = _re_import_struct_key_value.search(snake_case_ ) if single_line_import_search is not None: _A : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _A : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _A : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _A : Dict = lines[line_index] if _re_import_struct_add_one.search(snake_case_ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case_ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case_ ) is not None: _A : int = _re_import_struct_add_many.search(snake_case_ ).groups()[0].split(""", """ ) _A : Any = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_between_brackets.search(snake_case_ ) is not None: _A : List[str] = _re_between_brackets.search(snake_case_ ).groups()[0].split(""", """ ) _A : Union[str, Any] = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_quote_object.search(snake_case_ ) is not None: objects.append(_re_quote_object.search(snake_case_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _A : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A : Dict = [] while ( line_index < len(snake_case_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _A : Dict = lines[line_index] _A : Tuple = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _A : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case_ ): # If the line is an if is_backend_available, we grab all objects associated. _A : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _A : Dict = lines[line_index] _A : Any = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _A : Optional[int] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCAmelCase_ ( snake_case_,snake_case_ ): def find_duplicates(snake_case_ ): return [k for k, v in collections.Counter(snake_case_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A : Any = [] for key in import_dict_objects.keys(): _A : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A : str = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowerCAmelCase_ ( ): _A : str = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: _A : List[str] = os.path.join(snake_case_,"""__init__.py""" ) _A : Optional[int] = parse_init(snake_case_ ) if objects is not None: _A : List[Any] = analyze_results(*snake_case_ ) if len(snake_case_ ) > 0: _A : str = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case_ ) ) if len(snake_case_ ) > 0: raise ValueError("""\n\n""".join(snake_case_ ) ) def lowerCAmelCase_ ( ): _A : Any = [] for path, directories, files in os.walk(snake_case_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(snake_case_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case_ ) / folder).glob("""*.py""" ) ) ) == 0: continue _A : Union[str, Any] = str((Path(snake_case_ ) / folder).relative_to(snake_case_ ) ) _A : List[Any] = short_path.replace(os.path.sep,""".""" ) submodules.append(snake_case_ ) for fname in files: if fname == "__init__.py": continue _A : Optional[int] = str((Path(snake_case_ ) / fname).relative_to(snake_case_ ) ) _A : str = short_path.replace(""".py""","""""" ).replace(os.path.sep,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(snake_case_ ) return submodules _snake_case = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def lowerCAmelCase_ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A : List[Any] = direct_transformers_import(snake_case_ ) _A : Tuple = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(snake_case_,"""__init__.py""" ),"""r""" ) as f: _A : Optional[int] = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""",snake_case_ ) ) ) _A : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(snake_case_ ) > 0: _A : Dict = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
'''simple docstring''' import numpy as np def lowercase__ ( __lowercase : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowercase__ ( __lowercase : np.array ) -> np.array: """simple docstring""" return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
399
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase__ ( __lowercase : Any ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def lowercase__ ( __lowercase : List[Any] ) -> List[str]: """simple docstring""" class snake_case : """simple docstring""" def __init__( self : Optional[Any] , __A : Any ): __UpperCamelCase = metric_id class snake_case : """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =[MetricMock(__lowerCamelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowerCamelCase ( self : str ): return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def lowercase__ ( __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[int] ) -> Optional[int]: """simple docstring""" if "tmp_path" in args: __UpperCamelCase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__lowercase , match='https://huggingface.co/docs/evaluate' ): func(*__lowercase )
399
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: if "://" in dataset_path: _lowercase : Optional[Any] = dataset_path.split('://' )[1] return dataset_path def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Dict = not is_remote_filesystem(SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) ) else: fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowercase : List[Any] = None _lowercase : Union[str, Any] = None _lowercase : List[Any] = threading.Lock()
718
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
0
"""simple docstring""" def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Dict ) -> int: if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) a_ : Union[str, Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__UpperCAmelCase ) ) return round(__UpperCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
473
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt"""} __lowerCamelCase : str = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __lowerCamelCase : Optional[Any] = { """openbmb/cpm-ant-10b""": 1024, } def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = collections.OrderedDict() with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: lowerCamelCase_ : Tuple = reader.readlines() for index, token in enumerate(__UpperCAmelCase ): lowerCamelCase_ : str = token.rstrip('''\n''' ) lowerCamelCase_ : Any = index return vocab class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Dict=200 ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : List[Any] = unk_token lowerCamelCase_ : List[str] = max_input_chars_per_word def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[str] = list(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ : int = 0 lowerCamelCase_ : int = [] while start < len(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = len(UpperCamelCase_ ) lowerCamelCase_ : int = None while start < end: lowerCamelCase_ : Optional[int] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = end return sub_tokens class lowerCAmelCase__ ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] A = False def __init__( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]="<d>" , UpperCamelCase_ : Dict="</d>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : Tuple="</s>" , UpperCamelCase_ : Any="<pad>" , UpperCamelCase_ : Union[str, Any]="<unk>" , UpperCamelCase_ : Optional[Any]="</n>" , UpperCamelCase_ : str="</_>" , UpperCamelCase_ : str="left" , **UpperCamelCase_ : Dict , ) -> List[Any]: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=UpperCamelCase_ , eod_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , line_token=UpperCamelCase_ , space_token=UpperCamelCase_ , padding_side=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ : List[str] = bod_token lowerCamelCase_ : List[str] = eod_token lowerCamelCase_ : Any = load_vocab(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = self.encoder[space_token] lowerCamelCase_ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) lowerCamelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCamelCase_ : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self.encoder[self.bod_token] @property def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" return self.encoder[self.eod_token] @property def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return self.encoder["\n"] @property def __UpperCamelCase ( self : str ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = [] for x in jieba.cut(UpperCamelCase_ , cut_all=UpperCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase_ ) ) return output_tokens def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ : str = [i for i in token_ids if i >= 0] lowerCamelCase_ : Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> int: """simple docstring""" return token in self.encoder def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" return "".join(UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Any ) -> Dict: """simple docstring""" return self.decoder.get(UpperCamelCase_ , self.unk_token ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCamelCase_ : Optional[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCamelCase_ : Optional[Any] = 0 if " " in self.encoder: lowerCamelCase_ : Tuple = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ : List[str] = self.encoder['''\n'''] del self.encoder["\n"] lowerCamelCase_ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowerCamelCase_ : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) return [1] + ([0] * len(UpperCamelCase_ ))
501
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCAmelCase =["text", "image", "audio"] def _A ( _a : List[str] ): """simple docstring""" A = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(_a , _a ): inputs.append(create_inputs(_a ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def _A ( _a : List ): """simple docstring""" A = [] for output in outputs: if isinstance(_a , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_a , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_a , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class lowerCamelCase__ : '''simple docstring''' def UpperCamelCase__ ( self ) -> Optional[int]: self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) A = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) A = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCamelCase__ ( self ) -> Union[str, Any]: A = create_inputs(self.tool.inputs ) A = self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: A = [outputs] self.assertListEqual(output_types(lowerCamelCase_ ) ,self.tool.outputs ) def UpperCamelCase__ ( self ) -> Tuple: self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def UpperCamelCase__ ( self ) -> int: A = create_inputs(self.tool.inputs ) A = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): A = [outputs] self.assertEqual(len(lowerCamelCase_ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ ,self.tool.outputs ): A = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ ,lowerCamelCase_ ) ) def UpperCamelCase__ ( self ) -> Tuple: A = create_inputs(self.tool.inputs ) A = [] for _input, input_type in zip(lowerCamelCase_ ,self.tool.inputs ): if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error A = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): A = [outputs] self.assertEqual(len(lowerCamelCase_ ) ,len(self.tool.outputs ) )
255
"""simple docstring""" import numpy as np from PIL import Image def _A ( _a : np.ndarray , _a : int , _a : int ): """simple docstring""" A = np.array(_a ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) A = 0 A = 0 A = 0 A = 0 # compute the shape of the output matrix A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A = 0 A = 0 return updated_arr def _A ( _a : np.ndarray , _a : int , _a : int ): """simple docstring""" A = np.array(_a ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) A = 0 A = 0 A = 0 A = 0 # compute the shape of the output matrix A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A = 0 A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image UpperCAmelCase =Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
255
1
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( enum.Enum ): snake_case_ = 0 snake_case_ = 1 @add_end_docstrings(__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): snake_case_ = """generated""" def __init__( self : List[str] ,*A : Tuple ,**A : str ): '''simple docstring''' super().__init__(*A ,**A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __lowercase ( self : Optional[Any] ,A : List[Any]=None ,A : Any=None ,A : Optional[int]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Any]=None ,**A : str ,): '''simple docstring''' UpperCAmelCase__ : Any = {} if truncation is not None: UpperCAmelCase__ : Any = truncation UpperCAmelCase__ : Union[str, Any] = generate_kwargs UpperCAmelCase__ : Dict = {} if return_tensors is not None and return_type is None: UpperCAmelCase__ : Optional[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase__ : Optional[int] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase__ : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase__ : List[Any] = self.tokenizer.encode(A ,add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) UpperCAmelCase__ : Union[str, Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self : Dict ,A : int ,A : int ,A : int ): '''simple docstring''' return True def __lowercase ( self : List[Any] ,*A : Dict ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] ,A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) UpperCAmelCase__ : Union[str, Any] = ([prefix + arg for arg in args[0]],) UpperCAmelCase__ : int = True elif isinstance(args[0] ,A ): UpperCAmelCase__ : Optional[Any] = (prefix + args[0],) UpperCAmelCase__ : List[Any] = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) UpperCAmelCase__ : Dict = self.tokenizer(*A ,padding=A ,truncation=A ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Dict ,*A : str ,**A : str ): '''simple docstring''' UpperCAmelCase__ : str = super().__call__(*A ,**A ) if ( isinstance(args[0] ,A ) and all(isinstance(A ,A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __lowercase ( self : Dict ,A : Any ,A : str=TruncationStrategy.DO_NOT_TRUNCATE ,**A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self._parse_and_tokenize(A ,truncation=A ,**A ) return inputs def __lowercase ( self : Any ,A : List[str] ,**A : Optional[Any] ): '''simple docstring''' if self.framework == "pt": UpperCAmelCase__ , UpperCAmelCase__ : Tuple = model_inputs["""input_ids"""].shape elif self.framework == "tf": UpperCAmelCase__ , UpperCAmelCase__ : Dict = tf.shape(model_inputs["""input_ids"""] ).numpy() UpperCAmelCase__ : str = generate_kwargs.get("""min_length""" ,self.model.config.min_length ) UpperCAmelCase__ : str = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) self.check_inputs(A ,generate_kwargs["""min_length"""] ,generate_kwargs["""max_length"""] ) UpperCAmelCase__ : Dict = self.model.generate(**A ,**A ) UpperCAmelCase__ : Dict = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase__ : List[str] = output_ids.reshape(A ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase__ : int = tf.reshape(A ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __lowercase ( self : List[Any] ,A : Any ,A : str=ReturnType.TEXT ,A : Any=False ): '''simple docstring''' UpperCAmelCase__ : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase__ : Optional[Any] = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase__ : str = { f"{self.return_name}_text": self.tokenizer.decode( A ,skip_special_tokens=A ,clean_up_tokenization_spaces=A ,) } records.append(A ) return records @add_end_docstrings(__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): snake_case_ = """summary""" def __call__( self : Optional[Any] ,*A : Any ,**A : Optional[Any] ): '''simple docstring''' return super().__call__(*A ,**A ) def __lowercase ( self : Union[str, Any] ,A : int ,A : int ,A : int ): '''simple docstring''' if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): snake_case_ = """translation""" def __lowercase ( self : List[str] ,A : int ,A : int ,A : int ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def __lowercase ( self : int ,*A : Any ,A : Tuple=TruncationStrategy.DO_NOT_TRUNCATE ,A : str=None ,A : Optional[int]=None ): '''simple docstring''' if getattr(self.tokenizer ,"""_build_translation_inputs""" ,A ): return self.tokenizer._build_translation_inputs( *A ,return_tensors=self.framework ,truncation=A ,src_lang=A ,tgt_lang=A ) else: return super()._parse_and_tokenize(*A ,truncation=A ) def __lowercase ( self : Union[str, Any] ,A : Dict=None ,A : Union[str, Any]=None ,**A : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = super()._sanitize_parameters(**A ) if src_lang is not None: UpperCAmelCase__ : List[str] = src_lang if tgt_lang is not None: UpperCAmelCase__ : List[Any] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase__ : Optional[Any] = kwargs.get("""task""" ,self.task ) UpperCAmelCase__ : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY UpperCAmelCase__ : str = items[1] UpperCAmelCase__ : Union[str, Any] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] ,*A : int ,**A : Union[str, Any] ): '''simple docstring''' return super().__call__(*A ,**A )
65
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') __UpperCAmelCase = {'target_lang': 'fi', 'source_lang': 'en'} __UpperCAmelCase = '>>zh<<' __UpperCAmelCase = 'Helsinki-NLP/' if is_torch_available(): __UpperCAmelCase = 'pt' elif is_tf_available(): __UpperCAmelCase = 'tf' else: __UpperCAmelCase = 'jax' @require_sentencepiece class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCAmelCase__ : int = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A ,save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(A ,save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) UpperCAmelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[Any] ,**A : List[Any] ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Union[str, Any] ,A : Tuple ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = """</s>""" UpperCAmelCase__ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""</s>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""<pad>""" ) self.assertEqual(len(A ) ,9 ) def __lowercase ( self : Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) UpperCAmelCase__ : List[str] = en_de_tokenizer(["""I am a small frog"""] ,return_tensors=A ) self.assertIsInstance(A ,A ) UpperCAmelCase__ : str = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(A ,batch.input_ids[0] ) UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A ) UpperCAmelCase__ : Tuple = [x.name for x in Path(A ).glob("""*""" )] self.assertIn("""source.spm""" ,A ) MarianTokenizer.from_pretrained(A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] ,padding=A ,truncation=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] ,padding=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def __lowercase ( self : Dict ): '''simple docstring''' # fmt: off UpperCAmelCase__ : Optional[int] = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A ,model_name="""Helsinki-NLP/opus-mt-en-de""" ,revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" ,decode_kwargs={"""use_source_tokenizer""": True} ,) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) UpperCAmelCase__ : Any = """Tämä on testi""" UpperCAmelCase__ : int = """This is a test""" UpperCAmelCase__ : List[str] = [76, 7, 2_047, 2] UpperCAmelCase__ : Optional[Any] = [69, 12, 11, 940, 2] UpperCAmelCase__ : List[str] = tokenizer(A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : Optional[int] = tokenizer(text_target=A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : int = tokenizer.decode(A ,skip_special_tokens=A ) self.assertEqual(A ,A )
65
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
714
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a_ : Tuple = '''hf-internal-testing/tiny-random-bert''' a_ : List[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') a_ : Dict = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : List[Any] = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , 'refs' , 'main' ) ) as f: __lowerCamelCase : Optional[int] = f.read() self.assertEqual(__a , os.path.join(__a , 'snapshots' , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. __lowerCamelCase : Optional[Any] = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. __lowerCamelCase : Optional[int] = cached_file(__a , __a , revision='9b8c223' ) self.assertEqual(__a , os.path.join(__a , 'snapshots' , __a , __a ) ) def snake_case_ ( self ): with self.assertRaisesRegex(__a , 'is not a valid model identifier' ): __lowerCamelCase : List[str] = cached_file('tiny-random-bert' , __a ) with self.assertRaisesRegex(__a , 'is not a valid git identifier' ): __lowerCamelCase : int = cached_file(__a , __a , revision='aaaa' ) with self.assertRaisesRegex(__a , 'does not appear to have a file named' ): __lowerCamelCase : List[Any] = cached_file(__a , 'conf' ) def snake_case_ ( self ): with self.assertRaisesRegex(__a , 'does not appear to have a file named' ): __lowerCamelCase : Dict = cached_file(__a , 'conf' ) with open(os.path.join(__a , 'refs' , 'main' ) ) as f: __lowerCamelCase : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , '.no_exist' , __a , 'conf' ) ) ) __lowerCamelCase : str = cached_file(__a , 'conf' , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __lowerCamelCase : int = cached_file(__a , 'conf' , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __lowerCamelCase : List[str] = mock.Mock() __lowerCamelCase : str = 500 __lowerCamelCase : Union[str, Any] = {} __lowerCamelCase : Dict = HTTPError __lowerCamelCase : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: __lowerCamelCase : Any = cached_file(__a , 'conf' , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) def snake_case_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , __a , revision='ahaha' ) __lowerCamelCase : Optional[int] = get_file_from_repo('bert-base-cased' , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCamelCase : int = json.loads(open(__a , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def snake_case_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : int = Path(__a ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(__a , 'a.txt' ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , 'b.txt' ) )
263
0
from __future__ import annotations import time import numpy as np UpperCAmelCase_ = [8, 5, 9, 7] UpperCAmelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__, ) -> None: """simple docstring""" UpperCamelCase__ : List[str] = claim_vector UpperCamelCase__ : str = allocated_resources_table UpperCamelCase__ : List[Any] = maximum_claim_table def UpperCamelCase__ ( self ) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase__ ( self ) -> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase__ ( self ) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase__ ( self ) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def UpperCamelCase__ ( self, **__magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : List[Any] = self.__need() UpperCamelCase__ : str = self.__allocated_resources_table UpperCamelCase__ : List[Any] = self.__available_resources() UpperCamelCase__ : List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: UpperCamelCase__ : Union[str, Any] = False for each_need in need_list: UpperCamelCase__ : Optional[int] = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: UpperCamelCase__ : int = False break if execution: UpperCamelCase__ : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ : Optional[Any] = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack UpperCamelCase__ : str = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
253
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model'} UpperCamelCase__ = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } UpperCamelCase__ = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ['input_ids', 'attention_mask'] def __init__(self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : List[Any]="<unk>" , __UpperCAmelCase : Union[str, Any]=[] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def lowercase_ (self : Dict ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__(self : Dict , __UpperCAmelCase : Any ) -> Tuple: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ (self : int , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return self.sp_model.piece_to_id(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase__ = self.sp_model.IdToPiece(__UpperCAmelCase ) return token def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token UpperCAmelCase__ = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowercase_ (self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
486
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any ="bert-generation" def __init__( self : Optional[int] , __A : List[Any]=5_0_3_5_8 , __A : str=1_0_2_4 , __A : Union[str, Any]=2_4 , __A : Optional[Any]=1_6 , __A : List[Any]=4_0_9_6 , __A : Dict="gelu" , __A : Optional[int]=0.1 , __A : Union[str, Any]=0.1 , __A : int=5_1_2 , __A : str=0.02 , __A : Dict=1e-12 , __A : Optional[Any]=0 , __A : Tuple=2 , __A : Optional[Any]=1 , __A : Union[str, Any]="absolute" , __A : Union[str, Any]=True , **__A : int , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache
711
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase__ ( ) -> Optional[int]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def lowercase__ ( ) -> Any: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def lowercase__ ( ) -> List[str]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
434
0
import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __snake_case = os.path.join(git_repo_path, '''src''', '''diffusers''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = find_backend(' if not is_torch_available():' ) self.assertEqual(A_,'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A_,'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __UpperCamelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A_,'torch_and_transformers_and_onnx' ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch',A_ ) self.assertIn('torch_and_transformers',A_ ) self.assertIn('flax_and_transformers',A_ ) self.assertIn('torch_and_transformers_and_onnx',A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel',objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel',objects['flax'] ) self.assertIn('StableDiffusionPipeline',objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline',objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler',objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline',objects['torch_and_transformers_and_onnx'] ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = create_dummy_object('CONSTANT','\'torch\'' ) self.assertEqual(A_,'\nCONSTANT = None\n' ) __UpperCamelCase = create_dummy_object('function','\'torch\'' ) self.assertEqual( A_,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' __UpperCamelCase = create_dummy_object('FakeClass','\'torch\'' ) self.assertEqual(A_,A_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' __UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'],A_ )
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A : __magic_name__ = 42 # setable values __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = None @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return cls(common=SCREAMING_SNAKE_CASE , init_noise_sigma=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE ) @dataclass class A ( __snake_case ): __magic_name__ = 42 class A ( __snake_case , __snake_case ): __magic_name__ = [e.name for e in FlaxKarrasDiffusionSchedulers] __magic_name__ = 42 @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return True @register_to_config def __init__( self , SCREAMING_SNAKE_CASE = 1000 , SCREAMING_SNAKE_CASE = 0.0_001 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = "linear" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "fixed_small" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = "epsilon" , SCREAMING_SNAKE_CASE = jnp.floataa , ) -> Optional[Any]: """simple docstring""" A : str = dtype def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: A : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution A : int = jnp.array(1.0 , dtype=self.dtype ) A : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=SCREAMING_SNAKE_CASE , init_noise_sigma=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> jnp.ndarray: """simple docstring""" return sample def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = () ) -> DDPMSchedulerState: """simple docstring""" A : str = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 A : Optional[int] = (jnp.arange(0 , SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" A : Dict = state.common.alphas_cumprod[t] A : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: A : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": A : Any = jnp.clip(SCREAMING_SNAKE_CASE , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": A : Dict = jnp.log(jnp.clip(SCREAMING_SNAKE_CASE , a_min=1e-20 ) ) elif variance_type == "fixed_large": A : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log A : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": A : Tuple = variance A : Any = state.common.betas[t] A : Any = (predicted_variance + 1) / 2 A : List[Any] = frac * max_log + (1 - frac) * min_log return variance def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" A : Dict = timestep if key is None: A : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: A, A : List[Any] = jnp.split(SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: A : Tuple = None # 1. compute alphas, betas A : List[Any] = state.common.alphas_cumprod[t] A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) A : Optional[Any] = 1 - alpha_prod_t A : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": A : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: A : int = jnp.clip(SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t A : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): A : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE , num=1 ) A : Optional[int] = jax.random.normal(SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , predicted_variance=SCREAMING_SNAKE_CASE ) ** 0.5) * noise A : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) A : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , state=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __len__( self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
343
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False ) -> int: """simple docstring""" A : Any = scheduler A : Tuple = optimizers if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers] A : Dict = split_batches A : Tuple = step_with_optimizer A : Any = GradientState() def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step A : str = AcceleratorState().num_processes for _ in range(SCREAMING_SNAKE_CASE ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return self.scheduler.state_dict() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" return self.scheduler.get_lr() def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.scheduler.print_lr(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
343
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask SCREAMING_SNAKE_CASE :Optional[int] = logging.getLogger(__name__) class __magic_name__ ( snake_case ): def __init__( self , _lowercase=-1 )-> List[Any]: UpperCamelCase_ = label_idx def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> List[InputExample]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = mode.value UpperCamelCase_ = os.path.join(_UpperCAmelCase , F"{mode}.txt" ) UpperCamelCase_ = 1 UpperCamelCase_ = [] with open(_UpperCAmelCase , encoding="utf-8" ) as f: UpperCamelCase_ = [] UpperCamelCase_ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) guid_index += 1 UpperCamelCase_ = [] UpperCamelCase_ = [] else: UpperCamelCase_ = line.split(" " ) words.append(splits[0] ) if len(_UpperCAmelCase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) return examples def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Dict: UpperCamelCase_ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(_UpperCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCamelCase_ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(_UpperCAmelCase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def UpperCAmelCase_ ( self , _lowercase )-> List[str]: if path: with open(_UpperCAmelCase , "r" ) as f: UpperCamelCase_ = f.read().splitlines() if "O" not in labels: UpperCamelCase_ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __magic_name__ ( snake_case ): def __init__( self )-> Optional[int]: super().__init__(label_idx=-2 ) def UpperCAmelCase_ ( self , _lowercase )-> List[str]: if path: with open(_UpperCAmelCase , "r" ) as f: UpperCamelCase_ = f.read().splitlines() if "O" not in labels: UpperCamelCase_ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __magic_name__ ( snake_case ): def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> List[InputExample]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = mode.value UpperCamelCase_ = os.path.join(_UpperCAmelCase , F"{mode}.txt" ) UpperCamelCase_ = 1 UpperCamelCase_ = [] with open(_UpperCAmelCase , encoding="utf-8" ) as f: for sentence in parse_incr(_UpperCAmelCase ): UpperCamelCase_ = [] UpperCamelCase_ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) guid_index += 1 return examples def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> int: UpperCamelCase_ = 0 for sentence in parse_incr(_UpperCAmelCase ): UpperCamelCase_ = preds_list[example_id] UpperCamelCase_ = "" for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(_UpperCAmelCase ) example_id += 1 def UpperCAmelCase_ ( self , _lowercase )-> List[str]: if path: with open(_UpperCAmelCase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
628
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCamelCase = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ lowerCamelCase = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ lowerCamelCase = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = 0.0 for i, j in zip(_UpperCAmelCase , _UpperCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_UpperCAmelCase , _UpperCAmelCase ) else 0.0 UpperCAmelCase_ = n_correct / len(_UpperCAmelCase ) return { "accuracy": accuracy, }
82
0
def a__ (__lowercase :List[Any] , __lowercase :Union[str, Any] ) -> Dict: _A : List[str] = 0 _A : Tuple = len(__lowercase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _A : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowercase ): return None _A : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: _A : List[str] = left _A : str = point elif point > right: _A : Tuple = right _A : int = point else: if item < current_item: _A : Union[str, Any] = point - 1 else: _A : List[str] = point + 1 return None def a__ (__lowercase :List[Any] , __lowercase :Tuple , __lowercase :str , __lowercase :Any ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _A : Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowercase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__lowercase , __lowercase , __lowercase , __lowercase ) elif point > right: return interpolation_search_by_recursion(__lowercase , __lowercase , __lowercase , __lowercase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __lowercase , __lowercase , __lowercase , point - 1 ) else: return interpolation_search_by_recursion( __lowercase , __lowercase , point + 1 , __lowercase ) def a__ (__lowercase :List[str] ) -> List[str]: if collection != sorted(__lowercase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _UpperCamelCase : Optional[Any] =0 if debug == 1: _UpperCamelCase : Dict =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') _UpperCamelCase : Optional[int] =67 _UpperCamelCase : Union[str, Any] =interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('Not found')
332
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a__ (__lowercase :Optional[int] ) -> Any: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a__ () -> Tuple: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a__ () -> List[Any]: _A : Dict = '''mock-s3-bucket''' _A : List[Any] = f"""s3://{mock_bucket}""" _A : Tuple = extract_path_from_uri(__lowercase ) assert dataset_path.startswith('''s3://''' ) is False _A : Tuple = '''./local/path''' _A : int = extract_path_from_uri(__lowercase ) assert dataset_path == new_dataset_path def a__ (__lowercase :Tuple ) -> Optional[int]: _A : Optional[int] = is_remote_filesystem(__lowercase ) assert is_remote is True _A : Optional[Any] = fsspec.filesystem('''file''' ) _A : List[Any] = is_remote_filesystem(__lowercase ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __lowercase ) def a__ (__lowercase :Tuple , __lowercase :Dict , __lowercase :List[str] , __lowercase :List[Any] , __lowercase :List[str] , __lowercase :List[Any] , __lowercase :Any ) -> Any: _A : str = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} _A : Tuple = input_paths[compression_fs_class.protocol] if input_path is None: _A : Tuple = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowercase ) _A : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__lowercase ) assert isinstance(__lowercase , __lowercase ) _A : Tuple = os.path.basename(__lowercase ) _A : List[Any] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__lowercase , '''r''' , encoding='''utf-8''' ) as f, open(__lowercase , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a__ (__lowercase :Union[str, Any] , __lowercase :Optional[int] , __lowercase :Optional[int] ) -> Optional[int]: _A : Any = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} _A : Tuple = compressed_file_paths[protocol] _A : Tuple = '''dataset.jsonl''' _A : List[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" _A , *_A : Optional[int] = fsspec.get_fs_token_paths(__lowercase ) assert fs.isfile(__lowercase ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a__ (__lowercase :List[Any] , __lowercase :int , __lowercase :int , __lowercase :str ) -> Optional[Any]: _A : int = hf_api.dataset_info(__lowercase , token=__lowercase ) _A : int = HfFileSystem(repo_info=__lowercase , token=__lowercase ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__lowercase ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a__ () -> Optional[Any]: _A : Any = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__lowercase , __lowercase , clobber=__lowercase ) with pytest.warns(__lowercase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__lowercase ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
332
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", } __UpperCAmelCase ={ "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __UpperCAmelCase ={ "ctrl": 2_5_6, } __UpperCAmelCase ={ "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(UpperCamelCase__ ) return pairs class a__ ( UpperCAmelCase__ ): lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : Optional[int] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] =CONTROL_CODES def __init__( self : Optional[Any] , a : str , a : List[str] , a : Optional[int]="<unk>" , **a : Any ): """simple docstring""" super().__init__(unk_token=a , **a ) with open(a , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(a ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(a , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = {} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(a ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(a ) if not pairs: return token while True: __lowerCamelCase = min(a , key=lambda a : self.bpe_ranks.get(a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(a ): try: __lowerCamelCase = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(a ) __lowerCamelCase = new_word if len(a ) == 1: break else: __lowerCamelCase = get_pairs(a ) __lowerCamelCase = '''@@ '''.join(a ) __lowerCamelCase = word[:-4] __lowerCamelCase = word return word def SCREAMING_SNAKE_CASE__ ( self : str , a : List[str] ): """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , a ) for token in words: split_tokens.extend(list(self.bpe(a ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__ ( self : Any , a : Dict ): """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Optional[Any] ): """simple docstring""" return self.decoder.get(a , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Dict ): """simple docstring""" __lowerCamelCase = ''' '''.join(a ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '''\n''' ) __lowerCamelCase = 0 with open(a , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(a ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
546
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __UpperCAmelCase =object() # For specifying empty leaf dict `{}` __UpperCAmelCase =object() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): __lowerCamelCase = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: def replace(UpperCamelCase__ , UpperCamelCase__ ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def __lowerCAmelCase ( ) -> Dict: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P('''mp''' , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCAmelCase ( UpperCamelCase__ ) -> int: __lowerCamelCase = _get_partition_rules() __lowerCamelCase = _replacement_rules(UpperCamelCase__ ) __lowerCamelCase = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} __lowerCamelCase = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
546
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase , UpperCamelCase = grid.shape UpperCamelCase = [-1, 1, 0, 0] UpperCamelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase , UpperCamelCase = [(0, source)], set() UpperCamelCase = np.full((rows, cols) , np.inf ) UpperCamelCase = 0 UpperCamelCase = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE ) UpperCamelCase = None while queue: ((UpperCamelCase) , (UpperCamelCase)) = heappop(_SCREAMING_SNAKE_CASE ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase , UpperCamelCase = predecessors[x, y] path.append(_SCREAMING_SNAKE_CASE ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase , UpperCamelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) ) UpperCamelCase = dist + 1 UpperCamelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
544
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "swinv2" UpperCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , __a=2_24 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.02 , __a=1e-5 , __a=32 , **__a , ) -> Optional[Any]: super().__init__(**__a ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(__a ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(__a ) - 1) ) UpperCamelCase = (0, 0, 0, 0)
544
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase__ : Optional[int] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowercase__ : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowercase__ : Tuple = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def snake_case__ ( self : Optional[int] , __lowercase : str , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = 0.0 for i, j in zip(_lowerCAmelCase , _lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase , _lowerCAmelCase ) else 0.0 snake_case_ = n_correct / len(_lowerCAmelCase ) return { "accuracy": accuracy, }
376
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
50
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
689
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __a = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __a = """|""".join(sys.argv[1:]) __a = re.compile(rF'''^({joined_dirs}).*?\.py$''') __a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
1