code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
412
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class UpperCamelCase__ ( __magic_name__ ): def __init__( self : List[Any] , **UpperCamelCase__ : Any ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Tuple , UpperCamelCase__ : Union[np.ndarray, bytes, str] , **UpperCamelCase__ : Tuple ): '''simple docstring''' return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = {} if "candidate_labels" in kwargs: lowercase_ = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase_ = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int="This is a sound of {}." ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase_ = requests.get(UpperCamelCase__ ).content else: with open(UpperCamelCase__ , """rb""" ) as f: lowercase_ = f.read() if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = ffmpeg_read(UpperCamelCase__ , self.feature_extractor.sampling_rate ) if not isinstance(UpperCamelCase__ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase_ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) lowercase_ = candidate_labels lowercase_ = [hypothesis_template.format(UpperCamelCase__ ) for x in candidate_labels] lowercase_ = self.tokenizer(UpperCamelCase__ , return_tensors=self.framework , padding=UpperCamelCase__ ) lowercase_ = [text_inputs] return inputs def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = model_inputs.pop("""candidate_labels""" ) lowercase_ = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCamelCase__ ): lowercase_ = text_inputs[0] else: # Batching case. lowercase_ = text_inputs[0][0] lowercase_ = self.model(**UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = model_outputs.pop("""candidate_labels""" ) lowercase_ = model_outputs["""logits"""][0] if self.framework == "pt": lowercase_ = logits.softmax(dim=0 ) lowercase_ = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase_ = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase__ , UpperCamelCase__ ) , key=lambda UpperCamelCase__ : -x[0] ) ] return result
412
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __snake_case = logging.get_logger(__name__) class _a ( __a ): """simple docstring""" A_ = '''mask2former''' A_ = ['''swin'''] A_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self : List[Any] , lowercase_ : Optional[Dict] = None , lowercase_ : int = 256 , lowercase_ : int = 256 , lowercase_ : int = 256 , lowercase_ : int = 1_024 , lowercase_ : str = "relu" , lowercase_ : int = 6 , lowercase_ : int = 10 , lowercase_ : int = 8 , lowercase_ : float = 0.0 , lowercase_ : int = 2_048 , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : int = 4 , lowercase_ : int = 255 , lowercase_ : int = 100 , lowercase_ : float = 0.1 , lowercase_ : float = 2.0 , lowercase_ : float = 5.0 , lowercase_ : float = 5.0 , lowercase_ : int = 12_544 , lowercase_ : float = 3.0 , lowercase_ : float = 0.7_5 , lowercase_ : float = 0.0_2 , lowercase_ : float = 1.0 , lowercase_ : bool = True , lowercase_ : List[int] = [4, 8, 16, 32] , lowercase_ : bool = None , **lowercase_ : Union[str, Any] , ): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase_ = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowercase_ , lowercase_ ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) lowercase_ = backbone_config lowercase_ = feature_size lowercase_ = mask_feature_size lowercase_ = hidden_dim lowercase_ = encoder_feedforward_dim lowercase_ = activation_function lowercase_ = encoder_layers lowercase_ = decoder_layers lowercase_ = num_attention_heads lowercase_ = dropout lowercase_ = dim_feedforward lowercase_ = pre_norm lowercase_ = enforce_input_projection lowercase_ = common_stride lowercase_ = ignore_value lowercase_ = num_queries lowercase_ = no_object_weight lowercase_ = class_weight lowercase_ = mask_weight lowercase_ = dice_weight lowercase_ = train_num_points lowercase_ = oversample_ratio lowercase_ = importance_sample_ratio lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = use_auxiliary_loss lowercase_ = feature_strides lowercase_ = output_auxiliary_logits lowercase_ = decoder_layers super().__init__(**lowercase_ ) @classmethod def lowerCamelCase__ ( cls : Any , lowercase_ : PretrainedConfig , **lowercase_ : int ): '''simple docstring''' return cls( backbone_config=lowercase_ , **lowercase_ , ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
603
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class _a ( __a ): """simple docstring""" A_ = ['''pixel_values'''] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Optional[Any] , ): '''simple docstring''' super().__init__(**lowercase_ ) lowercase_ = size if size is not None else {"""shortest_edge""": 384} lowercase_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase_ = do_resize lowercase_ = size # Default value set here for backwards compatibility where the value in config is None lowercase_ = crop_pct if crop_pct is not None else 224 / 256 lowercase_ = resample lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : float , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) lowercase_ = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowercase_ = int(shortest_edge / crop_pct ) lowercase_ = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) lowercase_ = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ): '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[str] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = crop_pct if crop_pct is not None else self.crop_pct lowercase_ = resample if resample is not None else self.resample lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase_ = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
603
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''vocab.txt'''} a = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } a = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def _snake_case ( _snake_case : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with open(_snake_case , 'r' ) as f: _A = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : List[str]="<eos>" , **_UpperCAmelCase : Dict , ): super().__init__(**_UpperCAmelCase ) _A = load_vocab_file(_UpperCAmelCase ) _A = dict(enumerate(self.all_tokens ) ) _A = {tok: ind for ind, tok in enumerate(self.all_tokens )} _A = unk_token _A = cls_token _A = pad_token _A = mask_token _A = eos_token _A = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int ): return self._id_to_token.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str ): return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ): return text.split() def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str]=False ): return len(self._id_to_token ) def lowerCAmelCase_ ( self : Optional[int] ): return {token: i for i, token in enumerate(self.all_tokens )} def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ): return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ): return self._id_to_token.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.cls_token_id] _A = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _A = [1] + ([0] * len(_UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(_UpperCAmelCase ) + [1] return mask def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any ): _A = os.path.join(_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_UpperCAmelCase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def lowerCAmelCase_ ( self : int ): return self.get_vocab_size(with_added_tokens=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[List[str], List[AddedToken]] , _UpperCAmelCase : bool = False ): return super()._add_tokens(_UpperCAmelCase , special_tokens=_UpperCAmelCase )
7
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ = logging.get_logger(__name__) class a__ ( _lowercase ): __magic_name__ : Tuple = ["pixel_values"] def __init__(self : Tuple, __UpperCAmelCase : bool = True, __UpperCAmelCase : Dict[str, int] = None, __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, __UpperCAmelCase : bool = True, __UpperCAmelCase : Dict[str, int] = None, __UpperCAmelCase : bool = True, __UpperCAmelCase : Union[int, float] = 1 / 255, __UpperCAmelCase : bool = True, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD, **__UpperCAmelCase : Dict, ) -> None: """simple docstring""" super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = size if size is not None else {'''shortest_edge''': 224} SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__UpperCAmelCase, default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE : Dict = get_size_dict(__UpperCAmelCase, param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : Optional[int] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Any = resample SCREAMING_SNAKE_CASE : int = do_center_crop SCREAMING_SNAKE_CASE : str = crop_size SCREAMING_SNAKE_CASE : int = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : str = do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase__ (self : List[str], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Dict[str, int], __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[str], ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__UpperCAmelCase, default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE : Any = int((256 / 224) * size['''shortest_edge'''] ) SCREAMING_SNAKE_CASE : List[Any] = get_resize_output_image_size(__UpperCAmelCase, size=__UpperCAmelCase, default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( __UpperCAmelCase, size=(size_dict['''height'''], size_dict['''width''']), resample=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Dict[str, int], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[str], ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase, size=(size['''height'''], size['''width''']), data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Any, __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Union[int, float], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[str], ) -> np.ndarray: """simple docstring""" return rescale(__UpperCAmelCase, scale=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Optional[int], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Union[float, List[float]], __UpperCAmelCase : Union[float, List[float]], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : Tuple, ) -> np.ndarray: """simple docstring""" return normalize(__UpperCAmelCase, mean=__UpperCAmelCase, std=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : List[Any], __UpperCAmelCase : ImageInput, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[Dict[str, int]] = None, __UpperCAmelCase : PILImageResampling = None, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[Dict[str, int]] = None, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[float] = None, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None, __UpperCAmelCase : Optional[TensorType] = None, __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST, **__UpperCAmelCase : Any, ) -> BatchFeature: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : str = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(__UpperCAmelCase, default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Any = get_size_dict(__UpperCAmelCase, param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : Optional[int] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Dict = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : int = [self.resize(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : Dict = [self.center_crop(__UpperCAmelCase, __UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : str = [self.rescale(__UpperCAmelCase, __UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : str = [self.normalize(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE : Dict = [to_channel_dimension_format(__UpperCAmelCase, __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase, tensor_type=__UpperCAmelCase )
507
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def lowerCAmelCase_ (lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : str ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = hf_hub_url(repo_id=lowercase__ , path=lowercase__ , revision=lowercase__ ) assert url == f'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(lowercase__ )}'
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[str] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
288
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCamelCase : Optional[int] = logging.get_logger(__name__) # General docstring _lowerCamelCase : Optional[Any] = """RegNetConfig""" # Base docstring _lowerCamelCase : Tuple = """facebook/regnet-y-040""" _lowerCamelCase : Dict = [1, 1_088, 7, 7] # Image classification docstring _lowerCamelCase : Tuple = """facebook/regnet-y-040""" _lowerCamelCase : Dict = """tabby, tabby cat""" _lowerCamelCase : List[str] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : Any , snake_case : int , snake_case : int = 3 , snake_case : int = 1 , snake_case : int = 1 , snake_case : Optional[str] = "relu" , **snake_case : Optional[Any] , ): '''simple docstring''' super().__init__(**snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE : str = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE : List[str] = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=snake_case , strides=snake_case , padding='VALID' , groups=snake_case , use_bias=snake_case , name='convolution' , ) SCREAMING_SNAKE_CASE : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) SCREAMING_SNAKE_CASE : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase_ ( self : List[str] , snake_case : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.convolution(self.padding(snake_case ) ) SCREAMING_SNAKE_CASE : Any = self.normalization(snake_case ) SCREAMING_SNAKE_CASE : Dict = self.activation(snake_case ) return hidden_state class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : List[Any] , snake_case : RegNetConfig , **snake_case : str ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = config.num_channels SCREAMING_SNAKE_CASE : int = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCamelCase_ ( self : str , snake_case : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = shape_list(snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE : Optional[Any] = tf.transpose(snake_case , perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.embedder(snake_case ) return hidden_state class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : int , snake_case : int , snake_case : int = 2 , **snake_case : int ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : str = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=1 , strides=snake_case , use_bias=snake_case , name='convolution' ) SCREAMING_SNAKE_CASE : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCamelCase_ ( self : Dict , snake_case : tf.Tensor , snake_case : bool = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case ) , training=snake_case ) class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case : int , snake_case : int , **snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='pooler' ) SCREAMING_SNAKE_CASE : Any = [ tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCamelCase_ ( self : List[str] , snake_case : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.pooler(snake_case ) for layer_module in self.attention: SCREAMING_SNAKE_CASE : List[str] = layer_module(snake_case ) SCREAMING_SNAKE_CASE : List[str] = hidden_state * pooled return hidden_state class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : Dict , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : Any ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : int = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : Optional[int] = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE : Tuple = ( TFRegNetShortCut(snake_case , stride=snake_case , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE : Tuple = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='layer.2' ), ] SCREAMING_SNAKE_CASE : int = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self : Tuple , snake_case : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE : List[str] = layer_module(snake_case ) SCREAMING_SNAKE_CASE : Tuple = self.shortcut(snake_case ) hidden_state += residual SCREAMING_SNAKE_CASE : Dict = self.activation(snake_case ) return hidden_state class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : Optional[int] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : Optional[int] ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : List[Any] = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : str = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE : Dict = ( TFRegNetShortCut(snake_case , stride=snake_case , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) SCREAMING_SNAKE_CASE : List[str] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='layer.3' ), ] SCREAMING_SNAKE_CASE : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self : str , snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE : Dict = layer_module(snake_case ) SCREAMING_SNAKE_CASE : int = self.shortcut(snake_case ) hidden_state += residual SCREAMING_SNAKE_CASE : Union[str, Any] = self.activation(snake_case ) return hidden_state class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : List[Any] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 2 , snake_case : int = 2 , **snake_case : Optional[int] ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer SCREAMING_SNAKE_CASE : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(snake_case , snake_case , snake_case , stride=snake_case , name='layers.0' ), *[layer(snake_case , snake_case , snake_case , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCamelCase_ ( self : Optional[Any] , snake_case : Dict ): '''simple docstring''' for layer_module in self.layers: SCREAMING_SNAKE_CASE : Optional[int] = layer_module(snake_case ) return hidden_state class lowercase ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self : int , snake_case : RegNetConfig , **snake_case : Dict ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) SCREAMING_SNAKE_CASE : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case , snake_case , snake_case , depth=snake_case , name=f'''stages.{i+1}''' ) ) def lowerCamelCase_ ( self : Any , snake_case : tf.Tensor , snake_case : bool = False , snake_case : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE : Union[str, Any] = stage_module(snake_case ) if output_hidden_states: SCREAMING_SNAKE_CASE : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case , hidden_states=snake_case ) @keras_serializable class lowercase ( tf.keras.layers.Layer): '''simple docstring''' UpperCAmelCase : Tuple = RegNetConfig def __init__( self : Optional[int] , snake_case : Any , **snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : List[str] = config SCREAMING_SNAKE_CASE : int = TFRegNetEmbeddings(snake_case , name='embedder' ) SCREAMING_SNAKE_CASE : Dict = TFRegNetEncoder(snake_case , name='encoder' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='pooler' ) @unpack_inputs def lowerCamelCase_ ( self : Optional[int] , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : List[Any] = self.embedder(snake_case , training=snake_case ) SCREAMING_SNAKE_CASE : List[str] = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) SCREAMING_SNAKE_CASE : Any = encoder_outputs[0] SCREAMING_SNAKE_CASE : List[Any] = self.pooler(snake_case ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE : Any = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE : str = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE : str = tuple([tf.transpose(snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case , pooler_output=snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : List[Any] = RegNetConfig UpperCAmelCase : List[Any] = 'regnet' UpperCAmelCase : Union[str, Any] = 'pixel_values' @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowerCamelCase : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCamelCase : Optional[int] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE_ , ) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : int , snake_case : RegNetConfig , *snake_case : Tuple , **snake_case : Optional[Any] ): '''simple docstring''' super().__init__(snake_case , *snake_case , **snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetMainLayer(snake_case , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase_ ( self : List[Any] , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : Union[str, Any]=False , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : str = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : int = self.regnet( pixel_values=snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE_ , ) class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : Tuple , snake_case : RegNetConfig , *snake_case : Tuple , **snake_case : Dict ): '''simple docstring''' super().__init__(snake_case , *snake_case , **snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = config.num_labels SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetMainLayer(snake_case , name='regnet' ) # classification head SCREAMING_SNAKE_CASE : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase_ ( self : Optional[int] , snake_case : tf.Tensor = None , snake_case : tf.Tensor = None , snake_case : bool = None , snake_case : bool = None , snake_case : str=False , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Tuple = self.regnet( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) SCREAMING_SNAKE_CASE : Dict = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Optional[int] = self.classifier[0](snake_case ) SCREAMING_SNAKE_CASE : Tuple = self.classifier[1](snake_case ) SCREAMING_SNAKE_CASE : List[str] = None if labels is None else self.hf_compute_loss(labels=snake_case , logits=snake_case ) if not return_dict: SCREAMING_SNAKE_CASE : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states )
352
import requests _lowerCamelCase : int = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def __a ( __lowerCAmelCase ) -> None: # fetching a list of articles in json format SCREAMING_SNAKE_CASE : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
352
1
def _a ( lowerCamelCase__ ) -> list: if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence lowerCamelCase_ : int = gray_code_sequence_string(__A ) # # convert them to integers for i in range(len(__A ) ): lowerCamelCase_ : Tuple = int(sequence[i] , 2 ) return sequence def _a ( lowerCamelCase__ ) -> list: if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCamelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCamelCase_ : Union[str, Any] = gray_code_sequence_string(bit_count - 1 ) lowerCamelCase_ : Optional[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCamelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(__A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCamelCase_ : Tuple = '''1''' + smaller_sequence[i] sequence.append(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
708
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : List[str] = 'gpt_neox' def __init__(self : int , _snake_case : List[str]=5_0432 , _snake_case : List[Any]=6144 , _snake_case : Optional[Any]=44 , _snake_case : Dict=64 , _snake_case : Optional[Any]=2_4576 , _snake_case : str="gelu" , _snake_case : Optional[Any]=0.25 , _snake_case : int=1_0000 , _snake_case : int=0.0 , _snake_case : Any=0.0 , _snake_case : List[str]=0.1 , _snake_case : str=2048 , _snake_case : str=0.02 , _snake_case : Dict=1e-5 , _snake_case : int=True , _snake_case : str=0 , _snake_case : Tuple=2 , _snake_case : Tuple=False , _snake_case : int=True , _snake_case : List[str]=None , **_snake_case : List[str] , ) -> Tuple: """simple docstring""" super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : Tuple = max_position_embeddings lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : Optional[Any] = num_hidden_layers lowerCamelCase_ : Union[str, Any] = num_attention_heads lowerCamelCase_ : Union[str, Any] = intermediate_size lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : Optional[Any] = rotary_pct lowerCamelCase_ : Tuple = rotary_emb_base lowerCamelCase_ : List[Any] = attention_dropout lowerCamelCase_ : int = hidden_dropout lowerCamelCase_ : List[Any] = classifier_dropout lowerCamelCase_ : int = initializer_range lowerCamelCase_ : Dict = layer_norm_eps lowerCamelCase_ : List[str] = use_cache lowerCamelCase_ : Dict = tie_word_embeddings lowerCamelCase_ : int = use_parallel_residual lowerCamelCase_ : Dict = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCAmelCase_ (self : Any ) -> Optional[int]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) lowerCamelCase_ : List[str] = self.rope_scaling.get('type' , _snake_case ) lowerCamelCase_ : Any = self.rope_scaling.get('factor' , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
144
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants SCREAMING_SNAKE_CASE : Dict = Mapping[str, np.ndarray] SCREAMING_SNAKE_CASE : int = Mapping[str, Any] # Is a nested dict. SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 @dataclasses.dataclass(frozen=__a ) class UpperCamelCase : a__ :np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a__ :np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a__ :np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a__ :np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a__ :np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a__ :Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files a__ :Optional[str] = None # Templates used to generate this protein (prediction-only) a__ :Optional[Sequence[str]] = None # Chain corresponding to each parent a__ :Optional[Sequence[int]] = None def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): UpperCamelCase_ : Dict = R"""(\[[A-Z]+\]\n)""" UpperCamelCase_ : List[str] = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0] UpperCamelCase_ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) UpperCamelCase_ : List[str] = ["N", "CA", "C"] UpperCamelCase_ : int = None UpperCamelCase_ : Dict = None UpperCamelCase_ : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: UpperCamelCase_ : Optional[int] = g[1][0].strip() for i in range(len(_SCREAMING_SNAKE_CASE ) ): if seq[i] not in residue_constants.restypes: UpperCamelCase_ : Tuple = """X""" # FIXME: strings are immutable UpperCamelCase_ : str = np.array( [residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCamelCase_ : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) ) UpperCamelCase_ : Union[str, Any] = np.array(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Optional[int] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCamelCase_ : Any = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) UpperCamelCase_ : int = np.zeros( ( len(_SCREAMING_SNAKE_CASE ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : List[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Protein , _SCREAMING_SNAKE_CASE : int = 0 ): UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Union[str, Any] = prot.remark if remark is not None: pdb_headers.append(f'''REMARK {remark}''' ) UpperCamelCase_ : Tuple = prot.parents UpperCamelCase_ : List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCamelCase_ : Optional[int] = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id] if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0: UpperCamelCase_ : Optional[Any] = ["""N/A"""] pdb_headers.append(f'''PARENT {" ".join(_SCREAMING_SNAKE_CASE )}''' ) return pdb_headers def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Protein , _SCREAMING_SNAKE_CASE : str ): UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Tuple = pdb_str.split("""\n""" ) UpperCamelCase_ : Any = prot.remark if remark is not None: out_pdb_lines.append(f'''REMARK {remark}''' ) UpperCamelCase_ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: UpperCamelCase_ : Optional[Any] = [] if prot.parents_chain_index is not None: UpperCamelCase_ : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] ) parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[int] = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCamelCase_ : int = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ["""N/A"""] ) parents_per_chain.append(_SCREAMING_SNAKE_CASE ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCamelCase_ : Optional[Any] = [["""N/A"""]] def make_parent_line(_SCREAMING_SNAKE_CASE : Sequence[str] ) -> str: return f'''PARENT {" ".join(_SCREAMING_SNAKE_CASE )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCamelCase_ : int = 0 for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_SCREAMING_SNAKE_CASE ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : List[Any] = parents_per_chain[chain_counter] else: UpperCamelCase_ : Optional[Any] = ["""N/A"""] out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) ) return "\n".join(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Protein ): UpperCamelCase_ : str = residue_constants.restypes + ["""X"""] def res_atoa(_SCREAMING_SNAKE_CASE : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) UpperCamelCase_ : int = residue_constants.atom_types UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Optional[Any] = prot.atom_mask UpperCamelCase_ : Optional[Any] = prot.aatype UpperCamelCase_ : List[str] = prot.atom_positions UpperCamelCase_ : int = prot.residue_index.astype(np.intaa ) UpperCamelCase_ : List[Any] = prot.b_factors UpperCamelCase_ : Optional[int] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) UpperCamelCase_ : Optional[Any] = get_pdb_headers(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: pdb_lines.extend(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = aatype.shape[0] UpperCamelCase_ : Union[str, Any] = 1 UpperCamelCase_ : Any = 0 UpperCamelCase_ : List[str] = string.ascii_uppercase UpperCamelCase_ : int = None # Add all atom sites. for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCamelCase_ : Union[str, Any] = """ATOM""" UpperCamelCase_ : Dict = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else f''' {atom_name}''' UpperCamelCase_ : List[Any] = """""" UpperCamelCase_ : Optional[Any] = """""" UpperCamelCase_ : List[str] = 1.00 UpperCamelCase_ : str = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCamelCase_ : Optional[int] = """""" UpperCamelCase_ : Union[str, Any] = """A""" if chain_index is not None: UpperCamelCase_ : Optional[int] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCamelCase_ : List[Any] = ( f'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' f'''{res_name_a:>3} {chain_tag:>1}''' f'''{residue_index[i]:>4}{insertion_code:>1} ''' f'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' f'''{occupancy:>6.2f}{b_factor:>6.2f} ''' f'''{element:>2}{charge:>2}''' ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 UpperCamelCase_ : Union[str, Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Any = chain_index[i + 1] if should_terminate: # Close the chain. UpperCamelCase_ : Union[str, Any] = """TER""" UpperCamelCase_ : Tuple = ( f'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : FeatureDict , _SCREAMING_SNAKE_CASE : ModelOutput , _SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None , _SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[Sequence[str]] = None , _SCREAMING_SNAKE_CASE : Optional[Sequence[int]] = None , ): return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
635
import numpy as np import datasets SCREAMING_SNAKE_CASE : Optional[int] = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" SCREAMING_SNAKE_CASE : Dict = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" SCREAMING_SNAKE_CASE : List[str] = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def A_ (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def A_ (self , __UpperCamelCase , __UpperCamelCase ) -> int: # convert to numpy arrays UpperCamelCase_ : int = np.array(__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = np.array(__UpperCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction UpperCamelCase_ : str = X - np.mean(__UpperCamelCase ) UpperCamelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCamelCase_ : str = np.linalg.inv(__UpperCamelCase ) except np.linalg.LinAlgError: UpperCamelCase_ : List[Any] = np.linalg.pinv(__UpperCamelCase ) UpperCamelCase_ : Tuple = np.dot(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Tuple = np.dot(__UpperCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
635
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ : List[str] = logging.get_logger(__name__) UpperCamelCase_ : Tuple = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class _lowercase ( a__ , a__ ): _a : str = '''resnet''' _a : Any = ['''basic''', '''bottleneck'''] def __init__( self : Optional[Any] , a : List[Any]=3 , a : str=6_4 , a : str=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , a : List[Any]=[3, 4, 6, 3] , a : int="bottleneck" , a : Optional[int]="relu" , a : List[Any]=False , a : Optional[int]=None , a : Union[str, Any]=None , **a : int , ): """simple docstring""" super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) __snake_case : Dict =num_channels __snake_case : Optional[int] =embedding_size __snake_case : Optional[int] =hidden_sizes __snake_case : int =depths __snake_case : Optional[int] =layer_type __snake_case : Any =hidden_act __snake_case : Any =downsample_in_first_stage __snake_case : Union[str, Any] =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(_A ) + 1 )] __snake_case : Dict =get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class _lowercase ( a__ ): _a : Dict = version.parse('''1.11''' ) @property def _UpperCamelCase ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self : int ): """simple docstring""" return 1e-3
716
"""simple docstring""" def __lowercase ( a : str , a : str ) -> str: __snake_case : int =len(a ) __snake_case : int =len(a ) __snake_case : int =( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case : list =[] for char_count in range(a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
497
0
UpperCamelCase__ = 'Input must be a string of 8 numbers plus letter' UpperCamelCase__ = 'TRWAGMYFPDXBNJZSQVHLCKE' def UpperCamelCase__ ( UpperCAmelCase_ ) -> bool: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowercase : List[str] = F'Expected string as input, found {type(UpperCAmelCase_ ).__name__}' raise TypeError(UpperCAmelCase_ ) _lowercase : str = spanish_id.replace('''-''' , '''''' ).upper() if len(UpperCAmelCase_ ) != 9: raise ValueError(UpperCAmelCase_ ) try: _lowercase : Tuple = int(spanish_id_clean[0:8] ) _lowercase : Dict = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase_ ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
322
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_55 , UpperCamelCase : bool = True , UpperCamelCase : int = 8 , **UpperCamelCase : Dict , ): """simple docstring""" super().__init__(**UpperCamelCase ) _lowercase : str = do_rescale _lowercase : int = rescale_factor _lowercase : Optional[int] = do_pad _lowercase : Optional[int] = pad_size def lowerCAmelCase_ ( self : int , UpperCamelCase : np.ndarray , UpperCamelCase : float , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] ): """simple docstring""" return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" _lowercase , _lowercase : Dict = get_image_size(UpperCamelCase ) _lowercase : Optional[int] = (old_height // size + 1) * size - old_height _lowercase : str = (old_width // size + 1) * size - old_width return pad(UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=UpperCamelCase ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase : ImageInput , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[float] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : int , ): """simple docstring""" _lowercase : int = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Optional[int] = do_pad if do_pad is not None else self.do_pad _lowercase : Any = pad_size if pad_size is not None else self.pad_size _lowercase : List[Any] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _lowercase : Optional[int] = [to_numpy_array(UpperCamelCase ) for image in images] if do_rescale: _lowercase : str = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_pad: _lowercase : int = [self.pad(UpperCamelCase , size=UpperCamelCase ) for image in images] _lowercase : str = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] _lowercase : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
322
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = """time_series_transformer""" lowerCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , a__ = None , a__ = None , a__ = "student_t" , a__ = "nll" , a__ = 1 , a__ = [1, 2, 3, 4, 5, 6, 7] , a__ = "mean" , a__ = 0 , a__ = 0 , a__ = 0 , a__ = 0 , a__ = None , a__ = None , a__ = 32 , a__ = 32 , a__ = 2 , a__ = 2 , a__ = 2 , a__ = 2 , a__ = True , a__ = "gelu" , a__ = 64 , a__ = 0.1 , a__ = 0.1 , a__ = 0.1 , a__ = 0.1 , a__ = 0.1 , a__ = 1_00 , a__ = 0.02 , a__=True , **a__ , ): # time series specific configuration _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length or prediction_length _UpperCAmelCase = distribution_output _UpperCAmelCase = loss _UpperCAmelCase = input_size _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = scaling _UpperCAmelCase = num_dynamic_real_features _UpperCAmelCase = num_static_real_features _UpperCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _UpperCAmelCase = cardinality else: _UpperCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(a__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _UpperCAmelCase = embedding_dimension else: _UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase = input_size * len(a__ ) + self._number_of_features _UpperCAmelCase = d_model _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = use_cache super().__init__(is_encoder_decoder=a__ , **a__ ) @property def __A ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
494
"""simple docstring""" import sys lowerCAmelCase_ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def __lowerCamelCase ( SCREAMING_SNAKE_CASE = N ) -> int: """simple docstring""" _UpperCAmelCase = -sys.maxsize - 1 _UpperCAmelCase = n[:13] _UpperCAmelCase = 13 while cur_index < len(SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _UpperCAmelCase = substr[1:] + n[cur_index] cur_index += 1 else: _UpperCAmelCase = max(SCREAMING_SNAKE_CASE,str_eval(SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
494
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) _UpperCamelCase = { '''do_resize''': True, '''size''': {'''height''': 2_24, '''width''': 2_24}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], '''do_convert_rgb''': True, } _UpperCamelCase = os.path.join(self.tmpdirname , __a) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__a , __a) def UpperCAmelCase ( self , **__a) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__a) def UpperCAmelCase ( self , **__a) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a) def UpperCAmelCase ( self , **__a) -> List[str]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] _UpperCamelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1)) for x in image_inputs] return image_inputs def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = self.get_image_processor() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _UpperCamelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a) _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _UpperCamelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __a) self.assertIsInstance(processor_fast.tokenizer , __a) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __a) self.assertIsInstance(processor_fast.image_processor , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _UpperCamelCase = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') _UpperCamelCase = self.get_image_processor(do_normalize=__a) _UpperCamelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__a) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __a) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = image_processor(__a , return_tensors='''np''') _UpperCamelCase = processor(images=__a , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase = processor(text=__a) _UpperCamelCase = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=__a , images=__a) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__a): processor() def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase = processor.batch_decode(__a) _UpperCamelCase = tokenizer.batch_decode(__a) self.assertListEqual(__a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=__a , images=__a) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
19
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> list[int]: _lowercase = str(snake_case__ ) _lowercase = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 11 ) -> list[int]: _lowercase = [] _lowercase = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): _lowercase = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
67
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' def get_masked_lm_array(__magic_name__ ): UpperCAmelCase : Optional[Any] = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : Union[str, Any] = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : Optional[Any] = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_array(__magic_name__ ): UpperCAmelCase : int = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : List[Any] = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : Dict = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_layer_array(__magic_name__ , __magic_name__ ): UpperCAmelCase : Any = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : Tuple = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : Union[str, Any] = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_attention_layer_array(__magic_name__ , __magic_name__ , __magic_name__ ): UpperCAmelCase : Optional[int] = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : Dict = tf.train.load_variable(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = array.reshape(__magic_name__ ) if "kernel" in name: UpperCAmelCase : Dict = array.transpose() return torch.from_numpy(__magic_name__ ) print(F"Loading model based on config from {config_path}..." ) UpperCAmelCase : Optional[int] = BertConfig.from_json_file(__magic_name__ ) UpperCAmelCase : Any = BertForMaskedLM(__magic_name__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase : BertSelfAttention = layer.attention.self UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( __magic_name__ , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCAmelCase : List[str] = get_encoder_attention_layer_array( __magic_name__ , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( __magic_name__ , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCAmelCase : Any = get_encoder_attention_layer_array( __magic_name__ , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( __magic_name__ , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCAmelCase : List[str] = get_encoder_attention_layer_array( __magic_name__ , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase : BertSelfOutput = layer.attention.output UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( __magic_name__ , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCAmelCase : str = get_encoder_attention_layer_array( __magic_name__ , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCAmelCase : int = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/gamma" ) UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/beta" ) # Intermediate UpperCAmelCase : BertIntermediate = layer.intermediate UpperCAmelCase : str = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/kernel" ) UpperCAmelCase : int = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/bias" ) # Output UpperCAmelCase : BertOutput = layer.output UpperCAmelCase : List[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/kernel" ) UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_output_dense/bias" ) UpperCAmelCase : List[Any] = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/gamma" ) UpperCAmelCase : Any = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/beta" ) # Embeddings UpperCAmelCase : List[str] = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCAmelCase : Any = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCAmelCase : str = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCAmelCase : Union[str, Any] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCAmelCase : int = model.cls.predictions.transform UpperCAmelCase : Union[str, Any] = get_masked_lm_array("dense/kernel" ) UpperCAmelCase : Any = get_masked_lm_array("dense/bias" ) UpperCAmelCase : Optional[int] = get_masked_lm_array("layer_norm/gamma" ) UpperCAmelCase : int = get_masked_lm_array("layer_norm/beta" ) UpperCAmelCase : Any = get_masked_lm_array("embedding_table" ) # Pooling UpperCAmelCase : Dict = BertPooler(config=__magic_name__ ) UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" ) UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__magic_name__ ) # Integration test - should load without any errors ;) UpperCAmelCase : Optional[Any] = BertForMaskedLM.from_pretrained(__magic_name__ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) a : Tuple = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
609
'''simple docstring''' def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCAmelCase : List[Any] = n - k # Calculate C(n,k) for i in range(__magic_name__ ): result *= n - i result //= i + 1 return result def lowercase ( __magic_name__ ): '''simple docstring''' return binomial_coefficient(2 * node_count , __magic_name__ ) // (node_count + 1) def lowercase ( __magic_name__ ): '''simple docstring''' if n < 0: raise ValueError("factorial() not defined for negative values" ) UpperCAmelCase : int = 1 for i in range(1 , n + 1 ): result *= i return result def lowercase ( __magic_name__ ): '''simple docstring''' return catalan_number(__magic_name__ ) * factorial(__magic_name__ ) if __name__ == "__main__": a : Optional[Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
609
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
"""simple docstring""" import numpy as np def A__ ( __lowerCamelCase ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
589
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCamelCase ( ): lowercase_ : str = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=SCREAMING_SNAKE_CASE_ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() def _UpperCamelCase ( ): lowercase_ : Optional[int] = parse_args() # Import training_script as a module. lowercase_ : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ : List[Any] = script_fpath.stem lowercase_ : Tuple = importlib.import_module(SCREAMING_SNAKE_CASE_ ) # Patch sys.argv lowercase_ : List[str] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
438
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
438
1
import warnings from functools import wraps from typing import Callable def __SCREAMING_SNAKE_CASE ( a__ : Callable ) -> Callable: @wraps(a__ ) def _inner_fn(*a__ : Union[str, Any] ,**a__ : Any ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,a__ ,) return fn(*a__ ,**a__ ) return _inner_fn
17
from __future__ import annotations import math def _a ( lowerCAmelCase )-> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True SCREAMING_SNAKE_CASE: List[str] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def _a ( lowerCAmelCase )-> list[int]: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) SCREAMING_SNAKE_CASE_ = [] for num in range(len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ = 0 while 2 * i * i <= odd_composites[num]: SCREAMING_SNAKE_CASE_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase ) == n: return list_nums return [] def _a ( )-> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
360
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } SCREAMING_SNAKE_CASE__ = {"mgp-str": 27} class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : List[str] = VOCAB_FILES_NAMES lowerCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , UpperCAmelCase : str , UpperCAmelCase : str="[GO]" , UpperCAmelCase : str="[GO]" , UpperCAmelCase : Optional[Any]="[s]" , UpperCAmelCase : Union[str, Any]="[GO]" , **UpperCAmelCase : Union[str, Any]): super().__init__( unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_ :int = json.load(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :str = {v: k for k, v in self.vocab.items()} @property def _snake_case ( self : List[str]): return len(self.vocab) def _snake_case ( self : List[str]): return dict(self.vocab , **self.added_tokens_encoder) def _snake_case ( self : str , UpperCAmelCase : Dict): SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for s in text: char_tokens.extend(UpperCAmelCase) return char_tokens def _snake_case ( self : Optional[Any] , UpperCAmelCase : Any): return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token)) def _snake_case ( self : List[Any] , UpperCAmelCase : Any): return self.decoder.get(UpperCAmelCase) def _snake_case ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None): if not os.path.isdir(UpperCAmelCase): logger.error("Vocabulary path ({}) should be a directory".format(UpperCAmelCase)) return SCREAMING_SNAKE_CASE_ :Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) with open(UpperCAmelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase) + "\n") return (vocab_file,)
718
def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack SCREAMING_SNAKE_CASE_ :set[int] = set() return any( node not in visited and depth_first_search(a , a , a , a ) for node in graph ) def lowercase ( a , a , a , a ): '''simple docstring''' visited.add(a ) rec_stk.add(a ) for node in graph[vertex]: if node not in visited: if depth_first_search(a , a , a , a ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a ) return False if __name__ == "__main__": from doctest import testmod testmod()
140
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( __A : list[int] , __A : tuple[int, ...] ) -> str | None: """simple docstring""" lowercase : str ="" lowercase : int lowercase : int lowercase : int for keychar, cipherchar in zip(cycle(__A ) , __A ): lowercase : str =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__A ) return decoded def lowercase_ ( __A : list[int] ) -> list[str]: """simple docstring""" lowercase : list[str] =[] for key in product(__A , repeat=3 ): lowercase : List[str] =try_key(__A , __A ) if encoded is not None: possibles.append(__A ) return possibles def lowercase_ ( __A : list[str] , __A : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( __A : str = "p059_cipher.txt" ) -> int: """simple docstring""" lowercase : list[int] lowercase : list[str] lowercase : str lowercase : str lowercase : str =Path(__A ).parent.joinpath(__A ).read_text(encoding='''utf-8''' ) lowercase : List[Any] =[int(__A ) for number in data.strip().split(''',''' )] lowercase : Tuple =filter_valid_chars(__A ) for common_word in COMMON_WORDS: lowercase : Optional[Any] =filter_common_word(__A , __A ) if len(__A ) == 1: break lowercase : List[Any] =possibles[0] return sum(ord(__A ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
94
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : list )-> list: '''simple docstring''' UpperCAmelCase__ : List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCAmelCase__ : List[Any] = True for i in range(0 , len(snake_case ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCAmelCase__ : int = False for i in range(1 , len(snake_case ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCAmelCase__ : str = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _lowerCAmelCase : List[str] = [int(x) for x in input().split()] # inputing elements of the list in one line _lowerCAmelCase : Optional[int] = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
438
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( lowerCAmelCase__ ): __UpperCamelCase = 42 class lowercase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCamelCase = True @register_to_config def __init__( self: Optional[Any], _lowercase: int = 3, _lowercase: int = 3, _lowercase: Tuple[str] = ("DownEncoderBlock2D",), _lowercase: Tuple[str] = ("UpDecoderBlock2D",), _lowercase: Tuple[int] = (64,), _lowercase: int = 1, _lowercase: str = "silu", _lowercase: int = 4, _lowercase: int = 32, _lowercase: int = 32, _lowercase: float = 0.18_215, ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=_lowercase, out_channels=_lowercase, down_block_types=_lowercase, block_out_channels=_lowercase, layers_per_block=_lowercase, act_fn=_lowercase, norm_num_groups=_lowercase, double_z=_lowercase, ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=_lowercase, out_channels=_lowercase, up_block_types=_lowercase, block_out_channels=_lowercase, layers_per_block=_lowercase, norm_num_groups=_lowercase, act_fn=_lowercase, ) __lowerCAmelCase = nn.Convad(2 * latent_channels, 2 * latent_channels, 1) __lowerCAmelCase = nn.Convad(_lowercase, _lowercase, 1) __lowerCAmelCase = False __lowerCAmelCase = False # only relevant if vae tiling is enabled __lowerCAmelCase = self.config.sample_size __lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size ) __lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) __lowerCAmelCase = 0.25 def _lowercase ( self: int, _lowercase: Tuple, _lowercase: List[Any]=False): '''simple docstring''' if isinstance(_lowercase, (Encoder, Decoder)): __lowerCAmelCase = value def _lowercase ( self: Optional[Any], _lowercase: bool = True): '''simple docstring''' __lowerCAmelCase = use_tiling def _lowercase ( self: Optional[Any]): '''simple docstring''' self.enable_tiling(_lowercase) def _lowercase ( self: Union[str, Any]): '''simple docstring''' __lowerCAmelCase = True def _lowercase ( self: List[Any]): '''simple docstring''' __lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _lowercase ( self: List[str]): '''simple docstring''' __lowerCAmelCase = {} def fn_recursive_add_processors(_lowercase: str, _lowercase: torch.nn.Module, _lowercase: Dict[str, AttentionProcessor]): if hasattr(_lowercase, """set_processor"""): __lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''', _lowercase, _lowercase) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowercase, _lowercase, _lowercase) return processors def _lowercase ( self: Dict, _lowercase: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): '''simple docstring''' __lowerCAmelCase = len(self.attn_processors.keys()) if isinstance(_lowercase, _lowercase) and len(_lowercase) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_lowercase)} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''') def fn_recursive_attn_processor(_lowercase: str, _lowercase: torch.nn.Module, _lowercase: Dict): if hasattr(_lowercase, """set_processor"""): if not isinstance(_lowercase, _lowercase): module.set_processor(_lowercase) else: module.set_processor(processor.pop(f'''{name}.processor''')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''', _lowercase, _lowercase) for name, module in self.named_children(): fn_recursive_attn_processor(_lowercase, _lowercase, _lowercase) def _lowercase ( self: Dict): '''simple docstring''' self.set_attn_processor(AttnProcessor()) @apply_forward_hook def _lowercase ( self: str, _lowercase: torch.FloatTensor, _lowercase: bool = True): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_lowercase, return_dict=_lowercase) if self.use_slicing and x.shape[0] > 1: __lowerCAmelCase = [self.encoder(_lowercase) for x_slice in x.split(1)] __lowerCAmelCase = torch.cat(_lowercase) else: __lowerCAmelCase = self.encoder(_lowercase) __lowerCAmelCase = self.quant_conv(_lowercase) __lowerCAmelCase = DiagonalGaussianDistribution(_lowercase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowercase) def _lowercase ( self: Optional[int], _lowercase: torch.FloatTensor, _lowercase: bool = True): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_lowercase, return_dict=_lowercase) __lowerCAmelCase = self.post_quant_conv(_lowercase) __lowerCAmelCase = self.decoder(_lowercase) if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase) @apply_forward_hook def _lowercase ( self: List[Any], _lowercase: torch.FloatTensor, _lowercase: bool = True): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCAmelCase = [self._decode(_lowercase).sample for z_slice in z.split(1)] __lowerCAmelCase = torch.cat(_lowercase) else: __lowerCAmelCase = self._decode(_lowercase).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_lowercase) def _lowercase ( self: List[str], _lowercase: Dict, _lowercase: Tuple, _lowercase: Any): '''simple docstring''' __lowerCAmelCase = min(a.shape[2], b.shape[2], _lowercase) for y in range(_lowercase): __lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _lowercase ( self: int, _lowercase: Union[str, Any], _lowercase: Any, _lowercase: Dict): '''simple docstring''' __lowerCAmelCase = min(a.shape[3], b.shape[3], _lowercase) for x in range(_lowercase): __lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _lowercase ( self: List[Any], _lowercase: torch.FloatTensor, _lowercase: bool = True): '''simple docstring''' __lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) __lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor) __lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCAmelCase = [] for i in range(0, x.shape[2], _lowercase): __lowerCAmelCase = [] for j in range(0, x.shape[3], _lowercase): __lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCAmelCase = self.encoder(_lowercase) __lowerCAmelCase = self.quant_conv(_lowercase) row.append(_lowercase) rows.append(_lowercase) __lowerCAmelCase = [] for i, row in enumerate(_lowercase): __lowerCAmelCase = [] for j, tile in enumerate(_lowercase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j], _lowercase, _lowercase) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1], _lowercase, _lowercase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(_lowercase, dim=3)) __lowerCAmelCase = torch.cat(_lowercase, dim=2) __lowerCAmelCase = DiagonalGaussianDistribution(_lowercase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowercase) def _lowercase ( self: List[Any], _lowercase: torch.FloatTensor, _lowercase: bool = True): '''simple docstring''' __lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) __lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor) __lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCAmelCase = [] for i in range(0, z.shape[2], _lowercase): __lowerCAmelCase = [] for j in range(0, z.shape[3], _lowercase): __lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCAmelCase = self.post_quant_conv(_lowercase) __lowerCAmelCase = self.decoder(_lowercase) row.append(_lowercase) rows.append(_lowercase) __lowerCAmelCase = [] for i, row in enumerate(_lowercase): __lowerCAmelCase = [] for j, tile in enumerate(_lowercase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j], _lowercase, _lowercase) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1], _lowercase, _lowercase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(_lowercase, dim=3)) __lowerCAmelCase = torch.cat(_lowercase, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase) def _lowercase ( self: List[str], _lowercase: torch.FloatTensor, _lowercase: bool = False, _lowercase: bool = True, _lowercase: Optional[torch.Generator] = None, ): '''simple docstring''' __lowerCAmelCase = sample __lowerCAmelCase = self.encode(_lowercase).latent_dist if sample_posterior: __lowerCAmelCase = posterior.sample(generator=_lowercase) else: __lowerCAmelCase = posterior.mode() __lowerCAmelCase = self.decode(_lowercase).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase)
334
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) __A : Optional[Any] = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: __A : Union[str, Any] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : int = [0] * args.vocab_size for k, v in counter.items(): __A : Optional[int] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
334
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __UpperCamelCase : Union[str, Any] = generate_large_matrix() __UpperCamelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] ): lowerCAmelCase = 0 lowerCAmelCase = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase = (left + right) // 2 lowerCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase = mid + 1 else: lowerCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def _SCREAMING_SNAKE_CASE (): from timeit import timeit print('Running benchmarks' ) lowerCAmelCase = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase = timeit(F'{func}(grid=grid)' , setup=_UpperCAmelCase , number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
4
import sys def __magic_name__ ( __lowerCAmelCase : str ) -> Union[str, Any]: __lowerCamelCase = len(__lowerCAmelCase ) __lowerCamelCase = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] __lowerCamelCase = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): __lowerCamelCase = a + chain_length - 1 __lowerCamelCase = sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCamelCase = cost __lowerCamelCase = c return matrix, sol def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> List[str]: if i == j: print('''A''' + str(__lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(''')''' , end=''' ''' ) def __magic_name__ ( ) -> Optional[Any]: __lowerCamelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCamelCase = len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCamelCase , __lowerCamelCase = matrix_chain_order(__lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
298
0
"""simple docstring""" a : Union[str, Any] = 8.3_14_45_98 def _UpperCamelCase ( _A , _A ) -> float: """simple docstring""" if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a : Union[str, Any] = 3_0_0 a : Dict = 2_8 a : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass) print(F"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
19
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _UpperCamelCase ( _A , _A=False ) -> str: """simple docstring""" try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False) a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a : int = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import faiss # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" try: import regex # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires regex""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" if not config.TORCH_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" if not config.TF_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" if not config.JAX_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not config.PIL_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> int: """simple docstring""" def _require_spacy_model(_A ): try: import spacy # noqa F401 spacy.load(_A ) except ImportError: return unittest.skip("""test requires spacy""" )(_A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A ) else: return test_case return _require_spacy_model def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase = unittest.skip("""test is slow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase = unittest.skip("""test is local""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase = unittest.skip("""test is packaged""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase = unittest.skip("""test requires remote""" )(_A ) return test_case def _UpperCamelCase ( *_A ) -> Dict: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_A ) and name.startswith("""test""" ): for decorator in decorators: _UpperCAmelCase = decorator(_A ) setattr(cls , _A , _A ) return cls return decorate class a_ ( _UpperCAmelCase ): pass class a_ ( _UpperCAmelCase ): a : Any = 0 a : Optional[Any] = 1 a : int = 2 @contextmanager def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]: """simple docstring""" _UpperCAmelCase = requests.Session().request def timeout_request(_A , _A , _A , **_A ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCAmelCase = timeout try: return online_request(_A , _A , **_A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase = url _UpperCAmelCase = e.args[0] _UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),) _UpperCAmelCase = (max_retry_error,) raise def raise_connection_error(_A , _A , **_A ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , _A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , _A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _UpperCamelCase ( *_A , **_A ) -> str: """simple docstring""" _UpperCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir: try: os.chdir(_A ) yield finally: os.chdir(_A ) @contextmanager def _UpperCamelCase ( ) -> Any: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _UpperCamelCase ( _A , _A ) -> str: """simple docstring""" return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_A , *_A , **_A ): try: return func(*_A , **_A ) except HTTPError as err: if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ): pytest.xfail(str(_A ) ) raise err return decorator.decorator(_wrapper , _A ) class a_ : def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]: """simple docstring""" while True: _UpperCAmelCase = await stream.readline() if line: callback(_A ) else: break async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(_A ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_A , _A , _A , _A="" ): _UpperCAmelCase = line.decode("""utf-8""" ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput: """simple docstring""" _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) _UpperCAmelCase = """ """.join(_A ) if result.returncode > 0: _UpperCAmelCase = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M ) return int(_A ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = 2_9_5_0_0 _UpperCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
19
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location="cpu" ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location="cpu" )["model"] # pop unnecessary weights SCREAMING_SNAKE_CASE = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE = key.replace(".qkv_proj." , ".q_proj." ) SCREAMING_SNAKE_CASE = key.replace(".qkv_proj." , ".k_proj." ) SCREAMING_SNAKE_CASE = key.replace(".qkv_proj." , ".v_proj." ) SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE = q SCREAMING_SNAKE_CASE = k SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=None ): SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = OPTConfig() SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _lowerCamelCase : int = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
403
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict=[] ): SCREAMING_SNAKE_CASE = size[0] - overlap_pixels * 2 SCREAMING_SNAKE_CASE = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels SCREAMING_SNAKE_CASE = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 SCREAMING_SNAKE_CASE = np.pad(UpperCAmelCase__ , mode="linear_ramp" , pad_width=UpperCAmelCase__ , end_values=0 ) if "l" in remove_borders: SCREAMING_SNAKE_CASE = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: SCREAMING_SNAKE_CASE = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: SCREAMING_SNAKE_CASE = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: SCREAMING_SNAKE_CASE = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ): return max(UpperCAmelCase__ , min(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : [int] , UpperCAmelCase__ : [int] , UpperCAmelCase__ : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCamelCase (UpperCAmelCase__ : [int] , UpperCAmelCase__ : int , UpperCAmelCase__ : [int] ): SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap SCREAMING_SNAKE_CASE = clamp_rect(UpperCAmelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(UpperCAmelCase__ , (original_slice, 0) ) return result def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) SCREAMING_SNAKE_CASE = tile.crop(UpperCAmelCase__ ) return tile def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = n % d return n - divisor class lowercase ( a ): def __init__( self : Tuple , _UpperCamelCase : AutoencoderKL , _UpperCamelCase : CLIPTextModel , _UpperCamelCase : CLIPTokenizer , _UpperCamelCase : UNetaDConditionModel , _UpperCamelCase : DDPMScheduler , _UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCamelCase : int = 350 , ) -> Dict: '''simple docstring''' super().__init__( vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , max_noise_level=_UpperCamelCase , ) def __snake_case( self : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , **_UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) SCREAMING_SNAKE_CASE = add_overlap_rect(_UpperCamelCase , _UpperCamelCase , image.size ) SCREAMING_SNAKE_CASE = image.crop(_UpperCamelCase ) SCREAMING_SNAKE_CASE = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] SCREAMING_SNAKE_CASE = translated_slice_x - (original_image_slice / 2) SCREAMING_SNAKE_CASE = max(0 , _UpperCamelCase ) SCREAMING_SNAKE_CASE = squeeze_tile(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = to_input.size SCREAMING_SNAKE_CASE = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) SCREAMING_SNAKE_CASE = super(_UpperCamelCase , self ).__call__(image=_UpperCamelCase , **_UpperCamelCase ).images[0] SCREAMING_SNAKE_CASE = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE = unsqueeze_tile(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) SCREAMING_SNAKE_CASE = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_UpperCamelCase ) , mode="L" , ) final_image.paste( _UpperCamelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[Any] , _UpperCamelCase : Union[str, List[str]] , _UpperCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _UpperCamelCase : int = 75 , _UpperCamelCase : float = 9.0 , _UpperCamelCase : int = 50 , _UpperCamelCase : Optional[Union[str, List[str]]] = None , _UpperCamelCase : Optional[int] = 1 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : Optional[torch.Generator] = None , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 128 , _UpperCamelCase : int = 32 , _UpperCamelCase : int = 32 , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) SCREAMING_SNAKE_CASE = math.ceil(image.size[0] / tile_size ) SCREAMING_SNAKE_CASE = math.ceil(image.size[1] / tile_size ) SCREAMING_SNAKE_CASE = tcx * tcy SCREAMING_SNAKE_CASE = 0 for y in range(_UpperCamelCase ): for x in range(_UpperCamelCase ): self._process_tile( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , prompt=_UpperCamelCase , num_inference_steps=_UpperCamelCase , guidance_scale=_UpperCamelCase , noise_level=_UpperCamelCase , negative_prompt=_UpperCamelCase , num_images_per_prompt=_UpperCamelCase , eta=_UpperCamelCase , generator=_UpperCamelCase , latents=_UpperCamelCase , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def __lowerCamelCase (): # Run a demo SCREAMING_SNAKE_CASE = "stabilityai/stable-diffusion-x4-upscaler" SCREAMING_SNAKE_CASE = StableDiffusionTiledUpscalePipeline.from_pretrained(UpperCAmelCase__ , revision="fp16" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE = pipe.to("cuda" ) SCREAMING_SNAKE_CASE = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(UpperCAmelCase__ : List[Any] ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save("diffusers_library_progress.jpg" ) SCREAMING_SNAKE_CASE = pipe(image=UpperCAmelCase__ , prompt="Black font, white background, vector" , noise_level=4_0 , callback=UpperCAmelCase__ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
403
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[Union[str, Path]] = None lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : Optional[Dict] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = True lowerCamelCase : Optional[int] = None lowerCamelCase : int = 1 lowerCamelCase : Optional[Union[str, bool]] = None lowerCamelCase : bool = False lowerCamelCase : Optional[Dict] = None lowerCamelCase : Optional[str] = None def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return self.__class__(**{k: copy.deepcopy(_UpperCAmelCase ) for k, v in self.__dict__.items()} )
382
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a = """base_with_context""" def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :Dict = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__magic_name__ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase :Optional[int] = weights[f"""layers_{lyr_num}"""] _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :Any = ly_weight['attention'] _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :int = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__magic_name__ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase :Any = weights[f"""layers_{lyr_num}"""] _lowerCAmelCase :str = ly_weight['attention'] _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowerCAmelCase :int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) _lowerCAmelCase :Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__magic_name__ ) _lowerCAmelCase :List[Any] = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase :int = weights[f"""layers_{lyr_num}"""] _lowerCAmelCase :Tuple = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :Tuple = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) _lowerCAmelCase :Tuple = ly_weight['self_attention'] _lowerCAmelCase :Dict = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :List[Any] = ly_weight['MultiHeadDotProductAttention_0'] _lowerCAmelCase :Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowerCAmelCase :int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowerCAmelCase :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Dict = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase :Tuple = jnp.tree_util.tree_map(onp.array , __magic_name__ ) _lowerCAmelCase :List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] _lowerCAmelCase :Any = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) _lowerCAmelCase :Tuple = inference.parse_training_gin_file(__magic_name__ , __magic_name__ ) _lowerCAmelCase :List[Any] = inference.InferenceModel(args.checkpoint_path , __magic_name__ ) _lowerCAmelCase :Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) _lowerCAmelCase :Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _lowerCAmelCase :Any = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _lowerCAmelCase :Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase :str = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __magic_name__ ) _lowerCAmelCase :Optional[int] = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __magic_name__ ) _lowerCAmelCase :List[str] = load_decoder(ta_checkpoint['target']['decoder'] , __magic_name__ ) _lowerCAmelCase :Tuple = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) _lowerCAmelCase :Union[str, Any] = SpectrogramDiffusionPipeline( notes_encoder=__magic_name__ , continuous_encoder=__magic_name__ , decoder=__magic_name__ , scheduler=__magic_name__ , melgan=__magic_name__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) a = parser.parse_args() main(args)
382
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : "DiagonalGaussianDistribution" class a__( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = True @register_to_config def __init__( self , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = ("DownEncoderBlock2D",) , __lowerCAmelCase = ("UpDecoderBlock2D",) , __lowerCAmelCase = (64,) , __lowerCAmelCase = 1 , __lowerCAmelCase = "silu" , __lowerCAmelCase = 4 , __lowerCAmelCase = 32 , __lowerCAmelCase = 32 , __lowerCAmelCase = 0.18215 , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , down_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , act_fn=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , double_z=__lowerCAmelCase , ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , up_block_types=__lowerCAmelCase , block_out_channels=__lowerCAmelCase , layers_per_block=__lowerCAmelCase , norm_num_groups=__lowerCAmelCase , act_fn=__lowerCAmelCase , ) lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) lowerCAmelCase = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1) lowerCAmelCase = False lowerCAmelCase = False # only relevant if vae tiling is enabled lowerCAmelCase = self.config.sample_size lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) lowerCAmelCase = 0.25 def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=False): """simple docstring""" if isinstance(__lowerCAmelCase , (Encoder, Decoder)): lowerCAmelCase = value def a_ ( self , __lowerCAmelCase = True): """simple docstring""" lowerCAmelCase = use_tiling def a_ ( self): """simple docstring""" self.enable_tiling(__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = True def a_ ( self): """simple docstring""" lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a_ ( self): """simple docstring""" lowerCAmelCase = {} def fn_recursive_add_processors(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): if hasattr(__lowerCAmelCase , """set_processor"""): lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , __lowerCAmelCase , __lowerCAmelCase) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) return processors def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = len(self.attn_processors.keys()) if isinstance(__lowerCAmelCase , __lowerCAmelCase) and len(__lowerCAmelCase) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(__lowerCAmelCase)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): if hasattr(__lowerCAmelCase , """set_processor"""): if not isinstance(__lowerCAmelCase , __lowerCAmelCase): module.set_processor(__lowerCAmelCase) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , __lowerCAmelCase , __lowerCAmelCase) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" self.set_attn_processor(AttnProcessor()) @apply_forward_hook def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowerCAmelCase , return_dict=__lowerCAmelCase) if self.use_slicing and x.shape[0] > 1: lowerCAmelCase = [self.encoder(__lowerCAmelCase) for x_slice in x.split(1)] lowerCAmelCase = torch.cat(__lowerCAmelCase) else: lowerCAmelCase = self.encoder(__lowerCAmelCase) lowerCAmelCase = self.quant_conv(__lowerCAmelCase) lowerCAmelCase = DiagonalGaussianDistribution(__lowerCAmelCase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowerCAmelCase , return_dict=__lowerCAmelCase) lowerCAmelCase = self.post_quant_conv(__lowerCAmelCase) lowerCAmelCase = self.decoder(__lowerCAmelCase) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase) @apply_forward_hook def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" if self.use_slicing and z.shape[0] > 1: lowerCAmelCase = [self._decode(__lowerCAmelCase).sample for z_slice in z.split(1)] lowerCAmelCase = torch.cat(__lowerCAmelCase) else: lowerCAmelCase = self._decode(__lowerCAmelCase).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = min(a.shape[2] , b.shape[2] , __lowerCAmelCase) for y in range(__lowerCAmelCase): lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = min(a.shape[3] , b.shape[3] , __lowerCAmelCase) for x in range(__lowerCAmelCase): lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor) lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowerCAmelCase = [] for i in range(0 , x.shape[2] , __lowerCAmelCase): lowerCAmelCase = [] for j in range(0 , x.shape[3] , __lowerCAmelCase): lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowerCAmelCase = self.encoder(__lowerCAmelCase) lowerCAmelCase = self.quant_conv(__lowerCAmelCase) row.append(__lowerCAmelCase) rows.append(__lowerCAmelCase) lowerCAmelCase = [] for i, row in enumerate(__lowerCAmelCase): lowerCAmelCase = [] for j, tile in enumerate(__lowerCAmelCase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowerCAmelCase , __lowerCAmelCase) if j > 0: lowerCAmelCase = self.blend_h(row[j - 1] , __lowerCAmelCase , __lowerCAmelCase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__lowerCAmelCase , dim=3)) lowerCAmelCase = torch.cat(__lowerCAmelCase , dim=2) lowerCAmelCase = DiagonalGaussianDistribution(__lowerCAmelCase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True): """simple docstring""" lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor) lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowerCAmelCase = [] for i in range(0 , z.shape[2] , __lowerCAmelCase): lowerCAmelCase = [] for j in range(0 , z.shape[3] , __lowerCAmelCase): lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowerCAmelCase = self.post_quant_conv(__lowerCAmelCase) lowerCAmelCase = self.decoder(__lowerCAmelCase) row.append(__lowerCAmelCase) rows.append(__lowerCAmelCase) lowerCAmelCase = [] for i, row in enumerate(__lowerCAmelCase): lowerCAmelCase = [] for j, tile in enumerate(__lowerCAmelCase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowerCAmelCase , __lowerCAmelCase) if j > 0: lowerCAmelCase = self.blend_h(row[j - 1] , __lowerCAmelCase , __lowerCAmelCase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__lowerCAmelCase , dim=3)) lowerCAmelCase = torch.cat(__lowerCAmelCase , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(__lowerCAmelCase).latent_dist if sample_posterior: lowerCAmelCase = posterior.sample(generator=__lowerCAmelCase) else: lowerCAmelCase = posterior.mode() lowerCAmelCase = self.decode(__lowerCAmelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCAmelCase)
370
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowercase = logging.get_logger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Dict = ['''input_values''', '''attention_mask'''] def __init__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = 16000 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = False , __lowerCAmelCase = 80 , __lowerCAmelCase = 16 , __lowerCAmelCase = 64 , __lowerCAmelCase = "hann_window" , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 80 , __lowerCAmelCase = 7600 , __lowerCAmelCase = 1E-1_0 , __lowerCAmelCase = 2 , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = do_normalize lowerCAmelCase = return_attention_mask lowerCAmelCase = num_mel_bins lowerCAmelCase = hop_length lowerCAmelCase = win_length lowerCAmelCase = win_function lowerCAmelCase = frame_signal_scale lowerCAmelCase = fmin lowerCAmelCase = fmax lowerCAmelCase = mel_floor lowerCAmelCase = reduction_factor lowerCAmelCase = win_length * sampling_rate // 1000 lowerCAmelCase = hop_length * sampling_rate // 1000 lowerCAmelCase = optimal_fft_length(self.sample_size) lowerCAmelCase = (self.n_fft // 2) + 1 lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__lowerCAmelCase) lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , __lowerCAmelCase , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , __lowerCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0): """simple docstring""" if attention_mask is not None: lowerCAmelCase = np.array(__lowerCAmelCase , np.intaa) lowerCAmelCase = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1)): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(__lowerCAmelCase) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def a_ ( self , __lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = spectrogram( __lowerCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""") if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") if audio is not None: lowerCAmelCase = self._process_audio( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ) else: lowerCAmelCase = None if audio_target is not None: lowerCAmelCase = self._process_audio( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ) if inputs is None: return inputs_target else: lowerCAmelCase = inputs_target["""input_values"""] lowerCAmelCase = inputs_target.get("""attention_mask""") if decoder_attention_mask is not None: lowerCAmelCase = decoder_attention_mask return inputs def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = isinstance(__lowerCAmelCase , np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") lowerCAmelCase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.floataa) for speech in speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray): lowerCAmelCase = np.asarray(__lowerCAmelCase , dtype=np.floataa) elif isinstance(__lowerCAmelCase , np.ndarray) and speech.dtype is np.dtype(np.floataa): lowerCAmelCase = speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase = [self._extract_mel_features(__lowerCAmelCase) for waveform in speech] lowerCAmelCase = BatchFeature({"""input_values""": features}) lowerCAmelCase = self.num_mel_bins else: lowerCAmelCase = BatchFeature({"""input_values""": speech}) lowerCAmelCase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = feature_size_hack # convert input values to correct format lowerCAmelCase = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray): lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.floataa) for array in input_values] elif ( not isinstance(__lowerCAmelCase , np.ndarray) and isinstance(input_values[0] , np.ndarray) and input_values[0].dtype is np.dtype(np.floataa) ): lowerCAmelCase = [array.astype(np.floataa) for array in input_values] elif isinstance(__lowerCAmelCase , np.ndarray) and input_values.dtype is np.dtype(np.floataa): lowerCAmelCase = input_values.astype(np.floataa) # convert attention_mask to correct format lowerCAmelCase = padded_inputs.get("""attention_mask""") if attention_mask is not None: lowerCAmelCase = [np.asarray(__lowerCAmelCase , dtype=np.intaa) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase = ( attention_mask if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=__lowerCAmelCase , padding_value=self.padding_value) if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(__lowerCAmelCase) return padded_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
370
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : Union[str, Any] = 0 for ch in input_str: UpperCAmelCase__ : Optional[Any] = ord(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = pow(2 , lowerCAmelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
312
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'fnet' def __init__( self : List[str] , _A : Dict=32_000 , _A : Optional[Any]=768 , _A : Tuple=12 , _A : int=3_072 , _A : Union[str, Any]="gelu_new" , _A : int=0.1 , _A : List[Any]=512 , _A : List[str]=4 , _A : Optional[int]=0.0_2 , _A : List[str]=1e-12 , _A : Union[str, Any]=False , _A : Any=512 , _A : int=3 , _A : str=1 , _A : List[str]=2 , **_A : Dict , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : List[str] = layer_norm_eps UpperCAmelCase__ : Tuple = use_tpu_fourier_optimizations UpperCAmelCase__ : Union[str, Any] = tpu_short_seq_length
312
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A__ ( A_ ) -> Optional[int]: _lowercase = int(A_ ) _lowercase , _lowercase , _lowercase = t // 3_600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def A__ ( A_ , A_ , A_ , A_ , A_=300 ) -> Dict: # docstyle-ignore return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def A__ ( A_ ) -> int: _lowercase = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowercase = F"""{elt:.6f}""" if isinstance(A_ , A_ ) else str(A_ ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = 5 UpperCAmelCase__ = 0.2 def __init__( self : Optional[int] , __A : int , __A : Optional[str] = None , __A : bool = True , __A : Optional["NotebookTrainingTracker"] = None , __A : int = 3_0_0 , ): """simple docstring""" _lowercase = total _lowercase = "" if prefix is None else prefix _lowercase = leave _lowercase = parent _lowercase = width _lowercase = None _lowercase = None _lowercase = None def snake_case ( self : int , __A : int , __A : bool = False , __A : str = None ): """simple docstring""" _lowercase = value if comment is not None: _lowercase = comment if self.last_value is None: _lowercase = _lowercase = time.time() _lowercase = _lowercase = value _lowercase = _lowercase = None _lowercase = self.warmup _lowercase = 1 self.update_bar(__A ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowercase = time.time() _lowercase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowercase = self.elapsed_time / (value - self.start_value) else: _lowercase = None if value >= self.total: _lowercase = self.total _lowercase = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowercase = self.average_time_per_item * (self.total - value) self.update_bar(__A ) _lowercase = value _lowercase = current_time if self.average_time_per_item is None: _lowercase = 1 else: _lowercase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def snake_case ( self : Optional[int] , __A : List[str] , __A : Tuple=None ): """simple docstring""" _lowercase = " " * (len(str(self.total ) ) - len(str(__A ) )) + str(__A ) if self.elapsed_time is None: _lowercase = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _lowercase = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _lowercase = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def snake_case ( self : Union[str, Any] ): """simple docstring""" _lowercase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowercase = disp.display(disp.HTML(self.html_code ) , display_id=__A ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case ( self : List[str] ): """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , __A : Optional[int] , __A : Optional[Any]=None ): """simple docstring""" super().__init__(__A ) _lowercase = None if column_names is None else [column_names] _lowercase = None def snake_case ( self : Dict ): """simple docstring""" _lowercase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowercase = disp.display(disp.HTML(self.html_code ) , display_id=__A ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case ( self : Optional[int] , __A : List[Any] ): """simple docstring""" if self.inner_table is None: _lowercase = [list(values.keys() ), list(values.values() )] else: _lowercase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__A ) _lowercase = columns self.inner_table.append([values[c] for c in columns] ) def snake_case ( self : List[str] , __A : Dict , __A : Optional[Any]=None , __A : Optional[Any]=3_0_0 ): """simple docstring""" _lowercase = NotebookProgressBar(__A , prefix=__A , parent=self , width=__A ) return self.child_bar def snake_case ( self : int ): """simple docstring""" _lowercase = None self.display() class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" _lowercase = None _lowercase = None _lowercase = False def snake_case ( self : List[str] , __A : Optional[int] , __A : Tuple , __A : Union[str, Any] , **__A : List[Any] ): """simple docstring""" _lowercase = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" _lowercase = 0 _lowercase = 0 _lowercase = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) _lowercase = NotebookTrainingTracker(state.max_steps , __A ) def snake_case ( self : int , __A : Optional[int] , __A : Any , __A : Optional[Any] , **__A : Any ): """simple docstring""" _lowercase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) _lowercase = False def snake_case ( self : List[Any] , __A : List[str] , __A : List[str] , __A : Union[str, Any] , __A : int=None , **__A : Optional[int] ): """simple docstring""" if not has_length(__A ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowercase = self.training_tracker.add_child(len(__A ) ) else: _lowercase = NotebookProgressBar(len(__A ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def snake_case ( self : Optional[int] , __A : Tuple , __A : Tuple , __A : str , **__A : Optional[Any] ): """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() _lowercase = None def snake_case ( self : Union[str, Any] , __A : int , __A : Dict , __A : str , __A : Optional[int]=None , **__A : Optional[int] ): """simple docstring""" # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowercase = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy _lowercase = state.global_step self.training_tracker.write_line(__A ) def snake_case ( self : str , __A : Optional[Any] , __A : List[str] , __A : Optional[int] , __A : Dict=None , **__A : List[Any] ): """simple docstring""" if self.training_tracker is not None: _lowercase = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: _lowercase = log["loss"] break if self.first_column == "Epoch": _lowercase = int(state.epoch ) else: _lowercase = state.global_step _lowercase = "eval" for k in metrics: if k.endswith("_loss" ): _lowercase = re.sub(R"\_loss$" , "" , __A ) _lowercase = metrics.pop("total_flos" , __A ) _lowercase = metrics.pop("epoch" , __A ) _lowercase = metrics.pop(f"""{metric_key_prefix}_runtime""" , __A ) _lowercase = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , __A ) _lowercase = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , __A ) _lowercase = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , __A ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": _lowercase = v else: _lowercase = k.split("_" ) _lowercase = " ".join([part.capitalize() for part in splits[1:]] ) _lowercase = v self.training_tracker.write_line(__A ) self.training_tracker.remove_child() _lowercase = None # Evaluation takes a long time so we should force the next update. _lowercase = True def snake_case ( self : Optional[int] , __A : Optional[int] , __A : Any , __A : Optional[int] , **__A : Any ): """simple docstring""" self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=__A ) _lowercase = None
497
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : Dict = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def A__ ( A_ , A_ ) -> List[str]: _lowercase = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } _lowercase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _lowercase = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=A_ , output_all_encodings=A_ , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , A_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _lowercase = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab _lowercase = os.path.join(get_home_dir() , "models" ) _lowercase = _load_vocab(A_ , A_ , A_ , cls=A_ ) _lowercase = nlp.model.BERTModel( A_ , len(A_ ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=A_ , use_token_type_embed=A_ , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=A_ , use_decoder=A_ , ) original_bort.load_parameters(A_ , cast_dtype=A_ , ignore_extra=A_ ) _lowercase = original_bort._collect_params_with_prefix() # Build our config 🤗 _lowercase = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(A_ ), } _lowercase = BertConfig.from_dict(A_ ) _lowercase = BertForMaskedLM(A_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A_ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A_ , A_ ): _lowercase = hf_param.shape _lowercase = to_torch(params[gluon_param] ) _lowercase = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param _lowercase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) _lowercase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) _lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) _lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _lowercase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _lowercase = hf_bort_model.bert.encoder.layer[i] # self attention _lowercase = layer.attention.self _lowercase = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) _lowercase = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) _lowercase = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) _lowercase = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) _lowercase = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) _lowercase = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output _lowercase = layer.attention.output _lowercase = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) _lowercase = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) _lowercase = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) _lowercase = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate _lowercase = layer.intermediate _lowercase = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) _lowercase = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output _lowercase = layer.output _lowercase = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) _lowercase = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) _lowercase = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) _lowercase = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _lowercase = RobertaTokenizer.from_pretrained("roberta-base" ) _lowercase = tokenizer.encode_plus(A_ )["input_ids"] # Get gluon output _lowercase = mx.nd.array([input_ids] ) _lowercase = original_bort(inputs=A_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A_ ) _lowercase = BertModel.from_pretrained(A_ ) hf_bort_model.eval() _lowercase = tokenizer.encode_plus(A_ , return_tensors="pt" ) _lowercase = hf_bort_model(**A_ )[0] _lowercase = output_gluon[0].asnumpy() _lowercase = output_hf[0].detach().numpy() _lowercase = np.max(np.abs(hf_layer - gluon_layer ) ).item() _lowercase = np.allclose(A_ , A_ , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , A_ ) if __name__ == "__main__": __magic_name__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
497
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :torch.FloatTensor A :Optional[torch.FloatTensor] = None def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase=0.9_9_9 , __UpperCamelCase="cosine" , ) -> Tuple: if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) a__ : Union[str, Any] = [] for i in range(__UpperCamelCase ): a__ : List[str] = i / num_diffusion_timesteps a__ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A :List[Any] = 1 @register_to_config def __init__( self , __UpperCAmelCase = 1000 , __UpperCAmelCase = 0.0_0_0_1 , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = "linear" , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = 0 , __UpperCAmelCase = "epsilon" , __UpperCAmelCase = 1.0 , **__UpperCAmelCase , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , __UpperCAmelCase ) is not None: a__ : Tuple = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , __UpperCAmelCase , standard_warn=__UpperCAmelCase ) a__ : Any = kwargs["set_alpha_to_one"] if trained_betas is not None: a__ : str = torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": a__ : Optional[int] = torch.linspace(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ : Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ : str = betas_for_alpha_bar(__UpperCAmelCase ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) a__ : str = 1.0 - self.betas a__ : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. a__ : List[str] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution a__ : Optional[Any] = 1.0 # setable values a__ : Optional[int] = None a__ : int = torch.from_numpy(np.arange(0 , __UpperCAmelCase ).copy().astype(np.intaa ) ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" return sample def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' f' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' f' maximal {self.config.num_train_timesteps} timesteps.' ) a__ : Optional[int] = num_inference_steps a__ : Dict = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ : Union[str, Any] = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) a__ : Tuple = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) self.timesteps += self.config.steps_offset def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , ): """simple docstring""" a__ : Dict = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process a__ : Dict = self.alphas_cumprod[timestep] a__ : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) a__ : List[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": a__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 a__ : int = model_output elif self.config.prediction_type == "sample": a__ : Dict = model_output a__ : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": a__ : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output a__ : Union[str, Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: a__ : Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
207
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _a ( unittest.TestCase ): '''simple docstring''' def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ): """simple docstring""" a__ : Optional[Any] = None a__ : Dict = os.path.abspath(os.path.join("examples" , "by_feature" ) ) a__ : Tuple = os.path.abspath("examples" ) for item in os.listdir(__UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: a__ : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCAmelCase , feature_script=__UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ): a__ : List[Any] = compare_against_test( os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a__ : Optional[Any] = "\n".join(__UpperCAmelCase ) if special_strings is not None: for string in special_strings: a__ : Optional[Any] = diff.replace(__UpperCAmelCase , "" ) self.assertEqual(__UpperCAmelCase , "" ) def _A ( self ): """simple docstring""" self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase ) self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[Any] = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) a__ : int = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :int = False @classmethod def _A ( cls ): """simple docstring""" super().setUpClass() a__ : Optional[Any] = tempfile.mkdtemp() a__ : Tuple = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) a__ : Any = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _A ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _A ( self ): """simple docstring""" a__ : Dict = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def _A ( self ): """simple docstring""" a__ : Union[str, Any] = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() a__ : Optional[int] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def _A ( self ): """simple docstring""" a__ : Dict = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() a__ : List[str] = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) self.assertNotIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[Any] = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() a__ : List[str] = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) if torch.cuda.is_available(): a__ : List[str] = torch.cuda.device_count() else: a__ : str = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) else: self.assertIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) @slow def _A ( self ): """simple docstring""" a__ : List[str] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): a__ : Any = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) a__ : List[str] = re.findall("({.+})" , __UpperCAmelCase ) a__ : str = [r for r in results if "accuracy" in r][-1] a__ : Optional[int] = ast.literal_eval(__UpperCAmelCase ) self.assertGreaterEqual(results["accuracy"] , 0.7_5 ) def _A ( self ): """simple docstring""" a__ : Any = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _A ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: a__ : Tuple = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , "tracking" ) ) ) def _A ( self ): """simple docstring""" a__ : List[str] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def _A ( self ): """simple docstring""" a__ : Optional[int] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
207
1
import argparse import os import re import packaging.version _lowerCamelCase = 'examples/' _lowerCamelCase = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _lowerCamelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } _lowerCamelCase = 'README.md' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any ) -> List[str]: with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ , UpperCAmelCase_ = REPLACE_PATTERNS[pattern] UpperCAmelCase_ = replace.replace('''VERSION''' , __UpperCamelCase ) UpperCAmelCase_ = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Any: for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern='''examples''' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str=False ) -> List[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCAmelCase_ = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase_ = '''1. Want to contribute a new model?''' with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.readlines() # Find the start of the list. UpperCAmelCase_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase_ = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = REPLACE_PATTERNS['''init'''][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str=False ) -> Union[str, Any]: UpperCAmelCase_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase_ = default_version.base_version elif patch: UpperCAmelCase_ = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCAmelCase_ = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCAmelCase_ = input(f'Which version are you releasing? [{default_version}]' ) if len(__UpperCamelCase ) == 0: UpperCAmelCase_ = default_version print(f'Updating version to {version}.' ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def SCREAMING_SNAKE_CASE ( ) -> List[Any]: UpperCAmelCase_ = get_version() UpperCAmelCase_ = f'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCAmelCase_ = current_version.base_version # Check with the user we got that right. UpperCAmelCase_ = input(f'Which version are we developing now? [{dev_version}]' ) if len(__UpperCamelCase ) == 0: UpperCAmelCase_ = dev_version print(f'Updating version to {version}.' ) global_version_update(__UpperCamelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _lowerCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
144
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> Optional[Any]: if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase_ = np.concatenate(__UpperCamelCase , axis=0 ) UpperCAmelCase_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 UpperCAmelCase_ = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ = 2.0 * image - 1.0 UpperCAmelCase_ = torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ = torch.cat(__UpperCamelCase , dim=0 ) return image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int]=0.9_995 ) -> List[str]: if not isinstance(__UpperCamelCase , np.ndarray ): UpperCAmelCase_ = True UpperCAmelCase_ = va.device UpperCAmelCase_ = va.cpu().numpy() UpperCAmelCase_ = va.cpu().numpy() UpperCAmelCase_ = np.sum(va * va / (np.linalg.norm(__UpperCamelCase ) * np.linalg.norm(__UpperCamelCase )) ) if np.abs(__UpperCamelCase ) > DOT_THRESHOLD: UpperCAmelCase_ = (1 - t) * va + t * va else: UpperCAmelCase_ = np.arccos(__UpperCamelCase ) UpperCAmelCase_ = np.sin(__UpperCamelCase ) UpperCAmelCase_ = theta_a * t UpperCAmelCase_ = np.sin(__UpperCamelCase ) UpperCAmelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase_ = sin_theta_t / sin_theta_a UpperCAmelCase_ = sa * va + sa * va if inputs_are_torch: UpperCAmelCase_ = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) return va def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Optional[int]: UpperCAmelCase_ = F.normalize(__UpperCamelCase , dim=-1 ) UpperCAmelCase_ = F.normalize(__UpperCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ) -> Optional[int]: for param in model.parameters(): UpperCAmelCase_ = value class a ( _A ): '''simple docstring''' def __init__( self : List[str] , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : Optional[Any]=None , ): super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) UpperCAmelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def lowerCamelCase_ ( self : Dict , __snake_case : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowerCamelCase_ ( self : str ): self.enable_attention_slicing(__snake_case ) def lowerCamelCase_ ( self : List[Any] ): set_requires_grad(self.vae , __snake_case ) def lowerCamelCase_ ( self : int ): set_requires_grad(self.vae , __snake_case ) def lowerCamelCase_ ( self : str ): set_requires_grad(self.unet , __snake_case ) def lowerCamelCase_ ( self : List[Any] ): set_requires_grad(self.unet , __snake_case ) def lowerCamelCase_ ( self : Any , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[str] ): # get the original timestep using init_timestep UpperCAmelCase_ = min(int(num_inference_steps * strength ) , __snake_case ) UpperCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self : int , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : str=None ): if not isinstance(__snake_case , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(__snake_case )}' ) UpperCAmelCase_ = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] UpperCAmelCase_ = torch.cat(__snake_case , dim=0 ) else: UpperCAmelCase_ = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ = 0.18_215 * init_latents UpperCAmelCase_ = init_latents.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase_ = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents UpperCAmelCase_ = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = init_latents return latents def lowerCamelCase_ ( self : Dict , __snake_case : Dict ): UpperCAmelCase_ = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def lowerCamelCase_ ( self : Optional[int] , __snake_case : Any , __snake_case : List[Any] ): UpperCAmelCase_ = self.feature_extractor.preprocess(__snake_case ) UpperCAmelCase_ = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase_ = self.clip_model.get_image_features(__snake_case ) UpperCAmelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCamelCase_ ( self : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any] , ): UpperCAmelCase_ = latents.detach().requires_grad_() UpperCAmelCase_ = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual UpperCAmelCase_ = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase_ = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase_ = torch.sqrt(__snake_case ) UpperCAmelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): UpperCAmelCase_ = self.scheduler.sigmas[index] UpperCAmelCase_ = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ = 1 / 0.18_215 * sample UpperCAmelCase_ = self.vae.decode(__snake_case ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = transforms.Resize(self.feature_extractor_size )(__snake_case ) UpperCAmelCase_ = self.normalize(__snake_case ).to(latents.dtype ) UpperCAmelCase_ = self.clip_model.get_image_features(__snake_case ) UpperCAmelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale UpperCAmelCase_ = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): UpperCAmelCase_ = latents.detach() + grads * (sigma**2) UpperCAmelCase_ = noise_pred_original else: UpperCAmelCase_ = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Tuple , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 5_12 , __snake_case : Optional[int] = 5_12 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 1_00 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ): if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(__snake_case )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: UpperCAmelCase_ = [generator] + [None] * (batch_size - 1) UpperCAmelCase_ = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase_ = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase_ = ''', '''.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) UpperCAmelCase_ = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) UpperCAmelCase_ = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style UpperCAmelCase_ = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase_ = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase_ = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps UpperCAmelCase_ = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_offset: UpperCAmelCase_ = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ , UpperCAmelCase_ = self.get_timesteps(__snake_case , __snake_case , self.device ) UpperCAmelCase_ = timesteps[:1].repeat(__snake_case ) # Preprocess image UpperCAmelCase_ = preprocess(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) UpperCAmelCase_ = preprocess(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) UpperCAmelCase_ = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: UpperCAmelCase_ = self.get_clip_image_embeddings(__snake_case , __snake_case ) UpperCAmelCase_ = self.get_clip_image_embeddings(__snake_case , __snake_case ) UpperCAmelCase_ = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ = content_text_input.input_ids.shape[-1] UpperCAmelCase_ = self.tokenizer([''''''] , padding='''max_length''' , max_length=__snake_case , return_tensors='''pt''' ) UpperCAmelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase_ = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase_ = torch.randn(__snake_case , generator=__snake_case , device='''cpu''' , dtype=__snake_case ).to( self.device ) else: UpperCAmelCase_ = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta # check if the scheduler accepts generator UpperCAmelCase_ = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase_ = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual UpperCAmelCase_ = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2 ) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase_ , UpperCAmelCase_ = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ = 1 / 0.18_215 * latents UpperCAmelCase_ = self.vae.decode(__snake_case ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
144
1
def _UpperCamelCase ( UpperCamelCase_ : str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCamelCase_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
717
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCamelCase__ ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" pass def _UpperCamelCase ( UpperCamelCase_ : Tuple ) -> Any: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __snake_case : List[str] = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): _SCREAMING_SNAKE_CASE : Dict = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model=_UpperCamelCase , tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) lowerCAmelCase__ = 'What is the placebo?' lowerCAmelCase__ = [ { 'image': load_image(_UpperCamelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = dqa_pipeline(_UpperCamelCase , top_k=2 ) self.assertEqual( _UpperCamelCase , [ [ {'score': ANY(_UpperCamelCase ), 'answer': ANY(_UpperCamelCase ), 'start': ANY(_UpperCamelCase ), 'end': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'answer': ANY(_UpperCamelCase ), 'start': ANY(_UpperCamelCase ), 'end': ANY(_UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'How many cats are there?' lowerCAmelCase__ = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , _UpperCamelCase ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , _UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(_UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , words=_UpperCamelCase , boxes=_UpperCamelCase , top_k=2 ) self.assertEqual(_UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCamelCase , revision='3dc6de3' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCamelCase , revision='3dc6de3' , max_seq_len=50 , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCamelCase__ ( self ): """simple docstring""" pass
365
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class a ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = inspect.getfile(accelerate.test_utils ) lowerCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) lowerCAmelCase : int = ['accelerate', 'launch'] lowerCAmelCase : str = Path.home() / '.cache/huggingface/accelerate' lowerCAmelCase : List[str] = 'default_config.yaml' lowerCAmelCase : Union[str, Any] = config_folder / config_file lowerCAmelCase : Dict = config_folder / '_default_config.yaml' lowerCAmelCase : Any = Path('tests/test_configs' ) @classmethod def lowerCamelCase_ ( cls : int ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase_ ( cls : Tuple ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase_ ( self : Optional[int] ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase_ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class a ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = 'test-tpu' lowerCAmelCase : Optional[Any] = 'us-central1-a' lowerCAmelCase : int = 'ls' lowerCAmelCase : Any = ['accelerate', 'tpu-config'] lowerCAmelCase : Any = 'cd /usr/share' lowerCAmelCase : Tuple = 'tests/test_samples/test_command_file.sh' lowerCAmelCase : List[str] = 'Running gcloud compute tpus tpu-vm ssh' def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __snake_case , ) def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __snake_case , ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __snake_case , ) def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __snake_case , ) def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , __snake_case , ) def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __snake_case , ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __snake_case , ) def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , __snake_case , ) def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , __snake_case , )
144
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowerCamelCase_ ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) UpperCAmelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = AudioDiffusionPipeline(vqvae=__snake_case , unet=self.dummy_unet , mel=__snake_case , scheduler=__snake_case ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=__snake_case , steps=4 ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=__snake_case , steps=4 , return_dict=__snake_case ) UpperCAmelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = self.dummy_vqvae_and_unet UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__snake_case , scheduler=__snake_case ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) UpperCAmelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(raw_audio=__snake_case , generator=__snake_case , start_step=5 , steps=10 ) UpperCAmelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ = self.dummy_unet_condition UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__snake_case , mel=__snake_case , scheduler=__snake_case ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) UpperCAmelCase_ = torch.rand((1, 1, 10) ) UpperCAmelCase_ = pipe(generator=__snake_case , encoding=__snake_case ) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = torch_device UpperCAmelCase_ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=__snake_case ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
144
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , __lowerCAmelCase=0 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = projection_dim def a_ ( self): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) lowerCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = TFDPRContextEncoder(config=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = TFDPRQuestionEncoder(config=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = TFDPRReader(config=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def a_ ( self): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class a__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase_ : Dict = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase_ : Any = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Union[str, Any] = False def a_ ( self): """simple docstring""" lowerCAmelCase = TFDPRModelTester(self) lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37) def a_ ( self): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCAmelCase) @slow def a_ ( self): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFDPRQuestionEncoder.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFDPRReader.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) @require_tf class a__( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self): """simple docstring""" lowerCAmelCase = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""") lowerCAmelCase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]]) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase = model(__lowerCAmelCase)[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4))
605
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def snake_case__ ( _A: float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(_A , 0 , _A , args=(_A) )[0] def snake_case__ ( _A: float , _A: float ) -> float: '''simple docstring''' return math.pow(_A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
605
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase_ ( self ): __A , __A : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_A , dtype=jnp.bfloataa ) __A , __A : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_A , from_pt=_A , dtype=jnp.bfloataa ) __A : Optional[Any] = controlnet_params __A : Optional[int] = 'bird' __A : List[str] = jax.device_count() __A : Any = pipe.prepare_text_inputs([prompts] * num_samples ) __A : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) __A : List[str] = pipe.prepare_image_inputs([canny_image] * num_samples ) __A : List[str] = jax.random.PRNGKey(0 ) __A : List[str] = jax.random.split(_A , jax.device_count() ) __A : int = replicate(_A ) __A : Optional[Any] = shard(_A ) __A : List[str] = shard(_A ) __A : str = pipe( prompt_ids=_A , image=_A , params=_A , prng_seed=_A , num_inference_steps=50 , jit=_A , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __A : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __A : Dict = images[0, 253:256, 253:256, -1] __A : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A : List[str] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self ): __A , __A : List[Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_A , dtype=jnp.bfloataa ) __A , __A : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_A , from_pt=_A , dtype=jnp.bfloataa ) __A : Optional[int] = controlnet_params __A : Tuple = 'Chef in the kitchen' __A : Optional[int] = jax.device_count() __A : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) __A : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) __A : Dict = pipe.prepare_image_inputs([pose_image] * num_samples ) __A : int = jax.random.PRNGKey(0 ) __A : Dict = jax.random.split(_A , jax.device_count() ) __A : str = replicate(_A ) __A : Union[str, Any] = shard(_A ) __A : List[Any] = shard(_A ) __A : Any = pipe( prompt_ids=_A , image=_A , params=_A , prng_seed=_A , num_inference_steps=50 , jit=_A , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __A : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __A : List[Any] = images[0, 253:256, 253:256, -1] __A : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A : Optional[Any] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
239
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class lowerCAmelCase__ : def __init__( self : str ) -> None: """simple docstring""" lowerCamelCase_ : list[Any] = [] lowerCamelCase_ : int = 0 lowerCamelCase_ : int = 0 def __UpperCamelCase ( self : str ) -> bool: """simple docstring""" return self.head == self.tail def __UpperCamelCase ( self : Any , UpperCamelCase_ : Any ) -> None: """simple docstring""" self.data.append(UpperCamelCase_ ) lowerCamelCase_ : str = self.tail + 1 def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Tuple = self.data[self.head] lowerCamelCase_ : Optional[Any] = self.head + 1 return ret def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return self.tail - self.head def __UpperCamelCase ( self : Optional[int] ) -> None: """simple docstring""" print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class lowerCAmelCase__ : def __init__( self : Dict , UpperCamelCase_ : Any ) -> None: """simple docstring""" lowerCamelCase_ : Any = data lowerCamelCase_ : MyNode | None = None lowerCamelCase_ : MyNode | None = None lowerCamelCase_ : int = 1 def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return self.data def __UpperCamelCase ( self : Tuple ) -> MyNode | None: """simple docstring""" return self.left def __UpperCamelCase ( self : Any ) -> MyNode | None: """simple docstring""" return self.right def __UpperCamelCase ( self : int ) -> int: """simple docstring""" return self.height def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Any ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = data def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : MyNode | None ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = node def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : MyNode | None ) -> None: """simple docstring""" lowerCamelCase_ : Optional[int] = node def __UpperCamelCase ( self : str , UpperCamelCase_ : int ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = height def __snake_case (__UpperCAmelCase ): """simple docstring""" if node is None: return 0 return node.get_height() def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if a > b: return a return b def __snake_case (__UpperCAmelCase ): """simple docstring""" print('''left rotation node:''' , node.get_data() ) lowerCamelCase_ : Optional[int] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__UpperCAmelCase ) lowerCamelCase_ : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCAmelCase ) return ret def __snake_case (__UpperCAmelCase ): """simple docstring""" print('''right rotation node:''' , node.get_data() ) lowerCamelCase_ : Dict = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__UpperCAmelCase ) lowerCamelCase_ : Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCAmelCase ) return ret def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : int = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCAmelCase ) ) return right_rotation(__UpperCAmelCase ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Any = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCAmelCase ) ) return left_rotation(__UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if node is None: return MyNode(__UpperCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCamelCase_ : Dict = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCamelCase_ : int = right_rotation(__UpperCAmelCase ) else: lowerCamelCase_ : List[str] = lr_rotation(__UpperCAmelCase ) else: node.set_right(insert_node(node.get_right() , __UpperCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCamelCase_ : str = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCamelCase_ : int = rl_rotation(__UpperCAmelCase ) else: lowerCamelCase_ : Tuple = left_rotation(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCAmelCase ) return node def __snake_case (__UpperCAmelCase ): """simple docstring""" while True: lowerCamelCase_ : List[str] = root.get_right() if right_child is None: break lowerCamelCase_ : Optional[Any] = right_child return root.get_data() def __snake_case (__UpperCAmelCase ): """simple docstring""" while True: lowerCamelCase_ : Tuple = root.get_left() if left_child is None: break lowerCamelCase_ : List[str] = left_child return root.get_data() def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[Any] = root.get_left() lowerCamelCase_ : Tuple = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCamelCase_ : Tuple = get_left_most(__UpperCAmelCase ) root.set_data(__UpperCAmelCase ) root.set_right(del_node(__UpperCAmelCase , __UpperCAmelCase ) ) elif left_child is not None: lowerCamelCase_ : List[str] = left_child elif right_child is not None: lowerCamelCase_ : Union[str, Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(__UpperCAmelCase , __UpperCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCAmelCase , __UpperCAmelCase ) ) if get_height(__UpperCAmelCase ) - get_height(__UpperCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCamelCase_ : List[Any] = left_rotation(__UpperCAmelCase ) else: lowerCamelCase_ : List[Any] = rl_rotation(__UpperCAmelCase ) elif get_height(__UpperCAmelCase ) - get_height(__UpperCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCamelCase_ : Tuple = right_rotation(__UpperCAmelCase ) else: lowerCamelCase_ : List[Any] = lr_rotation(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__UpperCAmelCase ) return root class lowerCAmelCase__ : def __init__( self : Tuple ) -> None: """simple docstring""" lowerCamelCase_ : MyNode | None = None def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" return get_height(self.root ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Any ) -> None: """simple docstring""" print('''insert:''' + str(UpperCamelCase_ ) ) lowerCamelCase_ : str = insert_node(self.root , UpperCamelCase_ ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Any ) -> None: """simple docstring""" print('''delete:''' + str(UpperCamelCase_ ) ) if self.root is None: print('''Tree is empty!''' ) return lowerCamelCase_ : Any = del_node(self.root , UpperCamelCase_ ) def __str__( self : int , ) -> str: # a level traversale, gives a more intuitive look on the tree """simple docstring""" lowerCamelCase_ : int = '''''' lowerCamelCase_ : Optional[int] = MyQueue() q.push(self.root ) lowerCamelCase_ : Optional[Any] = self.get_height() if layer == 0: return output lowerCamelCase_ : int = 0 while not q.is_empty(): lowerCamelCase_ : Tuple = q.pop() lowerCamelCase_ : int = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCamelCase_ : Optional[Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: lowerCamelCase_ : str = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __snake_case (): """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCamelCase : str = AVLtree() __lowerCamelCase : Dict = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
702
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __snake_case (__UpperCAmelCase="" ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = tempfile.mkdtemp() return os.path.join(__UpperCAmelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ : List[str] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCamelCase_ : List[str] = AgentAudio(UpperCamelCase_ ) lowerCamelCase_ : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCamelCase_ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(UpperCamelCase_ ) ) # Ensure that the file contains the same value as the original tensor lowerCamelCase_ , lowerCamelCase_ : int = sf.read(UpperCamelCase_ ) self.assertTrue(torch.allclose(UpperCamelCase_ , torch.tensor(UpperCamelCase_ ) , atol=1e-4 ) ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[str] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCamelCase_ : Tuple = get_new_path(suffix='''.wav''' ) sf.write(UpperCamelCase_ , UpperCamelCase_ , 16_000 ) lowerCamelCase_ : Any = AgentAudio(UpperCamelCase_ ) self.assertTrue(torch.allclose(UpperCamelCase_ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , UpperCamelCase_ ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ : Any = torch.randint(0 , 256 , (64, 64, 3) ) lowerCamelCase_ : str = AgentImage(UpperCamelCase_ ) lowerCamelCase_ : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCamelCase_ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase_ ) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[str] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowerCamelCase_ : List[str] = Image.open(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = AgentImage(UpperCamelCase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase_ ) ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Optional[int] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowerCamelCase_ : List[str] = Image.open(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = AgentImage(UpperCamelCase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase_ ) ) class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : int = '''Hey!''' lowerCamelCase_ : Tuple = AgentText(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , agent_type.to_string() ) self.assertEqual(UpperCamelCase_ , agent_type.to_raw() ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
418
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCamelCase__ : Tuple = """bart""" lowerCamelCase__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: snake_case__ = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) snake_case__ = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) snake_case__ = qar_model.eval() else: snake_case__ , snake_case__ = (None, None) if MODEL_TYPE == "bart": snake_case__ = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) snake_case__ = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) snake_case__ = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) snake_case__ = sas_model.eval() else: snake_case__ , snake_case__ = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: if LOAD_DENSE_INDEX: snake_case__ = faiss.StandardGpuResources() snake_case__ = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] snake_case__ = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) snake_case__ = faiss.IndexFlatIP(128 ) snake_case__ = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: snake_case__ , snake_case__ = (None, None) snake_case__ = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: snake_case__ = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) snake_case__ = elia['''train_eli5'''] snake_case__ = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) snake_case__ = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = load_indexes() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = load_models() lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = load_train_data() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> List[Any]: snake_case__ = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ , snake_case__ = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="wiki40b" , __lowerCAmelCase="dense" , __lowerCAmelCase=10 ) -> int: if source == "none": snake_case__ , snake_case__ = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case__ , snake_case__ = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: snake_case__ , snake_case__ = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) snake_case__ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] snake_case__ = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=64 , __lowerCAmelCase=256 , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=0.95 , __lowerCAmelCase=0.8 ) -> Dict: with torch.no_grad(): snake_case__ = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar lowerCamelCase__ : int = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" lowerCamelCase__ : List[Any] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCamelCase__ : Any = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) lowerCamelCase__ : str = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] lowerCamelCase__ : Tuple = st.sidebar.checkbox("""Demo options""") if demo_options: lowerCamelCase__ : List[str] = st.sidebar.selectbox( """""", action_list, index=3, ) lowerCamelCase__ : Union[str, Any] = action_list.index(action_st) lowerCamelCase__ : List[Any] = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) lowerCamelCase__ : int = show_type == """Show full text of passages""" else: lowerCamelCase__ : str = 3 lowerCamelCase__ : Any = True lowerCamelCase__ : Tuple = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: lowerCamelCase__ : Optional[int] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) lowerCamelCase__ : Optional[int] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) lowerCamelCase__ : int = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: lowerCamelCase__ : str = """wiki40b""" lowerCamelCase__ : str = """dense""" lowerCamelCase__ : int = """beam""" lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : int = 6_4 lowerCamelCase__ : List[Any] = 2_5_6 lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : str = st.sidebar.checkbox("""Generation options""") if generate_options: lowerCamelCase__ : int = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) lowerCamelCase__ : List[str] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) lowerCamelCase__ : Optional[Any] = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) lowerCamelCase__ : Optional[int] = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": lowerCamelCase__ : Optional[int] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCamelCase__ : Optional[Any] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) lowerCamelCase__ : Union[str, Any] = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) lowerCamelCase__ : Dict = None # start main text lowerCamelCase__ : Union[str, Any] = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] lowerCamelCase__ : Optional[Any] = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCamelCase__ : Dict = st.text_input("""Enter your question here:""", """""") else: lowerCamelCase__ : Union[str, Any] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": lowerCamelCase__ , lowerCamelCase__ : List[str] = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) lowerCamelCase__ , lowerCamelCase__ : Any = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) lowerCamelCase__ : Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCamelCase__ : Union[str, Any] = support_list[:1_0] lowerCamelCase__ : Optional[Any] = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: lowerCamelCase__ , lowerCamelCase__ : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): lowerCamelCase__ : Tuple = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) lowerCamelCase__ : List[Any] = res[1].strip() if sec_titles == "": lowerCamelCase__ : int = """[{}]({})""".format(res[0], wiki_url) else: lowerCamelCase__ : str = sec_titles.split(""" & """) lowerCamelCase__ : int = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: lowerCamelCase__ : List[Any] = find_nearest_training(question) lowerCamelCase__ : int = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) lowerCamelCase__ : Optional[int] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) lowerCamelCase__ : Union[str, Any] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase : List[str] = logging.get_logger(__name__) # General docstring __lowerCamelCase : List[str] = '''ResNetConfig''' # Base docstring __lowerCamelCase : List[Any] = '''microsoft/resnet-50''' __lowerCamelCase : Union[str, Any] = [1, 2048, 7, 7] # Image classification docstring __lowerCamelCase : List[str] = '''microsoft/resnet-50''' __lowerCamelCase : int = '''tiger cat''' __lowerCamelCase : Any = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class A_ (nn.Module ): """simple docstring""" def __init__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int = 3 , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "relu" ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ : Dict = nn.Convad( UpperCamelCase_ , UpperCamelCase_ , kernel_size=UpperCamelCase_ , stride=UpperCamelCase_ , padding=kernel_size // 2 , bias=UpperCamelCase_ ) snake_case_ : Tuple = nn.BatchNormad(UpperCamelCase_ ) snake_case_ : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def _A ( self :Optional[Any] , lowerCAmelCase__ :Tensor ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.convolution(UpperCamelCase_ ) snake_case_ : Tuple = self.normalization(UpperCamelCase_ ) snake_case_ : Dict = self.activation(UpperCamelCase_ ) return hidden_state class A_ (nn.Module ): """simple docstring""" def __init__( self :Union[str, Any] , lowerCAmelCase__ :ResNetConfig ) -> Optional[int]: '''simple docstring''' super().__init__() snake_case_ : Tuple = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) snake_case_ : Tuple = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) snake_case_ : Union[str, Any] = config.num_channels def _A ( self :str , lowerCAmelCase__ :Tensor ) -> Dict: '''simple docstring''' snake_case_ : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) snake_case_ : Optional[int] = self.embedder(UpperCamelCase_ ) snake_case_ : int = self.pooler(UpperCamelCase_ ) return embedding class A_ (nn.Module ): """simple docstring""" def __init__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ : str = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , stride=UpperCamelCase_ , bias=UpperCamelCase_ ) snake_case_ : str = nn.BatchNormad(UpperCamelCase_ ) def _A ( self :int , lowerCAmelCase__ :Tensor ) -> Any: '''simple docstring''' snake_case_ : Tuple = self.convolution(UpperCamelCase_ ) snake_case_ : Optional[Any] = self.normalization(UpperCamelCase_ ) return hidden_state class A_ (nn.Module ): """simple docstring""" def __init__( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "relu" ) -> Any: '''simple docstring''' super().__init__() snake_case_ : Optional[Any] = in_channels != out_channels or stride != 1 snake_case_ : List[str] = ( ResNetShortCut(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ ) if should_apply_shortcut else nn.Identity() ) snake_case_ : Optional[Any] = nn.Sequential( ResNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ ) , ResNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , activation=UpperCamelCase_ ) , ) snake_case_ : Any = ACTaFN[activation] def _A ( self :str , lowerCAmelCase__ :Tuple ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = hidden_state snake_case_ : str = self.layer(UpperCamelCase_ ) snake_case_ : Dict = self.shortcut(UpperCamelCase_ ) hidden_state += residual snake_case_ : List[str] = self.activation(UpperCamelCase_ ) return hidden_state class A_ (nn.Module ): """simple docstring""" def __init__( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "relu" , lowerCAmelCase__ :int = 4 ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ : Optional[int] = in_channels != out_channels or stride != 1 snake_case_ : Optional[Any] = out_channels // reduction snake_case_ : str = ( ResNetShortCut(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ ) if should_apply_shortcut else nn.Identity() ) snake_case_ : List[Any] = nn.Sequential( ResNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 ) , ResNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ ) , ResNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ ) , ) snake_case_ : List[str] = ACTaFN[activation] def _A ( self :int , lowerCAmelCase__ :List[str] ) -> int: '''simple docstring''' snake_case_ : Tuple = hidden_state snake_case_ : Optional[int] = self.layer(UpperCamelCase_ ) snake_case_ : Tuple = self.shortcut(UpperCamelCase_ ) hidden_state += residual snake_case_ : str = self.activation(UpperCamelCase_ ) return hidden_state class A_ (nn.Module ): """simple docstring""" def __init__( self :Union[str, Any] , lowerCAmelCase__ :ResNetConfig , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :int = 2 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ : Any = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer snake_case_ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , activation=config.hidden_act ) , *[layer(UpperCamelCase_ , UpperCamelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _A ( self :Any , lowerCAmelCase__ :Tensor ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = input for layer in self.layers: snake_case_ : List[Any] = layer(UpperCamelCase_ ) return hidden_state class A_ (nn.Module ): """simple docstring""" def __init__( self :Any , lowerCAmelCase__ :ResNetConfig ) -> List[str]: '''simple docstring''' super().__init__() snake_case_ : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case_ : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCamelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , depth=UpperCamelCase_ ) ) def _A ( self :Tuple , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = True ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case_ : Any = hidden_states + (hidden_state,) snake_case_ : Any = stage_module(UpperCamelCase_ ) if output_hidden_states: snake_case_ : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCamelCase_ , hidden_states=UpperCamelCase_ , ) class A_ (__lowerCamelCase ): """simple docstring""" a__ = ResNetConfig a__ = 'resnet' a__ = 'pixel_values' a__ = True def _A ( self :List[str] , lowerCAmelCase__ :Any ) -> List[str]: '''simple docstring''' if isinstance(UpperCamelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(UpperCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str]=False ) -> str: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): snake_case_ : List[str] = value __lowerCamelCase : Dict = R'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' __lowerCamelCase : str = R'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , __lowerCamelCase , ) class A_ (__lowerCamelCase ): """simple docstring""" def __init__( self :int , lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) snake_case_ : str = config snake_case_ : Optional[int] = ResNetEmbeddings(UpperCamelCase_ ) snake_case_ : List[Any] = ResNetEncoder(UpperCamelCase_ ) snake_case_ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _A ( self :Dict , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None ) -> Dict: '''simple docstring''' snake_case_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : str = self.embedder(UpperCamelCase_ ) snake_case_ : int = self.encoder( UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ ) snake_case_ : str = encoder_outputs[0] snake_case_ : Optional[int] = self.pooler(UpperCamelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCamelCase_ , pooler_output=UpperCamelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '''\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , __lowerCamelCase , ) class A_ (__lowerCamelCase ): """simple docstring""" def __init__( self :str , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) snake_case_ : int = config.num_labels snake_case_ : Tuple = ResNetModel(UpperCamelCase_ ) # classification head snake_case_ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Optional[Any] = self.resnet(UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ ) snake_case_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] snake_case_ : Any = self.classifier(UpperCamelCase_ ) snake_case_ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ : Optional[int] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ : int = "single_label_classification" else: snake_case_ : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": snake_case_ : Tuple = MSELoss() if self.num_labels == 1: snake_case_ : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ : Dict = loss_fct(UpperCamelCase_ , UpperCamelCase_ ) elif self.config.problem_type == "single_label_classification": snake_case_ : Optional[Any] = CrossEntropyLoss() snake_case_ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ : int = BCEWithLogitsLoss() snake_case_ : Optional[int] = loss_fct(UpperCamelCase_ , UpperCamelCase_ ) if not return_dict: snake_case_ : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCamelCase_ , logits=UpperCamelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '''\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ''' , __lowerCamelCase , ) class A_ (__lowerCamelCase , __lowerCamelCase ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :Optional[Any] ) -> List[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) super()._init_backbone(UpperCamelCase_ ) snake_case_ : Tuple = [config.embedding_size] + config.hidden_sizes snake_case_ : Any = ResNetEmbeddings(UpperCamelCase_ ) snake_case_ : List[Any] = ResNetEncoder(UpperCamelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @replace_return_docstrings(output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC ) def _A ( self :Dict , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : str = self.embedder(UpperCamelCase_ ) snake_case_ : Optional[Any] = self.encoder(UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ ) snake_case_ : str = outputs.hidden_states snake_case_ : Optional[int] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: snake_case_ : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCamelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCamelCase_ , )
714
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
0
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" lowercase__ = length or len(SCREAMING_SNAKE_CASE ) lowercase__ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowercase__ , lowercase__ = list_data[i + 1], list_data[i] lowercase__ = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase = 16 ): '''simple docstring''' A__ = AutoTokenizer.from_pretrained('bert-base-cased' ) A__ = DatasetDict( { 'train': dataset['train'].select(UpperCAmelCase ), 'validation': dataset['train'].select(UpperCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=UpperCAmelCase ,max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCAmelCase ,batched=UpperCAmelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCAmelCase ,padding='longest' ,max_length=UpperCAmelCase ,pad_to_multiple_of=UpperCAmelCase ,return_tensors='pt' ,) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['train'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) A__ = DataLoader( tokenized_datasets['validation'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) A__ = DataLoader( tokenized_datasets['test'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = [] # Download the dataset A__ = load_dataset('glue' ,'mrpc' ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) A__ = evaluate.load('glue' ,'mrpc' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets['train'].num_rows ) ,datasets['train']['label'] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCAmelCase ): A__ , A__ , A__ = get_fold_dataloaders( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' ,return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() ,lr=UpperCAmelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase ,num_warmup_steps=100 ,num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCAmelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCAmelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase ,references=UpperCAmelCase ,) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,UpperCAmelCase ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCAmelCase ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCAmelCase ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(UpperCAmelCase ,dim=0 ) A__ = torch.stack(UpperCAmelCase ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=UpperCAmelCase ,references=UpperCAmelCase ) accelerator.print('Average test metrics from all folds:' ,UpperCAmelCase ) def _A ( ): '''simple docstring''' A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' ,type=UpperCAmelCase ,default=UpperCAmelCase ,choices=['no', 'fp16', 'bf16', 'fp8'] ,help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' ,) parser.add_argument('--cpu' ,action='store_true' ,help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' ,type=UpperCAmelCase ,default=3 ,help='The number of splits to perform across the dataset' ) A__ = parser.parse_args() A__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase ,UpperCAmelCase ) if __name__ == "__main__": main()
531
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A = re.compile(R'\s+') def a(lowercase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowercase__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a(lowercase__ ): '''simple docstring''' snake_case_ = [len(lowercase__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowercase__ ), "line_max": max(lowercase__ )} def a(lowercase__ ): '''simple docstring''' snake_case_ = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a(lowercase__ , lowercase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a(lowercase__ , lowercase__=5 ): '''simple docstring''' snake_case_ = ['auto-generated', 'autogenerated', 'automatically generated'] snake_case_ = example['content'].splitlines() for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a(lowercase__ , lowercase__=5 , lowercase__=0.05 ): '''simple docstring''' snake_case_ = ['unit tests', 'test file', 'configuration file'] snake_case_ = example['content'].splitlines() snake_case_ = 0 snake_case_ = 0 # first test for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ = example['content'].count('\n' ) snake_case_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a(lowercase__ ): '''simple docstring''' snake_case_ = ['def ', 'class ', 'for ', 'while '] snake_case_ = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a(lowercase__ , lowercase__=4 ): '''simple docstring''' snake_case_ = example['content'].splitlines() snake_case_ = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a(lowercase__ ): '''simple docstring''' snake_case_ = tokenizer(example['content'] , truncation=lowercase__ )['input_ids'] snake_case_ = len(example['content'] ) / len(lowercase__ ) return {"ratio": ratio} def a(lowercase__ ): '''simple docstring''' snake_case_ = {} results.update(get_hash(lowercase__ ) ) results.update(line_stats(lowercase__ ) ) results.update(alpha_stats(lowercase__ ) ) results.update(char_token_ratio(lowercase__ ) ) results.update(is_autogenerated(lowercase__ ) ) results.update(is_config_or_test(lowercase__ ) ) results.update(has_no_keywords(lowercase__ ) ) results.update(has_few_assignments(lowercase__ ) ) return results def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if not check_uniques(lowercase__ , lowercase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a(lowercase__ ): '''simple docstring''' with open(lowercase__ , 'rb' ) as f_in: with gzip.open(str(lowercase__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowercase__ , lowercase__ ) os.unlink(lowercase__ ) # Settings A = HfArgumentParser(PreprocessingArguments) A = parser.parse_args() if args.num_workers is None: A = multiprocessing.cpu_count() A = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A = time.time() A = load_dataset(args.dataset_name, split='train') print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing A = time.time() A = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes A = set(ds.unique('hash')) A = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics A = time.time() A = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A = time.time() A , A = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file A = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) A = output_dir / 'data' data_dir.mkdir(exist_ok=True) A = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A = str(data_dir / f"""file-{file_number+1:012}.json""") A = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
46
class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = name snake_case_ = val def __str__( self ): """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , __UpperCamelCase ): """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = self.build_heap(__UpperCamelCase ) def __getitem__( self , __UpperCamelCase ): """simple docstring""" return self.get_value(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return (idx - 1) // 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 1 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return self.heap_dict[key] def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) - 1 snake_case_ = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): snake_case_ = idx snake_case_ = i.val for i in range(__UpperCamelCase , -1 , -1 ): self.sift_down(__UpperCamelCase , __UpperCamelCase ) return array def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" while True: snake_case_ = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 snake_case_ = self.get_right_child_idx(__UpperCamelCase ) snake_case_ = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: snake_case_ = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: snake_case_ = r if smallest != idx: snake_case_ , snake_case_ = array[smallest], array[idx] ( ( snake_case_ ) , ( snake_case_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ = smallest else: break def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ , snake_case_ = self.heap[idx], self.heap[p] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ = p snake_case_ = self.get_parent_idx(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" return self.heap[0] def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.heap[-1], self.heap[0] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" self.heap.append(__UpperCamelCase ) snake_case_ = len(self.heap ) - 1 snake_case_ = node.val self.sift_up(len(self.heap ) - 1 ) def __lowerCAmelCase ( self ): """simple docstring""" return len(self.heap ) == 0 def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ = new_value snake_case_ = new_value self.sift_up(self.idx_of_element[node] ) A = Node('R', -1) A = Node('B', 6) A = Node('A', 3) A = Node('X', 1) A = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
46
1
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = field(default='''language-modeling''', metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase = Features({'''text''': Value('''string''' )} ) _UpperCAmelCase = Features({} ) _UpperCAmelCase = "text" @property def A ( self : int ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
32
1
"""simple docstring""" import os import sys __UpperCAmelCase = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCAmelCase = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoConfig.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoTokenizer.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModel.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
65
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = '''speech_to_text''' __lowercase : List[str] = ['''past_key_values'''] __lowercase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=1_0_0_0_0 , lowerCAmelCase__=1_2 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=6_0_0_0 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=2 , lowerCAmelCase__=(5, 5) , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=8_0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = max_source_positions __SCREAMING_SNAKE_CASE = max_target_positions __SCREAMING_SNAKE_CASE = num_conv_layers __SCREAMING_SNAKE_CASE = list(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = conv_channels __SCREAMING_SNAKE_CASE = input_feat_per_channel __SCREAMING_SNAKE_CASE = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`.") super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
155
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase =get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp lowercase =5 lowercase =10 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =SpeechaTextTokenizer UpperCAmelCase =False UpperCAmelCase =True def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' super().setUp() _UpperCAmelCase : Dict =sp.SentencePieceProcessor() spm_model.Load(snake_case) _UpperCAmelCase : Any =['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(snake_case))] _UpperCAmelCase : List[str] =dict(zip(snake_case , range(len(snake_case)))) _UpperCAmelCase : Union[str, Any] =Path(self.tmpdirname) save_json(snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCAmelCase : Optional[int] =SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : str ='<pad>' _UpperCAmelCase : str =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case) , snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case) , snake_case) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Any =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(snake_case) , 1_0_0_1) def lowerCAmelCase ( self) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : str =SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCAmelCase : int =tokenizer.tokenize('This is a test') self.assertListEqual(snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) _UpperCAmelCase : List[str] =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCAmelCase : Dict =tokenizer.convert_tokens_to_ids(snake_case) self.assertListEqual(snake_case , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8]) _UpperCAmelCase : Tuple =tokenizer.convert_ids_to_tokens(snake_case) self.assertListEqual( snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' # fmt: off _UpperCAmelCase : Optional[Any] ={'input_ids': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class __magic_name__ ( unittest.TestCase ): UpperCAmelCase ="valhalla/s2t_mustc_multilinguial_medium" UpperCAmelCase ="C'est trop cool" UpperCAmelCase ="Esto es genial" @classmethod def lowerCAmelCase ( cls) -> Tuple: '''simple docstring''' _UpperCAmelCase : SpeechaTextTokenizer =SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 1_1) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' self.assertIn(snake_case , self.tokenizer.all_special_ids) _UpperCAmelCase : Optional[int] =[ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] _UpperCAmelCase : Tuple =self.tokenizer.decode(snake_case , skip_special_tokens=snake_case) _UpperCAmelCase : Optional[Any] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case) self.assertEqual(snake_case , snake_case) self.assertNotIn(self.tokenizer.eos_token , snake_case) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : str ='fr' _UpperCAmelCase : List[str] =self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any ='fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCAmelCase : List[Any] ='es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
331
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowercase =logging.getLogger(__name__) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Any =np.argmax(__lowerCamelCase , axis=1 ) return np.sum(outputs == labels ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' with open(__lowerCamelCase , encoding='utf_8' ) as f: _UpperCAmelCase : Union[str, Any] =csv.reader(__lowerCamelCase ) _UpperCAmelCase : Optional[int] =[] next(__lowerCamelCase ) # skip the first line for line in tqdm(__lowerCamelCase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): '''simple docstring''' _UpperCAmelCase : List[Any] =[] for dataset in encoded_datasets: _UpperCAmelCase : Any =len(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _UpperCAmelCase : Optional[int] =np.zeros((n_batch, 2) , dtype=np.intaa ) _UpperCAmelCase : Dict =np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) _UpperCAmelCase : str =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__lowerCamelCase ): _UpperCAmelCase : int =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _UpperCAmelCase : str =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _UpperCAmelCase : Optional[int] =with_conta _UpperCAmelCase : str =with_conta _UpperCAmelCase : str =len(__lowerCamelCase ) - 1 _UpperCAmelCase : Optional[Any] =len(__lowerCamelCase ) - 1 _UpperCAmelCase : Any =with_conta _UpperCAmelCase : Optional[Any] =with_conta _UpperCAmelCase : str =mc_label _UpperCAmelCase : Union[str, Any] =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__lowerCamelCase ) for t in all_inputs ) ) return tensor_datasets def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : str =argparse.ArgumentParser() parser.add_argument('--model_name' , type=__lowerCamelCase , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__lowerCamelCase , default='' ) parser.add_argument('--eval_dataset' , type=__lowerCamelCase , default='' ) parser.add_argument('--seed' , type=__lowerCamelCase , default=4_2 ) parser.add_argument('--num_train_epochs' , type=__lowerCamelCase , default=3 ) parser.add_argument('--train_batch_size' , type=__lowerCamelCase , default=8 ) parser.add_argument('--eval_batch_size' , type=__lowerCamelCase , default=1_6 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__lowerCamelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__lowerCamelCase , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__lowerCamelCase , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__lowerCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__lowerCamelCase , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__lowerCamelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__lowerCamelCase , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__lowerCamelCase , default=0.01 ) parser.add_argument('--lm_coef' , type=__lowerCamelCase , default=0.9 ) parser.add_argument('--n_valid' , type=__lowerCamelCase , default=3_7_4 ) parser.add_argument('--server_ip' , type=__lowerCamelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCamelCase , default='' , help='Can be used for distant debugging.' ) _UpperCAmelCase : Optional[Any] =parser.parse_args() print(__lowerCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _UpperCAmelCase : Any =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _UpperCAmelCase : Tuple =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__lowerCamelCase , __lowerCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _UpperCAmelCase : List[str] =['_start_', '_delimiter_', '_classify_'] _UpperCAmelCase : Any =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__lowerCamelCase ) _UpperCAmelCase : str =tokenizer.convert_tokens_to_ids(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__lowerCamelCase ) ) model.to(__lowerCamelCase ) # Load and encode the datasets def tokenize_and_encode(__lowerCamelCase : Dict ): if isinstance(__lowerCamelCase , __lowerCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__lowerCamelCase ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): return obj return [tokenize_and_encode(__lowerCamelCase ) for o in obj] logger.info('Encoding dataset...' ) _UpperCAmelCase : int =load_rocstories_dataset(args.train_dataset ) _UpperCAmelCase : Dict =load_rocstories_dataset(args.eval_dataset ) _UpperCAmelCase : Optional[Any] =(train_dataset, eval_dataset) _UpperCAmelCase : Dict =tokenize_and_encode(__lowerCamelCase ) # Compute the max input length for the Transformer _UpperCAmelCase : int =model.config.n_positions // 2 - 2 _UpperCAmelCase : str =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _UpperCAmelCase : Tuple =min(__lowerCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _UpperCAmelCase : Any =pre_process_datasets(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase : str =tensor_datasets[0], tensor_datasets[1] _UpperCAmelCase : int =TensorDataset(*__lowerCamelCase ) _UpperCAmelCase : Optional[int] =RandomSampler(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.train_batch_size ) _UpperCAmelCase : Dict =TensorDataset(*__lowerCamelCase ) _UpperCAmelCase : str =SequentialSampler(__lowerCamelCase ) _UpperCAmelCase : int =DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _UpperCAmelCase : List[Any] =args.max_steps _UpperCAmelCase : Tuple =args.max_steps // (len(__lowerCamelCase ) // args.gradient_accumulation_steps) + 1 else: _UpperCAmelCase : int =len(__lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs _UpperCAmelCase : int =list(model.named_parameters() ) _UpperCAmelCase : Optional[int] =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _UpperCAmelCase : int =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _UpperCAmelCase : Optional[Any] =AdamW(__lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) _UpperCAmelCase : Dict =get_linear_schedule_with_warmup( __lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=__lowerCamelCase ) if args.do_train: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _UpperCAmelCase : Union[str, Any] =0 _UpperCAmelCase : Tuple =0 _UpperCAmelCase : Any =tqdm(__lowerCamelCase , desc='Training' ) for step, batch in enumerate(__lowerCamelCase ): _UpperCAmelCase : List[str] =tuple(t.to(__lowerCamelCase ) for t in batch ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =batch _UpperCAmelCase : List[str] =model(__lowerCamelCase , mc_token_ids=__lowerCamelCase , lm_labels=__lowerCamelCase , mc_labels=__lowerCamelCase ) _UpperCAmelCase : List[str] =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _UpperCAmelCase : Union[str, Any] =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _UpperCAmelCase : str ='Training loss: {:.2e} lr: {:.2e}'.format(__lowerCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _UpperCAmelCase : Dict =model.module if hasattr(__lowerCamelCase , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _UpperCAmelCase : List[str] =os.path.join(args.output_dir , __lowerCamelCase ) _UpperCAmelCase : Optional[int] =os.path.join(args.output_dir , __lowerCamelCase ) torch.save(model_to_save.state_dict() , __lowerCamelCase ) model_to_save.config.to_json_file(__lowerCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _UpperCAmelCase : int =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _UpperCAmelCase : Optional[int] =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__lowerCamelCase ) if args.do_eval: model.eval() _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =0, 0 _UpperCAmelCase , _UpperCAmelCase : Dict =0, 0 for batch in tqdm(__lowerCamelCase , desc='Evaluating' ): _UpperCAmelCase : str =tuple(t.to(__lowerCamelCase ) for t in batch ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict =batch with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict =model( __lowerCamelCase , mc_token_ids=__lowerCamelCase , lm_labels=__lowerCamelCase , mc_labels=__lowerCamelCase ) _UpperCAmelCase : str =mc_logits.detach().cpu().numpy() _UpperCAmelCase : Optional[Any] =mc_labels.to('cpu' ).numpy() _UpperCAmelCase : Tuple =accuracy(__lowerCamelCase , __lowerCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _UpperCAmelCase : List[Any] =eval_loss / nb_eval_steps _UpperCAmelCase : Union[str, Any] =eval_accuracy / nb_eval_examples _UpperCAmelCase : Optional[Any] =tr_loss / nb_tr_steps if args.do_train else None _UpperCAmelCase : Optional[Any] ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _UpperCAmelCase : Optional[Any] =os.path.join(args.output_dir , 'eval_results.txt' ) with open(__lowerCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __lowerCamelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
331
1
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def _snake_case ( A_ : Union[str, Any] , A_ : Optional[int] ): """simple docstring""" a_ : List[str] = Mock() a_ : Union[str, Any] = conn, Mock() a_ : Tuple = iter([1, None] ) a_ : List[str] = lambda A_ : next(A_ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=A_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
577
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _snake_case ( A_ : Optional[Any] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' super().__init__() a_ : Optional[Any] = module a_ : Union[str, Any] = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) a_ : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowerCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = "bigscience/bloom-1b7" # Constant values a_ = 2.109659552692574 a_ = "Hello my name is" a_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a_ = 10 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = AutoTokenizer.from_pretrained(self.model_name ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) a_ : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) a_ : Any = config.to_dict() a_ : Dict = config.to_diff_dict() a_ : Dict = config.to_json_string() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit a_ : List[str] = self.model_fpaa.get_memory_footprint() a_ : Optional[int] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a_ : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : str = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = BitsAndBytesConfig() a_ : Union[str, Any] = True a_ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Tuple = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): a_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a_ : List[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Union[str, Any] = self.model_fpaa.to(torch.floataa ) a_ : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a_ : int = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error a_ : Optional[Any] = self.model_fpaa.half() # Check this does not throw an error a_ : Dict = self.model_fpaa.float() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _lowerCAmelCase ( cls ): '''simple docstring''' a_ : List[str] = """t5-small""" a_ : Any = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense a_ : Optional[Any] = AutoTokenizer.from_pretrained(cls.model_name ) a_ : int = """Translate in German: Hello, my dog is cute""" def _lowerCAmelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration a_ : Dict = TaForConditionalGeneration._keep_in_fpaa_modules a_ : str = None # test with `t5-small` a_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : str = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` a_ : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Any = model.generate(**lowerCAmelCase_ ) a_ : List[str] = modules def _lowerCAmelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a_ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a_ : Tuple = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Union[str, Any] = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` a_ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Tuple = model.generate(**lowerCAmelCase_ ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # model_name a_ : Dict = """bigscience/bloom-560m""" a_ : Any = """t5-small""" # Different types of model a_ : Tuple = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model a_ : Any = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model a_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model a_ : str = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a_ : List[Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch a_ : Dict = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = """facebook/opt-350m""" super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters a_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a_ : int = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a_ : Any = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): a_ : List[str] = LoRALayer(module.q_proj , rank=16 ) a_ : Union[str, Any] = LoRALayer(module.k_proj , rank=16 ) a_ : Optional[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a_ : Tuple = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a_ : List[str] = model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = "gpt2-xl" a_ = 3.3191854854152187
577
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase , __lowercase = image.size __lowercase , __lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowercase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __lowercase = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 __lowercase = image[None].transpose(0 , 3 , 1 , 2 ) __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : str , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[int] = 1_00 , _UpperCAmelCase : Optional[float] = 0.0 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = 1 elif isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = preprocess(_UpperCAmelCase ) __lowercase , __lowercase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowercase = (batch_size, self.unet.config.in_channels // 2, height, width) __lowercase = next(self.unet.parameters() ).dtype __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) __lowercase = image.to(device=self.device , dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase , device=self.device ) __lowercase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. __lowercase = torch.cat([latents, image] , dim=1 ) __lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE __lowercase = self.vqvae.decode(_UpperCAmelCase ).sample __lowercase = torch.clamp(_UpperCAmelCase , -1.0 , 1.0 ) __lowercase = image / 2 + 0.5 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
"""simple docstring""" import math import unittest def snake_case_ ( A_ : int ): '''simple docstring''' assert isinstance(A_, A_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
83
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') UpperCamelCase__ = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class a ( lowercase , unittest.TestCase ): UpperCamelCase : Optional[int] = CamembertTokenizer UpperCamelCase : Optional[int] = CamembertTokenizerFast UpperCamelCase : str = True UpperCamelCase : Tuple = True def __snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : int = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = '<pad>' UpperCAmelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCamelCase_ ) , 1_004 ) def __snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def __snake_case ( self ): UpperCAmelCase__ : Dict = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ : Optional[Any] = tokenizer.encode(UpperCamelCase_ ) UpperCAmelCase__ : Dict = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : str = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) UpperCAmelCase__ : str = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_rust_tokenizer() UpperCAmelCase__ : List[str] = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ : List[str] = tokenizer.tokenize(UpperCamelCase_ ) UpperCAmelCase__ : str = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : str = self.get_rust_tokenizer() UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def __snake_case ( self ): # fmt: off UpperCAmelCase__ : Any = {'input_ids': [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase__ : Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=UpperCamelCase_ , )
110
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase ( __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] ="""mask2former""" _SCREAMING_SNAKE_CASE : Optional[int] =["""swin"""] _SCREAMING_SNAKE_CASE : List[Any] ={"""hidden_size""": """hidden_dim"""} def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = 256 , lowerCAmelCase__ = 256 , lowerCAmelCase__ = 256 , lowerCAmelCase__ = 1024 , lowerCAmelCase__ = "relu" , lowerCAmelCase__ = 6 , lowerCAmelCase__ = 10 , lowerCAmelCase__ = 8 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 2048 , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 255 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 2.0 , lowerCAmelCase__ = 5.0 , lowerCAmelCase__ = 5.0 , lowerCAmelCase__ = 12544 , lowerCAmelCase__ = 3.0 , lowerCAmelCase__ = 0.75 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = True , lowerCAmelCase__ = [4, 8, 16, 32] , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) _A= CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _A= backbone_config.pop('model_type' ) _A= CONFIG_MAPPING[backbone_model_type] _A= config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported )}" ) _A= backbone_config _A= feature_size _A= mask_feature_size _A= hidden_dim _A= encoder_feedforward_dim _A= activation_function _A= encoder_layers _A= decoder_layers _A= num_attention_heads _A= dropout _A= dim_feedforward _A= pre_norm _A= enforce_input_projection _A= common_stride _A= ignore_value _A= num_queries _A= no_object_weight _A= class_weight _A= mask_weight _A= dice_weight _A= train_num_points _A= oversample_ratio _A= importance_sample_ratio _A= init_std _A= init_xavier_std _A= use_auxiliary_loss _A= feature_strides _A= output_auxiliary_logits _A= decoder_layers super().__init__(**UpperCAmelCase_ ) @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): return cls( backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def a__ ( self ): _A= copy.deepcopy(self.__dict__ ) _A= self.backbone_config.to_dict() _A= self.__class__.model_type return output
706
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def UpperCamelCase ( *lowerCAmelCase_ ) -> Dict: '''simple docstring''' with open(lowerCAmelCase_ , 'r' ) as fh: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_EX ) try: print(*lowerCAmelCase_ ) finally: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_UN ) UpperCAmelCase_ = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) UpperCAmelCase_ = torch.device('''cuda''', local_rank) UpperCAmelCase_ = socket.gethostname() UpperCAmelCase_ = F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase_ = dist.get_rank() UpperCAmelCase_ = dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
476
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' raise RuntimeError("CUDA out of memory." ) class A ( nn.Module ): def __init__(self : int ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(3 , 4 ) UpperCAmelCase__ = nn.BatchNormad(4 ) UpperCAmelCase__ = nn.Linear(4 , 5 ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__UpperCAmelCase ) ) ) class A ( unittest.TestCase ): def lowercase_ (self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase__ = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__UpperCAmelCase : List[str] ): nonlocal batch_sizes batch_sizes.append(__UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__UpperCAmelCase , [1_2_8, 6_4, 3_2, 1_6, 8] ) def lowercase_ (self : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__UpperCAmelCase : Any , __UpperCAmelCase : Any ): nonlocal batch_sizes batch_sizes.append(__UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase__ , UpperCAmelCase__ = mock_training_loop_function("hello" ) self.assertListEqual(__UpperCAmelCase , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__UpperCAmelCase : Dict ): pass with self.assertRaises(__UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def lowercase_ (self : int ) -> List[str]: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__UpperCAmelCase : Union[str, Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def lowercase_ (self : Optional[Any] ) -> Dict: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__UpperCAmelCase ) as cm: mock_training_loop_function(1_2_8 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def lowercase_ (self : Optional[Any] ) -> List[Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__UpperCAmelCase : List[str] ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = torch.cuda.memory_allocated() UpperCAmelCase__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __UpperCAmelCase ) UpperCAmelCase__ = release_memory(__UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , __UpperCAmelCase )
486
def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = [1] for i in range(2, __A ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ = [] UpperCAmelCase__ = list(range(__A ) ) # Find permutation while factorials: UpperCAmelCase__ = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ = divmod(__A, __A ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
486
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _snake_case ( a__ ): def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , "width_multiplier" ) ) class _snake_case : def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : int=13 , UpperCAmelCase : Tuple=64 , UpperCAmelCase : Any=2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : str="swish" , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : Any=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : int=None , UpperCAmelCase : str=0.2_5 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : int=0.0 , ): __lowerCamelCase : int = parent __lowerCamelCase : str = batch_size __lowerCamelCase : Union[str, Any] = image_size __lowerCamelCase : Dict = patch_size __lowerCamelCase : Union[str, Any] = num_channels __lowerCamelCase : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : List[str] = conv_kernel_size __lowerCamelCase : int = output_stride __lowerCamelCase : Union[str, Any] = classifier_dropout_prob __lowerCamelCase : Tuple = use_labels __lowerCamelCase : Tuple = is_training __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Dict = initializer_range __lowerCamelCase : Dict = scope __lowerCamelCase : List[str] = width_multiplier __lowerCamelCase : Optional[Any] = ffn_dropout __lowerCamelCase : List[Any] = attn_dropout def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Any = None __lowerCamelCase : Union[str, Any] = None if self.use_labels: __lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ ( self : Union[str, Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : str ): __lowerCamelCase : int = MobileViTVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Tuple = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ): __lowerCamelCase : str = self.num_labels __lowerCamelCase : Tuple = MobileViTVaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Optional[int] = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : str = self.num_labels __lowerCamelCase : Any = MobileViTVaForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : List[str] = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowerCamelCase : List[Any] = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = config_and_inputs __lowerCamelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : List[str] = MobileViTVaModelTester(self ) __lowerCamelCase : List[Any] = MobileViTVaConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowerCamelCase__ ( self : Any ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowerCamelCase__ ( self : Any ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowerCamelCase__ ( self : Optional[int] ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowerCamelCase__ ( self : List[Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase__ ( self : Optional[Any] ): pass def lowerCamelCase__ ( self : Dict ): __lowerCamelCase , __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = model_class(UpperCAmelCase ) __lowerCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : int = [*signature.parameters.keys()] __lowerCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): def check_hidden_states_output(UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : str = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase : Tuple = outputs.hidden_states __lowerCamelCase : Tuple = 5 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowerCamelCase : Union[str, Any] = 2 for i in range(len(UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Union[str, Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Union[str, Any] = MobileViTVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> Any: '''simple docstring''' __lowerCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Any ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Union[str, Any] = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( UpperCAmelCase ) __lowerCamelCase : List[str] = self.default_image_processor __lowerCamelCase : Union[str, Any] = prepare_img() __lowerCamelCase : str = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase : str = model(**UpperCAmelCase ) # verify the logits __lowerCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __lowerCamelCase : str = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCamelCase : Union[str, Any] = model.to(UpperCAmelCase ) __lowerCamelCase : str = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : int = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**UpperCAmelCase ) __lowerCamelCase : int = outputs.logits # verify the logits __lowerCamelCase : Any = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCAmelCase ) __lowerCamelCase : Tuple = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCamelCase : Any = model.to(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCamelCase : str = prepare_img() __lowerCamelCase : Dict = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[Any] = model(**UpperCAmelCase ) __lowerCamelCase : str = outputs.logits.detach().cpu() __lowerCamelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(50, 60)] ) __lowerCamelCase : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) __lowerCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
366
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __A = 4 __A = 3 class _snake_case ( a__ ): pass def lowercase_ ( _lowerCamelCase: List[str] ) -> List[str]: '''simple docstring''' for shard in shards: for i in range(_lowerCamelCase ): yield {"i": i, "shard": shard} def lowercase_ ( ) -> List[Any]: '''simple docstring''' __lowerCamelCase : List[Any] = int(os.environ["RANK"] ) __lowerCamelCase : Optional[int] = int(os.environ["WORLD_SIZE"] ) __lowerCamelCase : Any = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase ) parser.add_argument("--local_rank" , type=_lowerCamelCase ) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0 ) __lowerCamelCase : Dict = parser.parse_args() __lowerCamelCase : str = args.streaming __lowerCamelCase : List[Any] = args.num_workers __lowerCamelCase : Optional[Any] = {"shards": [F"""shard_{shard_idx}""" for shard_idx in range(_lowerCamelCase )]} __lowerCamelCase : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase ) if not streaming: __lowerCamelCase : Optional[int] = Dataset.from_list(list(_lowerCamelCase ) ) __lowerCamelCase : Union[str, Any] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase ) __lowerCamelCase : List[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase : Optional[Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase : Optional[Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
366
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase ( a__ : Optional[Any] ) -> Optional[Any]: _UpperCamelCase = botoa.client('''iam''' ) _UpperCamelCase = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=a__ , AssumeRolePolicyDocument=json.dumps(a__ , indent=2 ) ) _UpperCamelCase = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=a__ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(a__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase ( a__ : str ) -> Any: _UpperCamelCase = botoa.client('''iam''' ) return iam_client.get_role(RoleName=a__ )["Role"]["Arn"] def lowercase ( ) -> str: _UpperCamelCase = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , a__ , ) _UpperCamelCase = None if credentials_configuration == 0: _UpperCamelCase = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) _UpperCamelCase = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) _UpperCamelCase = _ask_field('''AWS Access Key ID: ''' ) _UpperCamelCase = aws_access_key_id _UpperCamelCase = _ask_field('''AWS Secret Access Key: ''' ) _UpperCamelCase = aws_secret_access_key _UpperCamelCase = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) _UpperCamelCase = aws_region _UpperCamelCase = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , a__ , ) if role_management == 0: _UpperCamelCase = _ask_field('''Enter your IAM role name: ''' ) else: _UpperCamelCase = '''accelerate_sagemaker_execution_role''' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(a__ ) _UpperCamelCase = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) _UpperCamelCase = None if is_custom_docker_image: _UpperCamelCase = _ask_field('''Enter your Docker image: ''' , lambda a__ : str(a__ ).lower() ) _UpperCamelCase = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) _UpperCamelCase = None if is_sagemaker_inputs_enabled: _UpperCamelCase = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda a__ : str(a__ ).lower() , ) _UpperCamelCase = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) _UpperCamelCase = None if is_sagemaker_metrics_enabled: _UpperCamelCase = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda a__ : str(a__ ).lower() , ) _UpperCamelCase = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) _UpperCamelCase = {} _UpperCamelCase = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) if use_dynamo: _UpperCamelCase = '''dynamo_''' _UpperCamelCase = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _UpperCamelCase = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) if use_custom_options: _UpperCamelCase = _ask_options( '''Which mode do you want to use?''' , a__ , lambda a__ : TORCH_DYNAMO_MODES[int(a__ )] , default='''default''' , ) _UpperCamelCase = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) _UpperCamelCase = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) _UpperCamelCase = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: _UpperCamelCase = _ask_options( a__ , a__ , lambda a__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _UpperCamelCase = _ask_field(a__ , lambda a__ : str(a__ ).lower() , default='''ml.p3.2xlarge''' ) _UpperCamelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _UpperCamelCase = _ask_field( '''How many machines do you want use? [1]: ''' , a__ , default=1 , ) _UpperCamelCase = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=a__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=a__ , use_cpu=a__ , dynamo_config=a__ , eca_instance_type=a__ , profile=a__ , region=a__ , iam_role_name=a__ , mixed_precision=a__ , num_machines=a__ , sagemaker_inputs_file=a__ , sagemaker_metrics_file=a__ , )
420
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase ( a__ : Optional[int] , a__ : Dict=False ) -> Tuple: try: _UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCamelCase = default else: # KEY is set, convert it to True or False. try: _UpperCamelCase = strtobool(a__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase = parse_flag_from_env("""RUN_SLOW""", default=False) UpperCAmelCase = parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCAmelCase = parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCAmelCase = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCAmelCase = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def lowercase ( a__ : Union[str, Any] ) -> str: try: import faiss # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires faiss''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> str: try: import regex # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires regex''' )(a__ ) return test_case def lowercase ( a__ : Any ) -> Union[str, Any]: try: import elasticsearch # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> Optional[Any]: try: import sqlalchemy # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(a__ ) return test_case def lowercase ( a__ : Any ) -> Union[str, Any]: if not config.TORCH_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires PyTorch''' )(a__ ) return test_case def lowercase ( a__ : str ) -> Optional[Any]: if not config.TF_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(a__ ) return test_case def lowercase ( a__ : Optional[int] ) -> str: if not config.JAX_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires JAX''' )(a__ ) return test_case def lowercase ( a__ : str ) -> int: if not config.PIL_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires Pillow''' )(a__ ) return test_case def lowercase ( a__ : Union[str, Any] ) -> Dict: try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> Optional[int]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(a__ ) else: return test_case def lowercase ( a__ : str ) -> Tuple: try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> int: def _require_spacy_model(a__ : Any ): try: import spacy # noqa F401 spacy.load(a__ ) except ImportError: return unittest.skip('''test requires spacy''' )(a__ ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(a__ ) )(a__ ) else: return test_case return _require_spacy_model def lowercase ( a__ : List[str] ) -> Dict: try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(a__ ) else: return test_case def lowercase ( a__ : int ) -> Any: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> Optional[int]: if not _run_slow_tests or _run_slow_tests == 0: _UpperCamelCase = unittest.skip('''test is slow''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> int: if not _run_local_tests or _run_local_tests == 0: _UpperCamelCase = unittest.skip('''test is local''' )(a__ ) return test_case def lowercase ( a__ : Optional[int] ) -> List[str]: if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCamelCase = unittest.skip('''test is packaged''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> int: if not _run_remote_tests or _run_remote_tests == 0: _UpperCamelCase = unittest.skip('''test requires remote''' )(a__ ) return test_case def lowercase ( *a__ : Dict ) -> List[Any]: def decorate(cls : str ): for name, fn in cls.__dict__.items(): if callable(a__ ) and name.startswith('''test''' ): for decorator in decorators: _UpperCamelCase = decorator(a__ ) setattr(cls , a__ , a__ ) return cls return decorate class UpperCAmelCase_ ( _lowercase): pass class UpperCAmelCase_ ( _lowercase): snake_case__ = 0 snake_case__ = 1 snake_case__ = 2 @contextmanager def lowercase ( a__ : List[Any]=OfflineSimulationMode.CONNECTION_FAILS , a__ : Dict=1e-16 ) -> Any: _UpperCamelCase = requests.Session().request def timeout_request(a__ : Dict , a__ : str , a__ : Optional[Any] , **a__ : Any ): # Change the url to an invalid url so that the connection hangs _UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) _UpperCamelCase = timeout try: return online_request(a__ , a__ , **a__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCamelCase = url _UpperCamelCase = e.args[0] _UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , F'''OfflineMock[{url}]''' ),) _UpperCamelCase = (max_retry_error,) raise def raise_connection_error(a__ : Optional[int] , a__ : int , **a__ : Any ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=a__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , a__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , a__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , a__ ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def lowercase ( *a__ : Optional[int] , **a__ : List[str] ) -> Optional[Any]: _UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a__ , **a__ ) as tmp_dir: try: os.chdir(a__ ) yield finally: os.chdir(a__ ) @contextmanager def lowercase ( ) -> List[str]: import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase ( ) -> List[Any]: import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase ( a__ : Optional[Any] , a__ : Tuple ) -> List[Any]: return deepcopy(a__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(a__ ).integers(0 , 100 , 10 ).tolist() def lowercase ( a__ : Optional[Any] ) -> Tuple: import decorator from requests.exceptions import HTTPError def _wrapper(a__ : Union[str, Any] , *a__ : Tuple , **a__ : Any ): try: return func(*a__ , **a__ ) except HTTPError as err: if str(a__ ).startswith('''500''' ) or str(a__ ).startswith('''502''' ): pytest.xfail(str(a__ ) ) raise err return decorator.decorator(_wrapper , a__ ) class UpperCAmelCase_ : def __init__( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Any: _UpperCamelCase = returncode _UpperCamelCase = stdout _UpperCamelCase = stderr async def lowercase ( a__ : int , a__ : Tuple ) -> int: while True: _UpperCamelCase = await stream.readline() if line: callback(a__ ) else: break async def lowercase ( a__ : Tuple , a__ : int=None , a__ : int=None , a__ : Optional[Any]=None , a__ : Optional[int]=False , a__ : List[str]=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(a__ ) ) _UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCamelCase = [] _UpperCamelCase = [] def tee(a__ : Optional[int] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[str]="" ): _UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(a__ ) if not quiet: print(a__ , a__ , file=a__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda a__ : tee(a__ , a__ , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda a__ : tee(a__ , a__ , sys.stderr , label='''stderr:''' ) ), ] , timeout=a__ , ) return _RunOutput(await p.wait() , a__ , a__ ) def lowercase ( a__ : Any , a__ : List[Any]=None , a__ : List[Any]=None , a__ : Tuple=180 , a__ : Tuple=False , a__ : Optional[int]=True ) -> _RunOutput: _UpperCamelCase = asyncio.get_event_loop() _UpperCamelCase = loop.run_until_complete( _stream_subprocess(a__ , env=a__ , stdin=a__ , timeout=a__ , quiet=a__ , echo=a__ ) ) _UpperCamelCase = ''' '''.join(a__ ) if result.returncode > 0: _UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def lowercase ( ) -> List[Any]: _UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) _UpperCamelCase = re.sub(R'''^gw''' , '''''' , a__ , 0 , re.M ) return int(a__ ) def lowercase ( ) -> str: _UpperCamelCase = 29500 _UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
420
1
'''simple docstring''' _lowerCamelCase = 9.8_0665 def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ = g ): if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
572
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a ( unittest.TestCase ): def __init__( self : Dict , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=7 , lowercase__ : Dict=3 , lowercase__ : Optional[int]=18 , lowercase__ : Any=30 , lowercase__ : Tuple=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : Tuple=True , lowercase__ : Optional[int]=None , lowercase__ : Any=True , lowercase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowercase__ : Tuple=[0.5, 0.5, 0.5] , lowercase__ : Optional[Any]=False , ) ->str: """simple docstring""" _lowercase = size if size is not None else {"""height""": 20, """width""": 20} _lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_reduce_labels def _UpperCAmelCase ( self : Union[str, Any]) ->str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(dataset[0]["""file"""] ) _lowercase = Image.open(dataset[1]["""file"""] ) return image, map def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(ds[0]["""file"""] ) _lowercase = Image.open(ds[1]["""file"""] ) _lowercase = Image.open(ds[2]["""file"""] ) _lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __a ( _snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = BeitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Any) ->str: """simple docstring""" _lowercase = BeitImageProcessingTester(self) @property def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Optional[int]) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , """do_resize""")) self.assertTrue(hasattr(lowercase__ , """size""")) self.assertTrue(hasattr(lowercase__ , """do_center_crop""")) self.assertTrue(hasattr(lowercase__ , """center_crop""")) self.assertTrue(hasattr(lowercase__ , """do_normalize""")) self.assertTrue(hasattr(lowercase__ , """image_mean""")) self.assertTrue(hasattr(lowercase__ , """image_std""")) def _UpperCAmelCase ( self : Optional[Any]) ->str: """simple docstring""" _lowercase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) _lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase__) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" pass def _UpperCAmelCase ( self : List[str]) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : str) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Union[str, Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) _lowercase = [] for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input _lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test not batched input (PIL images) _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched input (PIL images) _lowercase , _lowercase = prepare_semantic_batch_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) def _UpperCAmelCase ( self : Dict) ->Optional[Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 1_50) _lowercase = True _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
572
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = FunnelTokenizer __lowerCAmelCase = FunnelTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() a_ : int = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self , **a_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , **a_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , a_ ): a_ : int = "UNwant\u00E9d,running" a_ : List[Any] = "unwanted, running" return input_text, output_text def snake_case_ ( self ): a_ : int = self.tokenizer_class(self.vocab_file ) a_ : List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [7, 4, 5, 1_0, 8, 9] ) def snake_case_ ( self ): a_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: a_ : Dict = tokenizer("UNwant\u00E9d,running" ) a_ : int = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) a_ : Dict = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
237
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class snake_case_ ( a_ ): def __init__( self , a_="" , a_="train" ): assert os.path.isdir(a_ ) a_ : List[Any] = [] a_ : int = os.listdir(a_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue a_ : str = os.path.join(a_ , a_ ) if not os.path.isfile(a_ ): continue self.documents.append(a_ ) def __len__( self ): return len(self.documents ) def __getitem__( self , a_ ): a_ : Optional[int] = self.documents[idx] a_ : Optional[int] = document_path.split("/" )[-1] with open(a_ , encoding="utf-8" ) as source: a_ : Tuple = source.read() a_ , a_ : Union[str, Any] = process_story(a_ ) return document_name, story_lines, summary_lines def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Any: a_ : int = list(filter(lambda SCREAMING_SNAKE_CASE__ : len(SCREAMING_SNAKE_CASE__ ) != 0, [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it a_ : Optional[int] = [_add_missing_period(SCREAMING_SNAKE_CASE__ ) for line in nonempty_lines] # gather article lines a_ : Dict = [] a_ : int = deque(SCREAMING_SNAKE_CASE__ ) while True: try: a_ : Optional[Any] = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(SCREAMING_SNAKE_CASE__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines a_ : List[Any] = list(filter(lambda SCREAMING_SNAKE_CASE__ : not t.startswith("@highlight" ), SCREAMING_SNAKE_CASE__ ) ) return story_lines, summary_lines def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: a_ : Dict = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[str]: if len(SCREAMING_SNAKE_CASE__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE__ )) ) return sequence def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: a_ : Union[str, Any] = torch.ones_like(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = sequence == pad_token_id a_ : Tuple = 0 return mask def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[int]: a_ : List[str] = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in story_lines] a_ : Optional[int] = [token for sentence in story_lines_token_ids for token in sentence] a_ : str = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in summary_lines] a_ : List[Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: a_ : Tuple = [] for sequence in batch: a_ : List[str] = -1 a_ : Dict = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE__ ) return torch.tensor(SCREAMING_SNAKE_CASE__ )
237
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class UpperCAmelCase__ ( __UpperCAmelCase ): """simple docstring""" A : Optional[Any] = "deta" A : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self , _a=None , _a=900 , _a=2_048 , _a=6 , _a=2_048 , _a=8 , _a=6 , _a=1_024 , _a=8 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=1.0 , _a=True , _a=False , _a="sine" , _a=5 , _a=4 , _a=4 , _a=True , _a=300 , _a=True , _a=True , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , _a=0.25 , **_a , ) -> Optional[Any]: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase_ : Optional[Any] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase_ : List[Any] = backbone_config.pop('model_type' ) lowercase_ : str = CONFIG_MAPPING[backbone_model_type] lowercase_ : int = config_class.from_dict(_lowerCamelCase ) lowercase_ : str = backbone_config lowercase_ : Tuple = num_queries lowercase_ : Any = max_position_embeddings lowercase_ : List[str] = d_model lowercase_ : Optional[int] = encoder_ffn_dim lowercase_ : Optional[int] = encoder_layers lowercase_ : Any = encoder_attention_heads lowercase_ : Dict = decoder_ffn_dim lowercase_ : Dict = decoder_layers lowercase_ : List[Any] = decoder_attention_heads lowercase_ : Tuple = dropout lowercase_ : List[str] = attention_dropout lowercase_ : int = activation_dropout lowercase_ : Optional[Any] = activation_function lowercase_ : Optional[int] = init_std lowercase_ : Optional[Any] = init_xavier_std lowercase_ : str = encoder_layerdrop lowercase_ : List[Any] = auxiliary_loss lowercase_ : Dict = position_embedding_type # deformable attributes lowercase_ : Any = num_feature_levels lowercase_ : Any = encoder_n_points lowercase_ : Dict = decoder_n_points lowercase_ : Union[str, Any] = two_stage lowercase_ : int = two_stage_num_proposals lowercase_ : Tuple = with_box_refine lowercase_ : Any = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowercase_ : Dict = class_cost lowercase_ : str = bbox_cost lowercase_ : Union[str, Any] = giou_cost # Loss coefficients lowercase_ : int = mask_loss_coefficient lowercase_ : List[Any] = dice_loss_coefficient lowercase_ : Union[str, Any] = bbox_loss_coefficient lowercase_ : Union[str, Any] = giou_loss_coefficient lowercase_ : Tuple = eos_coefficient lowercase_ : List[Any] = focal_alpha super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _lowerCamelCase (self ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase (self ) -> Tuple: return self.d_model def _lowerCamelCase (self ) -> List[str]: lowercase_ : Tuple = copy.deepcopy(self.__dict__ ) lowercase_ : str = self.backbone_config.to_dict() lowercase_ : Dict = self.__class__.model_type return output
701
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : str = botoa.client('iam' ) lowercase_ : Optional[int] = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE_ , AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) ) lowercase_ : Optional[Any] = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE_ , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = botoa.client('iam' ) return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE_ )["Role"]["Arn"] def _UpperCamelCase ( ): lowercase_ : Dict = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , SCREAMING_SNAKE_CASE_ , ) lowercase_ : List[Any] = None if credentials_configuration == 0: lowercase_ : List[Any] = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) lowercase_ : Optional[int] = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) lowercase_ : Optional[Any] = _ask_field('AWS Access Key ID: ' ) lowercase_ : Optional[int] = aws_access_key_id lowercase_ : Optional[Any] = _ask_field('AWS Secret Access Key: ' ) lowercase_ : Optional[int] = aws_secret_access_key lowercase_ : Any = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) lowercase_ : Tuple = aws_region lowercase_ : int = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , SCREAMING_SNAKE_CASE_ , ) if role_management == 0: lowercase_ : int = _ask_field('Enter your IAM role name: ' ) else: lowercase_ : Any = 'accelerate_sagemaker_execution_role' print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[Any] = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) lowercase_ : Optional[Any] = None if is_custom_docker_image: lowercase_ : List[Any] = _ask_field('Enter your Docker image: ' , lambda SCREAMING_SNAKE_CASE_ : str(SCREAMING_SNAKE_CASE_ ).lower() ) lowercase_ : Any = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) lowercase_ : Optional[Any] = None if is_sagemaker_inputs_enabled: lowercase_ : Dict = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda SCREAMING_SNAKE_CASE_ : str(SCREAMING_SNAKE_CASE_ ).lower() , ) lowercase_ : Dict = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) lowercase_ : Optional[Any] = None if is_sagemaker_metrics_enabled: lowercase_ : Dict = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda SCREAMING_SNAKE_CASE_ : str(SCREAMING_SNAKE_CASE_ ).lower() , ) lowercase_ : int = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) lowercase_ : List[str] = {} lowercase_ : Optional[Any] = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) if use_dynamo: lowercase_ : List[Any] = 'dynamo_' lowercase_ : List[Any] = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase_ : int = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) if use_custom_options: lowercase_ : Union[str, Any] = _ask_options( 'Which mode do you want to use?' , SCREAMING_SNAKE_CASE_ , lambda SCREAMING_SNAKE_CASE_ : TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE_ )] , default='default' , ) lowercase_ : Union[str, Any] = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) lowercase_ : Tuple = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) lowercase_ : List[str] = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: lowercase_ : Optional[Any] = _ask_options( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lambda SCREAMING_SNAKE_CASE_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase_ : Tuple = _ask_field(SCREAMING_SNAKE_CASE_ , lambda SCREAMING_SNAKE_CASE_ : str(SCREAMING_SNAKE_CASE_ ).lower() , default='ml.p3.2xlarge' ) lowercase_ : str = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase_ : Union[str, Any] = _ask_field( 'How many machines do you want use? [1]: ' , SCREAMING_SNAKE_CASE_ , default=1 , ) lowercase_ : Any = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=SCREAMING_SNAKE_CASE_ , use_cpu=SCREAMING_SNAKE_CASE_ , dynamo_config=SCREAMING_SNAKE_CASE_ , eca_instance_type=SCREAMING_SNAKE_CASE_ , profile=SCREAMING_SNAKE_CASE_ , region=SCREAMING_SNAKE_CASE_ , iam_role_name=SCREAMING_SNAKE_CASE_ , mixed_precision=SCREAMING_SNAKE_CASE_ , num_machines=SCREAMING_SNAKE_CASE_ , sagemaker_inputs_file=SCREAMING_SNAKE_CASE_ , sagemaker_metrics_file=SCREAMING_SNAKE_CASE_ , )
438
0
from __future__ import annotations def lowercase__ ( A_: list[int] , A_: list[int] , A_: list[int] , A_: list[list[str]] , A_: int , ) -> None: """simple docstring""" __UpperCAmelCase =len(A_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A_ , A_ , ) def lowercase__ ( A_: int ) -> None: """simple docstring""" __UpperCAmelCase =[] depth_first_search([] , [] , [] , A_ , A_ ) # Print all the boards for board in boards: for column in board: print(A_ ) print("""""" ) print(len(A_ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
68
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def A_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = PNDMScheduler() _UpperCamelCase = PNDMPipeline(unet=a , scheduler=a ) pndm.to(a ) pndm.set_progress_bar_config(disable=a ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=a , num_inference_steps=20 , output_type="""numpy""" ).images _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=a , num_inference_steps=20 , output_type="""numpy""" , return_dict=a )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = """google/ddpm-cifar10-32""" _UpperCamelCase = UNetaDModel.from_pretrained(a ) _UpperCamelCase = PNDMScheduler() _UpperCamelCase = PNDMPipeline(unet=a , scheduler=a ) pndm.to(a ) pndm.set_progress_bar_config(disable=a ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=a , output_type="""numpy""" ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
612
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : """simple docstring""" @staticmethod def UpperCamelCase__ ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ) -> Union[str, Any]: pass def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCamelCase : Dict = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase): """simple docstring""" lowerCAmelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> List[str]: _UpperCamelCase =pipeline( '''document-question-answering''' , model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _UpperCamelCase =INVOICE_URL _UpperCamelCase =list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , '''''' ) ) ) _UpperCamelCase ='''What is the placebo?''' _UpperCamelCase =[ { '''image''': load_image(UpperCamelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Union[str, Any]: _UpperCamelCase =dqa_pipeline(UpperCamelCase__ , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ [ {'''score''': ANY(UpperCamelCase__ ), '''answer''': ANY(UpperCamelCase__ ), '''start''': ANY(UpperCamelCase__ ), '''end''': ANY(UpperCamelCase__ )}, {'''score''': ANY(UpperCamelCase__ ), '''answer''': ANY(UpperCamelCase__ ), '''start''': ANY(UpperCamelCase__ ), '''end''': ANY(UpperCamelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self : Optional[Any] ) -> int: _UpperCamelCase =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) _UpperCamelCase =INVOICE_URL _UpperCamelCase ='''How many cats are there?''' _UpperCamelCase =[ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , UpperCamelCase__ ) _UpperCamelCase =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , UpperCamelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _UpperCamelCase ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(UpperCamelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes _UpperCamelCase ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' _UpperCamelCase =[] _UpperCamelCase =[] _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , words=UpperCamelCase__ , boxes=UpperCamelCase__ , top_k=2 ) self.assertEqual(UpperCamelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self : str ) -> List[str]: _UpperCamelCase =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) _UpperCamelCase =INVOICE_URL _UpperCamelCase ='''What is the invoice number?''' _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _UpperCamelCase =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _UpperCamelCase =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) _UpperCamelCase =INVOICE_URL _UpperCamelCase ='''What is the invoice number?''' _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _UpperCamelCase =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _UpperCamelCase =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self : int ) -> Optional[int]: _UpperCamelCase =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCamelCase__ ) _UpperCamelCase =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCamelCase__ , revision='''3dc6de3''' , ) _UpperCamelCase =INVOICE_URL _UpperCamelCase ='''What is the invoice number?''' _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _UpperCamelCase =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _UpperCamelCase =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) _UpperCamelCase =list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None _UpperCamelCase =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self : Any ) -> str: _UpperCamelCase =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCamelCase__ ) _UpperCamelCase =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCamelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) _UpperCamelCase =INVOICE_URL _UpperCamelCase ='''What is the invoice number?''' _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _UpperCamelCase =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) _UpperCamelCase =list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None _UpperCamelCase =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def UpperCamelCase__ ( self : List[str] ) -> List[Any]: _UpperCamelCase =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) _UpperCamelCase =INVOICE_URL _UpperCamelCase ='''What is the invoice number?''' _UpperCamelCase =dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def UpperCamelCase__ ( self : Tuple ) -> Optional[int]: pass
271
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Any = logging.get_logger(__name__) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) _UpperCamelCase =DetaConfig( backbone_config=__SCREAMING_SNAKE_CASE , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__SCREAMING_SNAKE_CASE , with_box_refine=__SCREAMING_SNAKE_CASE , two_stage=__SCREAMING_SNAKE_CASE , ) # set labels _UpperCamelCase ='''huggingface/label-files''' if "o365" in model_name: _UpperCamelCase =366 _UpperCamelCase ='''object365-id2label.json''' else: _UpperCamelCase =91 _UpperCamelCase ='''coco-detection-id2label.json''' _UpperCamelCase =num_labels _UpperCamelCase =json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) _UpperCamelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCamelCase =idalabel _UpperCamelCase ={v: k for k, v in idalabel.items()} return config def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =dct.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase =state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase =state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[:dim, :] _UpperCamelCase =in_proj_bias[: dim] _UpperCamelCase =in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase =in_proj_bias[ dim : dim * 2 ] _UpperCamelCase =in_proj_weight[ -dim :, : ] _UpperCamelCase =in_proj_bias[-dim :] # fmt: on def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase =state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase =state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[:hidden_size, :] _UpperCamelCase =in_proj_bias[:hidden_size] _UpperCamelCase =in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCamelCase =in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase =in_proj_weight[-hidden_size:, :] _UpperCamelCase =in_proj_bias[-hidden_size:] def _a (): """simple docstring""" _UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =get_deta_config(__SCREAMING_SNAKE_CASE ) # load original state dict if model_name == "deta-swin-large": _UpperCamelCase =hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": _UpperCamelCase =hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _UpperCamelCase =torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__SCREAMING_SNAKE_CASE , param.shape ) # rename keys _UpperCamelCase =create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val if "input_proj" in key: _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val # finally, create HuggingFace model and load state dict _UpperCamelCase =DetaForObjectDetection(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() _UpperCamelCase ='''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__SCREAMING_SNAKE_CASE ) # load image processor _UpperCamelCase =DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image _UpperCamelCase =prepare_img() _UpperCamelCase =processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) _UpperCamelCase =encoding['''pixel_values'''] _UpperCamelCase =model(pixel_values.to(__SCREAMING_SNAKE_CASE ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCamelCase =torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _UpperCamelCase =torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _UpperCamelCase =torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _UpperCamelCase =torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__SCREAMING_SNAKE_CASE ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__SCREAMING_SNAKE_CASE ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCamelCase : List[str] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
271
1
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def lowercase ( __snake_case : Optional[Any] ): return input_array.reshape((input_array.size, 1) ) def lowercase ( __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple ): lowercase_ : Dict = np.nan for i in range(UpperCamelCase__ ): lowercase_ : Union[str, Any] = features[:, labels == i] lowercase_ : Optional[int] = data.mean(1 ) # Centralize the data of class i lowercase_ : str = data - column_reshape(UpperCamelCase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase_ : Any = np.dot(UpperCamelCase__ , centered_data.T ) return covariance_sum / features.shape[1] def lowercase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] ): lowercase_ : Union[str, Any] = features.mean(1 ) lowercase_ : Tuple = np.nan for i in range(UpperCamelCase__ ): lowercase_ : Any = features[:, labels == i] lowercase_ : Optional[Any] = data.shape[1] lowercase_ : str = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ ) , (column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase_ : int = device_data * np.dot( column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ ) , (column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ )).T , ) return covariance_sum / features.shape[1] def lowercase ( __snake_case : Dict , __snake_case : Optional[int] ): # Check if the features have been loaded if features.any(): lowercase_ : List[str] = features.mean(1 ) # Center the dataset lowercase_ : Optional[Any] = features - np.reshape(UpperCamelCase__ , (data_mean.size, 1) ) lowercase_ : int = np.dot(UpperCamelCase__ , centered_data.T ) / features.shape[1] lowercase_ : Optional[int] = np.linalg.eigh(UpperCamelCase__ ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase_ : Tuple = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase_ : List[str] = np.dot(filtered_eigenvectors.T , UpperCamelCase__ ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCamelCase__ ) logging.error('''Dataset empty''' ) raise AssertionError def lowercase ( __snake_case : str , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : str ): assert classes > dimensions # Check if features have been already loaded if features.any: lowercase_ : Union[str, Any] = eigh( covariance_between_classes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , covariance_within_classes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) lowercase_ : Any = eigenvectors[:, ::-1][:, :dimensions] lowercase_ : Any = np.linalg.svd(UpperCamelCase__ ) lowercase_ : Tuple = svd_matrix[:, 0:dimensions] lowercase_ : Tuple = np.dot(filtered_svd_matrix.T , UpperCamelCase__ ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCamelCase__ ) logging.error('''Dataset empty''' ) raise AssertionError def lowercase ( ): # Create dummy dataset with 2 classes and 3 features lowercase_ : str = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase_ : str = np.array([0, 0, 0, 1, 1] ) lowercase_ : List[str] = 2 lowercase_ : List[Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase__ ) as error_info: lowercase_ : Tuple = linear_discriminant_analysis( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def lowercase ( ): lowercase_ : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase_ : Optional[int] = 2 lowercase_ : Optional[int] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase__ ) as error_info: lowercase_ : List[Any] = principal_component_analysis(UpperCamelCase__ , UpperCamelCase__ ) if not np.allclose(UpperCamelCase__ , UpperCamelCase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
231
'''simple docstring''' import re from filelock import FileLock try: import nltk __A =True except (ImportError, ModuleNotFoundError): __A =False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCamelCase ( UpperCamelCase__ ): re.sub("""<n>""" , """""" , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
407
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): UpperCAmelCase_ :List[Any] = IFInpaintingPipeline UpperCAmelCase_ :Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCAmelCase_ :Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ :str = PipelineTesterMixin.required_optional_params - {'''latents'''} def __lowerCAmelCase ( self ) -> List[str]: return self._get_dummy_components() def __lowerCAmelCase ( self , __A , __A=0 ) -> Union[str, Any]: if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): lowerCAmelCase_ :Any = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase_ :int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ :Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ :Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ :Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self ) -> str: self._test_save_load_local() def __lowerCAmelCase ( self ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
716
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , __A=None ) -> Tuple: lowerCAmelCase_ :Optional[int] = data lowerCAmelCase_ :List[Any] = None def __repr__( self ) -> Union[str, Any]: lowerCAmelCase_ :int = [] lowerCAmelCase_ :int = self while temp: string_rep.append(f"""{temp.data}""" ) lowerCAmelCase_ :List[str] = temp.next return "->".join(__A ) def _snake_case ( lowercase__ : list ) -> Union[str, Any]: '''simple docstring''' if not elements_list: raise Exception("""The Elements List is empty""" ) lowerCAmelCase_ :int = Node(elements_list[0] ) for i in range(1 , len(lowercase__ ) ): lowerCAmelCase_ :Tuple = Node(elements_list[i] ) lowerCAmelCase_ :Union[str, Any] = current.next return head def _snake_case ( lowercase__ : Node ) -> None: '''simple docstring''' if head_node is not None and isinstance(lowercase__ , lowercase__ ): print_reverse(head_node.next ) print(head_node.data ) def _snake_case ( ) -> Optional[int]: '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase_ :Union[str, Any] = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("""Linked List:""" ) print(lowercase__ ) print("""Elements in Reverse:""" ) print_reverse(lowercase__ ) if __name__ == "__main__": main()
256
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : """simple docstring""" @staticmethod def _UpperCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ): pass @is_pipeline_test @require_vision class A ( unittest.TestCase ): """simple docstring""" @require_torch def _UpperCAmelCase ( self ): UpperCamelCase_ : str = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) UpperCamelCase_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase_ : Dict = image_classifier(_a , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_a ) , [ [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}], [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """c"""}, {"""score""": 0.3_33, """label""": """b"""}], ] , ) UpperCamelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(_a ) , [ [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], ] , ) @require_tf def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) UpperCamelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase_ : Dict = image_classifier(_a , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(_a ) , [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}] , ) UpperCamelCase_ : str = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(_a ) , [ [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], [ {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, {"""score""": 0.3_33, """label""": ANY(_a )}, ], ] , ) @slow @require_torch def _UpperCAmelCase ( self ): UpperCamelCase_ : int = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase_ : Any = image_classifier(_a , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(_a ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) UpperCamelCase_ : str = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(_a ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase_ : int = image_classifier(_a , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(_a ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) UpperCamelCase_ : Dict = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(_a ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , )
208
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _snake_case , _snake_case , _snake_case : List[Any] = False, False, False @dataclass class __SCREAMING_SNAKE_CASE : SCREAMING_SNAKE_CASE__ =None SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =None # Automatically constructed SCREAMING_SNAKE_CASE__ ="dict" SCREAMING_SNAKE_CASE__ =pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) SCREAMING_SNAKE_CASE__ =field(default="""Audio""" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Optional[int]: return self.pa_type def __lowerCAmelCase ( self, _a ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_a, _a ): return {"bytes": None, "path": value} elif isinstance(_a, _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __SCREAMING_SNAKE_CASE = BytesIO() sf.write(_a, value["array"], value["sampling_rate"], format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __SCREAMING_SNAKE_CASE = np.frombuffer(value["bytes"], dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: __SCREAMING_SNAKE_CASE = np.memmap(value["path"], dtype="h", mode="r" ).astype(np.floataa ) / 3_27_67 __SCREAMING_SNAKE_CASE = BytesIO(bytes() ) sf.write(_a, _a, value["sampling_rate"], format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __lowerCAmelCase ( self, _a, _a = None ) -> dict: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err __SCREAMING_SNAKE_CASE = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: __SCREAMING_SNAKE_CASE = token_per_repo_id or {} __SCREAMING_SNAKE_CASE = path.split("::" )[-1] try: __SCREAMING_SNAKE_CASE = string_to_dict(_a, config.HUB_DATASETS_URL )["repo_id"] __SCREAMING_SNAKE_CASE = token_per_repo_id[repo_id] except (ValueError, KeyError): __SCREAMING_SNAKE_CASE = None with xopen(_a, "rb", use_auth_token=_a ) as f: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sf.read(_a ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sf.read(_a ) __SCREAMING_SNAKE_CASE = array.T if self.mono: __SCREAMING_SNAKE_CASE = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: __SCREAMING_SNAKE_CASE = librosa.resample(_a, orig_sr=_a, target_sr=self.sampling_rate ) __SCREAMING_SNAKE_CASE = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def __lowerCAmelCase ( self, _a ) -> pa.StructArray: if pa.types.is_string(storage.type ): __SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.binary() ) __SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.string() ) __SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): __SCREAMING_SNAKE_CASE = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: __SCREAMING_SNAKE_CASE = storage.field("bytes" ) else: __SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: __SCREAMING_SNAKE_CASE = storage.field("path" ) else: __SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.string() ) __SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) return array_cast(_a, self.pa_type ) def __lowerCAmelCase ( self, _a ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(_a, "rb" ) as f: __SCREAMING_SNAKE_CASE = f.read() return bytes_ __SCREAMING_SNAKE_CASE = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) __SCREAMING_SNAKE_CASE = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) __SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(_a, self.pa_type )
693
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""image_processor"""] a_ = """SamImageProcessor""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict ) -> Dict: super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -1_0 __lowerCAmelCase = self.image_processor.size['longest_edge'] def __call__( self : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : List[str] , ) -> BatchEncoding: __lowerCAmelCase = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor['original_sizes'] if hasattr(lowerCAmelCase_ , 'numpy' ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=lowerCAmelCase_ , input_labels=lowerCAmelCase_ , input_boxes=lowerCAmelCase_ , ) __lowerCAmelCase = self._normalize_and_convert( lowerCAmelCase_ , lowerCAmelCase_ , input_points=lowerCAmelCase_ , input_labels=lowerCAmelCase_ , input_boxes=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , ) return encoding_image_processor def lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]="pt" , ) -> Dict: if input_points is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size , lowerCAmelCase_ , original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size , lowerCAmelCase_ , lowerCAmelCase_ ) for point, original_size in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = np.array(lowerCAmelCase_ ) if input_labels is not None: __lowerCAmelCase = np.array(lowerCAmelCase_ ) if input_boxes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size , lowerCAmelCase_ , original_sizes[0] , is_bounding_box=lowerCAmelCase_ ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size , lowerCAmelCase_ , lowerCAmelCase_ , is_bounding_box=lowerCAmelCase_ ) for box, original_size in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] __lowerCAmelCase = np.array(lowerCAmelCase_ ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(lowerCAmelCase_ ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(lowerCAmelCase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(lowerCAmelCase_ ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(lowerCAmelCase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(lowerCAmelCase_ ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(lowerCAmelCase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(lowerCAmelCase_ ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowerCAmelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCAmelCase_ ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowercase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=False ) -> np.ndarray: __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(lowerCAmelCase_ , longest_edge=lowerCAmelCase_ ) __lowerCAmelCase = deepcopy(lowerCAmelCase_ ).astype(lowerCAmelCase_ ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1 , 2 , 2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1 , 4 ) return coords def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Any]=None , ) -> List[str]: if input_points is not None: if hasattr(lowerCAmelCase_ , 'numpy' ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not isinstance(input_points[0] , lowerCAmelCase_ ): raise ValueError('Input points must be a list of list of floating points.' ) __lowerCAmelCase = [np.array(lowerCAmelCase_ ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(lowerCAmelCase_ , 'numpy' ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not isinstance(input_labels[0] , lowerCAmelCase_ ): raise ValueError('Input labels must be a list of list integers.' ) __lowerCAmelCase = [np.array(lowerCAmelCase_ ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(lowerCAmelCase_ , 'numpy' ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not isinstance(input_boxes[0] , lowerCAmelCase_ ) or not isinstance(input_boxes[0][0] , lowerCAmelCase_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) __lowerCAmelCase = [np.array(lowerCAmelCase_ ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase_ ) ) def lowercase ( self : List[str] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Tuple ) -> Dict: return self.image_processor.post_process_masks(*lowerCAmelCase_ , **lowerCAmelCase_ )
421
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : List[Any] = '▁' _snake_case : Tuple = {'vocab_file': 'spiece.model'} _snake_case : Optional[int] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _snake_case : Union[str, Any] = { 'google/reformer-crime-and-punishment': 524288, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[Any]=[] , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Any , ) -> None: __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def lowercase ( self : Any ) -> Any: return self.sp_model.get_piece_size() def lowercase ( self : int ) -> Dict[str, int]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Dict ) -> Tuple: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def lowercase ( self : Any , lowerCAmelCase_ : int ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = [] __lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
421
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = (UnCLIPScheduler,) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_UpperCAmelCase ) return config def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase__ = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.0_010_011 < 1E-5 def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = scheduler.timesteps lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) lowercase__ = scheduler.timesteps lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: lowercase__ = None else: lowercase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" pass def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" pass
15
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __UpperCamelCase : List[Any] = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def A ( _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) return (preds == labels).mean() def A ( _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) SCREAMING_SNAKE_CASE : int = simple_accuracy(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Tuple = fa_score(y_true=_lowercase , y_pred=_lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A ( _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) SCREAMING_SNAKE_CASE : str = pearsonr(_lowercase , _lowercase )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = spearmanr(_lowercase , _lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A ( _lowercase , _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) assert len(_lowercase ) == len(_lowercase ), f"""Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowercase , _lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mrpc": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "sts-b": return pearson_and_spearman(_lowercase , _lowercase ) elif task_name == "qqp": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase ) def A ( _lowercase , _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) if len(_lowercase ) != len(_lowercase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase )
248
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , **A ) -> List[Any]: super().__init__(**__UpperCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , A , **A ) -> List[str]: return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase ( self , **A ) -> Union[str, Any]: snake_case : int = {} if "candidate_labels" in kwargs: snake_case : int = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: snake_case : Tuple = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase ( self , A , A=None , A="This is a sound of {}." ) -> int: if isinstance(__UpperCamelCase , __UpperCamelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case : Dict = requests.get(__UpperCamelCase ).content else: with open(__UpperCamelCase , """rb""" ) as f: snake_case : Any = f.read() if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case : int = ffmpeg_read(__UpperCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(__UpperCamelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) snake_case : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) snake_case : List[str] = candidate_labels snake_case : Any = [hypothesis_template.format(__UpperCamelCase ) for x in candidate_labels] snake_case : Optional[int] = self.tokenizer(__UpperCamelCase , return_tensors=self.framework , padding=__UpperCamelCase ) snake_case : List[Any] = [text_inputs] return inputs def UpperCAmelCase ( self , A ) -> Any: snake_case : Optional[Any] = model_inputs.pop("""candidate_labels""" ) snake_case : List[str] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __UpperCamelCase ): snake_case : Optional[Any] = text_inputs[0] else: # Batching case. snake_case : Any = text_inputs[0][0] snake_case : Optional[Any] = self.model(**__UpperCamelCase , **__UpperCamelCase ) snake_case : Dict = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Dict = model_outputs.pop("""candidate_labels""" ) snake_case : List[str] = model_outputs["""logits"""][0] if self.framework == "pt": snake_case : str = logits.softmax(dim=0 ) snake_case : Union[str, Any] = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) snake_case : Any = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda A : -x[0] ) ] return result
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE_ : Dict = 1_0 def __UpperCAmelCase ( self : Tuple ,**__A : Tuple ) -> List[str]: _lowercase = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__A ) return config def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A ,beta_end=__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def __UpperCAmelCase ( self : Dict ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def __UpperCAmelCase ( self : str ) -> int: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __UpperCAmelCase ( self : List[str] ) -> List[Any]: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config(prediction_type='v_prediction' ) _lowercase = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def __UpperCAmelCase ( self : int ) -> Union[str, Any]: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ,device=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowercase = sample.to(__A ) for t in scheduler.timesteps: _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__A ,use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps ,device=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowercase = sample.to(__A ) for t in scheduler.timesteps: _lowercase = scheduler.scale_model_input(__A ,__A ) _lowercase = model(__A ,__A ) _lowercase = scheduler.step(__A ,__A ,__A ,generator=__A ) _lowercase = output.prev_sample _lowercase = torch.sum(torch.abs(__A ) ) _lowercase = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
67
"""simple docstring""" a : str = range(2, 20 + 1) a : Optional[Any] = [10**k for k in range(ks[-1] + 1)] a : dict[int, dict[int, list[list[int]]]] = {} def lowercase__(A , A , A , A ) ->Any: """simple docstring""" lowercase__ : str= sum(a_i[j] for j in range(A , len(A ) ) ) lowercase__ : int= sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) lowercase__, lowercase__ : Optional[Any]= 0, 0 lowercase__ : Any= n - i lowercase__ : Union[str, Any]= memo.get(A ) if sub_memo is not None: lowercase__ : List[str]= sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over lowercase__ : List[str]= -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase__ : Any= _k break if max_jump >= 0: lowercase__, lowercase__, lowercase__ : str= jumps[max_jump] # since the difference between jumps is cached, add c lowercase__ : List[Any]= diff + c for j in range(min(A , len(A ) ) ): lowercase__, lowercase__ : Union[str, Any]= divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: lowercase__ : Any= [] else: lowercase__ : List[str]= {c: []} lowercase__ : Union[str, Any]= sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase__, lowercase__ : Optional[int]= next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase__, lowercase__ : str= compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped lowercase__ : Optional[Any]= sub_memo[c] # keep jumps sorted by # of terms skipped lowercase__ : Dict= 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowercase__(A , A , A , A ) ->Optional[Any]: """simple docstring""" if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase__ : int= i lowercase__, lowercase__, lowercase__ : Union[str, Any]= 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase__ : Tuple= ds_c + ds_b diff += addend lowercase__ : List[Any]= 0 for j in range(A ): lowercase__ : int= a_i[j] + addend lowercase__, lowercase__ : Any= divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowercase__(A , A , A ) ->Any: """simple docstring""" for j in range(A , len(A ) ): lowercase__ : List[str]= digits[j] + addend if s >= 10: lowercase__, lowercase__ : str= divmod(A , 10 ) lowercase__ : Optional[int]= addend // 10 + quotient else: lowercase__ : int= s lowercase__ : Union[str, Any]= addend // 10 if addend == 0: break while addend > 0: lowercase__, lowercase__ : str= divmod(A , 10 ) digits.append(A ) def lowercase__(A = 10**15 ) ->int: """simple docstring""" lowercase__ : Optional[int]= [1] lowercase__ : Dict= 1 lowercase__ : List[Any]= 0 while True: lowercase__, lowercase__ : List[str]= next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break lowercase__ : int= 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
218
0
from __future__ import annotations def __UpperCamelCase ( lowerCAmelCase__ : int | str ): __a : Any = str(lowerCAmelCase__ ) return n == n[::-1] def __UpperCamelCase ( lowerCAmelCase__ : int = 1_0_0_0_0_0_0 ): __a : Any = 0 for i in range(1 , lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
326
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ ='true' def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=8_2 , lowerCAmelCase__ : List[str]=1_6 ): set_seed(4_2 ) __a : Dict = RegressionModel() __a : str = deepcopy(lowerCAmelCase__ ) __a : List[Any] = RegressionDataset(length=lowerCAmelCase__ ) __a : Tuple = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) model.to(accelerator.device ) __a , __a : Any = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) return model, ddp_model, dataloader def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int=False ): __a : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __a : Any = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowerCAmelCase__ : Optional[int] ): __a : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs with accelerator.main_process_first(): __a : Any = dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __a : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : Dict ): if use_longest: return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1_6 ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): __a : Any = Accelerator(dispatch_batches=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) __a : List[str] = get_dataloader(lowerCAmelCase__ , not dispatch_batches ) __a : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowerCAmelCase__ ) __a , __a : Tuple = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ): __a : List[Any] = [] for batch in dataloader: __a , __a : Optional[int] = batch.values() with torch.no_grad(): __a : Dict = model(lowerCAmelCase__ ) __a , __a : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __a , __a : str = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase__ ) targs.append(lowerCAmelCase__ ) __a , __a : Tuple = torch.cat(lowerCAmelCase__ ), torch.cat(lowerCAmelCase__ ) return logits, targs def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : List[Any]=8_2 , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Any=1_6 ): __a , __a , __a : List[Any] = get_basic_setup(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a , __a : str = generate_predictions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert ( len(lowerCAmelCase__ ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase__ )}" def __UpperCamelCase ( lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False ): __a : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) __a , __a : Optional[int] = get_mrpc_setup(lowerCAmelCase__ , lowerCAmelCase__ ) # First do baseline __a , __a , __a : Any = setup['''no'''] model.to(lowerCAmelCase__ ) model.eval() for batch in dataloader: batch.to(lowerCAmelCase__ ) with torch.inference_mode(): __a : Union[str, Any] = model(**lowerCAmelCase__ ) __a : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCAmelCase__ , references=batch['''labels'''] ) __a : List[Any] = metric.compute() # Then do distributed __a , __a , __a : Any = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __a : Optional[int] = model(**lowerCAmelCase__ ) __a : Optional[Any] = outputs.logits.argmax(dim=-1 ) __a : Union[str, Any] = batch['''labels'''] __a , __a : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) __a : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def __UpperCamelCase ( ): __a : Optional[Any] = Accelerator(split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __a : List[Any] = Accelerator(split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(lowerCAmelCase__ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __a : Dict = Accelerator() test_torch_metrics(lowerCAmelCase__ , 5_1_2 ) accelerator.state._reset_state() def __UpperCamelCase ( lowerCAmelCase__ : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
326
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A: """simple docstring""" def __init__( self , _A , _A=13 , _A=30 , _A=2 , _A=3 , _A=True , _A=True , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=10 , _A=0.0_2 , _A=None , _A=2 , ): __A : str = parent __A : int = batch_size __A : Optional[Any] = image_size __A : str = patch_size __A : str = num_channels __A : int = is_training __A : Optional[int] = use_labels __A : Optional[int] = hidden_size __A : int = num_hidden_layers __A : Dict = num_attention_heads __A : int = intermediate_size __A : List[str] = hidden_act __A : Any = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : int = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = scope __A : Tuple = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A : int = (image_size // patch_size) ** 2 __A : Optional[Any] = num_patches + 1 def UpperCAmelCase_ ( self ): __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : str = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _A , _A , _A ): __A : List[str] = ViTModel(config=a_ ) model.to(a_ ) model.eval() __A : Any = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A ): __A : Union[str, Any] = ViTForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() __A : Union[str, Any] = model(a_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A : List[Any] = 1 __A : int = ViTForMaskedImageModeling(a_ ) model.to(a_ ) model.eval() __A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _A , _A , _A ): __A : Any = self.type_sequence_label_size __A : List[Any] = ViTForImageClassification(a_ ) model.to(a_ ) model.eval() __A : str = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A : List[str] = 1 __A : str = ViTForImageClassification(a_ ) model.to(a_ ) model.eval() __A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : str = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.prepare_config_and_inputs() ( __A ) : str = config_and_inputs __A : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A( _A , _A , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase : Optional[int] = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Tuple = True UpperCamelCase : Any = False UpperCamelCase : Dict = False UpperCamelCase : Union[str, Any] = False def UpperCAmelCase_ ( self ): __A : str = ViTModelTester(self ) __A : Dict = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): __A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Any = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = model_class(a_ ) __A : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Any = [*signature.parameters.keys()] __A : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def UpperCAmelCase_ ( self ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCAmelCase_ ( self ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def UpperCAmelCase_ ( self ): __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCAmelCase_ ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Union[str, Any] = ViTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __A : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ): __A : int = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a_ ) __A : Tuple = self.default_image_processor __A : List[str] = prepare_img() __A : List[str] = image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): __A : int = model(**a_ ) # verify the logits __A : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a_ ) __A : Any = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __A : Optional[Any] = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a_ ) __A : int = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) __A : Union[str, Any] = prepare_img() __A : List[Any] = image_processor(images=a_ , return_tensors='pt' ) __A : List[Any] = inputs.pixel_values.to(a_ ) # forward pass with torch.no_grad(): __A : Tuple = model(a_ , interpolate_pos_encoding=a_ ) # verify the logits __A : Optional[int] = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a_ ) __A : List[Any] = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ): __A : Dict = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) __A : Union[str, Any] = self.default_image_processor __A : Tuple = prepare_img() __A : Any = image_processor(images=a_ , return_tensors='pt' ) __A : Optional[Any] = inputs.pixel_values.to(a_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __A : Dict = model(a_ )
239
'''simple docstring''' def __A ( a_ : list[list[float]] ): lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(a_ ): if len(a_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a_ ) ) return data_lists def __A ( a_ : list[list[float]] ,a_ : list[int] ): lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(a_ ,a_ ): lowerCAmelCase : Optional[Any] = min(a_ ) lowerCAmelCase : List[str] = max(a_ ) lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase : List[Any] = f'''Invalid weight of {weight:f} provided''' raise ValueError(a_ ) score_lists.append(a_ ) return score_lists def __A ( a_ : list[list[float]] ): lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a_ ): lowerCAmelCase : Optional[Any] = final_scores[j] + ele return final_scores def __A ( a_ : list[list[float]] ,a_ : list[int] ): lowerCAmelCase : Union[str, Any] = get_data(a_ ) lowerCAmelCase : List[Any] = calculate_each_score(a_ ,a_ ) lowerCAmelCase : Optional[Any] = generate_final_scores(a_ ) # append scores to source data for i, ele in enumerate(a_ ): source_data[i].append(a_ ) return source_data
525
0
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = 'Hello world! cécé herlolip' __UpperCAmelCase = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=__UpperCamelCase , large=__UpperCamelCase , share_emb=__UpperCamelCase , use_bert_emb=__UpperCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ : Optional[Any] = torch.load(__UpperCamelCase , lambda __UpperCamelCase , __UpperCamelCase : storage ) UpperCAmelCase__ : int = AbsSummarizer(__UpperCamelCase , torch.device("""cpu""" ) , __UpperCamelCase ) original.eval() UpperCAmelCase__ : Dict = BertAbsSummarizer(__UpperCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ : List[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__UpperCamelCase )) ) UpperCAmelCase__ : Tuple = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__UpperCamelCase )) ) UpperCAmelCase__ : str = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ : Tuple = encoder_input_ids UpperCAmelCase__ : Optional[int] = decoder_input_ids UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = None UpperCAmelCase__ : int = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ : Any = original(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )[0] UpperCAmelCase__ : Tuple = original.generator(__UpperCamelCase ) UpperCAmelCase__ : Tuple = new_model( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )[0] UpperCAmelCase__ : Optional[Any] = new_model.generator(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__UpperCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) __UpperCAmelCase = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
194
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata __UpperCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class __lowercase ( tr.AbstractTransform ): def __init__( self : List[str] ,A : str = " " ): '''simple docstring''' UpperCAmelCase__ : str = sentence_delimiter def __lowercase ( self : Union[str, Any] ,A : str ): '''simple docstring''' return list(A ) def __lowercase ( self : int ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = [] for sent_idx, sentence in enumerate(A ): chars.extend(self.process_string(A ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(A ) - 1: chars.append(self.sentence_delimiter ) return chars __UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __UpperCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' __UpperCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __lowercase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/jitsi/jiwer/"""] ,reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] ,) def __lowercase ( self : Union[str, Any] ,A : Optional[Any] ,A : Tuple ,A : str=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( A ,A ,truth_transform=A ,hypothesis_transform=A ,)["wer"] UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Any = 0 for prediction, reference in zip(A ,A ): UpperCAmelCase__ : List[str] = jiwer.compute_measures( A ,A ,truth_transform=A ,hypothesis_transform=A ,) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
194
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def UpperCamelCase ( _a ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def UpperCamelCase ( _a , _a , _a ) -> np.ndarray: '''simple docstring''' lowercase_ :int = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(_a , _a ) # Predict target for test data lowercase_ :Tuple = xgb.predict(_a ) lowercase_ :List[str] = predictions.reshape(len(_a ) , 1 ) return predictions def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :Union[str, Any] = fetch_california_housing() lowercase_ , lowercase_ :int = data_handling(_a ) lowercase_ , lowercase_ , lowercase_ , lowercase_ :int = train_test_split( _a , _a , test_size=0.25 , random_state=1 ) lowercase_ :Union[str, Any] = xgboost(_a , _a , _a ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(_a , _a )}" ) print(f"Mean Square Error : {mean_squared_error(_a , _a )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
257
from typing import Any import numpy as np def UpperCamelCase ( _a ) -> bool: '''simple docstring''' return np.array_equal(_a , matrix.conjugate().T ) def UpperCamelCase ( _a , _a ) -> Any: '''simple docstring''' lowercase_ :str = v.conjugate().T lowercase_ :int = v_star.dot(_a ) assert isinstance(_a , np.ndarray ) return (v_star_dot.dot(_a )) / (v_star.dot(_a )) def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :str = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase_ :Optional[int] = np.array([[1], [2], [3]] ) assert is_hermitian(_a ), f"{a} is not hermitian." print(rayleigh_quotient(_a , _a ) ) lowercase_ :Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_a ), f"{a} is not hermitian." assert rayleigh_quotient(_a , _a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
257
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = (EulerDiscreteScheduler,) _lowercase : List[Any] = 1_0 def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCAmelCase = sample.to(_lowercase ) for t in scheduler.timesteps: _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase , use_karras_sigmas=_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCAmelCase = sample.to(_lowercase ) for t in scheduler.timesteps: _lowerCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = model(_lowercase , _lowercase ) _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
162
'''simple docstring''' import numpy as np from transformers import Pipeline def A (__lowerCamelCase :Any ): _lowerCAmelCase = np.max(__lowerCamelCase , axis=-1 , keepdims=__lowerCamelCase ) _lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCamelCase ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "second_text" in kwargs: _lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _lowercase ( self , _lowercase , _lowercase=None ): """simple docstring""" return self.tokenizer(_lowercase , text_pair=_lowercase , return_tensors=self.framework ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.model(**_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.logits[0].numpy() _lowerCAmelCase = softmax(_lowercase ) _lowerCAmelCase = np.argmax(_lowercase ) _lowerCAmelCase = self.model.config.idalabel[best_class] _lowerCAmelCase = probabilities[best_class].item() _lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
162
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
205
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow def A_( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('google/mt5-small' ) SCREAMING_SNAKE_CASE_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).loss SCREAMING_SNAKE_CASE_ = -tf.math.reduce_mean(SCREAMING_SNAKE_CASE ).numpy() SCREAMING_SNAKE_CASE_ = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
205
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE__ ( *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowerCAmelCase_ : int = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : Any = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) self.assertGreater(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { 'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ ), 'box': {'xmin': ANY(SCREAMING_SNAKE_CASE_ ), 'ymin': ANY(SCREAMING_SNAKE_CASE_ ), 'xmax': ANY(SCREAMING_SNAKE_CASE_ ), 'ymax': ANY(SCREAMING_SNAKE_CASE_ )}, } for i in range(SCREAMING_SNAKE_CASE_ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): pass @require_torch def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Dict = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowerCAmelCase_ : Union[str, Any] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] , ) lowerCAmelCase_ : int = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : str = pipeline('zero-shot-object-detection' ) lowerCAmelCase_ : Dict = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ] , ) lowerCAmelCase_ : Optional[int] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Tuple = 0.2 lowerCAmelCase_ : Any = pipeline('zero-shot-object-detection' ) lowerCAmelCase_ : str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Any = pipeline('zero-shot-object-detection' ) lowerCAmelCase_ : int = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, ] , )
317
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : Optional[Any] = get_logger(__name__) lowercase__ : Tuple = Path(__file__).parent / """model_card_template.md""" lowercase__ : Optional[Any] = uuida().hex lowercase__ : Any = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase__ : Tuple = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase__ : Dict = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def UpperCamelCase_ ( lowerCAmelCase__ : Union[Dict, str, None] = None ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[int] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + user_agent return ua def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None ) -> Union[str, Any]: """simple docstring""" if token is None: lowerCAmelCase_ : Any = HfFolder.get_token() if organization is None: lowerCAmelCase_ : Union[str, Any] = whoami(lowerCAmelCase__ )['name'] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(lowerCAmelCase__ , 'local_rank' ) and args.local_rank not in [-1, 0]: return lowerCAmelCase_ : List[str] = args.hub_token if hasattr(lowerCAmelCase__ , 'hub_token' ) else None lowerCAmelCase_ : List[Any] = get_full_repo_name(lowerCAmelCase__ , token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCAmelCase__ , model_name=lowerCAmelCase__ , repo_name=lowerCAmelCase__ , dataset_name=args.dataset_name if hasattr(lowerCAmelCase__ , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCAmelCase__ , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCAmelCase__ , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCAmelCase__ , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCAmelCase__ , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCAmelCase__ , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCAmelCase__ , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(lowerCAmelCase__ , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCAmelCase__ , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) lowerCAmelCase_ : Tuple = os.path.join(args.output_dir , 'README.md' ) model_card.save(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] = None ) -> Tuple: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash lowerCAmelCase_ : Tuple = str(Path(lowerCAmelCase__ ).as_posix() ) lowerCAmelCase_ : Any = re.search(R'snapshots/([^/]+)/' , lowerCAmelCase__ ) if search is None: return None lowerCAmelCase_ : Tuple = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCAmelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : int = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase__ : Optional[int] = os.path.join(hf_cache_home, """diffusers""") def UpperCamelCase_ ( lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None ) -> None: """simple docstring""" if new_cache_dir is None: lowerCAmelCase_ : Any = DIFFUSERS_CACHE if old_cache_dir is None: lowerCAmelCase_ : Optional[int] = old_diffusers_cache lowerCAmelCase_ : Optional[int] = Path(lowerCAmelCase__ ).expanduser() lowerCAmelCase_ : Dict = Path(lowerCAmelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCAmelCase_ : List[str] = new_cache_dir / old_blob_path.relative_to(lowerCAmelCase__ ) new_blob_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.replace(lowerCAmelCase__ , lowerCAmelCase__ ) try: os.symlink(lowerCAmelCase__ , lowerCAmelCase__ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Any = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase__ : int = 0 else: with open(cache_version_file) as f: try: lowercase__ : int = int(f.read()) except ValueError: lowercase__ : Any = 0 if cache_version < 1: lowercase__ : int = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase__ : int = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' """the directory exists and can be written to.""" ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> str: """simple docstring""" if variant is not None: lowerCAmelCase_ : Any = weights_name.split('.' ) lowerCAmelCase_ : List[Any] = splits[:-1] + [variant] + splits[-1:] lowerCAmelCase_ : Any = '.'.join(lowerCAmelCase__ ) return weights_name def UpperCamelCase_ ( lowerCAmelCase__ : List[str] , *, lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=None , ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[int] = str(lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(lowerCAmelCase__ ): if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ): # Load from a PyTorch checkpoint lowerCAmelCase_ : Dict = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ): lowerCAmelCase_ : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCAmelCase__ ).base_version ) >= version.parse('0.20.0' ) ): try: lowerCAmelCase_ : Dict = hf_hub_download( lowerCAmelCase__ , filename=_add_variant(lowerCAmelCase__ , lowerCAmelCase__ ) , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , lowerCAmelCase__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )}' so that the correct variant file can be added." , lowerCAmelCase__ , ) try: # 2. Load model file as usual lowerCAmelCase_ : Optional[Any] = hf_hub_download( lowerCAmelCase__ , filename=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " 'this model name. Check the model page at ' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
317
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCAmelCase__ :Union[str, Any] = logging.get_logger(__name__) @dataclass class __a : _a : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) _a : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _a : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _a : bool = field( default=UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.task_name.lower() class __a ( UpperCAmelCase ): _a : Dict = 'train' _a : Optional[Any] = 'dev' _a : Any = 'test' class __a ( UpperCAmelCase ): _a : GlueDataTrainingArguments _a : str _a : List[InputFeatures] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = Split.train , _SCREAMING_SNAKE_CASE = None , ) -> Dict: """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = args _UpperCAmelCase = glue_processors[args.task_name]() _UpperCAmelCase = glue_output_modes[args.task_name] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _UpperCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file _UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _UpperCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase = cached_features_file + '.lock' with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: _UpperCAmelCase = time.time() _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: _UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _UpperCAmelCase = self.processor.get_test_examples(args.data_dir ) else: _UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _UpperCAmelCase = examples[:limit_length] _UpperCAmelCase = glue_convert_examples_to_features( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_length=args.max_seq_length , label_list=_SCREAMING_SNAKE_CASE , output_mode=self.output_mode , ) _UpperCAmelCase = time.time() torch.save(self.features , _SCREAMING_SNAKE_CASE ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> int: """simple docstring""" return len(self.features ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return self.label_list
618
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :Any = logging.get_logger(__name__) lowerCAmelCase__ :Union[str, Any] = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : Any = 'xmod' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=("en_XX",) , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout _UpperCAmelCase = pre_norm _UpperCAmelCase = adapter_reduction_factor _UpperCAmelCase = adapter_layer_norm _UpperCAmelCase = adapter_reuse_layer_norm _UpperCAmelCase = ln_before_adapter _UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = default_language class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
618
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' super().__init__(features=UpperCamelCase__ ) lowerCamelCase_ = torch_tensor_kwargs import torch # noqa import torch at initialization def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and column: if all( isinstance(UpperCamelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase__ ) return column def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' import torch if isinstance(UpperCamelCase__ , (str, bytes, type(UpperCamelCase__ )) ): return value elif isinstance(UpperCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCamelCase_ = {} if isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCamelCase_ = {'''dtype''': torch.intaa} elif isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCamelCase_ = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase__ , PIL.Image.Image ): lowerCamelCase_ = np.asarray(UpperCamelCase__ ) return torch.tensor(UpperCamelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase__ , '''__array__''' ) and not isinstance(UpperCamelCase__ , torch.Tensor ): lowerCamelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase__ , map_list=UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Mapping: '''simple docstring''' lowerCamelCase_ = self.numpy_arrow_extractor().extract_row(UpperCamelCase__ ) lowerCamelCase_ = self.python_features_decoder.decode_row(UpperCamelCase__ ) return self.recursive_tensorize(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> "torch.Tensor": '''simple docstring''' lowerCamelCase_ = self.numpy_arrow_extractor().extract_column(UpperCamelCase__ ) lowerCamelCase_ = self.python_features_decoder.decode_column(UpperCamelCase__ , pa_table.column_names[0] ) lowerCamelCase_ = self.recursive_tensorize(UpperCamelCase__ ) lowerCamelCase_ = self._consolidate(UpperCamelCase__ ) return column def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Mapping: '''simple docstring''' lowerCamelCase_ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase__ ) lowerCamelCase_ = self.python_features_decoder.decode_batch(UpperCamelCase__ ) lowerCamelCase_ = self.recursive_tensorize(UpperCamelCase__ ) for column_name in batch: lowerCamelCase_ = self._consolidate(batch[column_name] ) return batch
66
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Tuple = FlaxAutoencoderKL @property def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.uniform(UpperCamelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict
66
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCAmelCase : Optional[int] = object() # For specifying empty leaf dict `{}` __lowerCAmelCase : List[str] = object() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: __lowercase : List[Any] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): __lowercase : Union[str, Any] = [x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[str]: def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def UpperCAmelCase_ ( ) -> List[Any]: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __A )), (("transformer", "wte", "embedding"), P('''mp''' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: __lowercase : Tuple = _get_partition_rules() __lowercase : Tuple = _replacement_rules(__A ) __lowercase : Optional[Any] = {k: _unmatched for k in flatten_dict(__A )} __lowercase : Optional[Any] = {k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
509
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['DeiTFeatureExtractor'] __lowerCAmelCase = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
466
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase__( snake_case_ ): def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__() __lowercase = nn.ModuleList(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase , self.nets ) ): __lowercase , __lowercase = controlnet( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # merge samples if i == 0: __lowercase , __lowercase = down_samples, mid_sample else: __lowercase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__UpperCAmelCase , __UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , ): """simple docstring""" __lowercase = 0 __lowercase = save_directory for controlnet in self.nets: controlnet.save_pretrained( __UpperCAmelCase , is_main_process=__UpperCAmelCase , save_function=__UpperCAmelCase , safe_serialization=__UpperCAmelCase , variant=__UpperCAmelCase , ) idx += 1 __lowercase = model_path_to_save + F'''_{idx}''' @classmethod def __magic_name__ ( cls , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" __lowercase = 0 __lowercase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowercase = pretrained_model_path while os.path.isdir(__UpperCAmelCase ): __lowercase = ControlNetModel.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) controlnets.append(__UpperCAmelCase ) idx += 1 __lowercase = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(__UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(__UpperCAmelCase ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(__UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(__UpperCAmelCase )
339
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def lowercase__ ( __UpperCamelCase : Optional[int] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowercase = k.replace(__UpperCamelCase , __UpperCamelCase ) if k.startswith("""encoder""" ): __lowercase = k.replace(""".attn""" , """.self_attn""" ) __lowercase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowercase = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __lowercase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowercase = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __lowercase = k.replace("""norm3""" , """final_layer_norm""" ) return k def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' __lowercase = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __lowercase = sd.pop(__UpperCamelCase ) __lowercase = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __lowercase = v snake_case : int = ['START'] @torch.no_grad() def lowercase__ ( __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): '''simple docstring''' __lowercase = torch.load(__UpperCamelCase , map_location="""cpu""" ) __lowercase = model["""model"""] __lowercase = BlenderbotConfig.from_json_file(__UpperCamelCase ) __lowercase = BlenderbotForConditionalGeneration(__UpperCamelCase ) __lowercase = m.model.state_dict().keys() __lowercase = [] __lowercase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowercase = rename_state_dict_key(__UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowercase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__UpperCamelCase ) m.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) m.half() m.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) snake_case : Dict = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
339
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Tuple = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : List[str] = 'convbert' def __init__( self : List[str] , snake_case : Tuple=30522 , snake_case : Any=768 , snake_case : Dict=12 , snake_case : Union[str, Any]=12 , snake_case : List[str]=3072 , snake_case : Union[str, Any]="gelu" , snake_case : List[Any]=0.1 , snake_case : List[str]=0.1 , snake_case : Union[str, Any]=512 , snake_case : Dict=2 , snake_case : List[str]=0.02 , snake_case : List[Any]=1E-12 , snake_case : Tuple=1 , snake_case : Tuple=0 , snake_case : int=2 , snake_case : Optional[Any]=768 , snake_case : List[Any]=2 , snake_case : Optional[int]=9 , snake_case : List[str]=1 , snake_case : Tuple=None , **snake_case : Optional[int] , ): '''simple docstring''' super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = embedding_size SCREAMING_SNAKE_CASE : Tuple = head_ratio SCREAMING_SNAKE_CASE : List[str] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = num_groups SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
352
from datetime import datetime import requests def __a ( __lowerCAmelCase ) -> bytes: SCREAMING_SNAKE_CASE : int = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' SCREAMING_SNAKE_CASE : Any = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": _lowerCamelCase : List[Any] = input("""Enter Video/IGTV url: """).strip() _lowerCamelCase : int = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
352
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , **lowerCAmelCase: Tuple )-> str: _snake_case : List[str] = AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __a :Tuple = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' __a :List[Any] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' __a :List[str] = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' __a :List[str] = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' __a :str = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __A ( self : Dict ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=[1, 10, 100] , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=3.0 ): if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=UpperCAmelCase ) as executor: A_ = [] A_ = Counter() A_ = 0 A_ = defaultdict(UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): for candidate in candidates: A_ = candidate + "\n" + test_case A_ = (test_program, timeout, task_id, completion_id[task_id]) A_ = executor.submit(UpperCAmelCase , *UpperCAmelCase ) futures.append(UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCAmelCase ): A_ = future.result() results[result["task_id"]].append((result["completion_id"], result) ) A_ , A_ = [], [] for result in results.values(): result.sort() A_ = [r[1]["passed"] for r in result] total.append(len(UpperCAmelCase ) ) correct.append(sum(UpperCAmelCase ) ) A_ = np.array(UpperCAmelCase ) A_ = np.array(UpperCAmelCase ) A_ = k A_ = {f'''pass@{k}''': estimate_pass_at_k(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" def estimator(__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = itertools.repeat(__UpperCamelCase ,len(__UpperCamelCase ) ) else: assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = iter(__UpperCamelCase ) return np.array([estimator(int(__UpperCamelCase ) ,int(__UpperCamelCase ) ,__UpperCamelCase ) for n, c in zip(__UpperCamelCase ,__UpperCamelCase )] )
86
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> list[int]: _lowercase = str(snake_case__ ) _lowercase = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 11 ) -> list[int]: _lowercase = [] _lowercase = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): _lowercase = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
67
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowerCamelCase_ ( snake_case_ ): def __init__( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = params SCREAMING_SNAKE_CASE : List[str] = np.array(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Dict , lowerCAmelCase__ : Any ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ): """simple docstring""" return len(self.lengths ) def __lowercase ( self : int ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.params.max_model_input_size SCREAMING_SNAKE_CASE : str = self.lengths > max_len logger.info(F"""Splitting {sum(lowerCAmelCase__ )} too long sequences.""" ) def divide_chunks(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : int = [] if self.params.mlm: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: SCREAMING_SNAKE_CASE : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: SCREAMING_SNAKE_CASE : Optional[Any] = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: SCREAMING_SNAKE_CASE : List[Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = np.array(lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = len(self ) SCREAMING_SNAKE_CASE : Any = self.lengths > 11 SCREAMING_SNAKE_CASE : str = self.token_ids[indices] SCREAMING_SNAKE_CASE : Any = self.lengths[indices] SCREAMING_SNAKE_CASE : Dict = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: SCREAMING_SNAKE_CASE : Optional[Any] = self.params.special_tok_ids['''unk_token'''] SCREAMING_SNAKE_CASE : Union[str, Any] = len(self ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) SCREAMING_SNAKE_CASE : Optional[Any] = (unk_occs / self.lengths) < 0.5 SCREAMING_SNAKE_CASE : Union[str, Any] = self.token_ids[indices] SCREAMING_SNAKE_CASE : Dict = self.lengths[indices] SCREAMING_SNAKE_CASE : Optional[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowercase ( self : Dict ): """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowercase ( self : List[str] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [t[0] for t in batch] SCREAMING_SNAKE_CASE : Dict = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings SCREAMING_SNAKE_CASE : Tuple = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: SCREAMING_SNAKE_CASE : List[str] = self.params.special_tok_ids['''pad_token'''] else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.params.special_tok_ids['''unk_token'''] SCREAMING_SNAKE_CASE : List[str] = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(tk_ ) # (bs, max_seq_len_) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
464
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase ( A : Tuple , A : Optional[Any] , A : Dict , A : Any ): SCREAMING_SNAKE_CASE : List[str] = sorted(zip(A , A ) , key=lambda A : x[0] / x[1] , reverse=A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE : Union[str, Any] = list(accumulate(A ) ) SCREAMING_SNAKE_CASE : List[Any] = bisect(A , A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
464
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase = 1 , UpperCamelCase = 1000 ) -> int: """simple docstring""" __UpperCAmelCase : int = 1 __UpperCAmelCase : Tuple = 0 for divide_by_number in range(UpperCamelCase , digit + 1 ): __UpperCAmelCase : list[int] = [] __UpperCAmelCase : int = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCamelCase ): __UpperCAmelCase : Any = len(UpperCamelCase ) __UpperCAmelCase : Optional[int] = divide_by_number else: has_been_divided.append(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A = None A = logging.get_logger(__name__) A = """▁""" A = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } A = { """google/pegasus-xsum""": 512, } class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PegasusTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__( self : str , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : Tuple="<mask_2>" , UpperCamelCase_ : Any="<mask_1>" , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : str=103 , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" __UpperCAmelCase : Optional[int] = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_): raise TypeError( F"additional_special_tokens should be of type {type(UpperCamelCase_)}, but is" F" {type(UpperCamelCase_)}") __UpperCAmelCase : Any = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(UpperCamelCase_) , self.offset - 1) ] if len(set(UpperCamelCase_)) != len(UpperCamelCase_): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.") __UpperCAmelCase : str = additional_special_tokens_extended else: __UpperCAmelCase : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset)] super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , pad_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , mask_token_sent=UpperCamelCase_ , offset=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : List[str] = False if not self.vocab_file else True def a_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : int = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}") return [1 if x in all_special_ids else 0 for x in seq] def a_ ( self : Union[str, Any] , UpperCamelCase_ : List , UpperCamelCase_ : Optional[List] = None , UpperCamelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCamelCase_) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase_) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def a_ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=None): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a_ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_): copyfile(self.vocab_file , UpperCamelCase_) return (out_vocab_file,)
77
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCAmelCase_ ( __lowercase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__A , __A ) def UpperCAmelCase_ ( __lowercase : Tuple ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(__A , __A , bias=__A ) _UpperCAmelCase = emb.weight.data return lin_layer def UpperCAmelCase_ ( __lowercase : str , __lowercase : Any="facebook/mbart-large-en-ro" , __lowercase : Dict=False , __lowercase : List[Any]=False ) -> int: '''simple docstring''' _UpperCAmelCase = torch.load(__A , map_location="cpu" )["""model"""] remove_ignore_keys_(__A ) _UpperCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] _UpperCAmelCase = MBartConfig.from_pretrained(__A , vocab_size=__A ) if mbart_aa and finetuned: _UpperCAmelCase = """relu""" _UpperCAmelCase = state_dict["""decoder.embed_tokens.weight"""] _UpperCAmelCase = MBartForConditionalGeneration(__A ) model.model.load_state_dict(__A ) if finetuned: _UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') __SCREAMING_SNAKE_CASE :Dict = parser.parse_args() __SCREAMING_SNAKE_CASE :Any = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
715
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A_ ( nn.Module ): def __init__( self : str , snake_case_ : nn.Module , snake_case_ : int ): super().__init__() _UpperCAmelCase = module _UpperCAmelCase = nn.Sequential( nn.Linear(module.in_features , snake_case_ , bias=snake_case_ ) , nn.Linear(snake_case_ , module.out_features , bias=snake_case_ ) , ) _UpperCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase ( self : int , snake_case_ : List[str] , *snake_case_ : Dict , **snake_case_ : Dict ): return self.module(snake_case_ , *snake_case_ , **snake_case_ ) + self.adapter(snake_case_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowerCamelCase : Any = """bigscience/bloom-1b7""" # Constant values _lowerCamelCase : Optional[int] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 _lowerCamelCase : str = """Hello my name is""" _lowerCamelCase : List[Any] = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) _lowerCamelCase : List[Any] = 10 def lowercase ( self : Dict ): # Models and tokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : str ): super().setUp() # Models and tokenizer _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) def lowercase ( self : Any ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase ( self : Tuple ): _UpperCAmelCase = self.model_abit.config self.assertTrue(hasattr(snake_case_ , "quantization_config" ) ) _UpperCAmelCase = config.to_dict() _UpperCAmelCase = config.to_diff_dict() _UpperCAmelCase = config.to_json_string() def lowercase ( self : Optional[Any] ): from bitsandbytes.nn import Paramsabit _UpperCAmelCase = self.model_fpaa.get_memory_footprint() _UpperCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _UpperCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase ( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _UpperCAmelCase = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def lowercase ( self : Tuple ): _UpperCAmelCase = BitsAndBytesConfig() _UpperCAmelCase = True _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _UpperCAmelCase = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def lowercase ( self : List[str] ): with self.assertRaises(snake_case_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase = BitsAndBytesConfig() with self.assertRaises(snake_case_ ): _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , load_in_abit=snake_case_ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def lowercase ( self : List[Any] ): with self.assertRaises(snake_case_ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(snake_case_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _UpperCAmelCase = self.model_fpaa.to(torch.floataa ) _UpperCAmelCase = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error _UpperCAmelCase = self.model_fpaa.to("cpu" ) # Check this does not throw an error _UpperCAmelCase = self.model_fpaa.half() # Check this does not throw an error _UpperCAmelCase = self.model_fpaa.float() def lowercase ( self : str ): _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=snake_case_ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ ( unittest.TestCase ): @classmethod def lowercase ( cls : List[Any] ): _UpperCAmelCase = "t5-small" _UpperCAmelCase = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense _UpperCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) _UpperCAmelCase = "Translate in German: Hello, my dog is cute" def lowercase ( self : Dict ): gc.collect() torch.cuda.empty_cache() def lowercase ( self : Any ): from transformers import TaForConditionalGeneration _UpperCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules _UpperCAmelCase = None # test with `t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) # test with `flan-t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) _UpperCAmelCase = modules def lowercase ( self : Any ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) # test with `flan-t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : List[str] ): super().setUp() # model_name _UpperCAmelCase = "bigscience/bloom-560m" _UpperCAmelCase = "t5-small" # Different types of model _UpperCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # Sequence classification model _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # CausalLM model _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # Seq2seq model _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case_ , device_map="auto" ) def lowercase ( self : Dict ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase ( self : Tuple ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Union[str, Any] ): super().setUp() def lowercase ( self : Optional[int] ): del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase ( self : Optional[int] ): _UpperCAmelCase = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _UpperCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A_ ( lowerCAmelCase_ ): def lowercase ( self : Tuple ): super().setUp() def lowercase ( self : List[Any] ): _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch _UpperCAmelCase = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Dict ): _UpperCAmelCase = "facebook/opt-350m" super().setUp() def lowercase ( self : Dict ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _UpperCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _UpperCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case_ ) ): _UpperCAmelCase = LoRALayer(module.q_proj , rank=1_6 ) _UpperCAmelCase = LoRALayer(module.k_proj , rank=1_6 ) _UpperCAmelCase = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch _UpperCAmelCase = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _UpperCAmelCase = model.forward(**snake_case_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case_ , snake_case_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : int = """gpt2-xl""" _lowerCamelCase : str = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
119
0
def __lowerCAmelCase ( _UpperCamelCase ) -> int: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __lowerCAmelCase ( _UpperCamelCase ) -> bool: '''simple docstring''' lowerCamelCase__: Optional[Any] = 0 lowerCamelCase__: Tuple = number while duplicate > 0: lowerCamelCase__ , lowerCamelCase__: int = divmod(_UpperCamelCase , 10 ) fact_sum += factorial(_UpperCamelCase ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') _lowercase = int(input('Enter number: ').strip()) print( F"""{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.""" )
306
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> Any: '''simple docstring''' if attention_mask is None: lowerCamelCase__: List[str] = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase__ : __lowerCamelCase = OPTConfig __lowerCamelCase = {} __lowerCamelCase = """gelu""" def __init__( self : Union[str, Any] , __a : List[Any] , __a : Dict=13 , __a : Dict=7 , __a : Optional[Any]=True , __a : Any=False , __a : Tuple=99 , __a : Optional[int]=16 , __a : Any=2 , __a : Optional[Any]=4 , __a : Union[str, Any]=4 , __a : Tuple="gelu" , __a : Optional[int]=0.1 , __a : int=0.1 , __a : List[Any]=20 , __a : Tuple=2 , __a : str=1 , __a : str=0 , __a : List[Any]=16 , __a : Optional[Any]=16 , ): '''simple docstring''' lowerCamelCase__: List[str] = parent lowerCamelCase__: List[str] = batch_size lowerCamelCase__: Dict = seq_length lowerCamelCase__: List[str] = is_training lowerCamelCase__: Dict = use_labels lowerCamelCase__: Union[str, Any] = vocab_size lowerCamelCase__: Union[str, Any] = hidden_size lowerCamelCase__: Any = num_hidden_layers lowerCamelCase__: Union[str, Any] = num_attention_heads lowerCamelCase__: Tuple = intermediate_size lowerCamelCase__: Optional[int] = hidden_act lowerCamelCase__: Union[str, Any] = hidden_dropout_prob lowerCamelCase__: str = attention_probs_dropout_prob lowerCamelCase__: List[str] = max_position_embeddings lowerCamelCase__: Tuple = eos_token_id lowerCamelCase__: Any = pad_token_id lowerCamelCase__: str = bos_token_id lowerCamelCase__: Optional[int] = embed_dim lowerCamelCase__: Union[str, Any] = word_embed_proj_dim lowerCamelCase__: List[Any] = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__: Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__: Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__: Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) lowerCamelCase__: Optional[Any] = prepare_opt_inputs_dict(__a , __a ) return config, inputs_dict def lowerCamelCase_ ( self : str , __a : Optional[Any] , __a : Optional[int] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = TFOPTModel(config=__a ) lowerCamelCase__: Optional[Any] = inputs_dict["""input_ids"""] lowerCamelCase__: Dict = input_ids[:1, :] lowerCamelCase__: Any = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase__: Any = 1 # first forward pass lowerCamelCase__: str = model(__a , attention_mask=__a , use_cache=__a ) lowerCamelCase__ , lowerCamelCase__: Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__: Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__: str = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__: Any = model(__a , attention_mask=__a )[0] lowerCamelCase__: Any = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__: Optional[int] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__: List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) @require_tf class lowerCamelCase__ ( A__ , A__ , unittest.TestCase ): __lowerCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowerCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = 10 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: int = TFOPTModelTester(self ) lowerCamelCase__: Tuple = ConfigTester(self , config_class=__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__a : Optional[int] , __a : Dict ): if hasattr(__a , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase__: int = model_class(config=__a ) lowerCamelCase__: Tuple = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCamelCase__: Optional[int] = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__a ) lowerCamelCase__: str = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCamelCase__: List[str] = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase__: Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a ) # check that weights remain the same after resizing lowerCamelCase__: Optional[Any] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__: Any = False self.assertTrue(__a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a ) lowerCamelCase__: List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__: List[Any] = False self.assertTrue(__a ) def __lowerCAmelCase ( _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return tf.constant(_UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase__ ( unittest.TestCase ): __lowerCamelCase = 99 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: int = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase__: Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase__: Any = input_ids.shape[0] lowerCamelCase__: List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: int = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase__: List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCamelCase__: Optional[Any] = tf.not_equal(__a , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase__: str = model(input_ids=__a , attention_mask=__a ).last_hidden_state lowerCamelCase__: str = (1, 11, 512) self.assertEqual(output.shape , __a ) lowerCamelCase__: str = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-3 ) ) lowerCamelCase__: Optional[int] = tf.function(__a , jit_compile=__a ) lowerCamelCase__: List[Any] = xla_generate(__a , __a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] = """facebook/opt-350m""" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: Dict = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase__: Dict = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase__: Union[str, Any] = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase__: Union[str, Any] = tokenizer(__a , return_tensors="""tf""" , padding=__a , add_special_tokens=__a ) lowerCamelCase__: Union[str, Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase__: Dict = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) lowerCamelCase__: Any = tf.function(__a , jit_compile=__a ) lowerCamelCase__: List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase__ ( unittest.TestCase ): @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = """facebook/opt-125m""" lowerCamelCase__: Dict = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase__: Any = [] lowerCamelCase__: Optional[Any] = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: str = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCamelCase__: Dict = tokenizer(__a , return_tensors="""tf""" ).input_ids lowerCamelCase__: Any = model.generate(__a , max_length=10 ) lowerCamelCase__: Optional[int] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = """facebook/opt-350m""" lowerCamelCase__: Tuple = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: Any = TFOPTForCausalLM.from_pretrained(__a ) lowerCamelCase__: Tuple = """left""" # use different length sentences to test batching lowerCamelCase__: Tuple = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase__: List[Any] = tokenizer(__a , return_tensors="""tf""" , padding=__a ) lowerCamelCase__: Any = inputs["""input_ids"""] lowerCamelCase__: int = model.generate(input_ids=__a , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase__: Optional[int] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase__: Optional[Any] = model.generate(input_ids=__a ) lowerCamelCase__: int = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase__: Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase__: str = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) lowerCamelCase__: List[str] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) lowerCamelCase__: Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) lowerCamelCase__: Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) lowerCamelCase__: Tuple = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: Dict = """facebook/opt-350m""" lowerCamelCase__: Tuple = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase__: Dict = [] lowerCamelCase__: int = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: List[Any] = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCamelCase__: str = tokenizer(__a , return_tensors="""tf""" ).input_ids lowerCamelCase__: Optional[int] = model.generate(__a , max_length=10 ) lowerCamelCase__: Any = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
306
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = XLMTokenizer __snake_case = False def UpperCamelCase_ ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = "lower newer" _SCREAMING_SNAKE_CASE : Optional[int] = "lower newer" return input_text, output_text def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = XLMTokenizer(self.vocab_file , self.merges_file ) _SCREAMING_SNAKE_CASE : Dict = "lower" _SCREAMING_SNAKE_CASE : Optional[int] = ["low", "er</w>"] _SCREAMING_SNAKE_CASE : int = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = tokens + ["<unk>"] _SCREAMING_SNAKE_CASE : Optional[int] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
712
from __future__ import annotations import requests def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(__lowerCamelCase ).json() def lowerCamelCase__ (__lowerCamelCase = 10 ): _SCREAMING_SNAKE_CASE : List[Any] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _SCREAMING_SNAKE_CASE : Optional[Any] = requests.get(__lowerCamelCase ).json()[:max_stories] return [get_hackernews_story(__lowerCamelCase ) for story_id in story_ids] def lowerCamelCase__ (__lowerCamelCase = 10 ): _SCREAMING_SNAKE_CASE : List[str] = hackernews_top_stories(__lowerCamelCase ) return "\n".join("* [{title}]({url})".format(**__lowerCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
381
0
from ..utils import DummyObject, requires_backends class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) def UpperCAmelCase__ (*UpperCamelCase_ ,**UpperCamelCase_ ): """simple docstring""" requires_backends(_UpperCamelCase ,['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['torch'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''torch'''] )
550
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , a : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = hidden_states.shape lowercase_ : Tuple = jax.image.resize( a , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) lowercase_ : List[Any] = self.conv(a ) return hidden_states class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , a : int ): '''simple docstring''' lowercase_ : Any = self.conv(a ) return hidden_states class _UpperCAmelCase ( nn.Module ): __lowerCamelCase: int __lowerCamelCase: int = None __lowerCamelCase: float = 0.0 __lowerCamelCase: bool = None __lowerCamelCase: jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.in_channels if self.out_channels is None else self.out_channels lowercase_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ : Tuple = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ : List[str] = nn.Dense(a , dtype=self.dtype ) lowercase_ : Optional[int] = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowercase_ : Any = nn.Dropout(self.dropout_prob ) lowercase_ : Dict = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase_ : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase_ : Optional[Any] = None if use_nin_shortcut: lowercase_ : Union[str, Any] = nn.Conv( a , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : List[str] , a : str , a : Dict , a : List[str]=True ): '''simple docstring''' lowercase_ : Dict = hidden_states lowercase_ : int = self.norma(a ) lowercase_ : List[Any] = nn.swish(a ) lowercase_ : Dict = self.conva(a ) lowercase_ : Optional[int] = self.time_emb_proj(nn.swish(a ) ) lowercase_ : Tuple = jnp.expand_dims(jnp.expand_dims(a , 1 ) , 1 ) lowercase_ : List[str] = hidden_states + temb lowercase_ : Optional[Any] = self.norma(a ) lowercase_ : Any = nn.swish(a ) lowercase_ : List[str] = self.dropout(a , a ) lowercase_ : int = self.conva(a ) if self.conv_shortcut is not None: lowercase_ : List[str] = self.conv_shortcut(a ) return hidden_states + residual
620
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCamelCase__ = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' UpperCamelCase__ = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' UpperCamelCase__ = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCAmelCase__ ( _A , _A ): """simple docstring""" return float((preds == labels).mean() ) def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = simple_accuracy(_A , _A ) a_ = float(fa_score(y_true=_A , y_pred=_A ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = float(pearsonr(_A , _A )[0] ) a_ = float(spearmanr(_A , _A )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __magic_name__ ( self : List[Any] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __magic_name__ ( self : Any , lowercase__ : Dict , lowercase__ : Tuple ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase__ , lowercase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase__ , lowercase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase__ , lowercase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
143
import qiskit def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = qiskit.Aer.get_backend('''aer_simulator''' ) a_ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator a_ = qiskit.execute(_A , _A , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_A ) if __name__ == "__main__": UpperCamelCase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
143
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase = test_metrics @require_cpu def A__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def A__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def A__ ( self ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def A__ ( self ): """simple docstring""" print(f'Found {torch.cuda.device_count()} devices.' ) lowercase = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() )
359
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[str] = { 'nielsr/canine-s': 20_48, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase : int = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = 0XE_0_0_0 lowerCAmelCase : Tuple = 0XE_0_0_1 lowerCAmelCase : List[Any] = 0XE_0_0_2 lowerCAmelCase : int = 0XE_0_0_3 lowerCAmelCase : List[Any] = 0XE_0_0_4 # Maps special codepoints to human-readable names. lowerCAmelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2048 , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , model_max_length=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE_ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE_ : str = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE_ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE_ : int = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE_ : Optional[int] = len(self._special_codepoints ) @property def UpperCAmelCase ( self ): """simple docstring""" return self._unicode_vocab_size def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return list(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" try: return ord(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f"invalid id: {index}" ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: result += ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return result def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : int = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" return ()
511
0
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) A__ : str = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" A__ : List[Any] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" A__ : List[str] = max(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ), b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
498
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) A__ : str = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" A__ : List[Any] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" A__ : List[str] = max(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ), b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
498
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE__ : int =logging.get_logger(__name__) class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
434
"""simple docstring""" SCREAMING_SNAKE_CASE__ : int =6_5521 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : List[str] = 0 for plain_chr in plain_text: _lowerCamelCase : Dict = (a + ord(SCREAMING_SNAKE_CASE_ )) % MOD_ADLER _lowerCamelCase : Tuple = (b + a) % MOD_ADLER return (b << 16) | a
434
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _A (UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : Dict = model.config lowerCamelCase__ : List[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCamelCase__ : List[Any] = MBartConfig( is_decoder=UpperCamelCase , is_encoder_decoder=UpperCamelCase , add_cross_attention=UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase , add_final_layer_norm=UpperCamelCase , ) return encoder_config, decoder_config def _A (UpperCamelCase : Optional[int] ) ->Union[str, Any]: '''simple docstring''' if "encoder.model" in name: lowerCamelCase__ : int = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowerCamelCase__ : Dict = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowerCamelCase__ : int = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ : Tuple = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowerCamelCase__ : Any = """encoder.""" + name if "attn.proj" in name: lowerCamelCase__ : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowerCamelCase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowerCamelCase__ : str = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowerCamelCase__ : Dict = """encoder.layernorm.bias""" return name def _A (UpperCamelCase : Optional[Any] , UpperCamelCase : int ) ->Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: lowerCamelCase__ : int = key.split(""".""" ) lowerCamelCase__ : List[str] = int(key_split[3] ) lowerCamelCase__ : Optional[Any] = int(key_split[5] ) lowerCamelCase__ : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : Union[str, Any] = val[:dim, :] lowerCamelCase__ : Optional[int] = val[dim : dim * 2, :] lowerCamelCase__ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase__ : List[Any] = val[:dim] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2] lowerCamelCase__ : Dict = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCamelCase__ : List[str] = val return orig_state_dict def _A (UpperCamelCase : int , UpperCamelCase : List[Any]=None , UpperCamelCase : Dict=False ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Dict = DonutModel.from_pretrained(UpperCamelCase ).eval() # load HuggingFace model lowerCamelCase__ ,lowerCamelCase__ : List[str] = get_configs(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = DonutSwinModel(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = MBartForCausalLM(UpperCamelCase ) lowerCamelCase__ : Any = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() lowerCamelCase__ : List[Any] = original_model.state_dict() lowerCamelCase__ : List[Any] = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) # verify results on scanned document lowerCamelCase__ : str = load_dataset("""hf-internal-testing/example-documents""" ) lowerCamelCase__ : List[Any] = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowerCamelCase__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase , from_slow=UpperCamelCase ) lowerCamelCase__ : Tuple = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCamelCase__ : Optional[int] = DonutProcessor(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = processor(UpperCamelCase , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCamelCase__ : List[str] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCamelCase__ : Union[str, Any] = """When is the coffee break?""" lowerCamelCase__ : List[str] = task_prompt.replace("""{user_input}""" , UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCamelCase__ : str = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCamelCase__ : str = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCamelCase__ : Any = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCamelCase__ : List[str] = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCamelCase__ : int = """hello world""" else: raise ValueError("""Model name not supported""" ) lowerCamelCase__ : List[Any] = original_model.decoder.tokenizer(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors="""pt""" )[ """input_ids""" ] lowerCamelCase__ : Tuple = original_model.encoder.model.patch_embed(UpperCamelCase ) lowerCamelCase__ ,lowerCamelCase__ : str = model.encoder.embeddings(UpperCamelCase ) assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) # verify encoder hidden states lowerCamelCase__ : Any = original_model.encoder(UpperCamelCase ) lowerCamelCase__ : Optional[int] = model.encoder(UpperCamelCase ).last_hidden_state assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-2 ) # verify decoder hidden states lowerCamelCase__ : int = original_model(UpperCamelCase , UpperCamelCase , UpperCamelCase ).logits lowerCamelCase__ : Dict = model(UpperCamelCase , decoder_input_ids=UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) _lowercase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
96
def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' while b: lowerCamelCase__ ,lowerCamelCase__ : int = b, a % b return a def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase , a % b ) def _A () ->str: '''simple docstring''' print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
96
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
129
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __A : a__ : int a__ : TreeNode | None = None a__ : TreeNode | None = None SCREAMING_SNAKE_CASE_: Union[str, Any] =namedtuple('CoinsDistribResult', 'moves excess') def lowerCAmelCase_ ( snake_case_ : TreeNode | None ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(snake_case_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(snake_case_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(snake_case_ ) != count_coins(snake_case_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(snake_case_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(snake_case_ ) + abs(snake_case_ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(snake_case_ , snake_case_ ) return get_distrib(snake_case_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
78
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( snake_case ): if is_torch_version("<" , "2.0.0" ) or not hasattr(snake_case , "_dynamo" ): return False return isinstance(snake_case , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( snake_case , snake_case = True ): SCREAMING_SNAKE_CASE:Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE:List[Any] = is_compiled_module(snake_case ) if is_compiled: SCREAMING_SNAKE_CASE:Optional[Any] = model SCREAMING_SNAKE_CASE:Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:int = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE:Optional[Any] = getattr(snake_case , "forward" ) SCREAMING_SNAKE_CASE:Dict = model.__dict__.pop("_original_forward" , snake_case ) if original_forward is not None: while hasattr(snake_case , "__wrapped__" ): SCREAMING_SNAKE_CASE:Tuple = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE:int = forward if getattr(snake_case , "_converted_to_transformer_engine" , snake_case ): convert_model(snake_case , to_transformer_engine=snake_case ) if is_compiled: SCREAMING_SNAKE_CASE:Any = model SCREAMING_SNAKE_CASE:Union[str, Any] = compiled_model return model def A_ ( ): PartialState().wait_for_everyone() def A_ ( snake_case , snake_case ): if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case , snake_case ) elif PartialState().local_process_index == 0: torch.save(snake_case , snake_case ) @contextmanager def A_ ( **snake_case ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE:Optional[int] = str(snake_case ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( snake_case ): if not hasattr(snake_case , "__qualname__" ) and not hasattr(snake_case , "__name__" ): SCREAMING_SNAKE_CASE:Union[str, Any] = getattr(snake_case , "__class__" , snake_case ) if hasattr(snake_case , "__qualname__" ): return obj.__qualname__ if hasattr(snake_case , "__name__" ): return obj.__name__ return str(snake_case ) def A_ ( snake_case , snake_case ): for key, value in source.items(): if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:str = destination.setdefault(snake_case , {} ) merge_dicts(snake_case , snake_case ) else: SCREAMING_SNAKE_CASE:List[Any] = value return destination def A_ ( snake_case = None ): if port is None: SCREAMING_SNAKE_CASE:str = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
465
'''simple docstring''' def A_ ( snake_case = 100 ): SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Optional[int] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
465
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = tmp_path / """cache""" UpperCamelCase : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase : Tuple = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = tmp_path / """cache""" UpperCamelCase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCamelCase : str = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase : Optional[int] = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : int = tmp_path / """cache""" UpperCamelCase : Optional[int] = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} UpperCamelCase : Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase : int = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCamelCase : str = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} UpperCamelCase : Tuple = features.copy() UpperCamelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase : Optional[int] = tmp_path / """cache""" UpperCamelCase : List[Any] = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = tmp_path / """cache""" UpperCamelCase : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase : Dict = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = jsonl_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = [jsonl_path] UpperCamelCase : List[Any] = tmp_path / """cache""" UpperCamelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase : Optional[int] = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ): assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: UpperCamelCase : Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : int = tmp_path / """cache""" UpperCamelCase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase : Any = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = tmp_path / """cache""" UpperCamelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase : Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase : Optional[Any] = JsonDatasetReader({"""train""": jsonl_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if split: UpperCamelCase : List[Any] = {split: jsonl_path} else: UpperCamelCase : Tuple = """train""" UpperCamelCase : Union[str, Any] = {"""train""": jsonl_path, """test""": jsonl_path} UpperCamelCase : Optional[Any] = tmp_path / """cache""" UpperCamelCase : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase : Union[str, Any] = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): return json.load(SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): return [json.loads(SCREAMING_SNAKE_CASE ) for line in buffer] class lowercase__ : """simple docstring""" @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _a ( self , _A , _A , _A ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A , _A , lines=_A ).write() buffer.seek(0 ) UpperCamelCase : Optional[Any] = load_json_function(_A ) assert isinstance(_A , _A ) assert isinstance(exported_content[0] , _A ) assert len(_A ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _a ( self , _A , _A , _A , _A , _A ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A , _A , lines=_A , orient=_A ).write() buffer.seek(0 ) UpperCamelCase : str = load_json(_A ) assert isinstance(_A , _A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_A , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(_A ) == 1_0 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _a ( self , _A , _A , _A ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A , _A , lines=_A , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase : List[Any] = load_json_function(_A ) assert isinstance(_A , _A ) assert isinstance(exported_content[0] , _A ) assert len(_A ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _a ( self , _A , _A , _A , _A , _A ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A , _A , lines=_A , orient=_A , num_proc=2 ).write() buffer.seek(0 ) UpperCamelCase : Dict = load_json(_A ) assert isinstance(_A , _A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_A , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(_A ) == 1_0 def _a ( self , _A ): '''simple docstring''' with pytest.raises(_A ): with io.BytesIO() as buffer: JsonDatasetWriter(_A , _A , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _a ( self , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / f"""test.json.{extension}""" UpperCamelCase : Tuple = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_A , _A , compression=_A ).write() with fsspec.open(_A , """rb""" , compression="""infer""" ) as f: UpperCamelCase : Dict = f.read() with fsspec.open(_A , """rb""" , compression="""infer""" ) as f: UpperCamelCase : Tuple = f.read() assert exported_content == original_content
102
def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: List[str] = 0 UpperCAmelCase_: Tuple = len(lowerCAmelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None UpperCAmelCase_: str = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_: int = left UpperCAmelCase_: str = point elif point > right: UpperCAmelCase_: List[str] = right UpperCAmelCase_: Optional[int] = point else: if item < current_item: UpperCAmelCase_: Optional[Any] = point - 1 else: UpperCAmelCase_: Any = point + 1 return None def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Any , lowerCAmelCase__: Any ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Union[str, Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , point + 1 , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" if collection != sorted(lowerCAmelCase__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys a : Optional[Any] = 0 if debug == 1: a : int = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a : int = 67 a : Any = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
556
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ : str = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ : Optional[Any] = { """openbmb/cpm-ant-10b""": 10_24, } def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :List[str] = collections.OrderedDict() with open(snake_case, '''r''', encoding='''utf-8''' ) as reader: __magic_name__ :List[Any] = reader.readlines() for index, token in enumerate(snake_case ): __magic_name__ :List[Any] = token.rstrip('''\n''' ) __magic_name__ :List[Any] = index return vocab class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<unk>" , __lowerCAmelCase=2_0_0 ): """simple docstring""" __magic_name__ :Optional[int] = vocab __magic_name__ :Optional[Any] = unk_token __magic_name__ :List[Any] = max_input_chars_per_word def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] __magic_name__ :Optional[Any] = 0 __magic_name__ :str = [] while start < len(__lowerCAmelCase ): __magic_name__ :List[str] = len(__lowerCAmelCase ) __magic_name__ :List[Any] = None while start < end: __magic_name__ :Union[str, Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: __magic_name__ :Optional[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowerCAmelCase ) __magic_name__ :int = end return sub_tokens class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] a__ = False def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<d>" , __lowerCAmelCase="</d>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="</n>" , __lowerCAmelCase="</_>" , __lowerCAmelCase="left" , **__lowerCAmelCase , ): """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__lowerCAmelCase , eod_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , line_token=__lowerCAmelCase , space_token=__lowerCAmelCase , padding_side=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Optional[Any] = bod_token __magic_name__ :int = eod_token __magic_name__ :List[str] = load_vocab(__lowerCAmelCase ) __magic_name__ :Optional[Any] = self.encoder[space_token] __magic_name__ :Optional[int] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __magic_name__ :List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCAmelCase : x[1] ) ) __magic_name__ :Dict = {v: k for k, v in self.encoder.items()} __magic_name__ :Union[str, Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def A ( self ): """simple docstring""" return self.encoder[self.bod_token] @property def A ( self ): """simple docstring""" return self.encoder[self.eod_token] @property def A ( self ): """simple docstring""" return self.encoder["\n"] @property def A ( self ): """simple docstring""" return len(self.encoder ) def A ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = [] for x in jieba.cut(__lowerCAmelCase , cut_all=__lowerCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowerCAmelCase ) ) return output_tokens def A ( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = [i for i in token_ids if i >= 0] __magic_name__ :Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" return token in self.encoder def A ( self , __lowerCAmelCase ): """simple docstring""" return "".join(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.decoder.get(__lowerCAmelCase , self.unk_token ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if os.path.isdir(__lowerCAmelCase ): __magic_name__ :Any = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __magic_name__ :List[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __magic_name__ :Tuple = 0 if " " in self.encoder: __magic_name__ :Any = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __magic_name__ :Optional[Any] = self.encoder['''\n'''] del self.encoder["\n"] __magic_name__ :List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCAmelCase : x[1] ) ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) __magic_name__ :int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) return [1] + ([0] * len(__lowerCAmelCase ))
705
from __future__ import annotations from typing import Any class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 ): """simple docstring""" __magic_name__ , __magic_name__ :Any = row, column __magic_name__ :Union[str, Any] = [[default_value for c in range(__lowerCAmelCase )] for r in range(__lowerCAmelCase )] def __str__( self ): """simple docstring""" __magic_name__ :str = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __magic_name__ :Dict = 0 for row_vector in self.array: for obj in row_vector: __magic_name__ :Dict = max(__lowerCAmelCase , len(str(__lowerCAmelCase ) ) ) __magic_name__ :List[str] = F'''%{max_element_length}s''' # Make string and return def single_line(__lowerCAmelCase ) -> str: nonlocal string_format_identifier __magic_name__ :int = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self ): """simple docstring""" return str(self ) def A ( self , __lowerCAmelCase ): """simple docstring""" if not (isinstance(__lowerCAmelCase , (list, tuple) ) and len(__lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __lowerCAmelCase ): """simple docstring""" assert self.validate_indicies(__lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" assert self.validate_indicies(__lowerCAmelCase ) __magic_name__ :List[Any] = value def __add__( self , __lowerCAmelCase ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add __magic_name__ :List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __magic_name__ :Any = self[r, c] + another[r, c] return result def __neg__( self ): """simple docstring""" __magic_name__ :Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __magic_name__ :Any = -self[r, c] return result def __sub__( self , __lowerCAmelCase ): """simple docstring""" return self + (-another) def __mul__( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , (int, float) ): # Scalar multiplication __magic_name__ :List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __magic_name__ :Tuple = self[r, c] * another return result elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): # Matrix multiplication assert self.column == another.row __magic_name__ :List[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __magic_name__ :List[str] = F'''Unsupported type given for another ({type(__lowerCAmelCase )})''' raise TypeError(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __magic_name__ :List[str] = self[r, c] return result def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __magic_name__ :int = v.transpose() __magic_name__ :str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[int] = Matrix(3, 3, 0 ) for i in range(3 ): __magic_name__ :Tuple = 1 print(f'''a^(-1) is {ainv}''' ) # u, v __magic_name__ :Optional[int] = Matrix(3, 1, 0 ) __magic_name__ , __magic_name__ , __magic_name__ :Optional[int] = 1, 2, -3 __magic_name__ :int = Matrix(3, 1, 0 ) __magic_name__ , __magic_name__ , __magic_name__ :str = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case, snake_case )}''' ) def __lowercase ( ): """simple docstring""" import doctest doctest.testmod() testa()
180
0
"""simple docstring""" from collections.abc import Generator def snake_case ( ) -> Generator[int, None, None]: _snake_case , _snake_case = 0, 1 while True: _snake_case , _snake_case = b, a + b yield b def snake_case ( lowerCAmelCase_ = 1000 ) -> int: _snake_case = 1 _snake_case = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
103
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __lowerCAmelCase ( __snake_case = "" ): __lowerCAmelCase = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" __lowerCAmelCase = BeautifulSoup(requests.get(__snake_case ).text , "html.parser" ) __lowerCAmelCase = soup.find_all("td" , attrs="titleColumn" ) __lowerCAmelCase = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__snake_case , __snake_case ) } def __lowerCAmelCase ( __snake_case = "IMDb_Top_250_Movies.csv" ): __lowerCAmelCase = get_imdb_top_aaa_movies() with open(__snake_case , "w" , newline="" ) as out_file: __lowerCAmelCase = csv.writer(__snake_case ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
367
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A ( __snake_case , __snake_case , __snake_case ): __magic_name__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50257 , SCREAMING_SNAKE_CASE = 1024 , SCREAMING_SNAKE_CASE = 768 , SCREAMING_SNAKE_CASE = 12 , SCREAMING_SNAKE_CASE = 12 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "gelu_new" , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 1e-5 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , ) -> List[Any]: """simple docstring""" super().__init__() A : str = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) A : List[Any] = prefix_inner_dim A : Optional[int] = prefix_hidden_dim A : int = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Optional[int] = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Optional[int] = GPTaConfig( vocab_size=UpperCamelCase_ , n_positions=UpperCamelCase_ , n_embd=UpperCamelCase_ , n_layer=UpperCamelCase_ , n_head=UpperCamelCase_ , n_inner=UpperCamelCase_ , activation_function=UpperCamelCase_ , resid_pdrop=UpperCamelCase_ , embd_pdrop=UpperCamelCase_ , attn_pdrop=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , initializer_range=UpperCamelCase_ , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , scale_attn_by_inverse_layer_idx=UpperCamelCase_ , reorder_and_upcast_attn=UpperCamelCase_ , ) A : Union[str, Any] = GPTaLMHeadModel(UpperCamelCase_ ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> Optional[Any]: """simple docstring""" A : Optional[int] = self.transformer.transformer.wte(UpperCamelCase_ ) A : Any = self.encode_prefix(UpperCamelCase_ ) A : Union[str, Any] = self.decode_prefix(UpperCamelCase_ ) A : Dict = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A : List[str] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A : int = torch.cat((dummy_token, input_ids) , dim=1 ) A : Dict = self.transformer(inputs_embeds=UpperCamelCase_ , labels=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" return torch.zeros(UpperCamelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase_ ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.encode_prefix(UpperCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : List[str] = torch.split(UpperCamelCase_ , 1 , dim=0 ) A : List[Any] = [] A : Tuple = [] for feature in features: A : Dict = self.decode_prefix(feature.to(UpperCamelCase_ ) ) # back to the clip feature # Only support beam search for now A : Any = self.generate_beam( input_embeds=UpperCamelCase_ , device=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A : Union[str, Any] = torch.stack(UpperCamelCase_ ) A : List[Any] = torch.stack(UpperCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = 5 , SCREAMING_SNAKE_CASE = 67 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = None , ) -> str: """simple docstring""" A : Dict = eos_token_id A : Tuple = None A : Optional[int] = None A : List[Any] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.int ) A : Optional[int] = torch.zeros(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.bool ) if input_embeds is not None: A : Dict = input_embeds else: A : Optional[int] = self.transformer.transformer.wte(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): A : List[Any] = self.transformer(inputs_embeds=UpperCamelCase_ ) A : List[Any] = outputs.logits A : Tuple = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A : List[str] = logits.softmax(-1 ).log() if scores is None: A : Optional[int] = logits.topk(UpperCamelCase_ , -1 ) A : Optional[Any] = generated.expand(UpperCamelCase_ , *generated.shape[1:] ) A : Optional[int] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A : List[str] = next_tokens else: A : Union[str, Any] = tokens.expand(UpperCamelCase_ , *tokens.shape[1:] ) A : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A : Optional[Any] = -float(np.inf ) A : Any = 0 A : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A : List[Any] = scores_sum / seq_lengths[:, None] A : Optional[Any] = scores_sum_average.view(-1 ).topk(UpperCamelCase_ , -1 ) A : str = next_tokens // scores_sum.shape[1] A : int = seq_lengths[next_tokens_source] A : List[str] = next_tokens % scores_sum.shape[1] A : Optional[int] = next_tokens.unsqueeze(1 ) A : Optional[Any] = tokens[next_tokens_source] A : Optional[int] = torch.cat((tokens, next_tokens) , dim=1 ) A : Optional[int] = generated[next_tokens_source] A : List[Any] = scores_sum_average * seq_lengths A : Dict = is_stopped[next_tokens_source] A : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A : Dict = torch.cat((generated, next_token_embed) , dim=1 ) A : List[Any] = is_stopped + next_tokens.eq(UpperCamelCase_ ).squeeze() if is_stopped.all(): break A : int = scores / seq_lengths A : Optional[int] = scores.argsort(descending=UpperCamelCase_ ) # tokens tensors are already padded to max_seq_length A : Any = [tokens[i] for i in order] A : Tuple = torch.stack(UpperCamelCase_ , dim=0 ) A : Optional[int] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
704
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase : str = logging.get_logger(__name__) # TODO: upload to AWS lowercase : Optional[Any] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''retribert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[Any] = vocab_size A : Dict = hidden_size A : Any = num_hidden_layers A : Any = num_attention_heads A : List[Any] = hidden_act A : Any = intermediate_size A : str = hidden_dropout_prob A : int = attention_probs_dropout_prob A : List[Any] = max_position_embeddings A : Tuple = type_vocab_size A : Optional[Any] = initializer_range A : Union[str, Any] = layer_norm_eps A : Dict = share_encoders A : Dict = projection_dim
343
0
"""simple docstring""" import heapq def __magic_name__ ( UpperCamelCase : dict ) -> set[int]: a__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(UpperCamelCase , [-1 * len(UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices a__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices a__ = heapq.heappop(UpperCamelCase )[1][0] chosen_vertices.add(UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: a__ = elem[1][1].index(UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() a : str = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
273
"""simple docstring""" def __magic_name__ ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , ) -> float: a__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: a__ = 1 - (matter_density + radiation_density + dark_energy) a__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) a__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a : Any = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
273
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
291
from __future__ import annotations lowerCamelCase__ = list[list[int]] # assigning initial values to the grid lowerCamelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase ( snake_case__ : Matrix ,snake_case__ : int ,snake_case__ : int ,snake_case__ : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase ( snake_case__ : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase ( snake_case__ : Matrix ): '''simple docstring''' if location := find_empty_location(snake_case__ ): __snake_case , __snake_case :Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 ,10 ): if is_safe(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): __snake_case :Union[str, Any] = digit if sudoku(snake_case__ ) is not None: return grid __snake_case :Tuple = 0 return None def UpperCamelCase ( snake_case__ : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(snake_case__ ,end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") lowerCamelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
291
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCAmelCase_ ( snake_case ): UpperCamelCase =None UpperCamelCase =None UpperCamelCase =None UpperCamelCase =None class UpperCAmelCase_ ( snake_case ): def __init__( self , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=5_12 , UpperCamelCase_="cls" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ) -> List[Any]: super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : Optional[Any] = project_dim __lowercase : Union[str, Any] = pooler_fn __lowercase : List[Any] = learn_encoder __lowercase : Union[str, Any] = use_attention_mask class UpperCAmelCase_ ( snake_case ): UpperCamelCase =[r"pooler", r"logit_scale"] UpperCamelCase =[r"position_ids", r"predictions.decoder.bias"] UpperCamelCase ="roberta" UpperCamelCase =RobertaSeriesConfig def __init__( self , UpperCamelCase_ ) -> Dict: super().__init__(UpperCamelCase_ ) __lowercase : Optional[int] = XLMRobertaModel(UpperCamelCase_ ) __lowercase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) __lowercase : str = getattr(UpperCamelCase_ , '''has_pre_transformation''' , UpperCamelCase_ ) if self.has_pre_transformation: __lowercase : int = nn.Linear(config.hidden_size , config.project_dim ) __lowercase : Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _lowerCamelCase ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Tuple: __lowercase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowercase : int = self.base_model( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCamelCase_ , ) if self.has_pre_transformation: __lowercase : Any = outputs['''hidden_states'''][-2] __lowercase : Dict = self.pre_LN(UpperCamelCase_ ) __lowercase : Union[str, Any] = self.transformation_pre(UpperCamelCase_ ) return TransformationModelOutput( projection_state=UpperCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowercase : List[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
76
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( snake_case ): def __init__( self , *UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ) -> Tuple: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : Union[str, Any] = eval_examples __lowercase : Union[str, Any] = post_process_function __lowercase : Any = quant_trainer_args __lowercase : Optional[Any] = 1_28 # default number of calibration samples def _lowerCamelCase ( self , UpperCamelCase_=None ) -> Any: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) __lowercase : Tuple = calib_dataset if calib_dataset is not None else self.calib_dataset __lowercase : str = self._remove_unused_columns(UpperCamelCase_ , description='''Calibration''' ) return DataLoader( UpperCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase_ , ) def _lowerCamelCase ( self , UpperCamelCase_=None ) -> Any: __lowercase : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset __lowercase : List[Any] = self.get_calib_dataloader(UpperCamelCase_ ) __lowercase : Dict = self.model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args , calib=UpperCamelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase_ ) logger.info('''***** Running calibration *****''' ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase_ ): # Prediction step __lowercase ,__lowercase ,__lowercase : Optional[Any] = self.prediction_step(UpperCamelCase_ , UpperCamelCase_ , prediction_loss_only=UpperCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase_ , self.quant_trainer_args ) __lowercase : Tuple = model def _lowerCamelCase ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = "eval" ) -> str: __lowercase : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase : Union[str, Any] = self.get_eval_dataloader(UpperCamelCase_ ) __lowercase : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase : Optional[int] = self.compute_metrics __lowercase : Dict = None __lowercase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase : Tuple = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: __lowercase : List[str] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __lowercase : int = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) __lowercase : Optional[int] = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase : List[str] = metrics.pop(UpperCamelCase_ ) self.log(UpperCamelCase_ ) else: __lowercase : Dict = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_ = "test" ) -> List[Any]: __lowercase : Optional[int] = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase : str = self.compute_metrics __lowercase : Dict = None __lowercase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase : Union[str, Any] = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: __lowercase : Any = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __lowercase : Dict = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , '''predict''' ) __lowercase : Optional[int] = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase : List[str] = metrics.pop(UpperCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_="./" ) -> int: __lowercase : Optional[int] = self.eval_dataset __lowercase : Optional[int] = self.get_eval_dataloader(UpperCamelCase_ ) __lowercase : Any = next(iter(UpperCamelCase_ ) ) # saving device - to make it consistent __lowercase : Any = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple __lowercase : Tuple = tuple(v.to(UpperCamelCase_ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer __lowercase : List[Any] = True __lowercase : int = self.model.to(UpperCamelCase_ ) model.eval() model.float() __lowercase : Optional[int] = model.module if hasattr(UpperCamelCase_ , '''module''' ) else model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args ) __lowercase : Tuple = os.path.join(UpperCamelCase_ , '''model.onnx''' ) logger.info(F"""exporting model to {output_model_file}""" ) __lowercase : Tuple = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , export_params=UpperCamelCase_ , opset_version=13 , do_constant_folding=UpperCamelCase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=UpperCamelCase_ , ) logger.info('''onnx export finished''' )
76
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _lowerCamelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=19 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ) -> str: SCREAMING_SNAKE_CASE__: str= parent SCREAMING_SNAKE_CASE__: Tuple= batch_size SCREAMING_SNAKE_CASE__: Optional[int]= seq_length SCREAMING_SNAKE_CASE__: Any= is_training SCREAMING_SNAKE_CASE__: Any= use_input_mask SCREAMING_SNAKE_CASE__: Any= use_token_type_ids SCREAMING_SNAKE_CASE__: Dict= use_labels SCREAMING_SNAKE_CASE__: List[Any]= vocab_size SCREAMING_SNAKE_CASE__: int= hidden_size SCREAMING_SNAKE_CASE__: int= num_hidden_layers SCREAMING_SNAKE_CASE__: Optional[int]= num_attention_heads SCREAMING_SNAKE_CASE__: str= intermediate_size SCREAMING_SNAKE_CASE__: int= hidden_act SCREAMING_SNAKE_CASE__: Tuple= hidden_dropout_prob SCREAMING_SNAKE_CASE__: List[str]= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: Optional[int]= max_position_embeddings SCREAMING_SNAKE_CASE__: Tuple= type_vocab_size SCREAMING_SNAKE_CASE__: Optional[Any]= type_sequence_label_size SCREAMING_SNAKE_CASE__: str= initializer_range SCREAMING_SNAKE_CASE__: Tuple= num_labels SCREAMING_SNAKE_CASE__: Tuple= num_choices SCREAMING_SNAKE_CASE__: List[Any]= scope def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Tuple= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__: List[Any]= None if self.use_input_mask: SCREAMING_SNAKE_CASE__: str= random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: str= None if self.use_labels: SCREAMING_SNAKE_CASE__: Any= ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__: Dict= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__: Any= ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__: int= self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Optional[Any]= EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: List[str]= EsmForProteinFolding(config=lowerCAmelCase ).float() model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__: List[Any]= model(lowerCAmelCase , attention_mask=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= model(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= model(lowerCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ( SCREAMING_SNAKE_CASE__ ), ): Any= config_and_inputs SCREAMING_SNAKE_CASE__: int= {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = False __a = (EsmForProteinFolding,) if is_torch_available() else () __a = () __a = {} if is_torch_available() else {} __a = False def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Union[str, Any]= EsmFoldModelTester(self ) SCREAMING_SNAKE_CASE__: Any= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: int= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip('''Does not support attention outputs''' ) def UpperCamelCase_ ( self ) -> List[Any]: pass @unittest.skip def UpperCamelCase_ ( self ) -> Dict: pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCamelCase_ ( self ) -> Optional[int]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCamelCase_ ( self ) -> str: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def UpperCamelCase_ ( self ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase_ ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase_ ( self ) -> Tuple: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase_ ( self ) -> int: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCamelCase_ ( self ) -> Dict: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def UpperCamelCase_ ( self ) -> List[Any]: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def UpperCamelCase_ ( self ) -> List[str]: pass @unittest.skip('''ESMFold only has one output format.''' ) def UpperCamelCase_ ( self ) -> Tuple: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def UpperCamelCase_ ( self ) -> int: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def UpperCamelCase_ ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def UpperCamelCase_ ( self ) -> Any: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCamelCase_ ( self ) -> Any: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCamelCase_ ( self ) -> int: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCamelCase_ ( self ) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def UpperCamelCase_ ( self ) -> Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self ) -> Tuple: pass @require_torch class _lowerCamelCase ( UpperCamelCase_ ): @slow def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() SCREAMING_SNAKE_CASE__: Dict= torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__: Any= model(lowerCAmelCase )['''positions'''] SCREAMING_SNAKE_CASE__: Optional[Any]= torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase , atol=1e-4 ) )
107
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = AltDiffusionPipeline __a = TEXT_TO_IMAGE_PARAMS __a = TEXT_TO_IMAGE_BATCH_PARAMS __a = TEXT_TO_IMAGE_IMAGE_PARAMS __a = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__: Tuple= DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) SCREAMING_SNAKE_CASE__: List[Any]= CLIPTextModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE__: List[Any]= 77 SCREAMING_SNAKE_CASE__: Union[str, Any]= { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> List[Any]: if str(lowerCAmelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__: Any= torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase_ ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Optional[int]= '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__: Tuple= self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__: List[str]= RobertaSeriesModelWithTransformation(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= text_encoder SCREAMING_SNAKE_CASE__: List[Any]= AltDiffusionPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= '''A photo of an astronaut''' SCREAMING_SNAKE_CASE__: Any= alt_pipe(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= output.images SCREAMING_SNAKE_CASE__: Tuple= image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__: Any= np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: List[str]= '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__: Any= self.get_dummy_components() SCREAMING_SNAKE_CASE__: List[str]= PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__: str= RobertaSeriesModelWithTransformation(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= text_encoder SCREAMING_SNAKE_CASE__: Any= AltDiffusionPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= alt_pipe(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= output.images SCREAMING_SNAKE_CASE__: Tuple= image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__: List[Any]= np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Optional[int]: # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__: Any= AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= alt_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__: List[Any]= output.images SCREAMING_SNAKE_CASE__: Dict= image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__: Optional[int]= np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: List[Any]= DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__: List[str]= AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__: Any= torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: str= alt_pipe([prompt] , generator=lowerCAmelCase , num_inference_steps=2 , output_type='''numpy''' ) SCREAMING_SNAKE_CASE__: List[str]= output.images SCREAMING_SNAKE_CASE__: Dict= image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__: Optional[Any]= np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
107
1
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" if index == number_of_items: return 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = knapsack(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,index + 1 ) if weights[index] <= max_weight: _SCREAMING_SNAKE_CASE = values[index] + knapsack( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,max_weight - weights[index] ,index + 1 ) return max(UpperCAmelCase__ ,UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
605
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def __magic_name__ ( self )-> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __magic_name__ ( self )-> List[str]: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser', }, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-0_5, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def __magic_name__ ( self )-> Tuple: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-0_5, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ [ { 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def __magic_name__ ( self )-> int: _SCREAMING_SNAKE_CASE = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() _SCREAMING_SNAKE_CASE = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(A_ , A_ ) @slow @require_torch def __magic_name__ ( self )-> Optional[int]: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(A_ ) @slow @require_tf def __magic_name__ ( self )-> str: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(A_ ) def __magic_name__ ( self , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(A_ ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1573, 'token_str': ' Chris'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(A_ ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 12790, 'token_str': ' Lyon', }, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(A_ ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None self.run_pipeline_test(A_ , [] ) @require_tf def __magic_name__ ( self )-> Any: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None self.run_pipeline_test(A_ , [] ) def __magic_name__ ( self , A_ , A_ , A_ )-> Optional[int]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def __magic_name__ ( self , A_ , A_ )-> Optional[int]: _SCREAMING_SNAKE_CASE = fill_masker.tokenizer _SCREAMING_SNAKE_CASE = fill_masker.model _SCREAMING_SNAKE_CASE = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( A_ , [ [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], ] , ) with self.assertRaises(A_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(A_ ): fill_masker('This is' ) self.run_test_top_k(A_ , A_ ) self.run_test_targets(A_ , A_ ) self.run_test_top_k_targets(A_ , A_ ) self.fill_mask_with_duplicate_targets_and_top_k(A_ , A_ ) self.fill_mask_with_multiple_masks(A_ , A_ ) def __magic_name__ ( self , A_ , A_ )-> List[Any]: _SCREAMING_SNAKE_CASE = tokenizer.get_vocab() _SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:2] # Pipeline argument _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ , targets=A_ ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , A_ ) _SCREAMING_SNAKE_CASE = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(A_ ) ) # Call argument _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , A_ ) _SCREAMING_SNAKE_CASE = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(A_ ) ) # Score equivalence _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ ) _SCREAMING_SNAKE_CASE = [top_mask['token_str'] for top_mask in outputs] _SCREAMING_SNAKE_CASE = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(A_ ) == set(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ ) _SCREAMING_SNAKE_CASE = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) # Raises with invalid with self.assertRaises(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''] ) with self.assertRaises(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='' ) def __magic_name__ ( self , A_ , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ , top_k=2 ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) def __magic_name__ ( self , A_ , A_ )-> Dict: _SCREAMING_SNAKE_CASE = tokenizer.get_vocab() _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) # top_k=2, ntargets=3 _SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:3] _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=A_ ) # If we use the most probably targets, and filter differently, we should still # have the same results _SCREAMING_SNAKE_CASE = [el['token_str'] for el in sorted(A_ , key=lambda A_ : x["score"] , reverse=A_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(A_ ).issubset(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=A_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) def __magic_name__ ( self , A_ , A_ )-> Dict: _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = tokenizer.get_vocab() # String duplicates + id duplicates _SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:3] _SCREAMING_SNAKE_CASE = [targets[0], targets[1], targets[0], targets[2], targets[1]] _SCREAMING_SNAKE_CASE = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=A_ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(A_ ) , 3 ) def __magic_name__ ( self , A_ , A_ )-> int: _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( A_ , [ [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], ] , )
605
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a ( __UpperCAmelCase ): def __init__( self : List[Any] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
376
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase_ = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: Tuple ): """simple docstring""" inspect_dataset(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = path + ".py" assert script_name in os.listdir(UpperCamelCase ) assert "__pycache__" not in os.listdir(UpperCamelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def _UpperCAmelCase ( UpperCamelCase: List[Any] , UpperCamelCase: Any ): """simple docstring""" inspect_metric(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = path + ".py" assert script_name in os.listdir(UpperCamelCase ) assert "__pycache__" not in os.listdir(UpperCamelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: int , UpperCamelCase: Tuple ): """simple docstring""" __lowerCAmelCase = get_dataset_config_info(UpperCamelCase , config_name=UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def _UpperCAmelCase ( UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: List[str] ): """simple docstring""" with pytest.raises(UpperCamelCase ): get_dataset_config_info(UpperCamelCase , config_name=UpperCamelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def _UpperCAmelCase ( UpperCamelCase: List[str] , UpperCamelCase: Optional[int] ): """simple docstring""" __lowerCAmelCase = get_dataset_config_names(UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: Tuple , UpperCamelCase: List[Any] ): """simple docstring""" __lowerCAmelCase = get_dataset_infos(UpperCamelCase ) assert list(infos.keys() ) == expected_configs __lowerCAmelCase = expected_configs[0] assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: int , UpperCamelCase: Optional[Any] ): """simple docstring""" __lowerCAmelCase = get_dataset_infos(UpperCamelCase ) assert expected_config in infos __lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def _UpperCAmelCase ( UpperCamelCase: Dict , UpperCamelCase: List[str] , UpperCamelCase: List[Any] ): """simple docstring""" with pytest.raises(UpperCamelCase ): get_dataset_split_names(UpperCamelCase , config_name=UpperCamelCase )
376
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Dict = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _A ( __snake_case :Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = VideoMAEConfig() set_architecture_configs(__snake_case , __snake_case ) if "finetuned" not in model_name: __SCREAMING_SNAKE_CASE = False if "finetuned" in model_name: __SCREAMING_SNAKE_CASE = "huggingface/label-files" if "kinetics" in model_name: __SCREAMING_SNAKE_CASE = 400 __SCREAMING_SNAKE_CASE = "kinetics400-id2label.json" elif "ssv2" in model_name: __SCREAMING_SNAKE_CASE = 174 __SCREAMING_SNAKE_CASE = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE = {int(__snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def _A ( __snake_case :Dict , __snake_case :Optional[Any] ) -> List[Any]: """simple docstring""" if "small" in model_name: __SCREAMING_SNAKE_CASE = 384 __SCREAMING_SNAKE_CASE = 1536 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 192 __SCREAMING_SNAKE_CASE = 768 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 512 __SCREAMING_SNAKE_CASE = 2048 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 1280 __SCREAMING_SNAKE_CASE = 5120 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 640 __SCREAMING_SNAKE_CASE = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def _A ( __snake_case :List[Any] ) -> Optional[int]: """simple docstring""" if "encoder." in name: __SCREAMING_SNAKE_CASE = name.replace("encoder." , "" ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.attention" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __SCREAMING_SNAKE_CASE = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __SCREAMING_SNAKE_CASE = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: __SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) return name def _A ( __snake_case :Union[str, Any] , __snake_case :Optional[int] ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(__snake_case ) if key.startswith("encoder." ): __SCREAMING_SNAKE_CASE = key.replace("encoder." , "" ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split("." ) if key.startswith("decoder.blocks" ): __SCREAMING_SNAKE_CASE = config.decoder_hidden_size __SCREAMING_SNAKE_CASE = int(key_split[2] ) __SCREAMING_SNAKE_CASE = "decoder.decoder_layers." if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = config.hidden_size __SCREAMING_SNAKE_CASE = int(key_split[1] ) __SCREAMING_SNAKE_CASE = "videomae.encoder.layer." if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def _A ( ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __SCREAMING_SNAKE_CASE = np.load(__snake_case ) return list(__snake_case ) def _A ( __snake_case :Optional[int] , __snake_case :List[str] , __snake_case :Union[str, Any] , __snake_case :Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = get_videomae_config(__snake_case ) if "finetuned" in model_name: __SCREAMING_SNAKE_CASE = VideoMAEForVideoClassification(__snake_case ) else: __SCREAMING_SNAKE_CASE = VideoMAEForPreTraining(__snake_case ) # download original checkpoint, hosted on Google Drive __SCREAMING_SNAKE_CASE = "pytorch_model.bin" gdown.cached_download(__snake_case , __snake_case , quiet=__snake_case ) __SCREAMING_SNAKE_CASE = torch.load(__snake_case , map_location="cpu" ) if "model" in files: __SCREAMING_SNAKE_CASE = files["model"] else: __SCREAMING_SNAKE_CASE = files["module"] __SCREAMING_SNAKE_CASE = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify model on basic input __SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __SCREAMING_SNAKE_CASE = prepare_video() __SCREAMING_SNAKE_CASE = image_processor(__snake_case , return_tensors="pt" ) if "finetuned" not in model_name: __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) __SCREAMING_SNAKE_CASE = torch.load(__snake_case ) __SCREAMING_SNAKE_CASE = model(**__snake_case ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one __SCREAMING_SNAKE_CASE = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1e-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": __SCREAMING_SNAKE_CASE = outputs.loss assert torch.allclose(__snake_case , __snake_case , atol=1e-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) model.save_pretrained(__snake_case ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__snake_case , organization="nielsr" ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
693
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : List[str] = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ): """simple docstring""" A_ : Tuple = 'backbone.' if is_semantic else '' A_ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): A_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values A_ : List[str] = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) A_ : Any = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) A_ : int = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) A_ : int = in_proj_weight[ : config.hidden_size, : ] A_ : Union[str, Any] = q_bias A_ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Dict = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A_ : Optional[Any] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) A_ : Dict = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) A_ : Any = gamma_a A_ : Any = gamma_a def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Union[str, Any] = dct.pop(_UpperCAmelCase ) A_ : Tuple = val def UpperCAmelCase__ ( ): """simple docstring""" A_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' A_ : Union[str, Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : List[str] = False if 'rvlcdip' in checkpoint_url else True A_ : Dict = BeitConfig(use_absolute_position_embeddings=_UpperCAmelCase , use_mask_token=_UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A_ : List[str] = 1024 A_ : Optional[Any] = 4096 A_ : List[str] = 24 A_ : List[str] = 16 # labels if "rvlcdip" in checkpoint_url: A_ : Optional[Any] = 16 A_ : Optional[Any] = 'huggingface/label-files' A_ : Any = 'rvlcdip-id2label.json' A_ : List[str] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) A_ : List[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A_ : Dict = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['model'] A_ : List[Any] = create_rename_keys(_UpperCAmelCase , has_lm_head=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , has_lm_head=_UpperCAmelCase ) # load HuggingFace model A_ : Optional[int] = BeitForMaskedImageModeling(_UpperCAmelCase ) if has_lm_head else BeitForImageClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image A_ : Optional[int] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCAmelCase ) A_ : Union[str, Any] = prepare_img() A_ : List[Any] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ) A_ : Any = encoding['pixel_values'] A_ : Optional[int] = model(_UpperCAmelCase ) A_ : Tuple = outputs.logits # verify logits A_ : Dict = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_UpperCAmelCase ), "Shape of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: if has_lm_head: A_ : str = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) lowerCamelCase_ : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
302
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCamelCase_ : Union[str, Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCamelCase_ : Optional[int] = [0, 25, 50] lowerCamelCase_ : Union[str, Any] = [25, 50, 75] lowerCamelCase_ : List[Any] = fuzz.membership.trimf(X, abca) lowerCamelCase_ : Optional[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCamelCase_ : Optional[int] = np.ones(75) lowerCamelCase_ : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowerCamelCase_ : Dict = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCamelCase_ : Union[str, Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCamelCase_ : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCamelCase_ : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCamelCase_ : Any = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCamelCase_ : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCamelCase_ : List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCamelCase_ : List[Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
302
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase,unittest.TestCase ): _A = DiTPipeline _A = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _A = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _A = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _A = False def __lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a_ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=a_ , ) SCREAMING_SNAKE_CASE_ : List[str] = AutoencoderKL() SCREAMING_SNAKE_CASE_ : str = DDIMScheduler() SCREAMING_SNAKE_CASE_ : Optional[Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __lowerCamelCase ( self , lowercase__ , lowercase__=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(a_ ) else: SCREAMING_SNAKE_CASE_ : List[str] = torch.Generator(device=a_ ).manual_seed(a_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "cpu" SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE_ : Any = pipe(**a_ ).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) SCREAMING_SNAKE_CASE_ : Any = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) SCREAMING_SNAKE_CASE_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1e-3 ) def __lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=a_ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = ["vase", "umbrella", "white shark", "white wolf"] SCREAMING_SNAKE_CASE_ : Dict = pipe.get_label_ids(a_ ) SCREAMING_SNAKE_CASE_ : List[str] = pipe(a_ , generator=a_ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(a_ , a_ ): SCREAMING_SNAKE_CASE_ : Any = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) SCREAMING_SNAKE_CASE_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = ["vase", "umbrella"] SCREAMING_SNAKE_CASE_ : List[Any] = pipe.get_label_ids(a_ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = pipe(a_ , generator=a_ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(a_ , a_ ): SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
421
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __magic_name__ = 1.054_571_817E-34 # unit of ℏ : J * s __magic_name__ = 3E8 # unit of c : m * s^-1 def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if (force, area, distance).count(0) != 1: raise ValueError("One and only one argument must be 0") if force < 0: raise ValueError("Magnitude of force can not be negative") if distance < 0: raise ValueError("Distance can not be negative") if area < 0: raise ValueError("Area can not be negative") if force == 0: lowerCamelCase_ : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase_ : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase_ : Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0") # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
250
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _lowercase ( __UpperCAmelCase ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = "arrow" , **UpperCAmelCase_ , ) -> Tuple: super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase : Tuple = load_from_cache_file lowerCamelCase : Union[str, Any] = file_format lowerCamelCase : Tuple = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def _UpperCamelCase ( self ) -> str: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCamelCase : Optional[Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
711
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : int = Mock() lowerCamelCase : int = conn, Mock() lowerCamelCase : Any = iter([1, None] ) lowerCamelCase : Dict = lambda a_ : next(a_ ) # ===== invoke ===== send_file(filename='mytext.txt', testing=a_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
133
0