code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
lowerCAmelCase_ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A_ ( lowercase_ , lowercase_ , lowercase_ ) -> list[str]: _snake_case : List[Any] = set() # keep track of all the paths to be checked _snake_case : Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _snake_case : Optional[int] = queue.pop(0 ) # get the last node from the path _snake_case : Any = path[-1] if node not in explored: _snake_case : List[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _snake_case : List[Any] = list(lowercase_ ) new_path.append(lowercase_ ) queue.append(lowercase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase_ ) # in case there's no path between the 2 nodes return [] def A_ ( lowercase_ , lowercase_ , lowercase_ ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _snake_case : Optional[int] = [start] _snake_case : Optional[Any] = set(lowercase_ ) # Keep tab on distances from `start` node. _snake_case : Tuple = {start: 0, target: -1} while queue: _snake_case : List[Any] = queue.pop(0 ) if node == target: _snake_case : int = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase_ ) queue.append(lowercase_ ) _snake_case : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
326
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) snake_case__ : List[Any] = logging.getLogger() def _snake_case (__lowercase): UpperCamelCase_ = {} UpperCamelCase_ = os.path.join(__lowercase , 'all_results.json') if os.path.exists(__lowercase): with open(__lowercase , 'r') as f: UpperCamelCase_ = json.load(__lowercase) else: raise ValueError(f"""can't find {path}""") return results snake_case__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self ) -> str: import xla_spawn UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): UpperCamelCase_ = time() xla_spawn.main() UpperCamelCase_ = time() UpperCamelCase_ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def _UpperCAmelCase ( self ) -> int: import xla_spawn UpperCamelCase_ = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): xla_spawn.main()
719
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = tempfile.mkdtemp() # fmt: off UpperCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) UpperCamelCase_ = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } UpperCamelCase_ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[int]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase_ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='np' ) UpperCamelCase_ = processor(images=_UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) UpperCamelCase_ = 'lower newer' UpperCamelCase_ = processor(text=_UpperCAmelCase ) UpperCamelCase_ = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) UpperCamelCase_ = 'lower newer' UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase ): processor() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) UpperCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_ = processor.batch_decode(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) UpperCamelCase_ = 'lower newer' UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
618
0
import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : Optional[Any] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, 'models/bert/')) _lowercase : List[Any] = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase, 'src/transformers/models/bert/modeling_bert.py'), os.path.join(self.transformer_dir, 'models/bert/modeling_bert.py'), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> str: """simple docstring""" _lowercase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_19) _lowercase : Union[str, Any] = black.format_str(lowerCamelCase, mode=lowerCamelCase) _lowercase : Optional[int] = os.path.join(self.transformer_dir, 'new_code.py') with open(lowerCamelCase, 'w', newline='\n') as f: f.write(lowerCamelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=lowerCamelCase) with open(lowerCamelCase, 'r') as f: self.assertTrue(f.read(), lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', REFERENCE_CODE + '\n', ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', lowerCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', re.sub('Bert', 'TestModel', lowerCamelCase), ) # Copy consistency with a really long name _lowercase : Tuple = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''', F'''{long_class_name}LMPredictionHead''', re.sub('Bert', lowerCamelCase, lowerCamelCase), ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', lowerCamelCase, overwrite_result=re.sub('Bert', 'TestModel', lowerCamelCase), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowercase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowercase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowercase , _lowercase : List[Any] = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) self.assertFalse(lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) _lowercase , _lowercase : List[str] = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase) _lowercase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowercase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase , _lowercase : Dict = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase, lowerCamelCase)
89
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 3 ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __a : Dict = QuantumRegister(_SCREAMING_SNAKE_CASE , 'qr' ) __a : List[str] = ClassicalRegister(_SCREAMING_SNAKE_CASE , 'cr' ) __a : List[Any] = QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Optional[int] = number_of_qubits for i in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # simulate with 10000 shots __a : Union[str, Any] = Aer.get_backend('qasm_simulator' ) __a : Any = execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=10_000 ) return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
476
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCAmelCase__ : str = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCAmelCase__ : List[str] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = """https://pypi.org/pypi/diffusers/json""" SCREAMING_SNAKE_CASE : Dict = json.loads(request.urlopen(_A ).read() )["""releases"""].keys() return sorted(_A , key=lambda _A : version.Version(_A ) ) def __lowercase ( ) -> Any: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(_A ) os.makedirs(_A , exist_ok=_A ) SCREAMING_SNAKE_CASE : Dict = Path(_A ) / """__init__.py""" if not init_path.exists(): init_path.touch() def __lowercase ( _A ) -> Any: init_hf_modules() SCREAMING_SNAKE_CASE : Any = Path(_A ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_A , exist_ok=_A ) SCREAMING_SNAKE_CASE : str = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def __lowercase ( _A ) -> Optional[int]: with open(_A , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE : Any = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE : List[str] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , _A , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , _A , flags=re.MULTILINE ) # Unique-ify return list(set(_A ) ) def __lowercase ( _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = [module_file] SCREAMING_SNAKE_CASE : Any = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE : List[str] = [] for f in files_to_check: new_imports.extend(get_relative_imports(_A ) ) SCREAMING_SNAKE_CASE : List[str] = Path(_A ).parent SCREAMING_SNAKE_CASE : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE : int = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE : Optional[Any] = [F"{f}.py" for f in new_import_files] SCREAMING_SNAKE_CASE : List[Any] = len(_A ) == 0 all_relative_imports.extend(_A ) return all_relative_imports def __lowercase ( _A ) -> Union[str, Any]: with open(_A , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE : Any = re.findall("""^\s*import\s+(\S+)\s*$""" , _A , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , _A , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE : List[Any] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE : Dict = list(set(_A ) ) SCREAMING_SNAKE_CASE : Dict = [] for imp in imports: try: importlib.import_module(_A ) except ImportError: missing_packages.append(_A ) if len(_A ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(_A )}. Run `pip install {' '.join(_A )}`" ) return get_relative_imports(_A ) def __lowercase ( _A , _A ) -> List[str]: SCREAMING_SNAKE_CASE : int = module_path.replace(os.path.sep , """.""" ) SCREAMING_SNAKE_CASE : List[str] = importlib.import_module(_A ) if class_name is None: return find_pipeline_class(_A ) return getattr(_A , _A ) def __lowercase ( _A ) -> Optional[int]: from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE : Tuple = dict(inspect.getmembers(_A , inspect.isclass ) ) SCREAMING_SNAKE_CASE : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _A ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) SCREAMING_SNAKE_CASE : List[str] = cls return pipeline_class def __lowercase ( _A , _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = str(_A ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_A , _A ) if os.path.isfile(_A ): SCREAMING_SNAKE_CASE : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE : Dict = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: SCREAMING_SNAKE_CASE : Tuple = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE : str = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE : Any = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: SCREAMING_SNAKE_CASE : List[Any] = F"v{revision}" elif revision == "main": SCREAMING_SNAKE_CASE : Union[str, Any] = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub SCREAMING_SNAKE_CASE : Tuple = COMMUNITY_PIPELINES_URL.format(revision=_A , pipeline=_A ) try: SCREAMING_SNAKE_CASE : str = cached_download( _A , cache_dir=_A , force_download=_A , proxies=_A , resume_download=_A , local_files_only=_A , use_auth_token=_A , ) SCREAMING_SNAKE_CASE : Tuple = """git""" SCREAMING_SNAKE_CASE : Optional[int] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE : int = hf_hub_download( _A , _A , cache_dir=_A , force_download=_A , proxies=_A , resume_download=_A , local_files_only=_A , use_auth_token=_A , ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE : int = check_imports(_A ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE : List[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_A ) SCREAMING_SNAKE_CASE : Tuple = Path(_A ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_A , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE : Optional[int] = F"{module_needed}.py" shutil.copy(os.path.join(_A , _A ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_A , _A ): SCREAMING_SNAKE_CASE : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE : str = HfFolder.get_token() else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[Any] = model_info(_A , revision=_A , token=_A ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE : int = submodule_path / commit_hash SCREAMING_SNAKE_CASE : Tuple = full_submodule + os.path.sep + commit_hash create_dynamic_module(_A ) if not (submodule_path / module_file).exists(): shutil.copy(_A , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _A , F"{module_needed}.py" , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) return os.path.join(_A , _A ) def __lowercase ( _A , _A , _A = None , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ) -> Tuple: SCREAMING_SNAKE_CASE : Dict = get_cached_module_file( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) return get_class_in_module(_A , final_module.replace(""".py""" , """""" ) )
446
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCAmelCase ( a_ , a_ , a_ , a_ , ) -> list[float]: """simple docstring""" __A , __A = coefficient_matrix.shape __A , __A = constant_matrix.shape if rowsa != colsa: __A = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(a_ ) if colsa != 1: __A = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(a_ ) if rowsa != rowsa: __A = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(a_ ) if len(a_ ) != rowsa: __A = ( "Number of initial values must be equal to number of rows in coefficient " F'''matrix but received {len(a_ )} and {rowsa}''' ) raise ValueError(a_ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __A = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __A , __A = table.shape strictly_diagonally_dominant(a_ ) # Iterates the whole matrix for given number of times for _ in range(a_ ): __A = [] for row in range(a_ ): __A = 0 for col in range(a_ ): if col == row: __A = table[row][col] elif col == cols - 1: __A = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __A = (temp + val) / denom new_val.append(a_ ) __A = new_val return [float(a_ ) for i in new_val] def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" __A , __A = table.shape __A = True for i in range(0 , a_ ): __A = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
55
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case (unittest.TestCase ): def _a ( self ) -> str: lowercase__ = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } lowercase__ = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def _a ( self ) -> int: lowercase__ = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) ,x.transpose() ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ) ,x.transpose((1, 2, 0) ) ) ) @require_torch def _a ( self ) -> Optional[Any]: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) ,transpose(UpperCAmelCase_ ).numpy() ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ) ,transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ).numpy() ) ) @require_tf def _a ( self ) -> List[Any]: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) ,transpose(UpperCAmelCase_ ).numpy() ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ) ,transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ).numpy() ) ) @require_flax def _a ( self ) -> Any: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) ,np.asarray(transpose(UpperCAmelCase_ ) ) ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ) ,np.asarray(transpose(UpperCAmelCase_ ,axes=(1, 2, 0) ) ) ) ) def _a ( self ) -> Optional[int]: lowercase__ = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(4, 3) ) ,np.reshape(UpperCAmelCase_ ,(4, 3) ) ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(12, 5) ) ,np.reshape(UpperCAmelCase_ ,(12, 5) ) ) ) @require_torch def _a ( self ) -> int: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(4, 3) ) ,reshape(UpperCAmelCase_ ,(4, 3) ).numpy() ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(12, 5) ) ,reshape(UpperCAmelCase_ ,(12, 5) ).numpy() ) ) @require_tf def _a ( self ) -> List[Any]: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(4, 3) ) ,reshape(UpperCAmelCase_ ,(4, 3) ).numpy() ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(12, 5) ) ,reshape(UpperCAmelCase_ ,(12, 5) ).numpy() ) ) @require_flax def _a ( self ) -> Union[str, Any]: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(4, 3) ) ,np.asarray(reshape(UpperCAmelCase_ ,(4, 3) ) ) ) ) lowercase__ = np.random.randn(3 ,4 ,5 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ ,(12, 5) ) ,np.asarray(reshape(UpperCAmelCase_ ,(12, 5) ) ) ) ) def _a ( self ) -> List[Any]: lowercase__ = np.random.randn(1 ,3 ,4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) ,np.squeeze(UpperCAmelCase_ ) ) ) lowercase__ = np.random.randn(1 ,4 ,1 ,5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ,axis=2 ) ,np.squeeze(UpperCAmelCase_ ,axis=2 ) ) ) @require_torch def _a ( self ) -> int: lowercase__ = np.random.randn(1 ,3 ,4 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) ,squeeze(UpperCAmelCase_ ).numpy() ) ) lowercase__ = np.random.randn(1 ,4 ,1 ,5 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ,axis=2 ) ,squeeze(UpperCAmelCase_ ,axis=2 ).numpy() ) ) @require_tf def _a ( self ) -> List[str]: lowercase__ = np.random.randn(1 ,3 ,4 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) ,squeeze(UpperCAmelCase_ ).numpy() ) ) lowercase__ = np.random.randn(1 ,4 ,1 ,5 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ,axis=2 ) ,squeeze(UpperCAmelCase_ ,axis=2 ).numpy() ) ) @require_flax def _a ( self ) -> Any: lowercase__ = np.random.randn(1 ,3 ,4 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) ,np.asarray(squeeze(UpperCAmelCase_ ) ) ) ) lowercase__ = np.random.randn(1 ,4 ,1 ,5 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ,axis=2 ) ,np.asarray(squeeze(UpperCAmelCase_ ,axis=2 ) ) ) ) def _a ( self ) -> int: lowercase__ = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ ,axis=1 ) ,np.expand_dims(UpperCAmelCase_ ,axis=1 ) ) ) @require_torch def _a ( self ) -> Dict: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ ,axis=1 ) ,expand_dims(UpperCAmelCase_ ,axis=1 ).numpy() ) ) @require_tf def _a ( self ) -> Any: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ ,axis=1 ) ,expand_dims(UpperCAmelCase_ ,axis=1 ).numpy() ) ) @require_flax def _a ( self ) -> Dict: lowercase__ = np.random.randn(3 ,4 ) lowercase__ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ ,axis=1 ) ,np.asarray(expand_dims(UpperCAmelCase_ ,axis=1 ) ) ) )
539
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class snake_case (UpperCamelCase ): lowerCAmelCase__ :Optional[int] = "align_text_model" def __init__( self ,UpperCAmelCase_=30_522 ,UpperCAmelCase_=768 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=3_072 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=512 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-1_2 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,) -> List[str]: super().__init__(**UpperCAmelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = pad_token_id @classmethod def _a ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowercase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class snake_case (UpperCamelCase ): lowerCAmelCase__ :Tuple = "align_vision_model" def __init__( self ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 600 ,UpperCAmelCase_ = 2.0 ,UpperCAmelCase_ = 3.1 ,UpperCAmelCase_ = 8 ,UpperCAmelCase_ = [3, 3, 5, 3, 5, 5, 3] ,UpperCAmelCase_ = [32, 16, 24, 40, 80, 112, 192] ,UpperCAmelCase_ = [16, 24, 40, 80, 112, 192, 320] ,UpperCAmelCase_ = [] ,UpperCAmelCase_ = [1, 2, 2, 2, 1, 2, 1] ,UpperCAmelCase_ = [1, 2, 2, 3, 3, 4, 1] ,UpperCAmelCase_ = [1, 6, 6, 6, 6, 6, 6] ,UpperCAmelCase_ = 0.25 ,UpperCAmelCase_ = "swish" ,UpperCAmelCase_ = 2_560 ,UpperCAmelCase_ = "mean" ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_ = 0.0_01 ,UpperCAmelCase_ = 0.99 ,UpperCAmelCase_ = 0.2 ,**UpperCAmelCase_ ,) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) lowercase__ = num_channels lowercase__ = image_size lowercase__ = width_coefficient lowercase__ = depth_coefficient lowercase__ = depth_divisor lowercase__ = kernel_sizes lowercase__ = in_channels lowercase__ = out_channels lowercase__ = depthwise_padding lowercase__ = strides lowercase__ = num_block_repeats lowercase__ = expand_ratios lowercase__ = squeeze_expansion_ratio lowercase__ = hidden_act lowercase__ = hidden_dim lowercase__ = pooling_type lowercase__ = initializer_range lowercase__ = batch_norm_eps lowercase__ = batch_norm_momentum lowercase__ = drop_connect_rate lowercase__ = sum(UpperCAmelCase_ ) * 4 @classmethod def _a ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowercase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class snake_case (UpperCamelCase ): lowerCAmelCase__ :Union[str, Any] = "align" lowerCAmelCase__ :Tuple = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=640 ,UpperCAmelCase_=1.0 ,UpperCAmelCase_=0.02 ,**UpperCAmelCase_ ,) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) if text_config is None: lowercase__ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: lowercase__ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) lowercase__ = AlignTextConfig(**UpperCAmelCase_ ) lowercase__ = AlignVisionConfig(**UpperCAmelCase_ ) lowercase__ = projection_dim lowercase__ = temperature_init_value lowercase__ = initializer_range @classmethod def _a ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> List[str]: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**UpperCAmelCase_ ) def _a ( self ) -> List[Any]: lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
539
1
import pickle import numpy as np from matplotlib import pyplot as plt class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] , _A : Optional[int]=0.2 , _A : Tuple=0.2 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = bp_numa __SCREAMING_SNAKE_CASE : Tuple = bp_numa __SCREAMING_SNAKE_CASE : int = bp_numa __SCREAMING_SNAKE_CASE : Tuple = conva_get[:2] __SCREAMING_SNAKE_CASE : Optional[int] = conva_get[2] __SCREAMING_SNAKE_CASE : List[Any] = size_pa __SCREAMING_SNAKE_CASE : Any = rate_w __SCREAMING_SNAKE_CASE : Union[str, Any] = rate_t __SCREAMING_SNAKE_CASE : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __SCREAMING_SNAKE_CASE : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __SCREAMING_SNAKE_CASE : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __SCREAMING_SNAKE_CASE : Dict = -2 * np.random.rand(self.conva[1] ) + 1 __SCREAMING_SNAKE_CASE : int = -2 * np.random.rand(self.num_bpa ) + 1 __SCREAMING_SNAKE_CASE : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def UpperCAmelCase__ ( self : Optional[int] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_A , '''wb''' ) as f: pickle.dump(_A , _A ) print(F'''Model saved: {save_path}''' ) @classmethod def UpperCAmelCase__ ( cls : List[str] , _A : int ): """simple docstring""" with open(_A , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Tuple = pickle.load(_A ) # noqa: S301 __SCREAMING_SNAKE_CASE : str = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) __SCREAMING_SNAKE_CASE : Dict = model_dic.get('''size_pooling1''' ) __SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('''num_bp1''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model_dic.get('''num_bp2''' ) __SCREAMING_SNAKE_CASE : Any = model_dic.get('''num_bp3''' ) __SCREAMING_SNAKE_CASE : Any = model_dic.get('''rate_weight''' ) __SCREAMING_SNAKE_CASE : int = model_dic.get('''rate_thre''' ) # create model instance __SCREAMING_SNAKE_CASE : Tuple = CNN(_A , _A , _A , _A , _A , _A , _A ) # modify model parameter __SCREAMING_SNAKE_CASE : Optional[int] = model_dic.get('''w_conv1''' ) __SCREAMING_SNAKE_CASE : Dict = model_dic.get('''wkj''' ) __SCREAMING_SNAKE_CASE : Any = model_dic.get('''vji''' ) __SCREAMING_SNAKE_CASE : str = model_dic.get('''thre_conv1''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''thre_bp2''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model_dic.get('''thre_bp3''' ) return conv_ins def UpperCAmelCase__ ( self : List[Any] , _A : List[Any] ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def UpperCAmelCase__ ( self : str , _A : List[str] ): """simple docstring""" return round(_A , 3 ) def UpperCAmelCase__ ( self : int , _A : int , _A : str , _A : List[Any] , _A : Tuple , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = convs[0] __SCREAMING_SNAKE_CASE : Any = convs[1] __SCREAMING_SNAKE_CASE : int = np.shape(_A )[0] # get the data slice of original image data, data_focus __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _A ): for j_focus in range(0 , size_data - size_conv + 1 , _A ): __SCREAMING_SNAKE_CASE : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_A ) # calculate the feature map of every single kernel, and saved as list of matrix __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_A ): __SCREAMING_SNAKE_CASE : List[Any] = [] for i_focus in range(len(_A ) ): __SCREAMING_SNAKE_CASE : int = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_A ) ) __SCREAMING_SNAKE_CASE : str = np.asmatrix(_A ).reshape( _A , _A ) data_featuremap.append(_A ) # expanding the data slice to One dimenssion __SCREAMING_SNAKE_CASE : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_A ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(_A ) return focus_list, data_featuremap def UpperCAmelCase__ ( self : List[str] , _A : str , _A : Union[str, Any] , _A : Optional[int]="average_pool" ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = len(featuremaps[0] ) __SCREAMING_SNAKE_CASE : List[Any] = int(size_map / size_pooling ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] for i_map in range(len(_A ) ): __SCREAMING_SNAKE_CASE : Tuple = featuremaps[i_map] __SCREAMING_SNAKE_CASE : Dict = [] for i_focus in range(0 , _A , _A ): for j_focus in range(0 , _A , _A ): __SCREAMING_SNAKE_CASE : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_A ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.asmatrix(_A ).reshape(_A , _A ) featuremap_pooled.append(_A ) return featuremap_pooled def UpperCAmelCase__ ( self : Dict , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [] for i in range(len(_A ) ): __SCREAMING_SNAKE_CASE : Optional[int] = np.shape(data[i] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) __SCREAMING_SNAKE_CASE : List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(_A ) __SCREAMING_SNAKE_CASE : Tuple = np.asarray(_A ) return data_expanded def UpperCAmelCase__ ( self : List[Any] , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = np.asarray(_A ) __SCREAMING_SNAKE_CASE : List[str] = np.shape(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def UpperCAmelCase__ ( self : Dict , _A : Any , _A : Optional[Any] , _A : List[Any] , _A : Tuple , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 for i_map in range(_A ): __SCREAMING_SNAKE_CASE : Dict = np.ones((size_map, size_map) ) for i in range(0 , _A , _A ): for j in range(0 , _A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = pd_pool[ i_pool ] __SCREAMING_SNAKE_CASE : List[str] = i_pool + 1 __SCREAMING_SNAKE_CASE : Optional[Any] = np.multiply( _A , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_A ) return pd_all def UpperCAmelCase__ ( self : List[str] , _A : List[Any] , _A : str , _A : Any , _A : Union[str, Any] , _A : List[Any] , _A : Any=bool ): """simple docstring""" print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_A )) ) print((''' - - Shape: Teach_Data ''', np.shape(_A )) ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : str = 1_0000 while rp < n_repeat and mse >= error_accuracy: __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_A ) ): # print('------------Learning Image: %d--------------'%p) __SCREAMING_SNAKE_CASE : Tuple = np.asmatrix(datas_train[p] ) __SCREAMING_SNAKE_CASE : List[str] = np.asarray(datas_teach[p] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.pooling(_A , self.size_poolinga ) __SCREAMING_SNAKE_CASE : List[str] = np.shape(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._expand(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = data_bp_input __SCREAMING_SNAKE_CASE : Tuple = np.dot(_A , self.vji.T ) - self.thre_bpa __SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(_A , self.wkj.T ) - self.thre_bpa __SCREAMING_SNAKE_CASE : Dict = self.sig(_A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __SCREAMING_SNAKE_CASE : Union[str, Any] = np.multiply( (data_teach - bp_outa) , np.multiply(_A , (1 - bp_outa) ) ) __SCREAMING_SNAKE_CASE : str = np.multiply( np.dot(_A , self.wkj ) , np.multiply(_A , (1 - bp_outa) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(_A , self.vji ) __SCREAMING_SNAKE_CASE : List[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) __SCREAMING_SNAKE_CASE : Dict = pd_conva_pooled.T.getA().tolist() __SCREAMING_SNAKE_CASE : Optional[Any] = self._calculate_gradient_from_pool( _A , _A , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __SCREAMING_SNAKE_CASE : str = self._expand_mat(pd_conva_all[k_conv] ) __SCREAMING_SNAKE_CASE : Any = self.rate_weight * np.dot(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __SCREAMING_SNAKE_CASE : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __SCREAMING_SNAKE_CASE : List[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight __SCREAMING_SNAKE_CASE : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre __SCREAMING_SNAKE_CASE : int = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __SCREAMING_SNAKE_CASE : Dict = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __SCREAMING_SNAKE_CASE : List[str] = rp + 1 __SCREAMING_SNAKE_CASE : List[Any] = error_count / patterns all_mse.append(_A ) def draw_error(): __SCREAMING_SNAKE_CASE : Optional[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_A , '''+-''' ) plt.plot(_A , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_A , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def UpperCAmelCase__ ( self : Tuple , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_A )) ) for p in range(len(_A ) ): __SCREAMING_SNAKE_CASE : int = np.asmatrix(datas_test[p] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.pooling(_A , self.size_poolinga ) __SCREAMING_SNAKE_CASE : Dict = self._expand(_A ) __SCREAMING_SNAKE_CASE : str = data_bp_input __SCREAMING_SNAKE_CASE : Any = bp_outa * self.vji.T - self.thre_bpa __SCREAMING_SNAKE_CASE : Optional[int] = self.sig(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa __SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(_A ) produce_out.extend(bp_outa.getA().tolist() ) __SCREAMING_SNAKE_CASE : int = [list(map(self.do_round , _A ) ) for each in produce_out] return np.asarray(_A ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = np.asmatrix(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.pooling(_A , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
74
"""simple docstring""" import requests def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: UpperCAmelCase__ : List[str] = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : List[str] = requests.post(lowerCAmelCase , json={"""text""": message_body} , headers=lowerCAmelCase ) if response.status_code != 2_00: UpperCAmelCase__ : str = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
182
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE__ : str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def snake_case_ ( self ): return {self.text_column: "text", self.summary_column: "summary"}
714
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE_ ( snake_case : Any )-> str: _lowerCamelCase = filter(lambda snake_case : p.requires_grad , model.parameters() ) _lowerCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params A_ : List[str] =logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : Union[str, Any] )-> Tuple: if metric == "rouge2": _lowerCamelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCamelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCamelCase = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) _lowerCamelCase = ModelCheckpoint( dirpath=snake_case , filename=snake_case , monitor=f'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : Tuple )-> Optional[Any]: return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=snake_case , verbose=snake_case , ) class __a ( pl.Callback ): def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(a__ ) @rank_zero_only def snake_case_ ( self , a__ , a__ , a__ , a__=True ): logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) _lowerCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCamelCase = od / 'test_results.txt' _lowerCamelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCamelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' _lowerCamelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=a__ ) generations_file.parent.mkdir(exist_ok=a__ ) with open(a__ , 'a+' ) as writer: for key in sorted(a__ ): if key in ["log", "progress_bar", "preds"]: continue _lowerCamelCase = metrics[key] if isinstance(a__ , torch.Tensor ): _lowerCamelCase = val.item() _lowerCamelCase = F'{key}: {val:.6f}\n' writer.write(a__ ) if not save_generations: return if "preds" in metrics: _lowerCamelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(a__ ) @rank_zero_only def snake_case_ ( self , a__ , a__ ): try: _lowerCamelCase = pl_module.model.model.num_parameters() except AttributeError: _lowerCamelCase = pl_module.model.num_parameters() _lowerCamelCase = count_trainable_parameters(a__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def snake_case_ ( self , a__ , a__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(a__ , a__ , 'test' ) @rank_zero_only def snake_case_ ( self , a__ , a__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
222
0
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=14 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=99 , UpperCAmelCase__=32 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__=37 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=0.0_2 , ) -> List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = rotary_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = None a_ = vocab_size - 1 a_ = vocab_size - 1 a_ = vocab_size - 1 def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> str: a_ = 20 a_ = model_class_name(_A ) a_ = model.init_cache(input_ids.shape[0] , _A ) a_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) a_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) a_ = model( input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , ) a_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) a_ = model( input_ids[:, -1:] , attention_mask=_A , past_key_values=outputs_cache.past_key_values , position_ids=_A , ) a_ = model(_A ) a_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: a_ = 20 a_ = model_class_name(_A ) a_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) a_ = model.init_cache(input_ids.shape[0] , _A ) a_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) a_ = model( input_ids[:, :-1] , attention_mask=_A , past_key_values=_A , position_ids=_A , ) a_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) a_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_A , position_ids=_A , ) a_ = model(_A , attention_mask=_A ) a_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _snake_case ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _UpperCamelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = FlaxGPTJModelTester(self ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: for model_class_name in self.all_model_classes: a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_A , _A , _A , _A ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: for model_class_name in self.all_model_classes: a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _A , _A , _A , _A ) @tooslow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) a_ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_A , truncation=_A ) a_ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) a_ = False a_ = model.config.eos_token_id a_ = jax.jit(model.generate ) a_ = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences a_ = tokenizer.batch_decode(_A , skip_special_tokens=_A ) a_ = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_A , _A ) @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs a_ = self._prepare_for_class(_A , _A ) a_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class a_ = model_class.__name__[4:] # Skip the "Flax" at the beginning a_ = getattr(_A , _A ) a_ , a_ = pt_inputs['input_ids'].shape a_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): a_ = 0 a_ = 1 a_ = 0 a_ = 1 a_ = pt_model_class(_A ).eval() a_ = model_class(_A , dtype=jnp.floataa ) a_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A ) a_ = fx_state with torch.no_grad(): a_ = pt_model(**_A ).to_tuple() a_ = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) a_ = model_class.from_pretrained(_A , from_pt=_A ) a_ = fx_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs a_ = self._prepare_for_class(_A , _A ) a_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class a_ = model_class.__name__[4:] # Skip the "Flax" at the beginning a_ = getattr(_A , _A ) a_ = pt_model_class(_A ).eval() a_ = model_class(_A , dtype=jnp.floataa ) a_ = load_flax_weights_in_pytorch_model(_A , fx_model.params ) a_ , a_ = pt_inputs['input_ids'].shape a_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): a_ = 0 a_ = 1 a_ = 0 a_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): a_ = pt_model(**_A ).to_tuple() a_ = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) a_ = pt_model_class.from_pretrained(_A , from_flax=_A ) with torch.no_grad(): a_ = pt_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ) , len(_A ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_A , _A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: a_ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) a_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
697
"""simple docstring""" from __future__ import annotations import numpy as np def _lowerCAmelCase(a : list[float] ) -> Any: return np.maximum(0 , a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
255
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = '''gptj''' _A : Any = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , _a : Tuple=50_400 , _a : Optional[int]=2_048 , _a : Dict=4_096 , _a : Tuple=28 , _a : str=16 , _a : str=64 , _a : Optional[Any]=None , _a : List[str]="gelu_new" , _a : Any=0.0 , _a : Optional[Any]=0.0 , _a : Optional[int]=0.0 , _a : Any=1E-5 , _a : Any=0.02 , _a : Union[str, Any]=True , _a : Dict=50_256 , _a : Dict=50_256 , _a : Tuple=False , **_a : Optional[int] , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = n_positions UpperCamelCase__ = n_embd UpperCamelCase__ = n_layer UpperCamelCase__ = n_head UpperCamelCase__ = n_inner UpperCamelCase__ = rotary_dim UpperCamelCase__ = activation_function UpperCamelCase__ = resid_pdrop UpperCamelCase__ = embd_pdrop UpperCamelCase__ = attn_pdrop UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_range UpperCamelCase__ = use_cache UpperCamelCase__ = bos_token_id UpperCamelCase__ = eos_token_id super().__init__( bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a ) class __lowercase ( A ): '''simple docstring''' def __init__( self : Union[str, Any] , _a : PretrainedConfig , _a : str = "default" , _a : List[PatchingSpec] = None , _a : bool = False , ): super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? UpperCamelCase__ = 0 @property def A_ ( self : Any ): UpperCamelCase__ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) UpperCamelCase__ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCamelCase__ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def A_ ( self : List[Any] ): return self._config.n_layer @property def A_ ( self : List[Any] ): return self._config.n_head def A_ ( self : Dict , _a : PreTrainedTokenizer , _a : int = -1 , _a : int = -1 , _a : bool = False , _a : Optional[TensorType] = None , ): UpperCamelCase__ = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() UpperCamelCase__ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase__ , UpperCamelCase__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCamelCase__ = seqlen + 2 UpperCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase__ = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] UpperCamelCase__ = common_inputs['''attention_mask'''] if self.use_past: UpperCamelCase__ = ordered_inputs['''attention_mask'''].dtype UpperCamelCase__ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def A_ ( self : Dict ): return 13
591
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowercase = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
591
1
import os import string import sys UpperCamelCase = 1 << 8 UpperCamelCase = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCamelCase = KEYMAP['up'] UpperCamelCase = KEYMAP['left'] if sys.platform == "win32": UpperCamelCase = [] UpperCamelCase = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCamelCase = ord(str(i)) def lowerCamelCase_ ( ) -> Tuple: if os.name == "nt": import msvcrt __A : Union[str, Any] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowercase ) == 0: # Read the keystroke __A : List[str] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __A : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __A : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_lowercase ) if ord(_lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __A : Union[str, Any] = chr(KEYMAP["esc"] ) except KeyError: __A : Union[str, Any] = cha[1] else: __A : List[Any] = ch.decode(_lowercase ) else: __A : Any = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __A : Dict = sys.stdin.fileno() __A : str = termios.tcgetattr(_lowercase ) try: tty.setraw(_lowercase ) __A : int = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase ) return ch def lowerCamelCase_ ( ) -> Optional[Any]: __A : str = get_raw_chars() if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowercase ) == KEYMAP["esc"]: __A : List[Any] = get_raw_chars() if ord(_lowercase ) == KEYMAP["mod_int"]: __A : Any = get_raw_chars() if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
520
class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase ): __A : List[str] = val __A : str = None __A : List[Any] = None def __UpperCAmelCase( self , __UpperCAmelCase ): if self.val: if val < self.val: if self.left is None: __A : int = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: __A : int = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: __A : Any = val def lowerCamelCase_ ( _lowercase , _lowercase ) -> Tuple: # Recursive traversal if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def lowerCamelCase_ ( _lowercase ) -> str: # Build BST if len(_lowercase ) == 0: return arr __A : Union[str, Any] = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. __A : str = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
520
1
"""simple docstring""" _a : Tuple = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _a : List[Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def a__ ( a : float , a : str , a : str ): """simple docstring""" _snake_case : List[Any] = from_type.lower().strip("s" ) _snake_case : Dict = to_type.lower().strip("s" ) _snake_case : Tuple = UNIT_SYMBOL.get(a , a ) _snake_case : Optional[int] = UNIT_SYMBOL.get(a , a ) if from_sanitized not in METRIC_CONVERSION: _snake_case : Tuple = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(a )}' ) raise ValueError(a ) if to_sanitized not in METRIC_CONVERSION: _snake_case : int = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(a )}' ) raise ValueError(a ) _snake_case : Dict = METRIC_CONVERSION[from_sanitized] _snake_case : Union[str, Any] = METRIC_CONVERSION[to_sanitized] _snake_case : Dict = 1 if from_exponent > to_exponent: _snake_case : Union[str, Any] = from_exponent - to_exponent else: _snake_case : Tuple = -(to_exponent - from_exponent) return value * pow(10 , a ) if __name__ == "__main__": from doctest import testmod testmod()
87
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a : Optional[int] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
1
from math import pow, sqrt def _A ( *_lowercase ) -> bool: """simple docstring""" __UpperCamelCase = len(_lowercase ) > 0 and all(value > 0.0 for value in values ) return result def _A ( _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _A ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ : Any = 'true' def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16): set_seed(42) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(_UpperCAmelCase) SCREAMING_SNAKE_CASE = RegressionDataset(length=_UpperCAmelCase) SCREAMING_SNAKE_CASE = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase) model.to(accelerator.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return model, ddp_model, dataloader def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased') SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation') def tokenize_function(_UpperCAmelCase): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(_UpperCAmelCase): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt') return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt') return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase) SCREAMING_SNAKE_CASE = get_dataloader(_UpperCAmelCase , not dispatch_batches) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase) targs.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(_UpperCAmelCase), torch.cat(_UpperCAmelCase) return logits, targs def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) assert ( len(_UpperCAmelCase) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase)}''' def lowerCamelCase__ (_UpperCAmelCase = False , _UpperCAmelCase = False): SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(_UpperCAmelCase) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels']) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key]), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''') test_mrpc(_UpperCAmelCase , _UpperCAmelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''') test_torch_metrics(_UpperCAmelCase , 99) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**') SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(_UpperCAmelCase , 512) accelerator.state._reset_state() def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
73
0
_lowerCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Tuple = [False] * len(_lowerCAmelCase ) A_ : Optional[int] = [s] A_ : str = True while queue: A_ : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) A_ : Optional[int] = True A_ : Tuple = u return visited[t] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = [-1] * (len(_lowerCAmelCase )) A_ : List[str] = 0 A_ : Union[str, Any] = [] A_ : str = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): A_ : Optional[Any] = float("""Inf""" ) A_ : Dict = sink while s != source: # Find the minimum value in select path A_ : str = min(_lowerCAmelCase ,graph[parent[s]][s] ) A_ : Optional[Any] = parent[s] max_flow += path_flow A_ : Dict = sink while v != source: A_ : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A_ : Optional[int] = parent[v] for i in range(len(_lowerCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
709
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase : def __init__( self , a__ , a__=13 , a__=10 , a__=3 , a__=2 , a__=2 , a__=2 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=0.9 , a__=None , ): A_ : Tuple = parent A_ : Union[str, Any] = batch_size A_ : str = image_size A_ : Union[str, Any] = num_channels A_ : List[str] = patch_size A_ : Optional[Any] = tubelet_size A_ : List[Any] = num_frames A_ : str = is_training A_ : List[Any] = use_labels A_ : List[str] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : str = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Dict = hidden_act A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Union[str, Any] = type_sequence_label_size A_ : int = initializer_range A_ : Dict = mask_ratio A_ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A_ : int = (image_size // patch_size) ** 2 A_ : Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A_ : Dict = int(mask_ratio * self.seq_length ) def _lowerCamelCase ( self ): A_ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[int] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Dict = VideoMAEModel(config=a__ ) model.to(a__ ) model.eval() A_ : Dict = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Optional[Any] = VideoMAEForPreTraining(a__ ) model.to(a__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.num_masks,) ) A_ : Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A_ : int = mask.expand(self.batch_size , -1 ).bool() A_ : List[Any] = model(a__ , a__ ) # model only returns predictions for masked patches A_ : Union[str, Any] = mask.sum().item() A_ : Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCamelCase ( self ): A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[Any] = config_and_inputs A_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def _lowerCamelCase ( self ): A_ : int = VideoMAEModelTester(self ) A_ : Any = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _lowerCamelCase ( self , a__ , a__ , a__=False ): A_ : Optional[Any] = copy.deepcopy(a__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.model_tester.num_masks,) ) A_ : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A_ : Union[str, Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() A_ : int = bool_masked_pos.to(a__ ) if return_labels: if model_class in [ *get_values(a__ ), ]: A_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _lowerCamelCase ( self ): A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(a__ ) A_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _lowerCamelCase ( self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowerCamelCase ( self ): A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) @slow def _lowerCamelCase ( self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Any = VideoMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCamelCase ( self ): if not self.has_attentions: pass else: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[int] = True for model_class in self.all_model_classes: A_ : str = self.model_tester.seq_length - self.model_tester.num_masks A_ : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A_ : Optional[int] = True A_ : Optional[Any] = False A_ : List[Any] = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : List[Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Dict = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ : List[Any] = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : int = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Any = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A_ : Union[str, Any] = len(a__ ) # Check attention is always last and order is fine A_ : Optional[Any] = True A_ : int = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 1 , len(a__ ) ) A_ : Optional[Any] = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ): def check_hidden_states_output(a__ , a__ , a__ ): A_ : str = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Optional[Any] = outputs.hidden_states A_ : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a__ ) , a__ ) A_ : str = self.model_tester.seq_length - self.model_tester.num_masks A_ : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Tuple = True check_hidden_states_output(a__ , a__ , a__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCamelCase ( self ): pass def _lowerCAmelCase ( ): '''simple docstring''' A_ : int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) A_ : Optional[int] = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): A_ : List[str] = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( a__ ) A_ : Any = self.default_image_processor A_ : Optional[Any] = prepare_video() A_ : Union[str, Any] = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): A_ : Any = model(**a__ ) # verify the logits A_ : List[str] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , a__ ) A_ : Optional[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): A_ : int = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(a__ ) A_ : str = self.default_image_processor A_ : Any = prepare_video() A_ : Union[str, Any] = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # add boolean mask, indicating which patches to mask A_ : Optional[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Dict = torch.load(a__ ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**a__ ) # verify the logits A_ : int = torch.Size([1, 1408, 1536] ) A_ : Union[str, Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=a__ ) self.assertEqual(outputs.logits.shape , a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A_ : Optional[Any] = torch.tensor([0.5142] , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A_ : Optional[int] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=a__ ).to( a__ ) with torch.no_grad(): A_ : Optional[Any] = model(**a__ ) A_ : List[Any] = torch.tensor(torch.tensor([0.6469] ) , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) )
481
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : List[Any] = 32 def lowerCAmelCase_ (lowercase__ : Accelerator , lowercase__ : int = 16 ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowercase__ , padding='''longest''' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCAmelCase_ (lowercase__ : List[str] , lowercase__ : str ) -> Optional[Any]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase__ ) == "1": lowerCAmelCase__ = 2 # New Code # lowerCAmelCase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['''lr'''] lowerCAmelCase__ = int(config['''num_epochs'''] ) lowerCAmelCase__ = int(config['''seed'''] ) lowerCAmelCase__ = int(config['''batch_size'''] ) lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase__ ): lowerCAmelCase__ = model(**lowercase__ ) lowerCAmelCase__ = output.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowercase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) def lowerCAmelCase_ () -> int: '''simple docstring''' lowerCAmelCase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase__ , default=lowercase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
668
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _a ( a :Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: a = [] a = [] a = [] for rt in rc.restypes: a = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) a = {name: i for i, name in enumerate(a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) a = torch.tensor( a , dtype=torch.intaa , device=protein['''aatype'''].device , ) a = torch.tensor( a , dtype=torch.intaa , device=protein['''aatype'''].device , ) a = torch.tensor( a , dtype=torch.floataa , device=protein['''aatype'''].device , ) a = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein a = restype_atomaa_to_atomaa[protein_aatype] a = restype_atomaa_mask[protein_aatype] a = residx_atomaa_mask a = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back a = restype_atomaa_to_atomaa[protein_aatype] a = residx_atomaa_to_atomaa.long() # create the corresponding mask a = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): a = rc.restype_atoa[restype_letter] a = rc.residue_atoms[restype_name] for atom_name in atom_names: a = rc.atom_order[atom_name] a = 1 a = restype_atomaa_mask[protein_aatype] a = residx_atomaa_mask return protein def _a ( a :Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: a = tree_map(lambda a : torch.tensor(a , device=batch['''aatype'''].device ) , a , np.ndarray ) a = tensor_tree_map(lambda a : np.array(a ) , make_atomaa_masks(a ) ) return out
117
0
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : List[Any] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['input_values', 'attention_mask'] def __init__( self ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 1_60_00 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = False ,_lowerCAmelCase = 80 ,_lowerCAmelCase = 16 ,_lowerCAmelCase = 64 ,_lowerCAmelCase = "hann_window" ,_lowerCAmelCase = 1.0 ,_lowerCAmelCase = 80 ,_lowerCAmelCase = 76_00 ,_lowerCAmelCase = 1E-10 ,_lowerCAmelCase = 2 ,_lowerCAmelCase = True ,**_lowerCAmelCase ,): super().__init__(feature_size=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,padding_value=_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = do_normalize lowerCamelCase__ = return_attention_mask lowerCamelCase__ = num_mel_bins lowerCamelCase__ = hop_length lowerCamelCase__ = win_length lowerCamelCase__ = win_function lowerCamelCase__ = frame_signal_scale lowerCamelCase__ = fmin lowerCamelCase__ = fmax lowerCamelCase__ = mel_floor lowerCamelCase__ = reduction_factor lowerCamelCase__ = win_length * sampling_rate // 10_00 lowerCamelCase__ = hop_length * sampling_rate // 10_00 lowerCamelCase__ = optimal_fft_length(self.sample_size ) lowerCamelCase__ = (self.n_fft // 2) + 1 lowerCamelCase__ = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=_lowerCAmelCase ) lowerCamelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.num_mel_bins ,min_frequency=self.fmin ,max_frequency=self.fmax ,sampling_rate=self.sampling_rate ,norm="""slaney""" ,mel_scale="""slaney""" ,) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" ,_lowerCAmelCase ,) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" ,_lowerCAmelCase ,) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 0.0 ): if attention_mask is not None: lowerCamelCase__ = np.array(_lowerCAmelCase ,np.intaa ) lowerCamelCase__ = [] for vector, length in zip(_lowerCAmelCase ,attention_mask.sum(-1 ) ): lowerCamelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCamelCase__ = padding_value normed_input_values.append(_lowerCAmelCase ) else: lowerCamelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def UpperCamelCase_ ( self ,_lowerCAmelCase ,): lowerCamelCase__ = spectrogram( _lowerCAmelCase ,window=self.window ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,mel_filters=self.mel_filters ,mel_floor=self.mel_floor ,log_mel="""log10""" ,) return log_mel_spec.T def __call__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: lowerCamelCase__ = self._process_audio( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ,) else: lowerCamelCase__ = None if audio_target is not None: lowerCamelCase__ = self._process_audio( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ,) if inputs is None: return inputs_target else: lowerCamelCase__ = inputs_target["""input_values"""] lowerCamelCase__ = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ = decoder_attention_mask return inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): lowerCamelCase__ = isinstance(_lowerCAmelCase ,np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ = is_batched_numpy or ( isinstance(_lowerCAmelCase ,(list, tuple) ) and (isinstance(speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCAmelCase ,np.ndarray ): lowerCamelCase__ = np.asarray(_lowerCAmelCase ,dtype=np.floataa ) elif isinstance(_lowerCAmelCase ,np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ = [speech] # needed to make pad() work on spectrogram inputs lowerCamelCase__ = self.feature_size # convert into correct format for padding if is_target: lowerCamelCase__ = [self._extract_mel_features(_lowerCAmelCase ) for waveform in speech] lowerCamelCase__ = BatchFeature({"""input_values""": features} ) lowerCamelCase__ = self.num_mel_bins else: lowerCamelCase__ = BatchFeature({"""input_values""": speech} ) lowerCamelCase__ = self.pad( _lowerCAmelCase ,padding=_lowerCAmelCase ,max_length=_lowerCAmelCase ,truncation=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = feature_size_hack # convert input values to correct format lowerCamelCase__ = padded_inputs["""input_values"""] if not isinstance(input_values[0] ,np.ndarray ): lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCAmelCase ,np.ndarray ) and isinstance(input_values[0] ,np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCamelCase__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCAmelCase ,np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCamelCase__ = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCamelCase__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCamelCase__ = ( attention_mask if self._get_padding_strategies(_lowerCAmelCase ,max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase__ = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] ,attention_mask=_lowerCAmelCase ,padding_value=self.padding_value ) if return_tensors is not None: lowerCamelCase__ = padded_inputs.convert_to_tensors(_lowerCAmelCase ) return padded_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCamelCase__ = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
9
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
1
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict ) -> Any: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection SCREAMING_SNAKE_CASE_ : List[Any] =len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] =min(UpperCAmelCase_ ) # create the counting array SCREAMING_SNAKE_CASE_ : List[Any] =coll_max + 1 - coll_min SCREAMING_SNAKE_CASE_ : List[Any] =[0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Any =counting_arr[i] + counting_arr[i - 1] # create the output collection SCREAMING_SNAKE_CASE_ : Optional[Any] =[0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] ) -> Dict: return "".join([chr(UpperCAmelCase_ ) for i in counting_sort([ord(UpperCAmelCase_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" _lowercase = input("""Enter numbers separated by a comma:\n""").strip() _lowercase = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
443
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list ) -> float: SCREAMING_SNAKE_CASE_ : Dict =0 while len(UpperCAmelCase_ ) > 1: SCREAMING_SNAKE_CASE_ : Tuple =0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE_ : int =files.index(min(UpperCAmelCase_ ) ) temp += files[min_index] files.pop(UpperCAmelCase_ ) files.append(UpperCAmelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
443
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : int = 0 lowerCAmelCase__ : bool = False lowerCAmelCase__ : float = 3.0 class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=__lowerCAmelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def _UpperCAmelCase ( self: str ) -> int: '''simple docstring''' __UpperCAmelCase = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __UpperCAmelCase = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCAmelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , __lowerCAmelCase ) @require_multi_gpu def _UpperCAmelCase ( self: List[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": a_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) a_ = Accelerator(kwargs_handlers=[ddp_scaler]) a_ = torch.nn.Linear(100, 200) a_ = accelerator.prepare(model) # Check the values changed in kwargs a_ = """""" a_ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
721
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration a_ = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def __lowerCAmelCase ( A_ : Optional[int] ) -> str: __UpperCAmelCase = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(A_ , A_ ) a_ = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def __lowerCAmelCase ( A_ : str ) -> List[str]: __UpperCAmelCase = list(s_dict.keys() ) for key in keys: __UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCAmelCase = new_key.replace(A_ , A_ ) print(F'''{key} -> {new_key}''' ) __UpperCAmelCase = s_dict.pop(A_ ) return s_dict def __lowerCAmelCase ( A_ : List[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(A_ , A_ , bias=A_ ) __UpperCAmelCase = emb.weight.data return lin_layer def __lowerCAmelCase ( A_ : str , A_ : str ) -> bytes: os.makedirs(A_ , exist_ok=A_ ) __UpperCAmelCase = os.path.basename(A_ ) __UpperCAmelCase = url.split("/" )[-2] __UpperCAmelCase = os.path.join(A_ , A_ ) if os.path.exists(A_ ) and not os.path.isfile(A_ ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(A_ ): __UpperCAmelCase = open(A_ , "rb" ).read() if hashlib.shaaaa(A_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(A_ ) as source, open(A_ , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=A_ , unit_divisor=10_24 ) as loop: while True: __UpperCAmelCase = source.read(81_92 ) if not buffer: break output.write(A_ ) loop.update(len(A_ ) ) __UpperCAmelCase = open(A_ , "rb" ).read() if hashlib.shaaaa(A_ ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __lowerCAmelCase ( A_ : Dict , A_ : Optional[Any] ) -> Optional[Any]: if ".pt" not in checkpoint_path: __UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: __UpperCAmelCase = torch.load(A_ , map_location="cpu" ) __UpperCAmelCase = original_checkpoint["dims"] __UpperCAmelCase = original_checkpoint["model_state_dict"] __UpperCAmelCase = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(A_ ) rename_keys(A_ ) __UpperCAmelCase = True __UpperCAmelCase = state_dict["decoder.layers.0.fc1.weight"].shape[0] __UpperCAmelCase = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=A_ , decoder_ffn_dim=A_ , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) __UpperCAmelCase = WhisperForConditionalGeneration(A_ ) __UpperCAmelCase , __UpperCAmelCase = model.model.load_state_dict(A_ , strict=A_ ) if len(A_ ) > 0 and not set(A_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F''' but all the following weights are missing {missing}''' ) if tie_embeds: __UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCAmelCase = proj_out_weights model.save_pretrained(A_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
286
0
'''simple docstring''' import numpy as np from transformers import Pipeline def lowercase__( __UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.max(__lowerCAmelCase ,axis=-1 ,keepdims=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__lowerCAmelCase ) class _a ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase_ ( self, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {} if "second_text" in kwargs: SCREAMING_SNAKE_CASE : Optional[Any] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' return self.tokenizer(__lowercase, text_pair=__lowercase, return_tensors=self.framework ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.model(**__lowercase ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = model_outputs.logits[0].numpy() SCREAMING_SNAKE_CASE : Optional[Any] = softmax(__lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = np.argmax(__lowercase ) SCREAMING_SNAKE_CASE : Tuple = self.model.config.idalabel[best_class] SCREAMING_SNAKE_CASE : Any = probabilities[best_class].item() SCREAMING_SNAKE_CASE : Optional[int] = logits.tolist() return {"label": label, "score": score, "logits": logits}
28
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = " " ) -> list: """simple docstring""" snake_case__ : str = [] snake_case__ : int = 0 for index, char in enumerate(__lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) snake_case__ : Dict = index + 1 elif index + 1 == len(__lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
252
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCAmelCase : Dict = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _lowerCAmelCase : Dict = value else: _lowerCAmelCase : Any = value return new_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = '' if is_panoptic: _lowerCAmelCase : Optional[Any] = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Tuple = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : List[Any] = in_proj_bias[:256] _lowerCAmelCase : Dict = in_proj_weight[256:512, :] _lowerCAmelCase : Union[str, Any] = in_proj_bias[256:512] _lowerCAmelCase : Any = in_proj_weight[-256:, :] _lowerCAmelCase : Any = in_proj_bias[-256:] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _lowerCAmelCase : Dict = 'resnet101' if "dc5" in model_name: _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Dict = 'panoptic' in model_name if is_panoptic: _lowerCAmelCase : List[str] = 250 else: _lowerCAmelCase : str = 91 _lowerCAmelCase : Any = 'huggingface/label-files' _lowerCAmelCase : List[str] = 'coco-detection-id2label.json' _lowerCAmelCase : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : Any = {v: k for k, v in idalabel.items()} # load image processor _lowerCAmelCase : Optional[int] = 'coco_panoptic' if is_panoptic else 'coco_detection' _lowerCAmelCase : str = ConditionalDetrImageProcessor(format=_lowerCamelCase ) # prepare image _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : int = image_processor(images=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase : Dict = encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub _lowerCAmelCase : Any = torch.hub.load('DeppMeng/ConditionalDETR' , _lowerCamelCase , pretrained=_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _lowerCAmelCase : Optional[Any] = 'conditional_detr.' + src rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = rename_backbone_keys(_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase , is_panoptic=_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Dict = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _lowerCAmelCase : List[Any] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCAmelCase : Any = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Dict = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _lowerCAmelCase : str = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : List[str] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : str = ConditionalDetrForSegmentation(_lowerCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() model.push_to_hub(repo_id=_lowerCamelCase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion _lowerCAmelCase : List[Any] = conditional_detr(_lowerCamelCase ) _lowerCAmelCase : Dict = model(_lowerCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase_ : Dict = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class lowercase__ : '''simple docstring''' A_ : str A_ : Optional[str] = None A_ : Optional[Union[str, int]] = None A_ : Optional[Union[str, int]] = None A_ : Optional[Union[str, int]] = None def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self ): return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def UpperCAmelCase_ ( self ): return self.major, self.minor, self.patch def UpperCAmelCase_ ( self , __snake_case ): if isinstance(__snake_case , __snake_case ): return Version(__snake_case ) elif isinstance(__snake_case , __snake_case ): return other raise TypeError(f"""{other} (type {type(__snake_case )}) cannot be compared to version.""" ) def __eq__( self , __snake_case ): try: _SCREAMING_SNAKE_CASE : Any = self._validate_operand(__snake_case ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self._validate_operand(__snake_case ) return self.tuple < other.tuple def __hash__( self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCAmelCase_ ( cls , __snake_case ): _SCREAMING_SNAKE_CASE : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCAmelCase_ ( self ): return self.version_str def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = _VERSION_REG.match(SCREAMING_SNAKE_CASE__ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(SCREAMING_SNAKE_CASE__ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return ".".join(str(SCREAMING_SNAKE_CASE__ ) for v in version_tuple )
533
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase_ : List[Any] = '.' if __name__ == "__main__": UpperCAmelCase_ : Any = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Union[str, Any] = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase_ : int = line.strip() UpperCAmelCase_ : str = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase_ : int = '\n'.join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
533
1
import unittest from knapsack import knapsack as k class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [0] SCREAMING_SNAKE_CASE = [0] SCREAMING_SNAKE_CASE = len(a ) self.assertEqual(k.knapsack(a , a , a , a ) , 0 ) SCREAMING_SNAKE_CASE = [60] SCREAMING_SNAKE_CASE = [10] SCREAMING_SNAKE_CASE = len(a ) self.assertEqual(k.knapsack(a , a , a , a ) , 0 ) def _UpperCAmelCase ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = [1, 2, 3] SCREAMING_SNAKE_CASE = [3, 2, 1] SCREAMING_SNAKE_CASE = len(a ) self.assertEqual(k.knapsack(a , a , a , a ) , 5 ) def _UpperCAmelCase ( self : str ) -> str: SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = [60, 100, 120] SCREAMING_SNAKE_CASE = [10, 20, 30] SCREAMING_SNAKE_CASE = len(a ) self.assertEqual(k.knapsack(a , a , a , a ) , 220 ) if __name__ == "__main__": unittest.main()
450
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=a ).to(a ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""google/mt5-small""" ) SCREAMING_SNAKE_CASE = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE = model(input_ids.to(a ) , labels=labels.to(a ) ).loss SCREAMING_SNAKE_CASE = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
450
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( lowercase_ : str , lowercase_ : list[str] | None = None , lowercase_ : dict[str, float] | None = None , lowercase_ : bool = False , ): """simple docstring""" a_ = cipher_alphabet or [chr(lowercase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) a_ = { 'a': 0.0_8497, 'b': 0.0_1492, 'c': 0.0_2202, 'd': 0.0_4253, 'e': 0.1_1162, 'f': 0.0_2228, 'g': 0.0_2015, 'h': 0.0_6094, 'i': 0.0_7546, 'j': 0.0_0153, 'k': 0.0_1292, 'l': 0.0_4025, 'm': 0.0_2406, 'n': 0.0_6749, 'o': 0.0_7507, 'p': 0.0_1929, 'q': 0.0_0095, 'r': 0.0_7587, 's': 0.0_6327, 't': 0.0_9356, 'u': 0.0_2758, 'v': 0.0_0978, 'w': 0.0_2560, 'x': 0.0_0150, 'y': 0.0_1994, 'z': 0.0_0077, } else: # Custom frequencies dictionary a_ = frequencies_dict if not case_sensitive: a_ = ciphertext.lower() # Chi squared statistic values a_ = {} # cycle through all of the shifts for shift in range(len(lowercase_ ) ): a_ = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet a_ = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter a_ = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: a_ = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message a_ = decrypted_with_shift.lower().count(lowercase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a_ = frequencies[letter] * occurrences # Complete the chi squared statistic formula a_ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message a_ = decrypted_with_shift.count(lowercase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a_ = frequencies[letter] * occurrences # Complete the chi squared statistic formula a_ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary a_ = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] a_ = min( lowercase_ , key=lowercase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( a_ ) , ( a_ ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
536
'''simple docstring''' import os import sys import unittest __lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __lowerCAmelCase = os.path.join("tests", "models", "bert", "test_modeling_bert.py") __lowerCAmelCase = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def _a ( self ): """simple docstring""" a_ = get_test_to_tester_mapping(UpperCamelCase__ ) a_ = get_test_to_tester_mapping(UpperCamelCase__ ) a_ = {'BertModelTest': 'BertModelTester'} a_ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(get_test_info.to_json(UpperCamelCase__ ) , UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = get_model_to_test_mapping(UpperCamelCase__ ) a_ = get_model_to_test_mapping(UpperCamelCase__ ) a_ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } a_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(get_test_info.to_json(UpperCamelCase__ ) , UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = get_model_to_tester_mapping(UpperCamelCase__ ) a_ = get_model_to_tester_mapping(UpperCamelCase__ ) a_ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } a_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(get_test_info.to_json(UpperCamelCase__ ) , UpperCamelCase__ )
536
1
"""simple docstring""" from manim import * class _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" def _UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Any = Rectangle(height=0.5 , width=0.5 ) __magic_name__ : str = Rectangle(height=0.25 , width=0.25 ) __magic_name__ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __magic_name__ : Union[str, Any] = [mem.copy() for i in range(6 )] __magic_name__ : Tuple = [mem.copy() for i in range(6 )] __magic_name__ : Dict = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : List[Any] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Optional[int] = VGroup(_a , _a ).arrange(_a , buff=0 ) __magic_name__ : Dict = Text('''CPU''' , font_size=24 ) __magic_name__ : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) __magic_name__ : List[Any] = [mem.copy() for i in range(4 )] __magic_name__ : List[Any] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Optional[Any] = Text('''GPU''' , font_size=24 ) __magic_name__ : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) __magic_name__ : List[Any] = [mem.copy() for i in range(6 )] __magic_name__ : Optional[int] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Tuple = Text('''Model''' , font_size=24 ) __magic_name__ : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) __magic_name__ : Optional[int] = [] __magic_name__ : Tuple = [] __magic_name__ : List[Any] = [] for i, rect in enumerate(_a ): rect.set_stroke(_a ) __magic_name__ : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) __magic_name__ : List[Any] = [mem.copy() for i in range(6 )] __magic_name__ : Any = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Any = Text('''Loaded Checkpoint''' , font_size=24 ) __magic_name__ : str = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) __magic_name__ : int = [] __magic_name__ : List[str] = [] for i, rect in enumerate(_a ): __magic_name__ : Optional[Any] = fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) __magic_name__ : Union[str, Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) __magic_name__ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __magic_name__ : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) __magic_name__ : Optional[Any] = MarkupText( f"""<span fgcolor=\'{BLUE}\'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) __magic_name__ : Optional[int] = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __magic_name__ : List[Any] = [meta_mem.copy() for i in range(6 )] __magic_name__ : List[str] = [meta_mem.copy() for i in range(6 )] __magic_name__ : Union[str, Any] = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Tuple = VGroup(*_a ).arrange(_a , buff=0 ) __magic_name__ : Any = VGroup(_a , _a ).arrange(_a , buff=0 ) __magic_name__ : Tuple = Text('''Disk''' , font_size=24 ) __magic_name__ : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) __magic_name__ : Optional[int] = [] for i, rect in enumerate(_a ): __magic_name__ : Optional[int] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) __magic_name__ : List[Any] = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
710
"""simple docstring""" def UpperCamelCase_ ( lowerCamelCase : float ) -> float: """simple docstring""" return 10 - x * x def UpperCamelCase_ ( lowerCamelCase : float , lowerCamelCase : float ) -> float: """simple docstring""" if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError('''Wrong space!''' ) __magic_name__ : int = a while (b - a) >= 0.0_1: # Find middle point __magic_name__ : str = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: __magic_name__ : Union[str, Any] = c else: __magic_name__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
147
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : torch.FloatTensor class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , UpperCamelCase__ = 6_5536 , UpperCamelCase__ = None , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = 0 , UpperCamelCase__ = "fourier" , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = 0.0 , UpperCamelCase__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCamelCase__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCamelCase__ = "UNetMidBlock1D" , UpperCamelCase__ = None , UpperCamelCase__ = (32, 32, 64) , UpperCamelCase__ = None , UpperCamelCase__ = 8 , UpperCamelCase__ = 1 , UpperCamelCase__ = False , ) -> str: super().__init__() lowerCamelCase : Dict = sample_size # time if time_embedding_type == "fourier": lowerCamelCase : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCamelCase__ , log=UpperCamelCase__ , flip_sin_to_cos=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCamelCase__ , downscale_freq_shift=UpperCamelCase__ ) lowerCamelCase : str = block_out_channels[0] if use_timestep_embedding: lowerCamelCase : Optional[int] = block_out_channels[0] * 4 lowerCamelCase : Optional[int] = TimestepEmbedding( in_channels=UpperCamelCase__ , time_embed_dim=UpperCamelCase__ , act_fn=UpperCamelCase__ , out_dim=block_out_channels[0] , ) lowerCamelCase : Optional[int] = nn.ModuleList([] ) lowerCamelCase : Union[str, Any] = None lowerCamelCase : Optional[Any] = nn.ModuleList([] ) lowerCamelCase : str = None # down lowerCamelCase : List[Any] = in_channels for i, down_block_type in enumerate(UpperCamelCase__ ): lowerCamelCase : List[Any] = output_channel lowerCamelCase : Any = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase : Optional[Any] = i == len(UpperCamelCase__ ) - 1 lowerCamelCase : Dict = get_down_block( UpperCamelCase__ , num_layers=UpperCamelCase__ , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCamelCase__ ) # mid lowerCamelCase : Union[str, Any] = get_mid_block( UpperCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCamelCase__ , add_downsample=UpperCamelCase__ , ) # up lowerCamelCase : Union[str, Any] = list(reversed(UpperCamelCase__ ) ) lowerCamelCase : Tuple = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase : Optional[int] = out_channels else: lowerCamelCase : int = block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): lowerCamelCase : str = output_channel lowerCamelCase : List[Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCamelCase__ ) - 1 else final_upsample_channels ) lowerCamelCase : Optional[int] = i == len(UpperCamelCase__ ) - 1 lowerCamelCase : List[str] = get_up_block( UpperCamelCase__ , num_layers=UpperCamelCase__ , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCamelCase__ ) lowerCamelCase : Dict = output_channel # out lowerCamelCase : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase : Any = get_out_block( out_block_type=UpperCamelCase__ , num_groups_out=UpperCamelCase__ , embed_dim=block_out_channels[0] , out_channels=UpperCamelCase__ , act_fn=UpperCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase : str = timestep if not torch.is_tensor(UpperCamelCase__ ): lowerCamelCase : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCamelCase__ ) and len(timesteps.shape ) == 0: lowerCamelCase : Dict = timesteps[None].to(sample.device ) lowerCamelCase : str = self.time_proj(UpperCamelCase__ ) if self.config.use_timestep_embedding: lowerCamelCase : Union[str, Any] = self.time_mlp(UpperCamelCase__ ) else: lowerCamelCase : Optional[int] = timestep_embed[..., None] lowerCamelCase : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase : str = () for downsample_block in self.down_blocks: lowerCamelCase , lowerCamelCase : Union[str, Any] = downsample_block(hidden_states=UpperCamelCase__ , temb=UpperCamelCase__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase : Any = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase : Dict = down_block_res_samples[-1:] lowerCamelCase : str = down_block_res_samples[:-1] lowerCamelCase : Union[str, Any] = upsample_block(UpperCamelCase__ , res_hidden_states_tuple=UpperCamelCase__ , temb=UpperCamelCase__ ) # 5. post-process if self.out_block: lowerCamelCase : Any = self.out_block(UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCamelCase__ )
311
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase__ : '''simple docstring''' lowerCamelCase_ : List[Any] = BlenderbotSmallConfig lowerCamelCase_ : int = {} lowerCamelCase_ : Optional[int] = """gelu""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=20 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0 , ) -> List[Any]: lowerCamelCase : Any = parent lowerCamelCase : Any = batch_size lowerCamelCase : Any = seq_length lowerCamelCase : int = is_training lowerCamelCase : Tuple = use_labels lowerCamelCase : List[Any] = vocab_size lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Tuple = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : Optional[Any] = eos_token_id lowerCamelCase : List[Any] = pad_token_id lowerCamelCase : int = bos_token_id def _lowercase ( self ) -> int: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase : Optional[int] = prepare_blenderbot_small_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: lowerCamelCase : Dict = TFBlenderbotSmallModel(config=UpperCamelCase__ ).get_decoder() lowerCamelCase : str = inputs_dict["input_ids"] lowerCamelCase : List[str] = input_ids[:1, :] lowerCamelCase : str = inputs_dict["attention_mask"][:1, :] lowerCamelCase : str = inputs_dict["head_mask"] lowerCamelCase : Tuple = 1 # first forward pass lowerCamelCase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowerCamelCase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,) -> Optional[int]: if attention_mask is None: lowerCamelCase : Dict = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: lowerCamelCase : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : str = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCamelCase_ : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCamelCase_ : int = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : List[Any] = False lowerCamelCase_ : str = False def _lowercase ( self ) -> Dict: lowerCamelCase : str = TFBlenderbotSmallModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=UpperCamelCase__ ) def _lowercase ( self ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_tokenizers @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : int = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] lowerCamelCase_ : Dict = """facebook/blenderbot_small-90M""" @cached_property def _lowercase ( self ) -> Optional[int]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowercase ( self ) -> Tuple: lowerCamelCase : int = self.tokenizer(self.src_text , return_tensors="tf" ) lowerCamelCase : Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase__ , ) lowerCamelCase : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
311
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Tuple = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 1_4 ): if group not in primes: raise ValueError("""Unsupported Group""" ) snake_case__ : Any = primes[group]["prime"] snake_case__ : str = primes[group]["generator"] snake_case__ : List[str] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def __UpperCamelCase ( self ): return hex(self.__private_key )[2:] def __UpperCamelCase ( self ): snake_case__ : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(__lowerCamelCase )[2:] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = int(__lowerCamelCase , base=1_6 ) if not self.is_valid_public_key(__lowerCamelCase ): raise ValueError("""Invalid public key""" ) snake_case__ : str = pow(__lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() @staticmethod def __UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowerCamelCase , (prime - 1) // 2 , __lowerCamelCase ) == 1 ) @staticmethod def __UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1_4 ): snake_case__ : Any = int(__lowerCamelCase , base=1_6 ) snake_case__ : Tuple = int(__lowerCamelCase , base=1_6 ) snake_case__ : Optional[Any] = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""Invalid public key""" ) snake_case__ : Dict = pow(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : str = image_size snake_case__ : List[str] = patch_size snake_case__ : str = num_channels snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : List[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Tuple = type_sequence_label_size snake_case__ : int = initializer_range snake_case__ : Tuple = scope snake_case__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Dict = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = ViTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = ViTForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : str = 1 snake_case__ : Any = ViTForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = self.type_sequence_label_size snake_case__ : Optional[int] = ViTForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : str = 1 snake_case__ : Tuple = ViTForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): snake_case__ : str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : str = config_and_inputs snake_case__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase__ = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ViTModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = ViTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case__ : str = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_8_0 ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : Any = inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE , interpolate_pos_encoding=__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : Any = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) snake_case__ : Tuple = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : Tuple = inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE )
419
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a : _snake_case : List[Any] = 42 # [batch_size x 3] _snake_case : int = 42 # [batch_size x 3] _snake_case : List[str] = 42 # [batch_size x 3] _snake_case : Optional[int] = 42 # [batch_size x 3] _snake_case : Optional[Any] = 42 _snake_case : Any = 42 _snake_case : Dict = 42 _snake_case : str = 42 _snake_case : Tuple = 42 def lowerCAmelCase_ ( self : Optional[int] ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCAmelCase_ ( self : int ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCAmelCase_ ( self : Dict ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch.arange(self.height * self.width ) _UpperCAmelCase = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.shape _UpperCAmelCase = int(np.prod(__snake_case ) ) _UpperCAmelCase = self.get_image_coords() _UpperCAmelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _UpperCAmelCase = self.get_camera_rays(__snake_case ) _UpperCAmelCase = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : torch.Tensor ): _UpperCAmelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _UpperCAmelCase = coords.view(__snake_case , -1 , 2 ) _UpperCAmelCase = self.resolution() _UpperCAmelCase = self.fov() _UpperCAmelCase = (flat.float() / (res - 1)) * 2 - 1 _UpperCAmelCase = fracs * torch.tan(fov / 2 ) _UpperCAmelCase = fracs.view(__snake_case , -1 , 2 ) _UpperCAmelCase = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) _UpperCAmelCase = directions / directions.norm(dim=-1 , keepdim=__snake_case ) _UpperCAmelCase = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _UpperCAmelCase = np.array([np.sin(_A ), np.cos(_A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _UpperCAmelCase = -z * 4 _UpperCAmelCase = np.array([np.cos(_A ), -np.sin(_A ), 0.0] ) _UpperCAmelCase = np.cross(_A ,_A ) origins.append(_A ) xs.append(_A ) ys.append(_A ) zs.append(_A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_A ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(_A ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(_A ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(_A ,axis=0 ) ).float() ,width=_A ,height=_A ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(_A )) ,)
277
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A , _A , _A ): a : List[str] = list(range(len(_A ) ) ) a : Union[str, Any] = [v / w for v, w in zip(_A , _A )] index.sort(key=lambda _A : ratio[i] , reverse=_A ) a : float = 0 a : list[float] = [0] * len(_A ) for i in index: if weight[i] <= capacity: a : int = 1 max_value += value[i] capacity -= weight[i] else: a : Optional[int] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
526
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __a ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,_UpperCamelCase : Tuple ,_UpperCamelCase : Union[str, Any]=1_3 ,_UpperCamelCase : Optional[Any]=7 ,_UpperCamelCase : str=True ,_UpperCamelCase : Union[str, Any]=True ,_UpperCamelCase : Any=True ,_UpperCamelCase : Union[str, Any]=True ,_UpperCamelCase : List[str]=9_9 ,_UpperCamelCase : Optional[Any]=3_2 ,_UpperCamelCase : Union[str, Any]=5 ,_UpperCamelCase : Any=4 ,_UpperCamelCase : Any=3_7 ,_UpperCamelCase : str="gelu" ,_UpperCamelCase : List[Any]=0.1 ,_UpperCamelCase : List[str]=0.1 ,_UpperCamelCase : Any=5_1_2 ,_UpperCamelCase : Dict=1_6 ,_UpperCamelCase : Union[str, Any]=2 ,_UpperCamelCase : Dict=0.02 ,_UpperCamelCase : Optional[int]=4 ,) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =parent SCREAMING_SNAKE_CASE__ =batch_size SCREAMING_SNAKE_CASE__ =seq_length SCREAMING_SNAKE_CASE__ =is_training SCREAMING_SNAKE_CASE__ =use_attention_mask SCREAMING_SNAKE_CASE__ =use_token_type_ids SCREAMING_SNAKE_CASE__ =use_labels SCREAMING_SNAKE_CASE__ =vocab_size SCREAMING_SNAKE_CASE__ =hidden_size SCREAMING_SNAKE_CASE__ =num_hidden_layers SCREAMING_SNAKE_CASE__ =num_attention_heads SCREAMING_SNAKE_CASE__ =intermediate_size SCREAMING_SNAKE_CASE__ =hidden_act SCREAMING_SNAKE_CASE__ =hidden_dropout_prob SCREAMING_SNAKE_CASE__ =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ =max_position_embeddings SCREAMING_SNAKE_CASE__ =type_vocab_size SCREAMING_SNAKE_CASE__ =type_sequence_label_size SCREAMING_SNAKE_CASE__ =initializer_range SCREAMING_SNAKE_CASE__ =num_choices def __A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE__ =None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ =DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=_UpperCamelCase ,) return config, input_ids, attention_mask def __A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =config_and_inputs SCREAMING_SNAKE_CASE__ ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __a ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _A : Tuple = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =FlaxDistilBertModelTester(self ) @slow def __A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ =model_class_name.from_pretrained("""distilbert-base-uncased""" ) SCREAMING_SNAKE_CASE__ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCamelCase ) @require_flax class __a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) SCREAMING_SNAKE_CASE__ =np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE__ =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__ =model(_UpperCamelCase ,attention_mask=_UpperCamelCase )[0] SCREAMING_SNAKE_CASE__ =(1, 1_1, 7_6_8) self.assertEqual(output.shape ,_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,_UpperCamelCase ,atol=1e-4 ) )
588
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "spiece.model"} lowerCamelCase_ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __a ( __lowerCamelCase ): """simple docstring""" def __init__( self : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : int=False ,_UpperCamelCase : int=True ,_UpperCamelCase : str=False ,_UpperCamelCase : Dict="<s>" ,_UpperCamelCase : Tuple="</s>" ,_UpperCamelCase : Tuple="<unk>" ,_UpperCamelCase : int="<sep>" ,_UpperCamelCase : List[str]="<pad>" ,_UpperCamelCase : str="<cls>" ,_UpperCamelCase : Any="<mask>" ,_UpperCamelCase : Any=["<eop>", "<eod>"] ,_UpperCamelCase : Optional[Dict[str, Any]] = None ,**_UpperCamelCase : str ,) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token SCREAMING_SNAKE_CASE__ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCamelCase ,remove_space=_UpperCamelCase ,keep_accents=_UpperCamelCase ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,additional_special_tokens=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) SCREAMING_SNAKE_CASE__ =3 SCREAMING_SNAKE_CASE__ =do_lower_case SCREAMING_SNAKE_CASE__ =remove_space SCREAMING_SNAKE_CASE__ =keep_accents SCREAMING_SNAKE_CASE__ =vocab_file SCREAMING_SNAKE_CASE__ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) SCREAMING_SNAKE_CASE__ =jieba SCREAMING_SNAKE_CASE__ =str.maketrans(""" \n""" ,"""\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A ( self : Any ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def __A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ={self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.__dict__.copy() SCREAMING_SNAKE_CASE__ =None return state def __setstate__( self : Any ,_UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self : str ,_UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' if self.remove_space: SCREAMING_SNAKE_CASE__ =""" """.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE__ =inputs SCREAMING_SNAKE_CASE__ =outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: SCREAMING_SNAKE_CASE__ =unicodedata.normalize("""NFKD""" ,_UpperCamelCase ) SCREAMING_SNAKE_CASE__ ="""""".join([c for c in outputs if not unicodedata.combining(_UpperCamelCase )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE__ =outputs.lower() return outputs def __A ( self : Optional[int] ,_UpperCamelCase : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.preprocess_text(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =[] for piece in pieces: if len(_UpperCamelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE__ =self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCamelCase ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE__ =cur_pieces[1:] else: SCREAMING_SNAKE_CASE__ =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCamelCase ) else: new_pieces.append(_UpperCamelCase ) return new_pieces def __A ( self : Tuple ,_UpperCamelCase : Any ) -> Any: '''simple docstring''' return self.sp_model.PieceToId(_UpperCamelCase ) def __A ( self : str ,_UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' return self.sp_model.IdToPiece(_UpperCamelCase ) def __A ( self : int ,_UpperCamelCase : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""""".join(_UpperCamelCase ).replace(_UpperCamelCase ,""" """ ).strip() return out_string def __A ( self : Union[str, Any] ,_UpperCamelCase : List[int] ,_UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[self.sep_token_id] SCREAMING_SNAKE_CASE__ =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self : int ,_UpperCamelCase : List[int] ,_UpperCamelCase : Optional[List[int]] = None ,_UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1, 1] return ([0] * len(_UpperCamelCase )) + [1, 1] def __A ( self : int ,_UpperCamelCase : List[int] ,_UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[self.sep_token_id] SCREAMING_SNAKE_CASE__ =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self : Optional[int] ,_UpperCamelCase : str ,_UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ =os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,"""wb""" ) as fi: SCREAMING_SNAKE_CASE__ =self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __A ( self : int ,*_UpperCamelCase : Dict ,**_UpperCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =super()._decode(*_UpperCamelCase ,**_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =text.replace(""" """ ,"""""" ).replace("""\u2582""" ,""" """ ).replace("""\u2583""" ,"""\n""" ) return text
588
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowercase__ ( A_: int , A_: Optional[int] , A_: Optional[int] , A_: int , A_: List[str] , A_: Union[str, Any] ) -> Any: """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __UpperCAmelCase ="""lm_head""" __UpperCAmelCase =getattr(A_ , A_ ) if weight_type is not None: __UpperCAmelCase =getattr(A_ , A_ ).shape else: __UpperCAmelCase =hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase =value elif weight_type == "weight_g": __UpperCAmelCase =value elif weight_type == "weight_v": __UpperCAmelCase =value elif weight_type == "bias": __UpperCAmelCase =value else: __UpperCAmelCase =value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase__ ( A_: str , A_: int , A_: int ) -> List[str]: """simple docstring""" __UpperCAmelCase =[] __UpperCAmelCase =fairseq_model.state_dict() __UpperCAmelCase =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase =False if "conv_layers" in name: load_conv_layer( A_ , A_ , A_ , A_ , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase =True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase ="""unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase =True if "*" in mapped_key: __UpperCAmelCase =name.split(A_ )[0].split(""".""" )[-2] __UpperCAmelCase =mapped_key.replace("""*""" , A_ ) if "weight_g" in name: __UpperCAmelCase ="""weight_g""" elif "weight_v" in name: __UpperCAmelCase ="""weight_v""" elif "bias" in name: __UpperCAmelCase ="""bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase ="""weight""" else: __UpperCAmelCase =None set_recursively(A_ , A_ , A_ , A_ , A_ , A_ ) continue if not is_used: unused_weights.append(A_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( A_: List[str] , A_: Union[str, Any] , A_: Any , A_: Optional[int] , A_: Union[str, Any] ) -> Tuple: """simple docstring""" __UpperCAmelCase =full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase =name.split(""".""" ) __UpperCAmelCase =int(items[0] ) __UpperCAmelCase =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A_ ) @torch.no_grad() def lowercase__ ( A_: Optional[int] , A_: str , A_: List[Any]=None , A_: List[str]=None , A_: Optional[int]=True ) -> Dict: """simple docstring""" if config_path is not None: __UpperCAmelCase =UniSpeechConfig.from_pretrained(A_ ) else: __UpperCAmelCase =UniSpeechConfig() if is_finetuned: if dict_path: __UpperCAmelCase =Dictionary.load_from_json(A_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase =target_dict.pad_index __UpperCAmelCase =target_dict.bos_index __UpperCAmelCase =target_dict.eos_index __UpperCAmelCase =len(target_dict.symbols ) __UpperCAmelCase =os.path.join(A_ , """vocab.json""" ) if not os.path.isdir(A_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(A_ ) ) return os.makedirs(A_ , exist_ok=A_ ) __UpperCAmelCase =target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase =42 __UpperCAmelCase =43 with open(A_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(A_ , A_ ) __UpperCAmelCase =WavaVecaPhonemeCTCTokenizer( A_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=A_ , ) __UpperCAmelCase =True if config.feat_extract_norm == """layer""" else False __UpperCAmelCase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A_ , return_attention_mask=A_ , ) __UpperCAmelCase =WavaVecaProcessor(feature_extractor=A_ , tokenizer=A_ ) processor.save_pretrained(A_ ) __UpperCAmelCase =UniSpeechForCTC(A_ ) else: __UpperCAmelCase =UniSpeechForPreTraining(A_ ) if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCAmelCase =model[0].eval() recursively_load_weights(A_ , A_ , A_ ) hf_unispeech.save_pretrained(A_ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
68
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class lowerCAmelCase__ ( __lowercase ): def __init__( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __A ( self : str , **SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCamelCase = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __lowerCamelCase = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __lowerCamelCase = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __lowerCamelCase = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __lowerCamelCase = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCamelCase = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __lowerCamelCase = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __lowerCamelCase = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __lowerCamelCase = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __lowerCamelCase = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __lowerCamelCase = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __lowerCamelCase = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: return super().__call__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : float = 5_12 / 15_00 , SCREAMING_SNAKE_CASE__ : Optional[int] = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , ) -> List[str]: __lowerCamelCase = load_image(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.image_processor.size['''longest_edge'''] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __lowerCamelCase = self.get_inference_context() with inference_context(): __lowerCamelCase = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE__ , device=self.device ) __lowerCamelCase = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __lowerCamelCase = image_embeddings __lowerCamelCase = grid_points.shape[1] __lowerCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCamelCase = input_labels[:, i : i + points_per_batch] __lowerCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=0.88 , SCREAMING_SNAKE_CASE__ : Tuple=0.95 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , ) -> Dict: __lowerCamelCase = model_inputs.pop('''input_boxes''' ) __lowerCamelCase = model_inputs.pop('''is_last''' ) __lowerCamelCase = model_inputs.pop('''original_sizes''' ).tolist() __lowerCamelCase = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __lowerCamelCase = self.model(**SCREAMING_SNAKE_CASE__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCamelCase = model_outputs['''pred_masks'''] __lowerCamelCase = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , binarize=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model_outputs['''iou_scores'''] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=0.7 , ) -> Union[str, Any]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __lowerCamelCase = torch.cat(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.cat(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {} if output_rle_mask: __lowerCamelCase = rle_mask if output_bboxes_mask: __lowerCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
298
0
"""simple docstring""" class UpperCAmelCase : def __init__( self : Optional[int] ): """simple docstring""" _snake_case = '''''' _snake_case = '''''' _snake_case = [] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _snake_case = self.__min_dist_top_down_dp(__lowerCamelCase , n - 1 ) _snake_case = self.__min_dist_top_down_dp(m - 1 , __lowerCamelCase ) _snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _snake_case = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" _snake_case = worda _snake_case = worda _snake_case = [[-1 for _ in range(len(__lowerCamelCase ) )] for _ in range(len(__lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(__lowerCamelCase ) - 1 , len(__lowerCamelCase ) - 1 ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" _snake_case = worda _snake_case = worda _snake_case = len(__lowerCamelCase ) _snake_case = len(__lowerCamelCase ) _snake_case = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _snake_case = j elif j == 0: # second string is empty _snake_case = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _snake_case = self.dp[i - 1][j - 1] else: _snake_case = self.dp[i][j - 1] _snake_case = self.dp[i - 1][j] _snake_case = self.dp[i - 1][j - 1] _snake_case = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": snake_case = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() snake_case = input('''Enter the first string: ''').strip() snake_case = input('''Enter the second string: ''').strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
404
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> str: _snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _snake_case = '''''' else: _snake_case = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _snake_case = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[ : config.hidden_size, : ] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def snake_case ( lowerCAmelCase_ ) -> Any: _snake_case = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = dct.pop(lowerCAmelCase_ ) _snake_case = val def snake_case ( ) -> List[Any]: _snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Any: _snake_case = ViTConfig() # patch_size if model_name[-1] == "8": _snake_case = 8 # set labels if required if not base_model: _snake_case = 1000 _snake_case = '''huggingface/label-files''' _snake_case = '''imagenet-1k-id2label.json''' _snake_case = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) _snake_case = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _snake_case = 384 _snake_case = 1536 _snake_case = 12 _snake_case = 6 # load original model from torch hub _snake_case = torch.hub.load('''facebookresearch/dino:main''' , lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys _snake_case = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) _snake_case = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if base_model: _snake_case = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ).eval() else: _snake_case = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor _snake_case = ViTImageProcessor() _snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ) _snake_case = encoding['''pixel_values'''] _snake_case = model(lowerCAmelCase_ ) if base_model: _snake_case = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _snake_case = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) snake_case = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
404
1
UpperCamelCase : Optional[int] = """Input must be a string of 8 numbers plus letter""" UpperCamelCase : Tuple = """TRWAGMYFPDXBNJZSQVHLCKE""" def UpperCamelCase_ ( __a ) -> bool: if not isinstance(__a , __a ): a__ : Dict = f'''Expected string as input, found {type(__a ).__name__}''' raise TypeError(__a ) a__ : str = spanish_id.replace("-" , "" ).upper() if len(__a ) != 9: raise ValueError(__a ) try: a__ : List[str] = int(spanish_id_clean[0:8] ) a__ : Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
37
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = DistilBertTokenizer _UpperCAmelCase : Union[str, Any] = DistilBertTokenizerFast _UpperCAmelCase : int = True @slow def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[Any] = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") SCREAMING_SNAKE_CASE_: Any = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
'''simple docstring''' def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : str = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ : Any = divmod(__SCREAMING_SNAKE_CASE, 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : List[Any] = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) snake_case_ : Dict = "-" if number.startswith("-" ) else "" snake_case_ : Optional[int] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}' if __name__ == "__main__": from doctest import testmod testmod()
92
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase a_ = logging.get_logger(__name__) a_ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = """longformer""" def __init__( self , lowercase_ = 5_12 , lowercase_ = 2 , lowercase_ = 1 , lowercase_ = 0 , lowercase_ = 2 , lowercase_ = 3_05_22 , lowercase_ = 7_68 , lowercase_ = 12 , lowercase_ = 12 , lowercase_ = 30_72 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 5_12 , lowercase_ = 2 , lowercase_ = 0.02 , lowercase_ = 1E-12 , lowercase_ = False , **lowercase_ , ): super().__init__(pad_token_id=lowercase_ , **lowercase_) snake_case_ : Dict = attention_window snake_case_ : Tuple = sep_token_id snake_case_ : Optional[Any] = bos_token_id snake_case_ : str = eos_token_id snake_case_ : Optional[int] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Union[str, Any] = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : List[str] = layer_norm_eps snake_case_ : Tuple = onnx_export class UpperCAmelCase_ ( snake_case__ ): def __init__( self , lowercase_ , lowercase_ = "default" , lowercase_ = None): super().__init__(lowercase_ , lowercase_ , lowercase_) snake_case_ : Dict = True @property def snake_case__ ( self): if self.task == "multiple-choice": snake_case_ : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ]) @property def snake_case__ ( self): snake_case_ : Union[str, Any] = super().outputs if self.task == "default": snake_case_ : str = {0: "batch"} return outputs @property def snake_case__ ( self): return 1E-4 @property def snake_case__ ( self): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def snake_case__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): snake_case_ : Optional[Any] = super().generate_dummy_inputs( preprocessor=lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly snake_case_ : Any = torch.zeros_like(inputs["input_ids"]) # make every second token global snake_case_ : Tuple = 1 return inputs
92
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "t5" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : Dict = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _lowerCAmelCase=32128 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2048 , _lowerCAmelCase=6 , _lowerCAmelCase=None , _lowerCAmelCase=8 , _lowerCAmelCase=32 , _lowerCAmelCase=128 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=1.0 , _lowerCAmelCase="relu" , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , **_lowerCAmelCase , ) -> Optional[int]: _lowerCAmelCase = vocab_size _lowerCAmelCase = d_model _lowerCAmelCase = d_kv _lowerCAmelCase = d_ff _lowerCAmelCase = num_layers _lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase = num_heads _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_factor _lowerCAmelCase = feed_forward_proj _lowerCAmelCase = use_cache _lowerCAmelCase = self.feed_forward_proj.split("-" ) _lowerCAmelCase = act_info[-1] _lowerCAmelCase = act_info[0] == "gated" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCAmelCase = "gelu_new" super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _lowerCAmelCase = "past_encoder_sequence + sequence" _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) return common_inputs @property def _snake_case ( self ) -> int: return 13
18
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
1
'''simple docstring''' def __UpperCamelCase ( _A : int , _A : int ) -> int: """simple docstring""" lowerCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCAmelCase : Any = n - k # Calculate C(n,k) for i in range(_A ): result *= n - i result //= i + 1 return result def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _A ) // (node_count + 1) def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCAmelCase : int = 1 for i in range(1 , n + 1 ): result *= i return result def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return catalan_number(_A ) * factorial(_A ) if __name__ == "__main__": _lowerCAmelCase : int = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : int = """xmod""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=("en_XX",) , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout lowerCAmelCase : int = pre_norm lowerCAmelCase : Optional[Any] = adapter_reduction_factor lowerCAmelCase : Any = adapter_layer_norm lowerCAmelCase : Dict = adapter_reuse_layer_norm lowerCAmelCase : Any = ln_before_adapter lowerCAmelCase : Optional[Any] = list(snake_case__ ) lowerCAmelCase : List[Any] = default_language class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[Any] = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roc_bert''' def __init__(self : Union[str, Any] , _UpperCAmelCase : str=3_0522 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Tuple=1E-1_2 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : List[Any]="absolute" , _UpperCAmelCase : str=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : List[str]=910 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Optional[int]=2_4858 , _UpperCAmelCase : List[Any]=True , **_UpperCAmelCase : Any , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_cache lowercase__ = enable_pronunciation lowercase__ = enable_shape lowercase__ = pronunciation_embed_dim lowercase__ = pronunciation_vocab_size lowercase__ = shape_embed_dim lowercase__ = shape_vocab_size lowercase__ = concat_input lowercase__ = position_embedding_type lowercase__ = classifier_dropout super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
15
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : List[str] = IFInpaintingPipeline A : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} A : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def __lowerCamelCase ( self ): return self._get_dummy_components() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): lowercase : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowercase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __lowerCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCamelCase ( self ): self._test_save_load_local() def __lowerCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
319
0
"""simple docstring""" from __future__ import annotations from math import gcd def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 3 , ): '''simple docstring''' if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return (pow(SCREAMING_SNAKE_CASE , 2 ) + step) % modulus for _ in range(SCREAMING_SNAKE_CASE ): # These track the position within the cycle detection logic. lowerCAmelCase = seed lowerCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase = gcd(hare - tortoise , SCREAMING_SNAKE_CASE ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'{args.num} is probably prime') else: SCREAMING_SNAKE_CASE__ = args.num // divisor print(f'{args.num} = {divisor} * {quotient}')
708
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = "cpu" SCREAMING_SNAKE_CASE__ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" SCREAMING_SNAKE_CASE__ = "path-to-your-trained-model" SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE__ = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE__ = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE__ = torch.randn(2, 4, 64, 64) SCREAMING_SNAKE_CASE__ = torch.rand(1) * 999 SCREAMING_SNAKE_CASE__ = torch.randn(2, 77, 768) SCREAMING_SNAKE_CASE__ = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE__ = 666 SCREAMING_SNAKE_CASE__ = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE__ = {"generator": generator} if args.steps is not None: SCREAMING_SNAKE_CASE__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
393
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCamelCase ( UpperCAmelCase ): for param in module.parameters(): lowercase__ : str = False def __UpperCamelCase ( ): lowercase__ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ : Dict = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Tuple = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def __UpperCamelCase ( ): lowercase__ : Union[str, Any] = datetime.now() lowercase__ : List[Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
152
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowercase ( ) -> Optional[int]: """simple docstring""" raise RuntimeError("""CUDA out of memory.""" ) class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' super().__init__() __a = nn.Linear(3 , 4 ) __a = nn.BatchNormad(4 ) __a = nn.Linear(4 , 5 ) def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self : Optional[Any] ): '''simple docstring''' __a = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : List[str] ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def __a ( self : Tuple ): '''simple docstring''' __a = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __a , __a = mock_training_loop_function("""hello""" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def __a ( self : Tuple ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : int ): pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def __a ( self : List[Any] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Optional[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def __a ( self : List[str] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function(1_2_8 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def __a ( self : Optional[Any] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Tuple ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def __a ( self : Dict ): '''simple docstring''' __a = torch.cuda.memory_allocated() __a = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ ) __a = release_memory(SCREAMING_SNAKE_CASE__ ) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ )
708
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1_3 , SCREAMING_SNAKE_CASE__ : int=3_0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=3_2 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Dict=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=2 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope __a = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def __a ( self : Any ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def __a ( self : Optional[int] ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a = ViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a = self.type_sequence_label_size __a = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : str ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" a_ :str =( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a_ :Tuple =( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) a_ :List[str] =True a_ :str =False a_ :Optional[int] =False a_ :Tuple =False def __a ( self : str ): '''simple docstring''' __a = ViTModelTester(self ) __a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : int ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __a ( self : int ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(SCREAMING_SNAKE_CASE__ ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def __a ( self : Optional[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = ViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) -> int: """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __a ( self : Dict ): '''simple docstring''' __a = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(SCREAMING_SNAKE_CASE__ ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __a = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __a = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __a ( self : int ): '''simple docstring''' __a = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(SCREAMING_SNAKE_CASE__ ) __a = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_8_0 ) __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ ) # verify the logits __a = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) __a = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __a ( self : Optional[Any] ): '''simple docstring''' __a = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )
201
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''OwlViTImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Union[str, Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[int]=None , **lowerCamelCase : int ) -> Any: """simple docstring""" _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) _UpperCAmelCase = kwargs.pop("""feature_extractor""" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Optional[Any] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : str=None , lowerCamelCase : List[Any]="max_length" , lowerCamelCase : List[Any]="np" , **lowerCamelCase : Union[str, Any] ) -> Any: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): _UpperCAmelCase = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): _UpperCAmelCase = [] # Maximum number of queries across batch _UpperCAmelCase = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: _UpperCAmelCase = t + [""" """] * (max_num_queries - len(lowerCamelCase )) _UpperCAmelCase = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": _UpperCAmelCase = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _UpperCAmelCase = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _UpperCAmelCase = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) _UpperCAmelCase = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _UpperCAmelCase = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) _UpperCAmelCase = BatchEncoding() _UpperCAmelCase = input_ids _UpperCAmelCase = attention_mask if query_images is not None: _UpperCAmelCase = BatchEncoding() _UpperCAmelCase = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values _UpperCAmelCase = query_pixel_values if images is not None: _UpperCAmelCase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def lowerCamelCase ( self : List[Any] , *lowerCamelCase : Dict , **lowerCamelCase : Any ) -> Union[str, Any]: """simple docstring""" return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : List[str] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : List[Any] , *lowerCamelCase : int , **lowerCamelCase : Tuple ) -> List[str]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Dict ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : int , *lowerCamelCase : List[Any] , **lowerCamelCase : Tuple ) -> int: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase , ) return self.image_processor_class @property def lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase , ) return self.image_processor
108
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : List[Any]=7 , lowerCamelCase : List[Any]=True , lowerCamelCase : str=True , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=99 , lowerCamelCase : int=32 , lowerCamelCase : str=5 , lowerCamelCase : str=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : str="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : Union[str, Any]=512 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Any=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=False , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[int]="None" , lowerCamelCase : Tuple=3 , lowerCamelCase : int=4 , lowerCamelCase : Optional[Any]=None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = relative_attention _UpperCAmelCase = position_biased_input _UpperCAmelCase = pos_att_type _UpperCAmelCase = scope def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase = DebertaVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase )[0] _UpperCAmelCase = model(lowerCamelCase , token_type_ids=lowerCamelCase )[0] _UpperCAmelCase = model(lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = DebertaVaForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = DebertaVaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCamelCase ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = DebertaVaForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ) -> Tuple: """simple docstring""" _UpperCAmelCase = DebertaVaForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : str ) -> str: """simple docstring""" _UpperCAmelCase = DebertaVaForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase = DebertaVaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase ) def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCamelCase ) @slow def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DebertaVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" pass @slow def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _UpperCAmelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] # compare the actual values for a slice. _UpperCAmelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
108
1
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[str]=0 ): """simple docstring""" _snake_case = np.random.RandomState(__lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = 3 * [inputs['''prompt''']] # forward _snake_case = pipe(**__lowerCamelCase ) _snake_case = output.images[0, -3:, -3:, -1] _snake_case = self.get_dummy_inputs() _snake_case = 3 * [inputs.pop('''prompt''' )] _snake_case = pipe.tokenizer( __lowerCamelCase , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors='''np''' , ) _snake_case = text_inputs['''input_ids'''] _snake_case = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _snake_case = prompt_embeds # forward _snake_case = pipe(**__lowerCamelCase ) _snake_case = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = 3 * ['''this is a negative prompt'''] _snake_case = negative_prompt _snake_case = 3 * [inputs['''prompt''']] # forward _snake_case = pipe(**__lowerCamelCase ) _snake_case = output.images[0, -3:, -3:, -1] _snake_case = self.get_dummy_inputs() _snake_case = 3 * [inputs.pop('''prompt''' )] _snake_case = [] for p in [prompt, negative_prompt]: _snake_case = pipe.tokenizer( __lowerCamelCase , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors='''np''' , ) _snake_case = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _snake_case , _snake_case = embeds # forward _snake_case = pipe(**__lowerCamelCase ) _snake_case = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self : int ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = ort.SessionOptions() _snake_case = False return options def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) _snake_case = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=1_0 , output_type='''np''' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _snake_case = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''open neural network exchange''' _snake_case = np.random.RandomState(0 ) _snake_case = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type='''np''' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _snake_case = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''open neural network exchange''' _snake_case = np.random.RandomState(0 ) _snake_case = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type='''np''' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _snake_case = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = 0 def test_callback_fn(__lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : np.ndarray ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 _snake_case = False _snake_case = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''Andromeda galaxy in a bottle''' _snake_case = np.random.RandomState(0 ) pipe( prompt=__lowerCamelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert pipe.safety_checker is None _snake_case = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) _snake_case = OnnxStableDiffusionPipeline.from_pretrained(__lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None
404
"""simple docstring""" def snake_case ( ) -> Tuple: _snake_case = 0 for i in range(1 , 1001 ): total += i**i return str(lowerCAmelCase_ )[-10:] if __name__ == "__main__": print(solution())
404
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCAmelCase ( __snake_case ): lowercase = ["""vqvae"""] def __init__( self : List[str] , __magic_name__ : AutoencoderKL , __magic_name__ : UNetaDConditionModel , __magic_name__ : Mel , __magic_name__ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ , mel=__magic_name__ , vqvae=__magic_name__ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return 5_0 if isinstance(self.scheduler , __magic_name__ ) else 1_0_0_0 @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : int = 1 , __magic_name__ : str = None , __magic_name__ : np.ndarray = None , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : int = None , __magic_name__ : torch.Generator = None , __magic_name__ : float = 0 , __magic_name__ : float = 0 , __magic_name__ : torch.Generator = None , __magic_name__ : float = 0 , __magic_name__ : torch.Tensor = None , __magic_name__ : torch.Tensor = None , __magic_name__ : Optional[Any]=True , ): """simple docstring""" UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__magic_name__ ) UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__magic_name__ , device=self.device , ) UpperCamelCase = noise UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__magic_name__ , __magic_name__ ) UpperCamelCase = self.mel.audio_slice_to_image(__magic_name__ ) UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) UpperCamelCase = (input_image / 2_5_5) * 2 - 1 UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__magic_name__ , 0 ) ).latent_dist.sample( generator=__magic_name__ )[0] UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCamelCase = self.scheduler.add_noise(__magic_name__ , __magic_name__ , self.scheduler.timesteps[start_step - 1] ) UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCamelCase = int(mask_start_secs * pixels_per_second ) UpperCamelCase = int(mask_end_secs * pixels_per_second ) UpperCamelCase = self.scheduler.add_noise(__magic_name__ , __magic_name__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __magic_name__ ): UpperCamelCase = self.unet(__magic_name__ , __magic_name__ , __magic_name__ )["""sample"""] else: UpperCamelCase = self.unet(__magic_name__ , __magic_name__ )["""sample"""] if isinstance(self.scheduler , __magic_name__ ): UpperCamelCase = self.scheduler.step( model_output=__magic_name__ , timestep=__magic_name__ , sample=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , )["""prev_sample"""] else: UpperCamelCase = self.scheduler.step( model_output=__magic_name__ , timestep=__magic_name__ , sample=__magic_name__ , generator=__magic_name__ , )["""prev_sample"""] if mask is not None: if mask_start > 0: UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images UpperCamelCase = self.vqvae.decode(__magic_name__ )["""sample"""] UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCamelCase = (images * 2_5_5).round().astype("""uint8""" ) UpperCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__magic_name__ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) UpperCamelCase = [self.mel.image_to_audio(__magic_name__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__magic_name__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(__magic_name__ ) ) @torch.no_grad() def lowerCamelCase_ ( self : Tuple , __magic_name__ : List[Image.Image] , __magic_name__ : int = 5_0 ): """simple docstring""" assert isinstance(self.scheduler , __magic_name__ ) self.scheduler.set_timesteps(__magic_name__ ) UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) UpperCamelCase = (sample / 2_5_5) * 2 - 1 UpperCamelCase = torch.Tensor(__magic_name__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCamelCase = self.scheduler.alphas_cumprod[t] UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = self.unet(__magic_name__ , __magic_name__ )["""sample"""] UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase_ ( __magic_name__ : torch.Tensor , __magic_name__ : torch.Tensor , __magic_name__ : float ): """simple docstring""" UpperCamelCase = acos(torch.dot(torch.flatten(__magic_name__ ) , torch.flatten(__magic_name__ ) ) / torch.norm(__magic_name__ ) / torch.norm(__magic_name__ ) ) return sin((1 - alpha) * theta ) * xa / sin(__magic_name__ ) + sin(alpha * theta ) * xa / sin(__magic_name__ )
386
def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 10 , SCREAMING_SNAKE_CASE_ : int = 22 ): """simple docstring""" UpperCamelCase = range(1 , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = range(1 , SCREAMING_SNAKE_CASE_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
386
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __UpperCAmelCase = get_tests_dir("fixtures") class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = mock.Mock() snake_case: Any = 5_00 snake_case: int = {} snake_case: Union[str, Any] = HTTPError snake_case: int = {} # Download this model to make sure it's in the cache. snake_case: List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=SCREAMING_SNAKE_CASE__ ) as mock_head: snake_case: Optional[int] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case: Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) snake_case: Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' snake_case: List[str] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) snake_case: List[Any] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE__ , repo_id='test-image-processor' , push_to_hub=SCREAMING_SNAKE_CASE__ , use_auth_token=self._token ) snake_case: Dict = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) snake_case: int = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE__ , repo_id='valid_org/test-image-processor-org' , push_to_hub=SCREAMING_SNAKE_CASE__ , use_auth_token=self._token ) snake_case: Union[str, Any] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() snake_case: List[Any] = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) snake_case: List[Any] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class snake_case ( __lowercase ): UpperCAmelCase__ = '''switch_transformers''' UpperCAmelCase__ = ['''past_key_values'''] UpperCAmelCase__ = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__(self , SCREAMING_SNAKE_CASE_=3_21_28 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.01 , SCREAMING_SNAKE_CASE_="float32" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1e-6 , SCREAMING_SNAKE_CASE_=0.0_01 , SCREAMING_SNAKE_CASE_=0.0_01 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = d_kv SCREAMING_SNAKE_CASE_ = d_ff SCREAMING_SNAKE_CASE_ = num_sparse_encoder_layers SCREAMING_SNAKE_CASE_ = num_layers SCREAMING_SNAKE_CASE_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: SCREAMING_SNAKE_CASE_ = self.num_layers // self.num_sparse_encoder_layers else: SCREAMING_SNAKE_CASE_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: SCREAMING_SNAKE_CASE_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: SCREAMING_SNAKE_CASE_ = self.num_decoder_layers # HACK: this will create 0 sparse layers SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = num_experts SCREAMING_SNAKE_CASE_ = expert_capacity SCREAMING_SNAKE_CASE_ = router_bias SCREAMING_SNAKE_CASE_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE_ = router_dtype SCREAMING_SNAKE_CASE_ = router_ignore_padding_tokens SCREAMING_SNAKE_CASE_ = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ = relative_attention_max_distance SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = feed_forward_proj SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = add_router_probs SCREAMING_SNAKE_CASE_ = router_z_loss_coef SCREAMING_SNAKE_CASE_ = router_aux_loss_coef SCREAMING_SNAKE_CASE_ = self.feed_forward_proj.split('''-''' ) SCREAMING_SNAKE_CASE_ = act_info[-1] SCREAMING_SNAKE_CASE_ = act_info[0] == '''gated''' if len(SCREAMING_SNAKE_CASE_ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE_ = '''gelu_new''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
626
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = 'PoolFormerConfig' # Base docstring lowerCAmelCase__ = 'sail/poolformer_s12' lowerCAmelCase__ = [1, 512, 7, 7] # Image classification docstring lowerCAmelCase__ = 'sail/poolformer_s12' lowerCAmelCase__ = 'tabby, tabby cat' lowerCAmelCase__ = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowerCamelCase ( __a, __a = 0.0, __a = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE_ = 1 - drop_prob SCREAMING_SNAKE_CASE_ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE_ = keep_prob + torch.rand(__a, dtype=input.dtype, device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE_ = input.div(__a ) * random_tensor return output class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = drop_prob def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return drop_path(SCREAMING_SNAKE_CASE_ , self.drop_prob , self.training ) def _lowercase (self ): """simple docstring""" return "p={}".format(self.drop_prob ) class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = patch_size if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE_ = stride if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE_ = padding if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE_ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = norm_layer(SCREAMING_SNAKE_CASE_ ) if norm_layer else nn.Identity() def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.projection(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.norm(SCREAMING_SNAKE_CASE_ ) return embeddings class snake_case ( nn.GroupNorm ): def __init__(self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(1 , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.AvgPoolad(SCREAMING_SNAKE_CASE_ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.pool(SCREAMING_SNAKE_CASE_ ) - hidden_states class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) SCREAMING_SNAKE_CASE_ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) SCREAMING_SNAKE_CASE_ = PoolFormerDropPath(SCREAMING_SNAKE_CASE_ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_ = config.hidden_act def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.conva(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.act_fn(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.drop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.conva(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.drop(SCREAMING_SNAKE_CASE_ ) return hidden_states class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = PoolFormerPooling(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = PoolFormerOutput(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE_ ) # Useful for training neural nets SCREAMING_SNAKE_CASE_ = PoolFormerDropPath(SCREAMING_SNAKE_CASE_ ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE_ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE_ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE_) ) , requires_grad=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE_) ) , requires_grad=SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE_ = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE_ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = self.output(self.after_norm(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE_ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE_ = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE_ ) ) ) # First residual connection SCREAMING_SNAKE_CASE_ = pooling_output + hidden_states SCREAMING_SNAKE_CASE_ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE_ = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE_ ) ) ) SCREAMING_SNAKE_CASE_ = hidden_states + layer_output SCREAMING_SNAKE_CASE_ = (output,) + outputs return outputs class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE_ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE_ = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) # Transformer blocks SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE_ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True ): """simple docstring""" SCREAMING_SNAKE_CASE_ = () if output_hidden_states else None SCREAMING_SNAKE_CASE_ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE_ = embedding_layer(SCREAMING_SNAKE_CASE_ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = blk(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE_ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) class snake_case ( __lowercase ): UpperCAmelCase__ = PoolFormerConfig UpperCAmelCase__ = '''poolformer''' UpperCAmelCase__ = '''pixel_values''' UpperCAmelCase__ = True def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = value lowerCAmelCase__ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase__ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = PoolFormerEncoder(SCREAMING_SNAKE_CASE_ ) # Initialize weights and apply final processing self.post_init() def _lowercase (self ): """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE_ = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) class snake_case ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , config.hidden_size ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.dense(SCREAMING_SNAKE_CASE_ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __lowercase , ) class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = config.num_labels SCREAMING_SNAKE_CASE_ = PoolFormerModel(SCREAMING_SNAKE_CASE_ ) # Final norm SCREAMING_SNAKE_CASE_ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE_ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ = self.poolformer( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = outputs[0] SCREAMING_SNAKE_CASE_ = self.classifier(self.norm(SCREAMING_SNAKE_CASE_ ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_ = '''single_label_classification''' else: SCREAMING_SNAKE_CASE_ = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE_ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_ = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: SCREAMING_SNAKE_CASE_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
626
1
"""simple docstring""" def __UpperCamelCase ( snake_case__ = 2_000_000 ): A_ : List[str] = [0 for i in range(n + 1 )] A_ : Dict = 1 A_ : Any = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , snake_case__ ): A_ : Any = 1 A_ : Tuple = 0 for i in range(snake_case__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
718
"""simple docstring""" def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # Base Case if index == len(snake_case__ ): return True # Recursive Step for i in range(snake_case__ ): if valid_coloring(graph[index] , snake_case__ , snake_case__ ): # Color current vertex A_ : Dict = i # Validate coloring if util_color(snake_case__ , snake_case__ , snake_case__ , index + 1 ): return True # Backtrack A_ : Union[str, Any] = -1 return False def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : int = [-1] * len(snake_case__ ) if util_color(snake_case__ , snake_case__ , snake_case__ , 0 ): return colored_vertices return []
480
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def _snake_case (_snake_case : Optional[Any]=None , _snake_case : Optional[int]=None) -> Optional[int]: return field(default_factory=lambda: default , metadata=_snake_case) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowerCAmelCase : Optional[str] =field( default=_a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __lowerCAmelCase : Optional[bool] =field( default=_a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __lowerCAmelCase : Optional[float] =field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) __lowerCAmelCase : Optional[float] =field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) __lowerCAmelCase : Optional[float] =field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) __lowerCAmelCase : Optional[float] =field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) __lowerCAmelCase : Optional[float] =field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) __lowerCAmelCase : Optional[float] =field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : Optional[str] =field( default=_a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __lowerCAmelCase : Optional[str] =field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __lowerCAmelCase : bool =field( default=_a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __lowerCAmelCase : Optional[int] =field( default=_a , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __lowerCAmelCase : Optional[int] =field( default=_a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __lowerCAmelCase : Optional[int] =field( default=_a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) __lowerCAmelCase : List[str] =list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : WavaVecaProcessor __lowerCAmelCase : Union[bool, str] =True __lowerCAmelCase : Optional[int] =None __lowerCAmelCase : Optional[int] =None __lowerCAmelCase : Optional[int] =None __lowerCAmelCase : Optional[int] =None def __call__( self :Dict, snake_case :List[Dict[str, Union[List[int], torch.Tensor]]]): """simple docstring""" _lowercase =[{'input_values': feature['input_values']} for feature in features] _lowercase =[{'input_ids': feature['labels']} for feature in features] _lowercase =self.processor.pad( snake_case, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='pt', ) _lowercase =self.processor.pad( labels=snake_case, padding=self.padding, max_length=self.max_length_labels, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors='pt', ) # replace padding with -100 to ignore loss correctly _lowercase =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1), -100) _lowercase =labels return batch class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" def UpperCamelCase__ ( self :int, snake_case :nn.Module, snake_case :Dict[str, Union[torch.Tensor, Any]]): """simple docstring""" model.train() _lowercase =self._prepare_inputs(snake_case) if self.use_amp: with autocast(): _lowercase =self.compute_loss(snake_case, snake_case) else: _lowercase =self.compute_loss(snake_case, snake_case) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowercase =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowercase =loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''') if self.args.gradient_accumulation_steps > 1: _lowercase =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case).backward() elif self.use_apex: with amp.scale_loss(snake_case, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case) else: loss.backward() return loss.detach() def _snake_case () -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('.json'): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: _lowercase , _lowercase , _lowercase =parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowercase =None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase =get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.') elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.') # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _snake_case) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: _lowercase =datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name) _lowercase =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test') # Create and save tokenizer _lowercase =f'''[{"".join(data_args.chars_to_ignore)}]''' def remove_special_characters(_snake_case : str): _lowercase =re.sub(_snake_case , '' , batch['sentence']).lower() + ' ' return batch _lowercase =train_dataset.map(_snake_case , remove_columns=['sentence']) _lowercase =eval_dataset.map(_snake_case , remove_columns=['sentence']) def extract_all_chars(_snake_case : int): _lowercase =' '.join(batch['text']) _lowercase =list(set(_snake_case)) return {"vocab": [vocab], "all_text": [all_text]} _lowercase =train_dataset.map( _snake_case , batched=_snake_case , batch_size=-1 , keep_in_memory=_snake_case , remove_columns=train_dataset.column_names , ) _lowercase =train_dataset.map( _snake_case , batched=_snake_case , batch_size=-1 , keep_in_memory=_snake_case , remove_columns=eval_dataset.column_names , ) _lowercase =list(set(vocab_train['vocab'][0]) | set(vocab_test['vocab'][0])) _lowercase ={v: k for k, v in enumerate(_snake_case)} _lowercase =vocab_dict[' '] del vocab_dict[" "] _lowercase =len(_snake_case) _lowercase =len(_snake_case) with open('vocab.json' , 'w') as vocab_file: json.dump(_snake_case , _snake_case) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase =WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) _lowercase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=_snake_case , return_attention_mask=_snake_case) _lowercase =WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case) _lowercase =WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer) , ) if data_args.max_train_samples is not None: _lowercase =min(len(_snake_case) , data_args.max_train_samples) _lowercase =train_dataset.select(range(_snake_case)) if data_args.max_val_samples is not None: _lowercase =eval_dataset.select(range(data_args.max_val_samples)) _lowercase =torchaudio.transforms.Resample(4_8000 , 1_6000) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_snake_case : str): _lowercase , _lowercase =torchaudio.load(batch['path']) _lowercase =resampler(_snake_case).squeeze().numpy() _lowercase =1_6000 _lowercase =batch['text'] return batch _lowercase =train_dataset.map( _snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowercase =eval_dataset.map( _snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_snake_case : int): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'])) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _lowercase =processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0]) batch.update(_snake_case) return batch _lowercase =train_dataset.map( _snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_snake_case , num_proc=data_args.preprocessing_num_workers , ) _lowercase =eval_dataset.map( _snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowercase =datasets.load_metric('wer') def compute_metrics(_snake_case : str): _lowercase =pred.predictions _lowercase =np.argmax(_snake_case , axis=-1) _lowercase =processor.tokenizer.pad_token_id _lowercase =processor.batch_decode(_snake_case) # we do not want to group tokens when computing the metrics _lowercase =processor.batch_decode(pred.label_ids , group_tokens=_snake_case) _lowercase =wer_metric.compute(predictions=_snake_case , references=_snake_case) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowercase =DataCollatorCTCWithPadding(processor=_snake_case , padding=_snake_case) # Initialize our Trainer _lowercase =CTCTrainer( model=_snake_case , data_collator=_snake_case , args=_snake_case , compute_metrics=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowercase =last_checkpoint elif os.path.isdir(model_args.model_name_or_path): _lowercase =model_args.model_name_or_path else: _lowercase =None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) _lowercase =trainer.train(resume_from_checkpoint=_snake_case) trainer.save_model() _lowercase =train_result.metrics _lowercase =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case) ) _lowercase =min(_snake_case , len(_snake_case)) trainer.log_metrics('train' , _snake_case) trainer.save_metrics('train' , _snake_case) trainer.save_state() # Evaluation _lowercase ={} if training_args.do_eval: logger.info('*** Evaluate ***') _lowercase =trainer.evaluate() _lowercase =data_args.max_val_samples if data_args.max_val_samples is not None else len(_snake_case) _lowercase =min(_snake_case , len(_snake_case)) trainer.log_metrics('eval' , _snake_case) trainer.save_metrics('eval' , _snake_case) return results if __name__ == "__main__": main()
181
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =tempfile.mkdtemp() _lowercase =BlipImageProcessor() _lowercase =GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model') _lowercase =BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert') _lowercase =InstructBlipProcessor(snake_case, snake_case, snake_case) processor.save_pretrained(self.tmpdirname) def UpperCamelCase__ ( self :List[str], **snake_case :str): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **snake_case).tokenizer def UpperCamelCase__ ( self :Optional[Any], **snake_case :List[Any]): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **snake_case).image_processor def UpperCamelCase__ ( self :Tuple, **snake_case :Any): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **snake_case).qformer_tokenizer def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =[np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowercase =[Image.fromarray(np.moveaxis(snake_case, 0, -1)) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname) _lowercase =self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') _lowercase =self.get_image_processor(do_normalize=snake_case, padding_value=1.0) _lowercase =InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=snake_case, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, snake_case) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, snake_case) self.assertIsInstance(processor.qformer_tokenizer, snake_case) def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =self.get_qformer_tokenizer() _lowercase =InstructBlipProcessor( tokenizer=snake_case, image_processor=snake_case, qformer_tokenizer=snake_case) _lowercase =self.prepare_image_inputs() _lowercase =image_processor(snake_case, return_tensors='np') _lowercase =processor(images=snake_case, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =self.get_qformer_tokenizer() _lowercase =InstructBlipProcessor( tokenizer=snake_case, image_processor=snake_case, qformer_tokenizer=snake_case) _lowercase ='lower newer' _lowercase =processor(text=snake_case) _lowercase =tokenizer(snake_case, return_token_type_ids=snake_case) _lowercase =qformer_tokenizer(snake_case, return_token_type_ids=snake_case) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['qformer_' + key]) def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =self.get_qformer_tokenizer() _lowercase =InstructBlipProcessor( tokenizer=snake_case, image_processor=snake_case, qformer_tokenizer=snake_case) _lowercase ='lower newer' _lowercase =self.prepare_image_inputs() _lowercase =processor(text=snake_case, images=snake_case) self.assertListEqual( list(inputs.keys()), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], ) # test if it raises when no input is passed with pytest.raises(snake_case): processor() def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =self.get_qformer_tokenizer() _lowercase =InstructBlipProcessor( tokenizer=snake_case, image_processor=snake_case, qformer_tokenizer=snake_case) _lowercase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase =processor.batch_decode(snake_case) _lowercase =tokenizer.batch_decode(snake_case) self.assertListEqual(snake_case, snake_case) def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase =self.get_image_processor() _lowercase =self.get_tokenizer() _lowercase =self.get_qformer_tokenizer() _lowercase =InstructBlipProcessor( tokenizer=snake_case, image_processor=snake_case, qformer_tokenizer=snake_case) _lowercase ='lower newer' _lowercase =self.prepare_image_inputs() _lowercase =processor(text=snake_case, images=snake_case) self.assertListEqual( list(inputs.keys()), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
181
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : List[str] = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] UpperCAmelCase_ : str = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : Dict = {f'''funnel-transformer/{name}''': 512 for name in _model_names} UpperCAmelCase_ : List[Any] = {f'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Dict = FunnelTokenizer __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : int = 2 def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_="##" , **lowerCamelCase_ , ) -> Tuple: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , clean_text=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , wordpieces_prefix=lowerCamelCase_ , **lowerCamelCase_ , ) _a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars ): _a : List[str] = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) ) _a : List[Any] = do_lower_case _a : Dict = strip_accents _a : List[str] = tokenize_chinese_chars _a : Dict = normalizer_class(**lowerCamelCase_ ) _a : Optional[int] = do_lower_case def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Dict: _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : str = [self.sep_token_id] _a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: _a : List[str] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
711
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Union[List[PIL.Image.Image], np.ndarray] __lowerCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
424
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase__ = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase__ = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase__ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase__ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase__ = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase__ = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase__ = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def lowercase__ ( ): _SCREAMING_SNAKE_CASE : str = randrange(len(UpperCAmelCase_ ) ), randrange(len(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE : List[str] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] _SCREAMING_SNAKE_CASE : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase__ ( lowerCamelCase = 100 ): return (generate_random_hand() for _ in range(UpperCAmelCase_ )) @pytest.mark.parametrize('hand, expected', UpperCAmelCase_ ) def lowercase__ ( lowerCamelCase, lowerCamelCase ): assert PokerHand(UpperCAmelCase_ )._is_flush() == expected @pytest.mark.parametrize('hand, expected', UpperCAmelCase_ ) def lowercase__ ( lowerCamelCase, lowerCamelCase ): assert PokerHand(UpperCAmelCase_ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values', UpperCAmelCase_ ) def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = PokerHand(UpperCAmelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected', UpperCAmelCase_ ) def lowercase__ ( lowerCamelCase, lowerCamelCase ): assert PokerHand(UpperCAmelCase_ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected', UpperCAmelCase_ ) def lowercase__ ( lowerCamelCase, lowerCamelCase ): assert PokerHand(UpperCAmelCase_ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected', UpperCAmelCase_ ) def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): assert PokerHand(UpperCAmelCase_ ).compare_with(PokerHand(UpperCAmelCase_ ) ) == expected @pytest.mark.parametrize('hand, other, expected', generate_random_hands() ) def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): assert PokerHand(UpperCAmelCase_ ).compare_with(PokerHand(UpperCAmelCase_ ) ) == expected def lowercase__ ( ): _SCREAMING_SNAKE_CASE : List[str] = [PokerHand(UpperCAmelCase_ ) for hand in SORTED_HANDS] _SCREAMING_SNAKE_CASE : List[str] = poker_hands.copy() shuffle(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = chain(sorted(UpperCAmelCase_ ) ) for index, hand in enumerate(UpperCAmelCase_ ): assert hand == poker_hands[index] def lowercase__ ( ): _SCREAMING_SNAKE_CASE : List[str] = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=UpperCAmelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase__ ( ): _SCREAMING_SNAKE_CASE : Union[str, Any] = PokerHand('2C 4S AS 3D 5C' ) _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase__ ( ): _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(UpperCAmelCase_, 'poker_hands.txt' ) with open(UpperCAmelCase_ ) as file_hand: for line in file_hand: _SCREAMING_SNAKE_CASE : int = line[:14].strip() _SCREAMING_SNAKE_CASE : List[Any] = line[15:].strip() _SCREAMING_SNAKE_CASE : Optional[Any] = PokerHand(UpperCAmelCase_ ), PokerHand(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = player.compare_with(UpperCAmelCase_ ) if output == "Win": answer += 1 assert answer == 376
621
import datasets snake_case : int = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' snake_case : Tuple = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' snake_case : Union[str, Any] = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )}
445
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self: Optional[Any] , __UpperCamelCase: int , __UpperCamelCase: int , __UpperCamelCase: int , __UpperCamelCase: Dict=0.0 , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: str = "geglu" , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: bool = False , __UpperCamelCase: bool = False , __UpperCamelCase: bool = False , __UpperCamelCase: bool = False , __UpperCamelCase: bool = True , __UpperCamelCase: str = "layer_norm" , __UpperCamelCase: bool = False , ): '''simple docstring''' super().__init__() __magic_name__ = only_cross_attention __magic_name__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" __magic_name__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __magic_name__ = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: __magic_name__ = AdaLayerNormZero(__a , __a ) else: __magic_name__ = nn.LayerNorm(__a , elementwise_affine=__a ) __magic_name__ = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __magic_name__ = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) __magic_name__ = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: __magic_name__ = None __magic_name__ = None # 3. Feed-forward __magic_name__ = nn.LayerNorm(__a , elementwise_affine=__a ) __magic_name__ = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None __magic_name__ = None __magic_name__ = 0 def _SCREAMING_SNAKE_CASE ( self: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: int ): '''simple docstring''' __magic_name__ = chunk_size __magic_name__ = dim def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: torch.FloatTensor , __UpperCamelCase: Optional[torch.FloatTensor] = None , __UpperCamelCase: Optional[torch.FloatTensor] = None , __UpperCamelCase: Optional[torch.FloatTensor] = None , __UpperCamelCase: Optional[torch.LongTensor] = None , __UpperCamelCase: Dict[str, Any] = None , __UpperCamelCase: Optional[torch.LongTensor] = None , ): '''simple docstring''' if self.use_ada_layer_norm: __magic_name__ = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: __magic_name__ = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: __magic_name__ = self.norma(__a ) __magic_name__ = cross_attention_kwargs if cross_attention_kwargs is not None else {} __magic_name__ = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: __magic_name__ = gate_msa.unsqueeze(1 ) * attn_output __magic_name__ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __magic_name__ = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) __magic_name__ = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) __magic_name__ = attn_output + hidden_states # 3. Feed-forward __magic_name__ = self.norma(__a ) if self.use_ada_layer_norm_zero: __magic_name__ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __magic_name__ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __magic_name__ = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __magic_name__ = self.ff(__a ) if self.use_ada_layer_norm_zero: __magic_name__ = gate_mlp.unsqueeze(1 ) * ff_output __magic_name__ = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self: Optional[int] , __UpperCamelCase: int , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: int = 4 , __UpperCamelCase: float = 0.0 , __UpperCamelCase: str = "geglu" , __UpperCamelCase: bool = False , ): '''simple docstring''' super().__init__() __magic_name__ = int(dim * mult ) __magic_name__ = dim_out if dim_out is not None else dim if activation_fn == "gelu": __magic_name__ = GELU(__a , __a ) if activation_fn == "gelu-approximate": __magic_name__ = GELU(__a , __a , approximate='tanh' ) elif activation_fn == "geglu": __magic_name__ = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": __magic_name__ = ApproximateGELU(__a , __a ) __magic_name__ = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: Tuple ): '''simple docstring''' for module in self.net: __magic_name__ = module(__a ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self: int , __UpperCamelCase: int , __UpperCamelCase: int , __UpperCamelCase: str = "none" ): '''simple docstring''' super().__init__() __magic_name__ = nn.Linear(__a , __a ) __magic_name__ = approximate def _SCREAMING_SNAKE_CASE ( self: Optional[int] , __UpperCamelCase: int ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _SCREAMING_SNAKE_CASE ( self: List[str] , __UpperCamelCase: int ): '''simple docstring''' __magic_name__ = self.proj(__a ) __magic_name__ = self.gelu(__a ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self: List[str] , __UpperCamelCase: int , __UpperCamelCase: int ): '''simple docstring''' super().__init__() __magic_name__ = nn.Linear(__a , dim_out * 2 ) def _SCREAMING_SNAKE_CASE ( self: Any , __UpperCamelCase: Optional[Any] ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: Tuple ): '''simple docstring''' __magic_name__ = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __UpperCamelCase ( nn.Module ): def __init__( self: int , __UpperCamelCase: int , __UpperCamelCase: int ): '''simple docstring''' super().__init__() __magic_name__ = nn.Linear(__a , __a ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , __UpperCamelCase: Any ): '''simple docstring''' __magic_name__ = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: Tuple ): '''simple docstring''' super().__init__() __magic_name__ = nn.Embedding(__a , __a ) __magic_name__ = nn.SiLU() __magic_name__ = nn.Linear(__a , embedding_dim * 2 ) __magic_name__ = nn.LayerNorm(__a , elementwise_affine=__a ) def _SCREAMING_SNAKE_CASE ( self: Any , __UpperCamelCase: str , __UpperCamelCase: List[Any] ): '''simple docstring''' __magic_name__ = self.linear(self.silu(self.emb(__a ) ) ) __magic_name__ = torch.chunk(__a , 2 ) __magic_name__ = self.norm(__a ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self: Tuple , __UpperCamelCase: List[Any] , __UpperCamelCase: Tuple ): '''simple docstring''' super().__init__() __magic_name__ = CombinedTimestepLabelEmbeddings(__a , __a ) __magic_name__ = nn.SiLU() __magic_name__ = nn.Linear(__a , 6 * embedding_dim , bias=__a ) __magic_name__ = nn.LayerNorm(__a , elementwise_affine=__a , eps=1E-6 ) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Dict , __UpperCamelCase: Tuple=None ): '''simple docstring''' __magic_name__ = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) __magic_name__ = emb.chunk(6 , dim=1 ) __magic_name__ = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self: str , __UpperCamelCase: int , __UpperCamelCase: int , __UpperCamelCase: int , __UpperCamelCase: Optional[str] = None , __UpperCamelCase: float = 1E-5 ): '''simple docstring''' super().__init__() __magic_name__ = num_groups __magic_name__ = eps if act_fn is None: __magic_name__ = None else: __magic_name__ = get_activation(__a ) __magic_name__ = nn.Linear(__a , out_dim * 2 ) def _SCREAMING_SNAKE_CASE ( self: List[str] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Any ): '''simple docstring''' if self.act: __magic_name__ = self.act(__a ) __magic_name__ = self.linear(__a ) __magic_name__ = emb[:, :, None, None] __magic_name__ = emb.chunk(2 , dim=1 ) __magic_name__ = F.group_norm(__a , self.num_groups , eps=self.eps ) __magic_name__ = x * (1 + scale) + shift return x
707
import os A__ = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def _lowercase ( a_ : str ) -> int: '''simple docstring''' __magic_name__ = 0 __magic_name__ = 0 while index < len(a_ ) - 1: __magic_name__ = SYMBOLS[numerals[index]] __magic_name__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowercase ( a_ : int ) -> str: '''simple docstring''' __magic_name__ = '' __magic_name__ = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 __magic_name__ = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 __magic_name__ = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowercase ( a_ : str = "/p089_roman.txt" ) -> int: '''simple docstring''' __magic_name__ = 0 with open(os.path.dirname(a_ ) + roman_numerals_filename ) as filea: __magic_name__ = filea.readlines() for line in lines: __magic_name__ = line.strip() __magic_name__ = parse_roman_numerals(a_ ) __magic_name__ = generate_roman_numerals(a_ ) savings += len(a_ ) - len(a_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
184
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return EnvironmentCommand() class __UpperCamelCase ( a_ ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Any = parser.add_parser('env' ) download_parser.set_defaults(func=_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = huggingface_hub.__version__ _lowerCAmelCase : str = '''not installed''' _lowerCAmelCase : Union[str, Any] = '''NA''' if is_torch_available(): import torch _lowerCAmelCase : Dict = torch.__version__ _lowerCAmelCase : Tuple = torch.cuda.is_available() _lowerCAmelCase : List[Any] = '''not installed''' if is_transformers_available(): import transformers _lowerCAmelCase : List[str] = transformers.__version__ _lowerCAmelCase : List[str] = '''not installed''' if is_accelerate_available(): import accelerate _lowerCAmelCase : List[Any] = accelerate.__version__ _lowerCAmelCase : str = '''not installed''' if is_xformers_available(): import xformers _lowerCAmelCase : Any = xformers.__version__ _lowerCAmelCase : List[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
259
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : Dict ={ 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple =['PerceiverFeatureExtractor'] SCREAMING_SNAKE_CASE__ : int =['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
434
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "ylacombe/bark-small" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = "en_speaker_1" UpperCAmelCase_ = "This is a test string" UpperCAmelCase_ = "speaker_embeddings_path.json" UpperCAmelCase_ = "speaker_embeddings" def lowercase__ ( self : str , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ = 35 UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = { "semantic_prompt": np.ones(_UpperCAmelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) UpperCAmelCase_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) UpperCAmelCase_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_UpperCAmelCase ) UpperCAmelCase_ = processor(text=self.input_string ) UpperCAmelCase_ = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
1
'''simple docstring''' _A: Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> Any: __UpperCAmelCase = [False] * len(snake_case_ ) __UpperCAmelCase = [s] __UpperCAmelCase = True while queue: __UpperCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case_ ) __UpperCAmelCase = True __UpperCAmelCase = u return visited[t] def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> List[str]: __UpperCAmelCase = [-1] * (len(snake_case_ )) __UpperCAmelCase = 0 __UpperCAmelCase = [] __UpperCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): __UpperCAmelCase = float('Inf' ) __UpperCAmelCase = sink while s != source: # Find the minimum value in select path __UpperCAmelCase = min(snake_case_ , graph[parent[s]][s] ) __UpperCAmelCase = parent[s] max_flow += path_flow __UpperCAmelCase = sink while v != source: __UpperCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCAmelCase = parent[v] for i in range(len(snake_case_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
126
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = PhobertTokenizer __UpperCamelCase = False def A__ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] _lowerCAmelCase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) _lowerCAmelCase = ["""#version: 0.2""", """l à</w>"""] _lowerCAmelCase = {"""unk_token""": """<unk>"""} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) def A__ (self , **lowerCamelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = """Tôi là VinAI Research""" _lowerCAmelCase = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def A__ (self ): '''simple docstring''' _lowerCAmelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase = """Tôi là VinAI Research""" _lowerCAmelCase = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() _lowerCAmelCase = tokenizer.tokenize(lowerCamelCase ) print(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = tokens + [tokenizer.unk_token] _lowerCAmelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase )
156
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase__ ( ) -> Dict: '''simple docstring''' _snake_case = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case = Dataset.from_dict(UpperCamelCase__ ) return dataset class UpperCamelCase_ ( _lowerCamelCase ): def lowerCAmelCase ( self ) -> List[str]: _snake_case = get_dataset() _snake_case = make_duplicate_clusters(lowerCAmelCase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = get_dataset() _snake_case , _snake_case = deduplicate_dataset(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) print(lowerCAmelCase_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowerCAmelCase_ )
700
import argparse from collections import defaultdict import yaml UpperCAmelCase_ = """docs/source/en/_toctree.yml""" def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' _snake_case = defaultdict(UpperCamelCase__ ) _snake_case = [] _snake_case = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(UpperCamelCase__ ) _snake_case = new_doc_list _snake_case = [key for key, value in counts.items() if value > 1] _snake_case = [] for duplicate_key in duplicates: _snake_case = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _snake_case = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase__ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(UpperCamelCase__ ) # Sort return overview_doc def lowerCamelCase__ ( UpperCamelCase__ : Dict=False ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase__ , encoding='utf-8' ) as f: _snake_case = yaml.safe_load(f.read() ) # Get to the API doc _snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 _snake_case = content[api_idx]['sections'] # Then to the model doc _snake_case = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _snake_case = api_doc[scheduler_idx]['sections'] _snake_case = clean_doc_toc(UpperCamelCase__ ) _snake_case = False if new_scheduler_doc != scheduler_doc: _snake_case = True if overwrite: _snake_case = new_scheduler_doc if diff: if overwrite: _snake_case = api_doc with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple=False ) -> List[Any]: '''simple docstring''' with open(UpperCamelCase__ , encoding='utf-8' ) as f: _snake_case = yaml.safe_load(f.read() ) # Get to the API doc _snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 _snake_case = content[api_idx]['sections'] # Then to the model doc _snake_case = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _snake_case = False _snake_case = api_doc[pipeline_idx]['sections'] _snake_case = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _snake_case = pipeline_doc['section'] _snake_case = clean_doc_toc(UpperCamelCase__ ) if overwrite: _snake_case = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__ ) # sort overall pipeline doc _snake_case = clean_doc_toc(UpperCamelCase__ ) if new_pipeline_docs != pipeline_docs: _snake_case = True if overwrite: _snake_case = new_pipeline_docs if diff: if overwrite: _snake_case = api_doc with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
541
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _a ( _snake_case , _snake_case , _snake_case , _snake_case = 100 , ): """simple docstring""" UpperCAmelCase = x_start UpperCAmelCase = fnc(_snake_case ) UpperCAmelCase = 0.0 for _ in range(_snake_case ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase = (x_end - x_start) / steps + xa UpperCAmelCase = fnc(_snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase = xa UpperCAmelCase = fxa return length if __name__ == "__main__": def _a ( _snake_case ): """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _UpperCamelCase = 10 while i <= 100000: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
341
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = len(_snake_case ) for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if numbers[j] < numbers[i]: UpperCAmelCase , UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
341
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_: Optional[Any] = logging.get_logger(__name__) lowercase_: List[Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ (__snake_case ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'mobilenet_v1' def __init__( self : Tuple , __a : List[str]=3 , __a : Optional[int]=2_2_4 , __a : List[str]=1.0 , __a : Any=8 , __a : Tuple="relu6" , __a : int=True , __a : Optional[Any]=0.999 , __a : Optional[int]=0.02 , __a : Tuple=0.001 , **__a : Tuple , ): super().__init__(**__a ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case__ : Tuple = num_channels snake_case__ : List[str] = image_size snake_case__ : Any = depth_multiplier snake_case__ : Tuple = min_depth snake_case__ : Optional[Any] = hidden_act snake_case__ : int = tf_padding snake_case__ : str = classifier_dropout_prob snake_case__ : int = initializer_range snake_case__ : Any = layer_norm_eps class lowercase__ (__snake_case ): """simple docstring""" __UpperCamelCase : Tuple = version.parse('1.11' ) @property def lowercase ( self : Optional[Any] ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowercase ( self : Dict ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowercase ( self : Tuple ): return 1e-4
127
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_: Union[str, Any] = TypeVar('T') class lowercase__ (Generic[T] ): """simple docstring""" def __init__( self : List[Any] , __a : list[T] , __a : Callable[[T, T], T] ): snake_case__ : Any | T = None snake_case__ : int = len(__a ) snake_case__ : list[T] = [any_type for _ in range(self.N )] + arr snake_case__ : Tuple = fnc self.build() def lowercase ( self : int ): for p in range(self.N - 1 , 0 , -1 ): snake_case__ : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase ( self : Optional[Any] , __a : int , __a : T ): p += self.N snake_case__ : Optional[int] = v while p > 1: snake_case__ : int = p // 2 snake_case__ : Dict = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase ( self : int , __a : int , __a : int ): # noqa: E741 snake_case__ , snake_case__ : List[Any] = l + self.N, r + self.N snake_case__ : T | None = None while l <= r: if l % 2 == 1: snake_case__ : List[str] = self.st[l] if res is None else self.fn(__a , self.st[l] ) if r % 2 == 0: snake_case__ : Any = self.st[r] if res is None else self.fn(__a , self.st[r] ) snake_case__ , snake_case__ : Tuple = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_: List[str] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase_: Optional[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase_: Optional[Any] = SegmentTree(test_array, min) lowercase_: Any = SegmentTree(test_array, max) lowercase_: Optional[int] = SegmentTree(test_array, lambda a, b: a + b) def _lowercase ( ): """simple docstring""" for i in range(len(UpperCAmelCase_)): for j in range(UpperCAmelCase_ , len(UpperCAmelCase_)): snake_case__ : Tuple = reduce(UpperCAmelCase_ , test_array[i : j + 1]) snake_case__ : int = reduce(UpperCAmelCase_ , test_array[i : j + 1]) snake_case__ : Union[str, Any] = reduce(lambda UpperCAmelCase_ , UpperCAmelCase_: a + b , test_array[i : j + 1]) assert min_range == min_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_) assert max_range == max_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_) assert sum_range == sum_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_) test_all_segments() for index, value in test_updates.items(): lowercase_: Optional[int] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
127
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _a (): """simple docstring""" _UpperCamelCase ='''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' _UpperCamelCase =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return image def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =dct.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCamelCase =state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) _UpperCamelCase =state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _UpperCamelCase =torch.cat((q_bias, torch.zeros_like(__SCREAMING_SNAKE_CASE , requires_grad=__SCREAMING_SNAKE_CASE ), v_bias) ) _UpperCamelCase =qkv_bias def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =364 if '''coco''' in model_name else 224 _UpperCamelCase =BlipaVisionConfig(image_size=__SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCamelCase =OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__SCREAMING_SNAKE_CASE ).to_dict() elif "opt-6.7b" in model_name: _UpperCamelCase =OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__SCREAMING_SNAKE_CASE ).to_dict() elif "t5-xl" in model_name: _UpperCamelCase =TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCamelCase =TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() _UpperCamelCase =BlipaConfig(vision_config=__SCREAMING_SNAKE_CASE , text_config=__SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" _UpperCamelCase =( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) _UpperCamelCase =tokenizer('''\n''' , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids[0] _UpperCamelCase , _UpperCamelCase =get_blipa_config(__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =BlipaForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() _UpperCamelCase ={ '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } _UpperCamelCase , _UpperCamelCase =model_name_to_original[model_name] # load original model print('''Loading original model...''' ) _UpperCamelCase ='''cuda''' if torch.cuda.is_available() else '''cpu''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase =load_model_and_preprocess( name=__SCREAMING_SNAKE_CASE , model_type=__SCREAMING_SNAKE_CASE , is_eval=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) original_model.eval() print('''Done!''' ) # update state dict keys _UpperCamelCase =original_model.state_dict() _UpperCamelCase =create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) if key.startswith('''Qformer.bert''' ): _UpperCamelCase =key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: _UpperCamelCase =key.replace('''self''' , '''attention''' ) if "opt_proj" in key: _UpperCamelCase =key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: _UpperCamelCase =key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): _UpperCamelCase =key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): _UpperCamelCase =key.replace('''t5''' , '''language''' ) _UpperCamelCase =val # read in qv biases read_in_q_v_bias(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase , _UpperCamelCase =hf_model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCamelCase =load_demo_image() _UpperCamelCase =vis_processors['''eval'''](__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) # create processor _UpperCamelCase =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =BlipaProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(__SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) hf_model.to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "opt" in model_name: _UpperCamelCase =original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits _UpperCamelCase =hf_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).logits else: _UpperCamelCase =original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits _UpperCamelCase =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _UpperCamelCase =hf_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCamelCase =torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__SCREAMING_SNAKE_CASE ) assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCamelCase =torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__SCREAMING_SNAKE_CASE ) else: # cast to same type _UpperCamelCase =logits.dtype assert torch.allclose(original_logits.to(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) _UpperCamelCase ='''''' _UpperCamelCase =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =original_model.generate({'''image''': original_pixel_values} ) _UpperCamelCase =hf_model.generate( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =input_ids.shape[1] _UpperCamelCase =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =[text.strip() for text in output_text] print('''HF generation:''' , __SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() __lowerCamelCase : str = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCamelCase : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
404
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = GPTSanJapaneseTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCamelCase__ ( self : Tuple ) -> Optional[Any]: super().setUp() # fmt: off _UpperCamelCase =['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _UpperCamelCase ={'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _UpperCamelCase ={'''unk_token''': '''<unk>'''} _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase__ ) ) def UpperCamelCase__ ( self : Optional[Any] , **UpperCamelCase__ : List[Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : List[str] ) -> int: _UpperCamelCase ='''こんにちは、世界。 \nこんばんは、㔺界。😀''' _UpperCamelCase ='''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: _UpperCamelCase , _UpperCamelCase =self.get_input_output_texts(UpperCamelCase__ ) _UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def UpperCamelCase__ ( self : Tuple ) -> Dict: pass # TODO add if relevant def UpperCamelCase__ ( self : Union[str, Any] ) -> List[Any]: pass # TODO add if relevant def UpperCamelCase__ ( self : Tuple ) -> int: pass # TODO add if relevant def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase =self.get_tokenizer() # Testing tokenization _UpperCamelCase ='''こんにちは、世界。 こんばんは、㔺界。''' _UpperCamelCase =['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing conversion to ids without special tokens _UpperCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing conversion to ids with special tokens _UpperCamelCase =tokens + [tokenizer.unk_token] _UpperCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase =self.get_tokenizer() # Testing tokenization _UpperCamelCase ='''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _UpperCamelCase ='''こんにちは、、、、世界。こんばんは、、、、世界。''' _UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : str ) -> str: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _UpperCamelCase ='''こんにちは、世界。''' _UpperCamelCase ='''こんばんは、㔺界。😀''' _UpperCamelCase ='''こんにちは、世界。こんばんは、世界。😀''' _UpperCamelCase =tokenizer.encode(prefix_text + input_text ) _UpperCamelCase =tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _UpperCamelCase =tokenizer.encode(UpperCamelCase__ , prefix_text=UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : Optional[int] ) -> Any: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _UpperCamelCase ='''こんにちは、世界。''' _UpperCamelCase ='''こんばんは、㔺界。😀''' _UpperCamelCase =len(tokenizer.encode(UpperCamelCase__ ) ) - 2 _UpperCamelCase =len(tokenizer.encode(UpperCamelCase__ ) ) - 2 _UpperCamelCase =[1] + [0] * (len_prefix + len_text + 1) _UpperCamelCase =[1] * (len_prefix + len_text + 1) + [0] _UpperCamelCase =[1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCamelCase =tokenizer(prefix_text + input_text ).token_type_ids _UpperCamelCase =tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _UpperCamelCase =tokenizer(UpperCamelCase__ , prefix_text=UpperCamelCase__ ).token_type_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _UpperCamelCase =tokenizer.encode('''あンいワ''' ) _UpperCamelCase =tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _UpperCamelCase =tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , tokenizer.decode(UpperCamelCase__ ) ) self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , tokenizer.decode(UpperCamelCase__ ) ) self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ ( self : Tuple ) -> Dict: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _UpperCamelCase =[['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _UpperCamelCase =tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) _UpperCamelCase =tokenizer.batch_encode_plus(UpperCamelCase__ , padding=UpperCamelCase__ ) # fmt: off _UpperCamelCase =[[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] _UpperCamelCase =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCamelCase =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCamelCase__ ) self.assertListEqual(x_token.token_type_ids , UpperCamelCase__ ) self.assertListEqual(x_token.attention_mask , UpperCamelCase__ ) self.assertListEqual(x_token_a.input_ids , UpperCamelCase__ ) self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase__ ) self.assertListEqual(x_token_a.attention_mask , UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[int] ) -> int: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase__ ( self : Dict ) -> Optional[int]: # tokenizer has no padding token pass
404
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) def _a ( lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = r'\w+[.]\d+' SCREAMING_SNAKE_CASE__ : Dict = re.findall(lowercase__ , lowercase__ ) for pat in pats: SCREAMING_SNAKE_CASE__ : int = key.replace(lowercase__ , '_'.join(pat.split('.' ) ) ) return key def _a ( lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): SCREAMING_SNAKE_CASE__ : int = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: SCREAMING_SNAKE_CASE__ : List[Any] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: SCREAMING_SNAKE_CASE__ : Optional[int] = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE__ : List[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: SCREAMING_SNAKE_CASE__ : Optional[int] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE__ : int = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": SCREAMING_SNAKE_CASE__ : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE__ : Optional[int] = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE__ : Dict = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _a ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : List[str]=42 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params SCREAMING_SNAKE_CASE__ : int = flax_model.init_weights(PRNGKey(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Any = flatten_dict(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE__ : Any = rename_key(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters SCREAMING_SNAKE_CASE__ : Dict = rename_key_and_reshape_tensor(lowercase__ , lowercase__ , lowercase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE__ : Dict = jnp.asarray(lowercase__ ) return unflatten_dict(lowercase__ )
702
import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self : str , a_ : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = str(id_ ) SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : int , a_ : Tuple )-> Union[str, Any]: """simple docstring""" return self.key < other.key def __repr__( self : Any )-> Dict: """simple docstring""" return self.id def __lowercase( self : Optional[Any] , a_ : int )-> List[str]: """simple docstring""" self.neighbors.append(a_ ) def __lowercase( self : int , a_ : int , a_ : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = weight def _a ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase__ ) graph[b - 1].add_edge(graph[a - 1] , lowercase__ ) def _a ( lowercase__ : list , lowercase__ : Vertex ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [] for u in graph: SCREAMING_SNAKE_CASE__ : Dict = math.inf SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : int = graph[:] while q: SCREAMING_SNAKE_CASE__ : Optional[Any] = min(lowercase__ ) q.remove(lowercase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): SCREAMING_SNAKE_CASE__ : int = u SCREAMING_SNAKE_CASE__ : Any = u.edges[v.id] for i in range(1 , len(lowercase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _a ( lowercase__ : list , lowercase__ : Vertex ): '''simple docstring''' for u in graph: SCREAMING_SNAKE_CASE__ : List[str] = math.inf SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : Tuple = list(lowercase__ ) hq.heapify(lowercase__ ) while h: SCREAMING_SNAKE_CASE__ : Optional[int] = hq.heappop(lowercase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): SCREAMING_SNAKE_CASE__ : List[str] = u SCREAMING_SNAKE_CASE__ : Dict = u.edges[v.id] hq.heapify(lowercase__ ) for i in range(1 , len(lowercase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
636
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = 0, 0, 0 __UpperCAmelCase : Tuple = ugly_nums[ia] * 2 __UpperCAmelCase : List[Any] = ugly_nums[ia] * 3 __UpperCAmelCase : Optional[int] = ugly_nums[ia] * 5 for _ in range(1 , UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = min(UpperCamelCase , UpperCamelCase , UpperCamelCase ) ugly_nums.append(UpperCamelCase ) if next_num == next_a: ia += 1 __UpperCAmelCase : Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCAmelCase : Optional[int] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCAmelCase : Tuple = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
77
'''simple docstring''' lowerCAmelCase__ = 'Alexander Joslin' import operator as op from .stack import Stack def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ : Stack[int] = Stack() UpperCamelCase__ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase_)) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase_) elif i == ")": # RULE 4 UpperCamelCase__ : Optional[Any] = operator_stack.peek() operator_stack.pop() UpperCamelCase__ : Optional[Any] = operand_stack.peek() operand_stack.pop() UpperCamelCase__ : List[Any] = operand_stack.peek() operand_stack.pop() UpperCamelCase__ : List[Any] = operators[opr](lowerCamelCase_ , lowerCamelCase_) operand_stack.push(lowerCamelCase_) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase__ = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
596
0
"""simple docstring""" from __future__ import annotations from random import choice def _lowerCamelCase ( UpperCAmelCase_ : str ) -> Union[str, Any]: """simple docstring""" return choice(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : list[int], UpperCAmelCase_ : int ) -> int: """simple docstring""" A__ = random_pivot(UpperCAmelCase_ ) # partition based on pivot # linear time A__ = [e for e in lst if e < pivot] A__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(UpperCAmelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(UpperCAmelCase_ ) < k - 1: return kth_number(UpperCAmelCase_, k - len(UpperCAmelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(UpperCAmelCase_, UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
562
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowerCamelCase ( UpperCAmelCase_ : int ) -> list[str]: """simple docstring""" A__ = [] A__ = 11 A__ = int("1" + "0" * digit_len ) for num in range(UpperCAmelCase_, UpperCAmelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCAmelCase_, UpperCAmelCase_ ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 A__ = 10 return solutions def _lowerCamelCase ( UpperCAmelCase_ : int = 2 ) -> int: """simple docstring""" A__ = 1.0 for fraction in fraction_list(UpperCAmelCase_ ): A__ = Fraction(UpperCAmelCase_ ) result *= frac.denominator / frac.numerator return int(UpperCAmelCase_ ) if __name__ == "__main__": print(solution())
562
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Any = [parquet_path] SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = tmp_path / "cache" SCREAMING_SNAKE_CASE : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Optional[int] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Dict = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Dict = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Optional[Any] = "train" SCREAMING_SNAKE_CASE : Dict = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Optional[int] = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : Union[str, Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Any = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Dict = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Dict = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
62
"""simple docstring""" UpperCAmelCase : int = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} lowercase_ = 0 lowercase_ = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for arabic, roman in ROMAN: ((lowercase_) , (lowercase_)) = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
567
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] ={'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] =['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int =['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple =[ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class snake_case : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : str=9_9 , __A : Optional[Any]=1_3 , __A : Optional[int]=1_6 , __A : Optional[Any]=7 , __A : List[Any]=True , __A : List[str]=True , __A : int=True , __A : str=False , __A : List[str]=True , __A : Optional[int]=2 , __A : Optional[Any]=3_2 , __A : str=4 , __A : int=4 , __A : Union[str, Any]=3_0 , __A : Union[str, Any]=0 , __A : Optional[int]=1 , __A : List[str]=2 , __A : Tuple=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = decoder_seq_length # For common tests __UpperCamelCase = self.decoder_seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = d_model __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_attention_heads __UpperCamelCase = eos_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = decoder_start_token_id __UpperCamelCase = use_cache __UpperCamelCase = max_position_embeddings __UpperCamelCase = None __UpperCamelCase = decoder_seq_length __UpperCamelCase = 2 __UpperCamelCase = 1 def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCamelCase ( self : List[Any] , __A : str , __A : str , __A : Tuple , __A : Optional[int] , ): __UpperCamelCase = True __UpperCamelCase = TrOCRDecoder(config=__A ).to(__A ).eval() __UpperCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __UpperCamelCase = model(__A , use_cache=__A ) __UpperCamelCase = model(__A ) __UpperCamelCase = model(__A , use_cache=__A ) self.parent.assertTrue(len(__A ) == len(__A ) ) self.parent.assertTrue(len(__A ) == len(__A ) + 1 ) __UpperCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = model(__A )['last_hidden_state'] __UpperCamelCase = model(__A , past_key_values=__A )['last_hidden_state'] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__A , __A , atol=1e-3 ) def _lowerCamelCase ( self : int ): __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Any =(TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : int ={"text-generation": TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : Tuple =False def _lowerCamelCase ( self : Dict ): __UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=__A ) __UpperCamelCase = ConfigTester(self , config_class=__A ) def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : List[Any] ): pass def _lowerCamelCase ( self : Dict ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__A ) def _lowerCamelCase ( self : Union[str, Any] ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def _lowerCamelCase ( self : Optional[int] ): pass
434
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): # Load checkpoint __UpperCAmelCase = torch.load(lowerCAmelCase , map_location='cpu' ) __UpperCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCAmelCase = v else: __UpperCAmelCase = v __UpperCAmelCase = chkpt['params'] __UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase , (torch.FloatTensor, numpy.ndarray) )} __UpperCAmelCase = chkpt['dico_word2id'] __UpperCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase , lowerCAmelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase , indent=2 ) + '\n' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase , indent=2 ) + '\n' ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : List[str] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
396
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase : int = 'docs/source/en/_toctree.yml' def __snake_case ( lowerCAmelCase : Union[str, Any] ): __UpperCAmelCase = defaultdict(lowerCAmelCase ) __UpperCAmelCase = [] __UpperCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCAmelCase ) __UpperCAmelCase = new_doc_list __UpperCAmelCase = [key for key, value in counts.items() if value > 1] __UpperCAmelCase = [] for duplicate_key in duplicates: __UpperCAmelCase = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCAmelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __UpperCAmelCase = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCAmelCase ) # Sort return overview_doc def __snake_case ( lowerCAmelCase : Union[str, Any]=False ): with open(lowerCAmelCase , encoding='utf-8' ) as f: __UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase = content[api_idx]['sections'] # Then to the model doc __UpperCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __UpperCAmelCase = api_doc[scheduler_idx]['sections'] __UpperCAmelCase = clean_doc_toc(lowerCAmelCase ) __UpperCAmelCase = False if new_scheduler_doc != scheduler_doc: __UpperCAmelCase = True if overwrite: __UpperCAmelCase = new_scheduler_doc if diff: if overwrite: __UpperCAmelCase = api_doc with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __snake_case ( lowerCAmelCase : Tuple=False ): with open(lowerCAmelCase , encoding='utf-8' ) as f: __UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase = content[api_idx]['sections'] # Then to the model doc __UpperCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __UpperCAmelCase = False __UpperCAmelCase = api_doc[pipeline_idx]['sections'] __UpperCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __UpperCAmelCase = pipeline_doc['section'] __UpperCAmelCase = clean_doc_toc(lowerCAmelCase ) if overwrite: __UpperCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase ) # sort overall pipeline doc __UpperCAmelCase = clean_doc_toc(lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: __UpperCAmelCase = True if overwrite: __UpperCAmelCase = new_pipeline_docs if diff: if overwrite: __UpperCAmelCase = api_doc with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase : Union[str, Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
396
1
'''simple docstring''' def __UpperCAmelCase ( a_: int ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _UpperCAmelCase : str = gray_code_sequence_string(a_ ) # # convert them to integers for i in range(len(a_ ) ): _UpperCAmelCase : Union[str, Any] = int(sequence[i], 2 ) return sequence def __UpperCAmelCase ( a_: int ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase : List[str] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase : Optional[Any] = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase : Optional[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase : str = "0" + smaller_sequence[i] sequence.append(a_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase : int = "1" + smaller_sequence[i] sequence.append(a_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
257
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''big_bird''' def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any]=5_0_3_5_8 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : Any="gelu_new" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Optional[int]=4_0_9_6 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : List[str]=1e-12 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=6_6 , lowerCAmelCase__ : Optional[int]="block_sparse" , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : str , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , sep_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : Dict = rescale_embeddings _UpperCAmelCase : List[Any] = attention_type _UpperCAmelCase : str = use_bias _UpperCAmelCase : Optional[Any] = block_size _UpperCAmelCase : Optional[Any] = num_random_blocks _UpperCAmelCase : Optional[Any] = classifier_dropout class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
257
1
'''simple docstring''' import os from collections.abc import Iterator def UpperCamelCase_ ( _UpperCAmelCase : str = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): _UpperCAmelCase : Optional[int] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip("./" ) def UpperCamelCase_ ( _UpperCAmelCase : Dict ) -> Any: """simple docstring""" return F"""{i * ' '}*""" if i else "\n##" def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(_UpperCAmelCase )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def UpperCamelCase_ ( _UpperCAmelCase : str = "." ) -> None: """simple docstring""" _UpperCAmelCase : List[str] = "" for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): _UpperCAmelCase , _UpperCAmelCase : Dict = os.path.split(_UpperCAmelCase ) if filepath != old_path: _UpperCAmelCase : str = print_path(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : int = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase : Tuple = F"""{filepath}/{filename}""".replace(" " , "%20" ) _UpperCAmelCase : Tuple = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F"""{md_prefix(_UpperCAmelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
244
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number | (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number & ~(1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number ^ (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
244
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A = logging.get_logger(__name__) __A = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[str] = """dpt""" def __init__( self , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=3_8_4 , __UpperCAmelCase=1_6 , __UpperCAmelCase=3 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=[2, 5, 8, 1_1] , __UpperCAmelCase="project" , __UpperCAmelCase=[4, 2, 1, 0.5] , __UpperCAmelCase=[9_6, 1_9_2, 3_8_4, 7_6_8] , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.4 , __UpperCAmelCase=2_5_5 , __UpperCAmelCase=0.1 , __UpperCAmelCase=[1, 1_0_2_4, 2_4, 2_4] , __UpperCAmelCase=[0, 1] , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :int = hidden_size lowerCAmelCase__ :int = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase__ :List[Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCAmelCase__ :Union[str, Any] = BitConfig(**__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase__ :Optional[Any] = BitConfig(**__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :int = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) lowerCAmelCase__ :Any = backbone_featmap_shape lowerCAmelCase__ :int = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCAmelCase__ :Any = None lowerCAmelCase__ :List[Any] = None lowerCAmelCase__ :Optional[Any] = [] lowerCAmelCase__ :Optional[Any] = num_hidden_layers lowerCAmelCase__ :List[Any] = num_attention_heads lowerCAmelCase__ :Optional[int] = intermediate_size lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :List[Any] = hidden_dropout_prob lowerCAmelCase__ :List[str] = attention_probs_dropout_prob lowerCAmelCase__ :Optional[Any] = initializer_range lowerCAmelCase__ :Optional[int] = layer_norm_eps lowerCAmelCase__ :Union[str, Any] = image_size lowerCAmelCase__ :Any = patch_size lowerCAmelCase__ :Optional[Any] = num_channels lowerCAmelCase__ :Optional[Any] = qkv_bias lowerCAmelCase__ :Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCAmelCase__ :Optional[Any] = readout_type lowerCAmelCase__ :int = reassemble_factors lowerCAmelCase__ :Union[str, Any] = neck_hidden_sizes lowerCAmelCase__ :Optional[int] = fusion_hidden_size lowerCAmelCase__ :List[str] = head_in_index lowerCAmelCase__ :Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ :Optional[int] = use_auxiliary_head lowerCAmelCase__ :Dict = auxiliary_loss_weight lowerCAmelCase__ :Optional[int] = semantic_loss_ignore_index lowerCAmelCase__ :Union[str, Any] = semantic_classifier_dropout def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ :int = self.backbone_config.to_dict() lowerCAmelCase__ :Union[str, Any] = self.__class__.model_type return output
560
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[Any] = ["""image_processor""", """tokenizer"""] __magic_name__ :str = """BlipImageProcessor""" __magic_name__ :Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = False super().__init__(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.image_processor def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCAmelCase__ :int = self.tokenizer lowerCAmelCase__ :str = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase__ :Dict = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) if text is not None: lowerCAmelCase__ :str = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) else: lowerCAmelCase__ :Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCAmelCase ) return encoding_image_processor def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
560
1
from __future__ import annotations class lowercase_ : def __init__( self , __A , __A ) -> Dict: SCREAMING_SNAKE_CASE_ : List[Any] =text, pattern SCREAMING_SNAKE_CASE_ : Union[str, Any] =len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) def _snake_case ( self , __A ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _snake_case ( self , __A ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _snake_case ( self ) -> list[int]: SCREAMING_SNAKE_CASE_ : int =[] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE_ : Dict =self.mismatch_in_text(SCREAMING_SNAKE_CASE__ ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE_ : List[str] =( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase = """ABAABA""" _lowercase = """AB""" _lowercase = BoyerMooreSearch(text, pattern) _lowercase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
443
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : float SCREAMING_SNAKE_CASE_ : TreeNode | None = None SCREAMING_SNAKE_CASE_ : TreeNode | None = None def __lowerCamelCase ( a_ : TreeNode | None ) -> bool: # Validation def is_valid_tree(a_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(a_ , a_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(a_ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( a_ : TreeNode | None , a_ : float , a_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , a_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , a_ ) ) return is_binary_search_tree_recursive_check(a_ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
498
0
"""simple docstring""" def a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def a ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
213
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str ) -> Any: # Initialise PyTorch model __magic_name__: Optional[Any] = BertConfig.from_json_file(__UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__: int = BertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
213
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class __lowercase ( __lowerCamelCase ): snake_case_ = """open-llama""" def __init__( self : Dict ,A : str=100_000 ,A : str=4_096 ,A : Optional[Any]=11_008 ,A : Tuple=32 ,A : str=32 ,A : Optional[int]="silu" ,A : List[Any]=2_048 ,A : str=0.0_2 ,A : Optional[int]=1e-6 ,A : int=True ,A : Tuple=0 ,A : str=1 ,A : Any=2 ,A : Optional[Any]=False ,A : int=True ,A : Any=0.1 ,A : Optional[Any]=0.1 ,A : Optional[Any]=True ,A : Union[str, Any]=True ,A : Tuple=None ,**A : Optional[int] ,): '''simple docstring''' UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[int] = rms_norm_eps UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : Optional[Any] = kwargs.pop( """use_memorry_efficient_attention""" ,A ) UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : str = attention_dropout_prob UpperCAmelCase__ : Optional[int] = use_stable_embedding UpperCAmelCase__ : Tuple = shared_input_output_embedding UpperCAmelCase__ : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,tie_word_embeddings=A ,**A ,) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,A ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) UpperCAmelCase__ : List[Any] = self.rope_scaling.get("""type""" ,A ) UpperCAmelCase__ : int = self.rope_scaling.get("""factor""" ,A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(A ,A ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
65
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = {'vocab_file': 'sentencepiece.model'} __UpperCAmelCase : Dict = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __UpperCAmelCase : str = { 'google/rembert': 2_56, } class __lowerCAmelCase (__UpperCamelCase ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a , a=False , a=True , a=True , a="[CLS]" , a="[SEP]" , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , **a , ): """simple docstring""" super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) snake_case_ :Dict = do_lower_case snake_case_ :Tuple = remove_space snake_case_ :List[Any] = keep_accents snake_case_ :Union[str, Any] = vocab_file snake_case_ :Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(a ) @property def _a ( self ): """simple docstring""" return len(self.sp_model ) def _a ( self ): """simple docstring""" snake_case_ :List[Any] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" snake_case_ :Tuple = self.__dict__.copy() snake_case_ :List[Any] = None return state def __setstate__( self , a ): """simple docstring""" snake_case_ :List[Any] = d snake_case_ :Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _a ( self , a , a=False ): """simple docstring""" snake_case_ :str = self.sp_model.EncodeAsPieces(a ) return pieces def _a ( self , a ): """simple docstring""" return self.sp_model.PieceToId(a ) def _a ( self , a ): """simple docstring""" return self.sp_model.IdToPiece(a ) def _a ( self , a ): """simple docstring""" snake_case_ :int = self.sp_model.decode_pieces(a ) return out_string def _a ( self , a , a = None ): """simple docstring""" snake_case_ :List[Any] = [self.sep_token_id] snake_case_ :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , a , a = None , a = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] def _a ( self , a , a = None ): """simple docstring""" snake_case_ :Any = [self.sep_token_id] snake_case_ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , a , a = None ): """simple docstring""" if not os.path.isdir(a ): logger.error("Vocabulary path ({}) should be a directory".format(a ) ) return snake_case_ :str = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
584
0
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): if digit_amount > 0: return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPFeatureExtractor'''] __magic_name__ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
530
0
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = XLMTokenizer UpperCAmelCase : int = False def __snake_case ( self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCAmelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(A_ ) ) def __snake_case ( self , A_ ) -> List[Any]: lowerCAmelCase = """lower newer""" lowerCAmelCase = """lower newer""" return input_text, output_text def __snake_case ( self ) -> int: lowerCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase = """lower""" lowerCAmelCase = ["""low""", """er</w>"""] lowerCAmelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCAmelCase = tokens + ["""<unk>"""] lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) @slow def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=A_ ) lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A_ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
717
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
344
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : Tuple = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : List[str] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case : Optional[Any] = s_dict.pop(lowercase ) elif "subsample" in key: snake_case : Optional[Any] = s_dict.pop(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case , snake_case : Optional[Any] = emb.weight.shape snake_case : Tuple = nn.Linear(lowercase ,lowercase ,bias=lowercase ) snake_case : int = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : Any = torch.load(lowercase ,map_location="""cpu""" ) snake_case : int = mam_aaa["""args"""] snake_case : Tuple = mam_aaa["""model"""] snake_case : Union[str, Any] = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(lowercase ) rename_keys(lowercase ) snake_case : List[Any] = state_dict["""decoder.embed_tokens.weight"""].shape[0] snake_case : Optional[int] = args.share_decoder_input_output_embed snake_case : List[Any] = [int(lowercase ) for i in args.conv_kernel_sizes.split(""",""" )] snake_case : Optional[int] = SpeechaTextConfig( vocab_size=lowercase ,max_source_positions=args.max_source_positions ,max_target_positions=args.max_target_positions ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""relu""" ,num_conv_layers=len(lowercase ) ,conv_channels=args.conv_channels ,conv_kernel_sizes=lowercase ,input_feat_per_channel=args.input_feat_per_channel ,input_channels=args.input_channels ,tie_word_embeddings=lowercase ,num_beams=5 ,max_length=200 ,use_cache=lowercase ,decoder_start_token_id=2 ,early_stopping=lowercase ,) snake_case : Any = SpeechaTextForConditionalGeneration(lowercase ) snake_case , snake_case : Optional[int] = model.model.load_state_dict(lowercase ,strict=lowercase ) if len(lowercase ) > 0 and not set(lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f""" but all the following weights are missing {missing}""" ) if tie_embeds: snake_case : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case : List[Any] = lm_head_weights model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCamelCase : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
587
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list]: snake_case : List[str] = current_set.copy() for row_index, row in enumerate(lowercase ): snake_case : List[Any] = row[0] for column_index, column in enumerate(lowercase ): if magnitude == 0: snake_case : Tuple = column continue snake_case : Dict = column / magnitude # Subtract to cancel term snake_case : Union[str, Any] = current_set[0] snake_case : int = [first_row] snake_case : Dict = current_set[1::] for row in current_set: snake_case : List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase ) continue for column_index in range(len(lowercase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case : Optional[Any] = final_set[0] snake_case : List[str] = [] snake_case : Dict = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case : Dict = simplify(lowercase ) for i in range(len(lowercase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,lowercase ) snake_case : List[str] = resultant return final_set def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: if len(lowercase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) snake_case : List[Any] = len(lowercase ) + 1 if any(len(lowercase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowercase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowercase ) == 1: return [equations[0][-1] / equations[0][0]] snake_case : List[Any] = equations.copy() if any(0 in row for row in data_set ): snake_case : Union[str, Any] = data_set.copy() snake_case : str = [] for row_index, row in enumerate(lowercase ): if 0 not in row: snake_case : Optional[Any] = data_set.pop(lowercase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,lowercase ) snake_case : Dict = data_set.copy() snake_case : List[str] = simplify(lowercase ) snake_case : str = simplified[::-1] snake_case : list = [] for row in simplified: snake_case : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case : List[str] = row.copy()[: len(lowercase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase ) == 0: solutions.append(0 ) continue snake_case : List[str] = temp_row[1::] snake_case : str = temp_row[::-1] for column_index, column in enumerate(lowercase ): current_solution -= column * solutions[column_index] solutions.append(lowercase ) snake_case : List[Any] = [] for item in solutions: final.append(float(round(lowercase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
587
1
class UpperCAmelCase ( __snake_case ): pass class UpperCAmelCase ( __snake_case ): pass class UpperCAmelCase : def __init__( self : int ): """simple docstring""" UpperCamelCase = [ [], [], [], ] def lowerCamelCase_ ( self : int , __magic_name__ : Tuple , __magic_name__ : List[str] ): """simple docstring""" try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(__magic_name__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : str ): """simple docstring""" return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class UpperCAmelCase : def __init__( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = [] def lowerCamelCase_ ( self : Any , __magic_name__ : str ): """simple docstring""" if len(self.queue ) == 1_0_0: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(__magic_name__ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: UpperCamelCase = min(self.queue ) self.queue.remove(__magic_name__ ) return data def __str__( self : Optional[int] ): """simple docstring""" return str(self.queue ) def _lowercase ( ): """simple docstring""" UpperCamelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_UpperCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_UpperCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _lowercase ( ): """simple docstring""" UpperCamelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_UpperCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_UpperCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
716
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = XLMTokenizer lowercase = False def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCamelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowerCamelCase_ ( self : Any , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = """lower newer""" UpperCamelCase = """lower newer""" return input_text, output_text def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase = """lower""" UpperCamelCase = ["""low""", """er</w>"""] UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCamelCase = tokens + ["""<unk>"""] UpperCamelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
181
0
"""simple docstring""" from __future__ import annotations import time import numpy as np lowerCAmelCase: int =[8, 5, 9, 7] lowerCAmelCase: Union[str, Any] =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCAmelCase: Dict =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase__ : def __init__( self , snake_case , snake_case , snake_case , ) -> None: """simple docstring""" lowercase : List[str] = claim_vector lowercase : Any = allocated_resources_table lowercase : Optional[Any] = maximum_claim_table def _UpperCAmelCase ( self ) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _UpperCAmelCase ( self ) -> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _UpperCAmelCase ( self ) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _UpperCAmelCase ( self ) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(snake_case ): i for i in self.__need()} def _UpperCAmelCase ( self , **snake_case ) -> None: """simple docstring""" lowercase : str = self.__need() lowercase : List[str] = self.__allocated_resources_table lowercase : Tuple = self.__available_resources() lowercase : int = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 5_0 + """\n""" ) while need_list: lowercase : List[str] = False for each_need in need_list: lowercase : Any = True for index, need in enumerate(snake_case ): if need > available_resources[index]: lowercase : Any = False break if execution: lowercase : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase : Union[str, Any] = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(snake_case ) # update available/freed resources stack lowercase : str = np.array(snake_case ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(snake_case ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _UpperCAmelCase ( self ) -> Any: """simple docstring""" print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(snake_case ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(snake_case ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(snake_case ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
607
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( __UpperCamelCase , unittest.TestCase ): __UpperCAmelCase = MvpTokenizer __UpperCAmelCase = MvpTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = filter_roberta_detectors def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : Optional[Any] = dict(zip(snake_case , range(len(snake_case ) ) ) ) lowercase : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : int = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case ) ) def _UpperCAmelCase ( self , **snake_case ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , **snake_case ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , snake_case ) -> Optional[int]: """simple docstring""" return "lower newer", "lower newer" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase : Dict = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Any = tokenizer(snake_case , padding=snake_case , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case ) self.assertIn("""attention_mask""" , snake_case ) self.assertNotIn("""labels""" , snake_case ) self.assertNotIn("""decoder_attention_mask""" , snake_case ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(text_target=snake_case , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : str = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=snake_case , truncation=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : List[Any] = ["""A long paragraph for summarization."""] lowercase : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] = tokenizer(snake_case , text_target=snake_case , return_tensors="""pt""" ) lowercase : Union[str, Any] = inputs["""input_ids"""] lowercase : Optional[Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" pass def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : str = """A, <mask> AllenNLP sentence.""" lowercase : int = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) lowercase : str = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
607
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : Optional[int] = 'conditional_detr' snake_case__ : Dict = ['past_key_values'] snake_case__ : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self :Optional[Any] , __magic_name__ :Optional[int]=True , __magic_name__ :Optional[int]=None , __magic_name__ :Dict=3 , __magic_name__ :List[str]=300 , __magic_name__ :List[str]=6 , __magic_name__ :Union[str, Any]=2048 , __magic_name__ :List[Any]=8 , __magic_name__ :List[Any]=6 , __magic_name__ :Any=2048 , __magic_name__ :int=8 , __magic_name__ :Tuple=0.0 , __magic_name__ :Dict=0.0 , __magic_name__ :Any=True , __magic_name__ :List[Any]="relu" , __magic_name__ :Any=256 , __magic_name__ :int=0.1 , __magic_name__ :Optional[int]=0.0 , __magic_name__ :Dict=0.0 , __magic_name__ :str=0.02 , __magic_name__ :Optional[int]=1.0 , __magic_name__ :Any=False , __magic_name__ :Tuple="sine" , __magic_name__ :Optional[int]="resnet50" , __magic_name__ :List[str]=True , __magic_name__ :int=False , __magic_name__ :str=2 , __magic_name__ :Optional[int]=5 , __magic_name__ :Optional[Any]=2 , __magic_name__ :Optional[int]=1 , __magic_name__ :Optional[int]=1 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :str=5 , __magic_name__ :Tuple=2 , __magic_name__ :List[Any]=0.25 , **__magic_name__ :List[str] , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) a__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__magic_name__ , __magic_name__ ): a__ = backbone_config.get('''model_type''' ) a__ = CONFIG_MAPPING[backbone_model_type] a__ = config_class.from_dict(__magic_name__ ) a__ = use_timm_backbone a__ = backbone_config a__ = num_channels a__ = num_queries a__ = d_model a__ = encoder_ffn_dim a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_ffn_dim a__ = decoder_layers a__ = decoder_attention_heads a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = init_xavier_std a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = encoder_layers a__ = auxiliary_loss a__ = position_embedding_type a__ = backbone a__ = use_pretrained_backbone a__ = dilation # Hungarian matcher a__ = class_cost a__ = bbox_cost a__ = giou_cost # Loss coefficients a__ = mask_loss_coefficient a__ = dice_loss_coefficient a__ = cls_loss_coefficient a__ = bbox_loss_coefficient a__ = giou_loss_coefficient a__ = focal_alpha super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def _UpperCamelCase ( self :List[str] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self :Any ) -> int: '''simple docstring''' return self.d_model def _UpperCamelCase ( self :Dict ) -> int: '''simple docstring''' a__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a__ = self.backbone_config.to_dict() a__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : Tuple = version.parse('1.11' ) @property def _UpperCamelCase ( self :Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _UpperCamelCase ( self :Any ) -> float: '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self :int ) -> int: '''simple docstring''' return 12
700
"""simple docstring""" from __future__ import annotations __lowerCAmelCase : Union[str, Any] = list[tuple[int, int]] __lowerCAmelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCAmelCase : Dict = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :str , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :float , __magic_name__ :Node | None , ) -> Tuple: '''simple docstring''' a__ = pos_x a__ = pos_y a__ = (pos_y, pos_x) a__ = goal_x a__ = goal_y a__ = g_cost a__ = parent a__ = self.calculate_heuristic() def _UpperCamelCase ( self :int ) -> float: '''simple docstring''' a__ = abs(self.pos_x - self.goal_x ) a__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self :List[str] , __magic_name__ :List[Any] ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :Dict , __magic_name__ :tuple[int, int] , __magic_name__ :tuple[int, int] ) -> Tuple: '''simple docstring''' a__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __magic_name__ ) a__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __magic_name__ ) a__ = [self.start] a__ = [] a__ = False def _UpperCamelCase ( self :Union[str, Any] ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: a__ = True return self.retrace_path(__magic_name__ ) self.closed_nodes.append(__magic_name__ ) a__ = self.get_successors(__magic_name__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__magic_name__ ) else: # retrieve the best current path a__ = self.open_nodes.pop(self.open_nodes.index(__magic_name__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__magic_name__ ) else: self.open_nodes.append(__magic_name__ ) if not self.reached: return [self.start.pos] return None def _UpperCamelCase ( self :List[str] , __magic_name__ :Node ) -> list[Node]: '''simple docstring''' a__ = [] for action in delta: a__ = parent.pos_x + action[1] a__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__magic_name__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __magic_name__ , __magic_name__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __magic_name__ , ) ) return successors def _UpperCamelCase ( self :Any , __magic_name__ :Node | None ) -> Path: '''simple docstring''' a__ = node a__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ = current_node.parent path.reverse() return path if __name__ == "__main__": __lowerCAmelCase : str = (0, 0) __lowerCAmelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __lowerCAmelCase : Optional[int] = GreedyBestFirst(init, goal) __lowerCAmelCase : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __lowerCAmelCase : Tuple = 2 for elem in grid: print(elem)
158
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase__: Dict = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "mumbai" ) -> Generator[tuple[str, str], None, None]: SCREAMING_SNAKE_CASE_ : List[Any] = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): SCREAMING_SNAKE_CASE_ : List[Any] = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() SCREAMING_SNAKE_CASE_ : Any = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
345
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase__: Dict = logging.get_logger(__name__) lowerCAmelCase__: Dict = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class snake_case_ : def __init__( self , __lowerCAmelCase=None , **__lowerCAmelCase ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('model_save_dir' , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.get('latest_model_name' , __lowerCAmelCase ) def __call__( self , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = {k: np.array(__lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(__lowerCAmelCase , __lowerCAmelCase ) @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : Tuple = 'CPUExecutionProvider' return ort.InferenceSession(__lowerCAmelCase , providers=[provider] , sess_options=__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE_ : int = Path(__lowerCAmelCase ).joinpath(__lowerCAmelCase ) try: shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE_ : str = self.model_save_dir.joinpath(__lowerCAmelCase ) if src_path.exists(): SCREAMING_SNAKE_CASE_ : List[str] = Path(__lowerCAmelCase ).joinpath(__lowerCAmelCase ) try: shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) except shutil.SameFileError: pass def __A ( self , __lowerCAmelCase , **__lowerCAmelCase , ): if os.path.isfile(__lowerCAmelCase ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) # saving model weights/files self._save_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def __A ( cls , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , provider=__lowerCAmelCase , sess_options=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = Path(__lowerCAmelCase ) # load model from hub else: # download model SCREAMING_SNAKE_CASE_ : int = hf_hub_download( repo_id=__lowerCAmelCase , filename=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : str = Path(__lowerCAmelCase ).parent SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(__lowerCAmelCase ).name SCREAMING_SNAKE_CASE_ : Tuple = OnnxRuntimeModel.load_model(__lowerCAmelCase , provider=__lowerCAmelCase , sess_options=__lowerCAmelCase ) return cls(model=__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def __A ( cls , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : Tuple = None if len(str(__lowerCAmelCase ).split('@' ) ) == 2: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = model_id.split('@' ) return cls._from_pretrained( model_id=__lowerCAmelCase , revision=__lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , **__lowerCAmelCase , )
345
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _A ( unittest.TestCase ): def __init__( self : List[Any] , _A : List[Any] , _A : Optional[int]=7 , _A : Optional[Any]=3 , _A : Tuple=18 , _A : List[Any]=30 , _A : Tuple=400 , _A : Tuple=True , _A : Any=None , _A : Optional[Any]=True , _A : Any=None , _A : Optional[int]=True , _A : Union[str, Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , _A : List[Any]=[0.26_862_954, 0.26_130_258, 0.27_577_711] , _A : Optional[int]=True , ) -> Tuple: """simple docstring""" lowercase : Any = size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase : str = parent lowercase : List[str] = batch_size lowercase : List[Any] = num_channels lowercase : Any = image_size lowercase : Optional[Any] = min_resolution lowercase : Optional[Any] = max_resolution lowercase : List[str] = do_resize lowercase : int = size lowercase : Tuple = do_center_crop lowercase : Optional[Any] = crop_size lowercase : List[Any] = do_normalize lowercase : List[str] = image_mean lowercase : int = image_std lowercase : str = do_convert_rgb def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __a ( self : Dict , _A : Dict=False , _A : List[str]=False , _A : Union[str, Any]=False ) -> Any: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowercase : Optional[int] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowercase : int = [] for i in range(self.batch_size ): lowercase , lowercase : str = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowercase : Any = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] if torchify: lowercase : List[Any] = [torch.from_numpy(_A ) for x in image_inputs] return image_inputs @require_torch @require_vision class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def __a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple = ChineseCLIPImageProcessingTester(self , do_center_crop=_A ) @property def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_convert_rgb''' ) ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def __a ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : int = self.image_processor_tester.prepare_inputs(equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Optional[int] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Optional[int] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def __a ( self : int ) -> Tuple: """simple docstring""" lowercase : Tuple = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_A ) lowercase : Optional[Any] = 3 @property def __a ( self : Optional[int] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ) -> Tuple: """simple docstring""" lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_convert_rgb''' ) ) def __a ( self : Any ) -> int: """simple docstring""" pass def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input lowercase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
596
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case( __magic_name__ ) -> Any: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : int = [-1] * len(__magic_name__ ) def dfs(__magic_name__ , __magic_name__ ): lowercase : str = True lowercase : Tuple = c for u in graph[v]: if not visited[u]: dfs(__magic_name__ , 1 - c ) for i in range(len(__magic_name__ ) ): if not visited[i]: dfs(__magic_name__ , 0 ) for i in range(len(__magic_name__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
596
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCamelCase__ : Dict = False class __magic_name__ (unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) snake_case__ = '''A painting of a squirrel eating a burger ''' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) snake_case__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) snake_case__ = generator.manual_seed(0 ) snake_case__ = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) snake_case__ = '''A painting of a squirrel eating a burger ''' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
33
from scipy.stats import pearsonr import datasets lowerCAmelCase_ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ lowerCAmelCase_ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ lowerCAmelCase_ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def __magic_name__( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): if return_pvalue: lowerCAmelCase__ : Union[str, Any] = pearsonr(__UpperCAmelCase , __UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__UpperCAmelCase , __UpperCAmelCase )[0] )}
678
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __magic_name__ : Optional[int] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A__ ( A_ ) -> List[str]: if isinstance(A_ , torch.Tensor ): return image elif isinstance(A_ , PIL.Image.Image ): _lowercase = [image] _lowercase = [trans(img.convert("RGB" ) ) for img in image] _lowercase = torch.stack(A_ ) return image class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] , __A : List[str] , __A : int ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowercase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__A , scheduler=__A ) def snake_case ( self : Any , __A : List[str] ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def snake_case ( self : Dict , __A : int , __A : Union[str, Any] , __A : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _lowercase = min(int(num_inference_steps * strength ) , __A ) _lowercase = max(num_inference_steps - init_timestep , 0 ) _lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self : str , __A : Union[str, Any] , __A : Optional[int] , __A : List[Any] , __A : Tuple , __A : Any , __A : Optional[Any]=None ): """simple docstring""" if not isinstance(__A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__A )}""" ) _lowercase = image.to(device=__A , dtype=__A ) if isinstance(__A , __A ) and len(__A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _lowercase = init_latents.shape _lowercase = randn_tensor(__A , generator=__A , device=__A , dtype=__A ) # get latents print("add noise to latents at timestep" , __A ) _lowercase = self.scheduler.add_noise(__A , __A , __A ) _lowercase = init_latents return latents @torch.no_grad() def __call__( self : int , __A : Union[torch.FloatTensor, PIL.Image.Image] = None , __A : float = 0.8 , __A : int = 1 , __A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A : float = 0.0 , __A : int = 5_0 , __A : Optional[bool] = None , __A : Optional[str] = "pil" , __A : bool = True , ): """simple docstring""" self.check_inputs(__A ) # 2. Preprocess image _lowercase = preprocess(__A ) # 3. set timesteps self.scheduler.set_timesteps(__A , device=self.device ) _lowercase , _lowercase = self.get_timesteps(__A , __A , self.device ) _lowercase = timesteps[:1].repeat(__A ) # 4. Prepare latent variables _lowercase = self.prepare_latents(__A , __A , __A , self.unet.dtype , self.device , __A ) _lowercase = latents # 5. Denoising loop for t in self.progress_bar(__A ): # 1. predict noise model_output _lowercase = self.unet(__A , __A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase = self.scheduler.step( __A , __A , __A , eta=__A , use_clipped_model_output=__A , generator=__A , ).prev_sample _lowercase = (image / 2 + 0.5).clamp(0 , 1 ) _lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase = self.numpy_to_pil(__A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__A )
602
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : List[Any] = logging.get_logger(__name__) def A__ ( A_ ) -> List[str]: _lowercase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) _lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , A_ ) if matches: _lowercase = float(matches[1] ) _lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowercase = 1_001 _lowercase = "imagenet-1k-id2label.json" _lowercase = "huggingface/label-files" _lowercase = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) _lowercase = {int(A_ ) + 1: v for k, v in idalabel.items()} _lowercase = "background" _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} return config def A__ ( ) -> str: _lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def A__ ( A_ , A_ , A_ , A_=False ) -> List[Any]: _lowercase = get_mobilenet_va_config(A_ ) # Load 🤗 model _lowercase = MobileNetVaForImageClassification(A_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A_ , A_ , A_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) _lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) _lowercase = model(**A_ ) _lowercase = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": _lowercase = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _lowercase = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) Path(A_ ).mkdir(exist_ok=A_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A_ ) if push_to_hub: print("Pushing to the hub..." ) _lowercase = "google/" + model_name image_processor.push_to_hub(A_ ) model.push_to_hub(A_ ) if __name__ == "__main__": __magic_name__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __magic_name__ : Union[str, Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
602
1
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase (SCREAMING_SNAKE_CASE ): return getitem, k def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return setitem, k, v def UpperCamelCase (SCREAMING_SNAKE_CASE ): return delitem, k def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ): try: return fun(_lowerCamelCase , *_lowerCamelCase ), None except Exception as e: return None, e __magic_name__ : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) __magic_name__ : Optional[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] __magic_name__ : Optional[int] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] __magic_name__ : Dict = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] __magic_name__ : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __magic_name__ : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = HashMap(initial_block_size=4 ) UpperCamelCase : Any = {} for _, (fun, *args) in enumerate(_lowerCamelCase ): UpperCamelCase , UpperCamelCase : Any = _run_operation(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) UpperCamelCase , UpperCamelCase : List[Any] = _run_operation(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) assert my_res == py_res assert str(_lowerCamelCase ) == str(_lowerCamelCase ) assert set(_lowerCamelCase ) == set(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase (): def is_public(SCREAMING_SNAKE_CASE ) -> bool: return not name.startswith("""_""" ) UpperCamelCase : Union[str, Any] = {name for name in dir({} ) if is_public(_lowerCamelCase )} UpperCamelCase : Union[str, Any] = {name for name in dir(HashMap() ) if is_public(_lowerCamelCase )} assert dict_public_names > hash_public_names
102
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class a ( unittest.TestCase ): def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict ) -> str: self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , delta=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] ) -> int: lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def UpperCamelCase ( self : str ) -> Any: lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(__SCREAMING_SNAKE_CASE ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5e-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=__SCREAMING_SNAKE_CASE ) def accumulate_on_replica(__SCREAMING_SNAKE_CASE : Union[str, Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(__SCREAMING_SNAKE_CASE ) local_variables[0].assign(__SCREAMING_SNAKE_CASE ) local_variables[1].assign(__SCREAMING_SNAKE_CASE ) strategy.run(__SCREAMING_SNAKE_CASE , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__SCREAMING_SNAKE_CASE ) def _check_local_values(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
549
0
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = " " ) -> list: """simple docstring""" __a = [] __a = 0 for index, char in enumerate(__SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) __a = index + 1 elif index + 1 == len(__SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
201
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
1
"""simple docstring""" from typing import Any class __a : def __init__( self , a__ ): _lowerCamelCase = data _lowerCamelCase = None def __repr__( self ): return F'Node({self.data})' class __a : def __init__( self ): _lowerCamelCase = None def __iter__( self ): _lowerCamelCase = self.head while node: yield node.data _lowerCamelCase = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(a__ ) for item in self] ) def __getitem__( self , a__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , a__ , a__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) _lowerCamelCase = self.head for _ in range(a__ ): _lowerCamelCase = current.next _lowerCamelCase = data def snake_case_ ( self , a__ ): self.insert_nth(len(self ) , a__ ) def snake_case_ ( self , a__ ): self.insert_nth(0 , a__ ) def snake_case_ ( self , a__ , a__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) _lowerCamelCase = Node(a__ ) if self.head is None: _lowerCamelCase = new_node elif index == 0: _lowerCamelCase = self.head # link new_node to head _lowerCamelCase = new_node else: _lowerCamelCase = self.head for _ in range(index - 1 ): _lowerCamelCase = temp.next _lowerCamelCase = temp.next _lowerCamelCase = new_node def snake_case_ ( self ): # print every node data print(self ) def snake_case_ ( self ): return self.delete_nth(0 ) def snake_case_ ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self , a__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) _lowerCamelCase = self.head # default first node if index == 0: _lowerCamelCase = self.head.next else: _lowerCamelCase = self.head for _ in range(index - 1 ): _lowerCamelCase = temp.next _lowerCamelCase = temp.next _lowerCamelCase = temp.next.next return delete_node.data def snake_case_ ( self ): return self.head is None def snake_case_ ( self ): _lowerCamelCase = None _lowerCamelCase = self.head while current: # Store the current node's next node. _lowerCamelCase = current.next # Make the current node's next point backwards _lowerCamelCase = prev # Make the previous node be the current node _lowerCamelCase = current # Make the current node the next node (to progress iteration) _lowerCamelCase = next_node # Return prev in order to put the head at the end _lowerCamelCase = prev def SCREAMING_SNAKE_CASE_ ( )-> None: _lowerCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _lowerCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def SCREAMING_SNAKE_CASE_ ( )-> None: _lowerCamelCase = [ -9, 100, Node(77_345_112 ), 'dlrow olleH', 7, 5_555, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _lowerCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _lowerCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _lowerCamelCase = linked_list.delete_tail() assert result == 1_2.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _lowerCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def SCREAMING_SNAKE_CASE_ ( )-> Any: from doctest import testmod testmod() _lowerCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(snake_case ) print('\nReading/changing Node data using indexing:' ) print(f'Element at Position 1: {linked_list[1]}' ) _lowerCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(snake_case ) print(f'length of linked_list is : {len(snake_case )}' ) if __name__ == "__main__": main()
650
"""simple docstring""" from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : int )-> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[str]: _lowerCamelCase = [] _lowerCamelCase = 11 _lowerCamelCase = int('1' + '0' * digit_len ) for num in range(snake_case , snake_case ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(snake_case , snake_case ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 _lowerCamelCase = 10 return solutions def SCREAMING_SNAKE_CASE_ ( snake_case : int = 2 )-> int: _lowerCamelCase = 1.0 for fraction in fraction_list(snake_case ): _lowerCamelCase = Fraction(snake_case ) result *= frac.denominator / frac.numerator return int(snake_case ) if __name__ == "__main__": print(solution())
650
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase = 1_6 lowercase = 3_2 def lowerCamelCase_ ( UpperCamelCase__ : Accelerator, UpperCamelCase__ : int = 16 ): '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCamelCase__ : Dict ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCamelCase__, max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ = datasets.map( UpperCamelCase__, batched=UpperCamelCase__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCamelCase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ = 8 else: UpperCamelCase__ = None return tokenizer.pad( UpperCamelCase__, padding='''longest''', max_length=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_tensors='''pt''', ) # Instantiate dataloaders. UpperCamelCase__ = DataLoader( tokenized_datasets['''train'''], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) UpperCamelCase__ = DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase = mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''', UpperCamelCase__ ) == "1": UpperCamelCase__ = 2 # Initialize accelerator UpperCamelCase__ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ = config['''lr'''] UpperCamelCase__ = int(config['''num_epochs'''] ) UpperCamelCase__ = int(config['''seed'''] ) UpperCamelCase__ = int(config['''batch_size'''] ) UpperCamelCase__ = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCamelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase__ = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ = get_dataloaders(UpperCamelCase__, UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ = AdamW(params=model.parameters(), lr=UpperCamelCase__ ) # Instantiate scheduler UpperCamelCase__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__, num_warmup_steps=100, num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase__ = model(**UpperCamelCase__ ) UpperCamelCase__ = outputs.loss UpperCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCamelCase__ = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ = model(**UpperCamelCase__ ) UpperCamelCase__ = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCamelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__, references=UpperCamelCase__, ) UpperCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", UpperCamelCase__ ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCamelCase__, default=UpperCamelCase__, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
591
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : str, UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[str] ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCamelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ) if weight_type is not None: UpperCamelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, hf_model.config.feat_extract_norm == '''group''', ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] UpperCamelCase__ = mapped_key.replace('''*''', UpperCamelCase__ ) if "weight_g" in name: UpperCamelCase__ = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ = '''weight_v''' elif "bias" in name: UpperCamelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ = '''weight''' else: UpperCamelCase__ = None set_recursively(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ = name.split('''.''' ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : List[Any]=True ): '''simple docstring''' if config_path is not None: UpperCamelCase__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) else: UpperCamelCase__ = UniSpeechSatConfig() UpperCamelCase__ = '''''' if is_finetuned: UpperCamelCase__ = UniSpeechSatForCTC(UpperCamelCase__ ) else: UpperCamelCase__ = UniSpeechSatForPreTraining(UpperCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCamelCase__ = model[0].eval() recursively_load_weights(UpperCamelCase__, UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
591
1
from __future__ import annotations from decimal import Decimal from numpy import array def __a ( __UpperCAmelCase : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowerCamelCase_ : List[str] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCamelCase_ : str = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements lowerCamelCase_ : Dict = [[0.0, 0.0], [0.0, 0.0]] lowerCamelCase_ , lowerCamelCase_ : Optional[int] = matrix[1][1], matrix[0][0] lowerCamelCase_ , lowerCamelCase_ : Dict = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCamelCase_ : Dict = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix lowerCamelCase_ : str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCamelCase_ : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCamelCase_ : List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCamelCase_ : Dict = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCamelCase_ : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCamelCase_ : List[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCamelCase_ : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCamelCase_ : int = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCamelCase_ : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCamelCase_ : Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCamelCase_ : Dict = array(__UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCamelCase_ : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCamelCase_ : Any = array(__UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(__UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
488
from functools import lru_cache def __a ( __UpperCAmelCase : int ) -> set: """simple docstring""" lowerCamelCase_ : List[str] = 2 lowerCamelCase_ : Any = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__UpperCAmelCase ) if n > 1: factors.add(__UpperCAmelCase ) return factors @lru_cache def __a ( __UpperCAmelCase : int ) -> int: """simple docstring""" return len(unique_prime_factors(__UpperCAmelCase ) ) def __a ( __UpperCAmelCase : list ) -> bool: """simple docstring""" return len(set(__UpperCAmelCase ) ) in (0, 1) def __a ( __UpperCAmelCase : int ) -> list: """simple docstring""" lowerCamelCase_ : Tuple = 2 while True: # Increment each value of a generated range lowerCamelCase_ : Union[str, Any] = [base + i for i in range(__UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase_ : Any = [upf_len(__UpperCAmelCase ) for x in group] checker.append(__UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def __a ( __UpperCAmelCase : int = 4 ) -> int: """simple docstring""" lowerCamelCase_ : int = run(__UpperCAmelCase ) return results[0] if len(__UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
488
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" snake_case = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , A__ ).groups()[0] class lowerCAmelCase_ ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None ): """simple docstring""" snake_case = file_names snake_case = image_transform snake_case = label_to_id def __len__( self ): """simple docstring""" return len(self.file_names ) def __getitem__( self , lowerCAmelCase ): """simple docstring""" snake_case = self.file_names[idx] snake_case = PIL.Image.open(UpperCamelCase_ ) snake_case = raw_image.convert('RGB' ) if self.image_transform is not None: snake_case = self.image_transform(UpperCamelCase_ ) snake_case = extract_label(UpperCamelCase_ ) if self.label_to_id is not None: snake_case = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ) -> Any: """simple docstring""" if args.with_tracking: snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config['lr'] snake_case = int(config['num_epochs'] ) snake_case = int(config['seed'] ) snake_case = int(config['batch_size'] ) snake_case = config['image_size'] if not isinstance(A__ , (list, tuple) ): snake_case = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": snake_case = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): snake_case = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: snake_case = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: snake_case = os.path.split(A__ )[-1].split('.' )[0] accelerator.init_trackers(A__ , A__ ) # Grab all the image filenames snake_case = [os.path.join(args.data_dir , A__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences snake_case = [extract_label(A__ ) for fname in file_names] snake_case = list(set(A__ ) ) id_to_label.sort() snake_case = {lbl: i for i, lbl in enumerate(A__ )} # Set the seed before splitting the data. np.random.seed(A__ ) torch.manual_seed(A__ ) torch.cuda.manual_seed_all(A__ ) # Split our filenames between train and validation snake_case = np.random.permutation(len(A__ ) ) snake_case = int(0.8 * len(A__ ) ) snake_case = random_perm[:cut] snake_case = random_perm[cut:] # For training we use a simple RandomResizedCrop snake_case = Compose([RandomResizedCrop(A__ , scale=(0.5, 1.0) ), ToTensor()] ) snake_case = PetsDataset( [file_names[i] for i in train_split] , image_transform=A__ , label_to_id=A__ ) # For evaluation, we use a deterministic Resize snake_case = Compose([Resize(A__ ), ToTensor()] ) snake_case = PetsDataset([file_names[i] for i in eval_split] , image_transform=A__ , label_to_id=A__ ) # Instantiate dataloaders. snake_case = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) snake_case = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = create_model('resnet50d' , pretrained=A__ , num_classes=len(A__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): snake_case = False for param in model.get_classifier().parameters(): snake_case = True # We normalize the batches of images to be a bit faster. snake_case = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) snake_case = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer snake_case = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler snake_case = OneCycleLR(optimizer=A__ , max_lr=A__ , epochs=A__ , steps_per_epoch=len(A__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case ,snake_case ,snake_case ,snake_case ,snake_case = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over snake_case = 0 # We also need to keep track of the starting epoch so files are named properly snake_case = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) snake_case = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint snake_case = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) snake_case = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` snake_case = os.path.splitext(A__ )[0] if "epoch" in training_difference: snake_case = int(training_difference.replace('epoch_' , '' ) ) + 1 snake_case = None else: snake_case = int(training_difference.replace('step_' , '' ) ) snake_case = resume_step // len(A__ ) resume_step -= starting_epoch * len(A__ ) # Now we train the model for epoch in range(A__ , A__ ): model.train() if args.with_tracking: snake_case = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step snake_case = accelerator.skip_first_batches(A__ , A__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader snake_case = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case = (batch['image'] - mean) / std snake_case = model(A__ ) snake_case = torch.nn.functional.cross_entropy(A__ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(A__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(A__ , A__ ): snake_case = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: snake_case = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) model.eval() snake_case = 0 snake_case = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case = (batch['image'] - mean) / std with torch.no_grad(): snake_case = model(A__ ) snake_case = outputs.argmax(dim=-1 ) snake_case ,snake_case = accelerator.gather_for_metrics((predictions, batch['label']) ) snake_case = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() snake_case = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 1_0_0 * eval_metric, 'train_loss': total_loss.item() / len(A__ ), 'epoch': epoch, } , step=A__ , ) if checkpointing_steps == "epoch": snake_case = f"""epoch_{epoch}""" if args.output_dir is not None: snake_case = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ) -> Optional[int]: """simple docstring""" snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=A__ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=A__ , default=A__ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A__ , default=A__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=A__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) snake_case = parser.parse_args() snake_case = {'lr': 3e-2, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 6_4, 'image_size': 2_2_4} training_function(A__ , A__ ) if __name__ == "__main__": main()
714
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def lowerCAmelCase__ ( _UpperCamelCase : Namespace ) -> List[str]: """simple docstring""" return TrainCommand(_UpperCamelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" @staticmethod def snake_case ( lowerCAmelCase ): """simple docstring""" snake_case = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=lowerCAmelCase , required=lowerCAmelCase , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=lowerCAmelCase , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=lowerCAmelCase , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=lowerCAmelCase , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=lowerCAmelCase , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=lowerCAmelCase , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=lowerCAmelCase , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=lowerCAmelCase , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=lowerCAmelCase , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=lowerCAmelCase , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=lowerCAmelCase , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=lowerCAmelCase , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=lowerCAmelCase , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = logging.get_logger('transformers-cli/training' ) snake_case = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=lowerCAmelCase ) snake_case = args.output snake_case = args.column_label snake_case = args.column_text snake_case = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case = args.validation_split snake_case = args.train_batch_size snake_case = args.valid_batch_size snake_case = args.learning_rate snake_case = args.adam_epsilon def snake_case ( self ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case ( self ): """simple docstring""" raise NotImplementedError def snake_case ( self ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
104
0
import os import numpy import onnx def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = a.name SCREAMING_SNAKE_CASE_: Optional[int] = b.name SCREAMING_SNAKE_CASE_: Tuple = "" SCREAMING_SNAKE_CASE_: Union[str, Any] = "" SCREAMING_SNAKE_CASE_: str = a == b SCREAMING_SNAKE_CASE_: Tuple = name_a SCREAMING_SNAKE_CASE_: Any = name_b return res def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_UpperCAmelCase , _UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _UpperCAmelCase , _UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _UpperCAmelCase , _UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for n in graph_proto.node: _node_replace_input_with(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_: Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i SCREAMING_SNAKE_CASE_: int = inits[i].name SCREAMING_SNAKE_CASE_: List[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = os.path.dirname(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = os.path.basename(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = onnx.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_: Union[str, Any] = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = {} SCREAMING_SNAKE_CASE_: int = [] SCREAMING_SNAKE_CASE_: Any = 0 for i in range(len(_UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_UpperCAmelCase ) dup_set.add(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = inits[j].data_type SCREAMING_SNAKE_CASE_: Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , _UpperCAmelCase ) total_reduced_size += mem_size SCREAMING_SNAKE_CASE_: List[Any] = inits[i].name SCREAMING_SNAKE_CASE_: List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: List[str] = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) SCREAMING_SNAKE_CASE_: List[str] = sorted(_UpperCAmelCase ) _remove_dup_initializers_from_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = "optimized_" + model_file_name SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) onnx.save(_UpperCAmelCase , _UpperCAmelCase ) return new_model
671
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase : Union[str, Any] = 637_8137.0 lowerCAmelCase : int = 635_6752.31_4245 lowerCAmelCase : Union[str, Any] = 6378137 def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = (AXIS_A - AXIS_B) / AXIS_A SCREAMING_SNAKE_CASE_: str = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Optional[int] = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Any = radians(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = radians(_UpperCAmelCase ) # Equation SCREAMING_SNAKE_CASE_: str = sin((phi_a - phi_a) / 2 ) SCREAMING_SNAKE_CASE_: List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda SCREAMING_SNAKE_CASE_: Tuple = sqrt(sin_sq_phi + (cos(_UpperCAmelCase ) * cos(_UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
671
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a , __a = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) __a = 'A painting of a squirrel eating a burger' __a = jax.device_count() __a = num_samples * [prompt] __a = sd_pipe.prepare_inputs(UpperCAmelCase ) __a = replicate(UpperCAmelCase ) __a = shard(UpperCAmelCase ) __a = jax.random.PRNGKey(0 ) __a = jax.random.split(UpperCAmelCase , jax.device_count() ) __a = sd_pipe(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , num_inference_steps=2_5 , jit=UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = 'stabilityai/stable-diffusion-2' __a , __a = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCAmelCase , subfolder='scheduler' ) __a , __a = FlaxStableDiffusionPipeline.from_pretrained( UpperCAmelCase , scheduler=UpperCAmelCase , revision='bf16' , dtype=jnp.bfloataa , ) __a = scheduler_params __a = 'A painting of a squirrel eating a burger' __a = jax.device_count() __a = num_samples * [prompt] __a = sd_pipe.prepare_inputs(UpperCAmelCase ) __a = replicate(UpperCAmelCase ) __a = shard(UpperCAmelCase ) __a = jax.random.PRNGKey(0 ) __a = jax.random.split(UpperCAmelCase , jax.device_count() ) __a = sd_pipe(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , num_inference_steps=2_5 , jit=UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
246
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase_ : Dict = logging.get_logger(__name__) class a__ ( __snake_case ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
246
1
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 0 if start < end: SCREAMING_SNAKE_CASE : int = randint(lowercase , lowercase ) SCREAMING_SNAKE_CASE : int = a[end] SCREAMING_SNAKE_CASE : str = a[pivot] SCREAMING_SNAKE_CASE : Dict = temp SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Any = randint(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = a[end] SCREAMING_SNAKE_CASE : Any = a[pivot] SCREAMING_SNAKE_CASE : List[str] = temp SCREAMING_SNAKE_CASE : List[Any] = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE : Optional[Any] = new_pivot_index + 1 SCREAMING_SNAKE_CASE : Dict = a[new_pivot_index] SCREAMING_SNAKE_CASE : List[Any] = a[index] SCREAMING_SNAKE_CASE : Optional[int] = temp SCREAMING_SNAKE_CASE : Any = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE : Optional[Any] = a[end] SCREAMING_SNAKE_CASE : Tuple = temp return new_pivot_index + 1, count snake_case = TemporaryFile() snake_case = 100 # 1000 elements are to be sorted snake_case , snake_case = 0, 1 # mean and standard deviation snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array snake_case = np.load(outfile) snake_case = len(M) - 1 snake_case = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
62
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) UpperCamelCase_ : Union[str, Any] = '''CIDAS/clipseg-rd64-refined''' UpperCamelCase_ : Any = '''image_segmenter''' UpperCamelCase_ : int = CLIPSegForImageSegmentation UpperCamelCase_ : Optional[Any] = ['''image''', '''text'''] UpperCamelCase_ : int = ['''image'''] def __init__( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str ): return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors="pt" ) def _A ( self : str , UpperCAmelCase_ : Optional[Any] ): with torch.no_grad(): SCREAMING_SNAKE_CASE : str = self.model(**UpperCAmelCase_ ).logits return logits def _A ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
62
1
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : list[str] ) -> str: """simple docstring""" lowerCAmelCase__ = "" for word_or_phrase in separated: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
115
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCamelCase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase_ ): return None lowerCAmelCase__ = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCAmelCase__ = left lowerCAmelCase__ = point elif point > right: lowerCAmelCase__ = right lowerCAmelCase__ = point else: if item < current_item: lowerCAmelCase__ = point - 1 else: lowerCAmelCase__ = point + 1 return None def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> List[Any]: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase_ , UpperCamelCase_ , point + 1 , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" if collection != sorted(UpperCamelCase_ ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') a_ = 67 a_ = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print('''Not found''')
115
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: for attribute in key.split('.' ): lowerCamelCase__ : List[str] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: lowerCamelCase__ : Dict = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: lowerCamelCase__ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_g": lowerCamelCase__ : Optional[int] = value elif weight_type == "weight_v": lowerCamelCase__ : int = value elif weight_type == "bias": lowerCamelCase__ : Dict = value else: lowerCamelCase__ : List[Any] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Any = fairseq_model.state_dict() lowerCamelCase__ : List[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : str = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase__ : Any = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__ : Optional[Any] = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase__ : Optional[int] = True if "*" in mapped_key: lowerCamelCase__ : int = name.split(_UpperCAmelCase )[0].split('.' )[-2] lowerCamelCase__ : Dict = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: lowerCamelCase__ : Dict = 'weight_g' elif "weight_v" in name: lowerCamelCase__ : str = 'weight_v' elif "weight" in name: lowerCamelCase__ : Dict = 'weight' elif "bias" in name: lowerCamelCase__ : List[Any] = 'bias' else: lowerCamelCase__ : Optional[Any] = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : Optional[int] = full_name.split('conv_layers.' )[-1] lowerCamelCase__ : List[Any] = name.split('.' ) lowerCamelCase__ : Optional[Any] = int(items[0] ) lowerCamelCase__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__ : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase__ : List[str] = SEWConfig() if is_finetuned: lowerCamelCase__ : List[Any] = model.wav_encoder.wav_model.cfg else: lowerCamelCase__ : Dict = model.cfg lowerCamelCase__ : Any = fs_config.conv_bias lowerCamelCase__ : Optional[int] = eval(fs_config.conv_feature_layers ) lowerCamelCase__ : str = [x[0] for x in conv_layers] lowerCamelCase__ : List[Any] = [x[1] for x in conv_layers] lowerCamelCase__ : Any = [x[2] for x in conv_layers] lowerCamelCase__ : Union[str, Any] = 'gelu' lowerCamelCase__ : int = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' lowerCamelCase__ : Dict = 0.0 lowerCamelCase__ : Optional[int] = fs_config.activation_fn.name lowerCamelCase__ : Tuple = fs_config.encoder_embed_dim lowerCamelCase__ : Union[str, Any] = 0.02 lowerCamelCase__ : Optional[Any] = fs_config.encoder_ffn_embed_dim lowerCamelCase__ : int = 1e-5 lowerCamelCase__ : Optional[int] = fs_config.encoder_layerdrop lowerCamelCase__ : Tuple = fs_config.encoder_attention_heads lowerCamelCase__ : Union[str, Any] = fs_config.conv_pos_groups lowerCamelCase__ : Tuple = fs_config.conv_pos lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = fs_config.encoder_layers lowerCamelCase__ : int = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCamelCase__ : Dict = model.cfg lowerCamelCase__ : Optional[int] = fs_config.final_dropout lowerCamelCase__ : Optional[int] = fs_config.layerdrop lowerCamelCase__ : Optional[Any] = fs_config.activation_dropout lowerCamelCase__ : Tuple = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCamelCase__ : List[Any] = fs_config.attention_dropout lowerCamelCase__ : Optional[Any] = fs_config.dropout_input lowerCamelCase__ : Optional[int] = fs_config.dropout lowerCamelCase__ : Optional[int] = fs_config.mask_channel_length lowerCamelCase__ : int = fs_config.mask_channel_prob lowerCamelCase__ : Tuple = fs_config.mask_length lowerCamelCase__ : List[str] = fs_config.mask_prob lowerCamelCase__ : List[str] = 'Wav2Vec2FeatureExtractor' lowerCamelCase__ : str = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True ) -> Any: if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCamelCase__ : int = SEWConfig.from_pretrained(_UpperCAmelCase ) else: lowerCamelCase__ : int = convert_config(model[0] , _UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model[0].eval() lowerCamelCase__ : Optional[int] = True if config.feat_extract_norm == 'layer' else False lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) if is_finetuned: if dict_path: lowerCamelCase__ : Optional[Any] = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ : int = target_dict.pad_index lowerCamelCase__ : List[str] = target_dict.bos_index lowerCamelCase__ : str = target_dict.pad_index lowerCamelCase__ : Any = target_dict.bos_index lowerCamelCase__ : Tuple = target_dict.eos_index lowerCamelCase__ : Optional[Any] = len(target_dict.symbols ) lowerCamelCase__ : Optional[Any] = os.path.join(_UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCAmelCase ) lowerCamelCase__ : Optional[int] = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , ) lowerCamelCase__ : Optional[Any] = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) lowerCamelCase__ : int = SEWForCTC(_UpperCAmelCase ) else: lowerCamelCase__ : Optional[Any] = SEWModel(_UpperCAmelCase ) feature_extractor.save_pretrained(_UpperCAmelCase ) recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
295
def snake_case ( lowerCamelCase ): '''simple docstring''' if collection == []: return [] # get some information about the collection __lowercase = len(lowerCamelCase ) __lowercase = max(lowerCamelCase ) __lowercase = min(lowerCamelCase ) # create the counting array __lowercase = coll_max + 1 - coll_min __lowercase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowerCamelCase ): __lowercase = counting_arr[i] + counting_arr[i - 1] # create the output collection __lowercase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowerCamelCase ) ): __lowercase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def snake_case ( lowerCamelCase ): '''simple docstring''' return "".join([chr(lowerCamelCase ) for i in counting_sort([ord(lowerCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" __UpperCamelCase : str = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
80
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCAmelCase ( UpperCamelCase_ ): if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(UpperCamelCase_ , """_dynamo""" ): return False return isinstance(UpperCamelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = True ): __SCREAMING_SNAKE_CASE = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __SCREAMING_SNAKE_CASE = is_compiled_module(UpperCamelCase_ ) if is_compiled: __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = model.module if not keep_fpaa_wrapper: __SCREAMING_SNAKE_CASE = getattr(UpperCamelCase_ , """forward""" ) __SCREAMING_SNAKE_CASE = model.__dict__.pop("""_original_forward""" , UpperCamelCase_ ) if original_forward is not None: while hasattr(UpperCamelCase_ , """__wrapped__""" ): __SCREAMING_SNAKE_CASE = forward.__wrapped__ if forward == original_forward: break __SCREAMING_SNAKE_CASE = forward if getattr(UpperCamelCase_ , """_converted_to_transformer_engine""" , UpperCamelCase_ ): convert_model(UpperCamelCase_ , to_transformer_engine=UpperCamelCase_ ) if is_compiled: __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = compiled_model return model def _lowerCAmelCase ( ): PartialState().wait_for_everyone() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase_ , UpperCamelCase_ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase_ , UpperCamelCase_ ) @contextmanager def _lowerCAmelCase ( **UpperCamelCase_ ): for key, value in kwargs.items(): __SCREAMING_SNAKE_CASE = str(UpperCamelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCAmelCase ( UpperCamelCase_ ): if not hasattr(UpperCamelCase_ , """__qualname__""" ) and not hasattr(UpperCamelCase_ , """__name__""" ): __SCREAMING_SNAKE_CASE = getattr(UpperCamelCase_ , """__class__""" , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , """__qualname__""" ): return obj.__qualname__ if hasattr(UpperCamelCase_ , """__name__""" ): return obj.__name__ return str(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): for key, value in source.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = destination.setdefault(UpperCamelCase_ , {} ) merge_dicts(UpperCamelCase_ , UpperCamelCase_ ) else: __SCREAMING_SNAKE_CASE = value return destination def _lowerCAmelCase ( UpperCamelCase_ = None ): if port is None: __SCREAMING_SNAKE_CASE = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
706
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __magic_name__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __magic_name__ = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE = bs[:] __SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char return pairs class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = VOCAB_FILES_NAMES __lowercase : Any = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""") as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE = bytes_to_unicode() __SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""") as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split("""\n""")[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split()) for merge in bpe_merges] __SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case_ ( self): return len(self.encoder) def snake_case_ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case_ ( self , lowerCAmelCase__): if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = get_pairs(lowerCAmelCase__) if not pairs: return token while True: __SCREAMING_SNAKE_CASE = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("""inf"""))) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(lowerCAmelCase__): try: __SCREAMING_SNAKE_CASE = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = new_word if len(lowerCAmelCase__) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """ """.join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = word return word def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(""" """)) return bpe_tokens def snake_case_ ( self , lowerCAmelCase__): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def snake_case_ ( self , lowerCAmelCase__): return self.decoder.get(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if not os.path.isdir(lowerCAmelCase__): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + """\n""") __SCREAMING_SNAKE_CASE = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""") __SCREAMING_SNAKE_CASE = token_index writer.write(""" """.join(lowerCAmelCase__) + """\n""") index += 1 return vocab_file, merge_file def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE = """ """ + text return (text, kwargs) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): return token_ids_a + [self.eos_token_id] def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """ """.join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.encode(lowerCAmelCase__) if len(lowerCAmelCase__) > self.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
248
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = IFInpaintingPipeline __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __magic_name__ = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self ): return self._get_dummy_components() def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCAmelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowerCAmelCase__ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self ): self._test_save_load_local() def lowerCAmelCase__ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
27
def a__ ( A_ ): '''simple docstring''' if len(A_ ) < 2: return collection def circle_sort_util(A_, A_, A_ ) -> bool: __magic_name__ = False if low == high: return swapped __magic_name__ = low __magic_name__ = high while left < right: if collection[left] > collection[right]: __magic_name__ , __magic_name__ = ( collection[right], collection[left], ) __magic_name__ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __magic_name__ , __magic_name__ = ( collection[right + 1], collection[left], ) __magic_name__ = True __magic_name__ = low + int((high - low) / 2 ) __magic_name__ = circle_sort_util(A_, A_, A_ ) __magic_name__ = circle_sort_util(A_, mid + 1, A_ ) return swapped or left_swap or right_swap __magic_name__ = True while is_not_sorted is True: __magic_name__ = circle_sort_util(A_, 0, len(A_ ) - 1 ) return collection if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : Tuple = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
529
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase__ ( __A ): __UpperCamelCase = """fnet""" def __init__( self , _lowercase=32_000 , _lowercase=768 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu_new" , _lowercase=0.1 , _lowercase=512 , _lowercase=4 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=False , _lowercase=512 , _lowercase=3 , _lowercase=1 , _lowercase=2 , **_lowercase , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = use_tpu_fourier_optimizations lowerCAmelCase_ : Union[str, Any] = tpu_short_seq_length
440
0
'''simple docstring''' from collections import deque def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> int: """simple docstring""" UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = deque() UpperCAmelCase = [False for _ in range(SCREAMING_SNAKE_CASE_ )] UpperCAmelCase = [-1 for _ in range(SCREAMING_SNAKE_CASE_ )] UpperCAmelCase = index_of[:] def strong_connect(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict ): UpperCAmelCase = index # the number when this node is seen UpperCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase = strong_connect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase = [] UpperCAmelCase = stack.pop() UpperCAmelCase = False component.append(SCREAMING_SNAKE_CASE_ ) while w != v: UpperCAmelCase = stack.pop() UpperCAmelCase = False component.append(SCREAMING_SNAKE_CASE_ ) components.append(SCREAMING_SNAKE_CASE_ ) return index UpperCAmelCase = [] for v in range(SCREAMING_SNAKE_CASE_ ): if index_of[v] == -1: strong_connect(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ ) return components def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for u, v in edges: g[u].append(SCREAMING_SNAKE_CASE_ ) return g if __name__ == "__main__": # Test a__ : Optional[int] = 7 a__ : Dict = [0, 0, 1, 2, 3, 3, 4, 4, 6] a__ : List[str] = [1, 3, 2, 0, 1, 4, 5, 6, 5] a__ : Optional[int] = [(u, v) for u, v in zip(source, target)] a__ : str = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
51
"""simple docstring""" def lowercase (_snake_case ) -> str: '''simple docstring''' if isinstance(_snake_case ,_snake_case ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_snake_case ,_snake_case ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __UpperCamelCase = False if num < 0: __UpperCamelCase = True __UpperCamelCase = -num __UpperCamelCase = [] while num > 0: binary.insert(0 ,num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_snake_case ) for e in binary ) return "0b" + "".join(str(_snake_case ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
505
0
def A__ ( _a : str , _a : int ): '''simple docstring''' snake_case__ : list[list[str]] =[[] for _ in range(_a )] snake_case__ : str =key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(_a ) <= key: return input_string for position, character in enumerate(_a ): snake_case__ : List[str] =position % (lowest * 2) # puts it in bounds snake_case__ : Optional[int] =min(_a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_a ) snake_case__ : Tuple =["""""".join(_a ) for row in temp_grid] snake_case__ : Union[str, Any] ="""""".join(_a ) return output_string def A__ ( _a : str , _a : int ): '''simple docstring''' snake_case__ : Dict =[] snake_case__ : Any =key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string snake_case__ : list[list[str]] =[[] for _ in range(_a )] # generates template for position in range(len(_a ) ): snake_case__ : str =position % (lowest * 2) # puts it in bounds snake_case__ : str =min(_a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) snake_case__ : Optional[int] =0 for row in temp_grid: # fills in the characters snake_case__ : Tuple =input_string[counter : counter + len(_a )] grid.append(list(_a ) ) counter += len(_a ) snake_case__ : str ="""""" # reads as zigzag for position in range(len(_a ) ): snake_case__ : Optional[Any] =position % (lowest * 2) # puts it in bounds snake_case__ : Dict =min(_a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def A__ ( _a : str ): '''simple docstring''' snake_case__ : Any ={} for key_guess in range(1 , len(_a ) ): # tries every key snake_case__ : Optional[Any] =decrypt(_a , _a ) return results if __name__ == "__main__": import doctest doctest.testmod()
448
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off __lowerCamelCase : int = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __lowerCamelCase : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class _lowercase ( _A ): _a : List[Any] = 'whisper' _a : Any = ['past_key_values'] _a : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , a=5_1_8_6_5 , a=8_0 , a=6 , a=4 , a=6 , a=4 , a=1_5_3_6 , a=1_5_3_6 , a=0.0 , a=0.0 , a=5_0_2_5_7 , a=True , a=True , a="gelu" , a=2_5_6 , a=0.0 , a=0.0 , a=0.0 , a=0.02 , a=False , a=1_5_0_0 , a=4_4_8 , a=5_0_2_5_6 , a=5_0_2_5_6 , a=5_0_2_5_6 , a=None , a=[2_2_0, 5_0_2_5_6] , a=False , a=2_5_6 , a=False , a=0.05 , a=1_0 , a=2 , a=0.0 , a=1_0 , a=0 , a=7 , **a , ): snake_case__ : Union[str, Any] =vocab_size snake_case__ : int =num_mel_bins snake_case__ : Tuple =d_model snake_case__ : Optional[Any] =encoder_layers snake_case__ : List[Any] =encoder_attention_heads snake_case__ : Dict =decoder_layers snake_case__ : Optional[Any] =decoder_attention_heads snake_case__ : str =decoder_ffn_dim snake_case__ : str =encoder_ffn_dim snake_case__ : List[Any] =dropout snake_case__ : Optional[Any] =attention_dropout snake_case__ : Tuple =activation_dropout snake_case__ : int =activation_function snake_case__ : List[str] =init_std snake_case__ : List[str] =encoder_layerdrop snake_case__ : int =decoder_layerdrop snake_case__ : Union[str, Any] =use_cache snake_case__ : Tuple =encoder_layers snake_case__ : int =scale_embedding # scale factor will be sqrt(d_model) if True snake_case__ : Tuple =max_source_positions snake_case__ : Union[str, Any] =max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. snake_case__ : str =classifier_proj_size snake_case__ : List[str] =use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ : Dict =apply_spec_augment snake_case__ : Tuple =mask_time_prob snake_case__ : Union[str, Any] =mask_time_length snake_case__ : List[Any] =mask_time_min_masks snake_case__ : Optional[int] =mask_feature_prob snake_case__ : int =mask_feature_length snake_case__ : Dict =mask_feature_min_masks snake_case__ : Optional[Any] =median_filter_width super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , suppress_tokens=a , begin_suppress_tokens=a , **a , ) class _lowercase ( _A ): @property def lowercase__ ( self ): snake_case__ : Union[str, Any] =OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: snake_case__ : List[Any] ={0: """batch"""} else: snake_case__ : int ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(a , direction="""inputs""" ) return common_inputs def lowercase__ ( self , a , a = -1 , a = -1 , a = False , a = None , a = 2_2_0_5_0 , a = 5.0 , a = 2_2_0 , ): snake_case__ : Union[str, Any] =OrderedDict() snake_case__ : Optional[int] =OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a , framework=a , sampling_rate=a , time_duration=a , frequency=a , ) snake_case__ : Any =encoder_inputs["""input_features"""].shape[2] snake_case__ : Dict =encoder_sequence_length // 2 if self.use_past else seq_length snake_case__ : List[Any] =super().generate_dummy_inputs( preprocessor.tokenizer , a , a , a , a ) snake_case__ : int =encoder_inputs.pop("""input_features""" ) snake_case__ : List[Any] =decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: snake_case__ : int =decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def lowercase__ ( self ): return 1e-3
448
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } UpperCamelCase = "▁" class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : Tuple = BarthezTokenizer def __init__( self :Union[str, Any] , lowerCamelCase__ :str=None , lowerCamelCase__ :Union[str, Any]=None , lowerCamelCase__ :List[Any]="<s>" , lowerCamelCase__ :Optional[int]="</s>" , lowerCamelCase__ :Dict="</s>" , lowerCamelCase__ :Optional[int]="<s>" , lowerCamelCase__ :List[Any]="<unk>" , lowerCamelCase__ :Union[str, Any]="<pad>" , lowerCamelCase__ :int="<mask>" , **lowerCamelCase__ :Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ :int = vocab_file UpperCamelCase__ :Optional[int] = False if not self.vocab_file else True def __a ( self :Optional[Any] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ :List[Any] = [self.cls_token_id] UpperCamelCase__ :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self :List[Any] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Union[str, Any] = [self.sep_token_id] UpperCamelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ :Any = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
45
"""simple docstring""" __UpperCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def A ( _A ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def A ( ): """simple docstring""" return sum( number for number in range(1_000, 1_000_000 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
584
0
_A = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
716
from __future__ import annotations _A = list[tuple[int, int]] _A = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _A = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Tuple: lowerCAmelCase_ = pos_x lowerCAmelCase_ = pos_y lowerCAmelCase_ = (pos_y, pos_x) lowerCAmelCase_ = goal_x lowerCAmelCase_ = goal_y lowerCAmelCase_ = g_cost lowerCAmelCase_ = parent lowerCAmelCase_ = self.calculate_heuristic() def __a ( self ) -> float: lowerCAmelCase_ = abs(self.pos_x - self.goal_x ) lowerCAmelCase_ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _UpperCamelCase ) -> bool: return self.f_cost < other.f_cost class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCamelCase ) lowerCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _UpperCamelCase ) lowerCAmelCase_ = [self.start] lowerCAmelCase_ = [] lowerCAmelCase_ = False def __a ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase_ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ = True return self.retrace_path(_UpperCamelCase ) self.closed_nodes.append(_UpperCamelCase ) lowerCAmelCase_ = self.get_successors(_UpperCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_UpperCamelCase ) else: # retrieve the best current path lowerCAmelCase_ = self.open_nodes.pop(self.open_nodes.index(_UpperCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_UpperCamelCase ) else: self.open_nodes.append(_UpperCamelCase ) if not self.reached: return [self.start.pos] return None def __a ( self , _UpperCamelCase ) -> list[Node]: lowerCAmelCase_ = [] for action in delta: lowerCAmelCase_ = parent.pos_x + action[1] lowerCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _UpperCamelCase , _UpperCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCamelCase , ) ) return successors def __a ( self , _UpperCamelCase ) -> Path: lowerCAmelCase_ = node lowerCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ = current_node.parent path.reverse() return path if __name__ == "__main__": _A = (0, 0) _A = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _A = GreedyBestFirst(init, goal) _A = greedy_bf.search() if path: for pos_x, pos_y in path: _A = 2 for elem in grid: print(elem)
279
0
'''simple docstring''' import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
69
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: __snake_case = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A ( self : Optional[Any] ): """simple docstring""" __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: __snake_case = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def A ( self : Optional[Any] ): """simple docstring""" try: __snake_case = tempfile.mktemp() with open(a_ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a_ ) __snake_case = AlbertTokenizer.from_pretrained(a_ ) finally: os.remove(a_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a_ ) __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def A ( self : str ): """simple docstring""" __snake_case = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def A ( cls : List[Any] ): """simple docstring""" __snake_case = TOKEN HfFolder.save_token(a_ ) @classmethod def A ( cls : List[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def A ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = BertTokenizer(a_ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a_ , repo_id="test-tokenizer" , push_to_hub=a_ , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def A ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = BertTokenizer(a_ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a_ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a_ , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def A ( self : List[str] ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = CustomTokenizer(a_ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = BertTokenizerFast.from_pretrained(a_ ) bert_tokenizer.save_pretrained(a_ ) __snake_case = CustomTokenizerFast.from_pretrained(a_ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) __snake_case = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=a_ , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[int] ): """simple docstring""" __snake_case = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def A ( self : str ): """simple docstring""" __snake_case = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def A ( self : List[Any] ): """simple docstring""" __snake_case = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def A ( self : str ): """simple docstring""" __snake_case = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def A ( self : Tuple ): """simple docstring""" __snake_case = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def A ( self : Any ): """simple docstring""" __snake_case = Trie() __snake_case = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a_ , ["AB", "C"] )
69
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : UNetaDModel UpperCamelCase_ : ScoreSdeVeScheduler def __init__( self : Tuple , lowerCAmelCase__ : UNetaDModel , lowerCAmelCase__ : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 2_0_0_0 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _UpperCAmelCase : Dict = self.unet.config.sample_size _UpperCAmelCase : List[Any] = (batch_size, 3, img_size, img_size) _UpperCAmelCase : str = self.unet _UpperCAmelCase : Optional[Any] = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase ) * self.scheduler.init_noise_sigma _UpperCAmelCase : str = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCamelCase ) self.scheduler.set_sigmas(__UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase : Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _UpperCAmelCase : Optional[int] = self.unet(__UpperCamelCase , __UpperCamelCase ).sample _UpperCAmelCase : str = self.scheduler.step_correct(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # prediction step _UpperCAmelCase : Optional[int] = model(__UpperCamelCase , __UpperCamelCase ).sample _UpperCAmelCase : Optional[int] = self.scheduler.step_pred(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase : List[str] = output.prev_sample, output.prev_sample_mean _UpperCAmelCase : Union[str, Any] = sample_mean.clamp(0 , 1 ) _UpperCAmelCase : List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Dict = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCamelCase )
719
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __a = TypeVar('T') class A__ ( Generic[T] ): """simple docstring""" UpperCamelCase_ : deque[T] # Cache store of keys UpperCamelCase_ : set[T] # References of the keys in cache UpperCamelCase_ : int = 10 # Maximum capacity of cache def __init__( self : Dict , lowerCAmelCase__ : int ) -> None: """simple docstring""" _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Any = set() if not n: _UpperCAmelCase : Dict = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _UpperCAmelCase : List[Any] = n def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCAmelCase : int = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase__ ) else: self.dq_store.remove(lowerCAmelCase__ ) self.dq_store.appendleft(lowerCAmelCase__ ) self.key_reference.add(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" for k in self.dq_store: print(lowerCAmelCase__ ) def __repr__( self : Tuple ) -> str: """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
257
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
426
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
def UpperCAmelCase__ ( lowerCamelCase_ : int ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
577
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''xmod''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Tuple=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : int=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_1_2 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-12 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Optional[int] = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[str] = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : str = max_position_embeddings __a : List[Any] = type_vocab_size __a : str = initializer_range __a : List[str] = layer_norm_eps __a : Optional[int] = position_embedding_type __a : Optional[Any] = use_cache __a : List[Any] = classifier_dropout __a : Tuple = pre_norm __a : Union[str, Any] = adapter_reduction_factor __a : int = adapter_layer_norm __a : List[Any] = adapter_reuse_layer_norm __a : int = ln_before_adapter __a : List[str] = list(SCREAMING_SNAKE_CASE__ ) __a : str = default_language class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : int ): '''simple docstring''' if self.task == "multiple-choice": __a : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
577
1