code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = torch.device('cpu') def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for k in state_dict.keys(): lowercase__ = k if ".pwconv" in k: lowercase__ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowercase__ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowercase__ = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowercase__ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowercase__ = k_new.split('''.''' ) if ls[2].isdigit(): lowercase__ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowercase__ = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ = 10_00 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase__ = [3, 3, 6, 4] lowercase__ = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase__ = [3, 3, 9, 6] lowercase__ = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase__ = [4, 3, 10, 5] lowercase__ = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase__ = [4, 4, 12, 6] lowercase__ = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=SCREAMING_SNAKE_CASE ) else: lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) lowercase__ = checkpoint lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) # prepare test inputs lowercase__ = prepare_img() lowercase__ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowercase__ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # compare outputs from both models lowercase__ = get_expected_output(SCREAMING_SNAKE_CASE ) lowercase__ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowerCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
43
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : BigBirdConfig lowerCamelCase_ : jnp.dtype = jnp.floataa lowerCamelCase_ : bool = True def lowerCAmelCase_ ( self ) -> str: super().setup() snake_case_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: snake_case_ = super().__call__(*lowerCamelCase , **lowerCamelCase ) snake_case_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Dict = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): snake_case_ = logits.shape[-1] snake_case_ = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) snake_case_ = jax.nn.log_softmax(lowercase_ , axis=-1 ) snake_case_ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: snake_case_ = reduction(lowercase_ ) return loss snake_case_ = partial(lowercase_ , reduction=jnp.mean ) snake_case_ = cross_entropy(lowercase_ , lowercase_ ) snake_case_ = cross_entropy(lowercase_ , lowercase_ ) snake_case_ = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowerCamelCase : lowerCamelCase_ : str = "google/bigbird-roberta-base" lowerCamelCase_ : int = 3_000 lowerCamelCase_ : int = 10_500 lowerCamelCase_ : int = 128 lowerCamelCase_ : int = 3 lowerCamelCase_ : int = 1 lowerCamelCase_ : int = 5 # tx_args lowerCamelCase_ : float = 3E-5 lowerCamelCase_ : float = 0.0 lowerCamelCase_ : int = 20_000 lowerCamelCase_ : float = 0.0_0_9_5 lowerCamelCase_ : str = "bigbird-roberta-natural-questions" lowerCamelCase_ : str = "training-expt" lowerCamelCase_ : str = "data/nq-training.jsonl" lowerCamelCase_ : str = "data/nq-validation.jsonl" def lowerCAmelCase_ ( self ) -> List[Any]: os.makedirs(self.base_dir , exist_ok=lowerCamelCase ) snake_case_ = os.path.join(self.base_dir , self.save_dir ) snake_case_ = self.batch_size_per_device * jax.device_count() @dataclass class __lowerCamelCase : lowerCamelCase_ : int lowerCamelCase_ : int = 4_096 # no dynamic padding on TPUs def __call__( self , lowerCamelCase ) -> Tuple: snake_case_ = self.collate_fn(lowerCamelCase ) snake_case_ = jax.tree_util.tree_map(lowerCamelCase , lowerCamelCase ) return batch def lowerCAmelCase_ ( self , lowerCamelCase ) -> Tuple: snake_case_ , snake_case_ = self.fetch_inputs(features["""input_ids"""] ) snake_case_ = { """input_ids""": jnp.array(lowerCamelCase , dtype=jnp.intaa ), """attention_mask""": jnp.array(lowerCamelCase , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def lowerCAmelCase_ ( self , lowerCamelCase ) -> int: snake_case_ = [self._fetch_inputs(lowerCamelCase ) for ids in input_ids] return zip(*lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[Any]: snake_case_ = [1 for _ in range(len(lowerCamelCase ) )] while len(lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None ) -> Any: '''simple docstring''' if seed is not None: snake_case_ = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): snake_case_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase( lowercase_ , lowercase_ , **lowercase_ ) -> str: '''simple docstring''' def loss_fn(lowercase_ ): snake_case_ = model_inputs.pop("""start_labels""" ) snake_case_ = model_inputs.pop("""end_labels""" ) snake_case_ = model_inputs.pop("""pooled_labels""" ) snake_case_ = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) snake_case_ , snake_case_ , snake_case_ = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) snake_case_ , snake_case_ = jax.random.split(lowercase_ ) snake_case_ = jax.value_and_grad(lowercase_ ) snake_case_ , snake_case_ = grad_fn(state.params ) snake_case_ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) snake_case_ = jax.lax.pmean(lowercase_ , """batch""" ) snake_case_ = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase( lowercase_ , **lowercase_ ) -> int: '''simple docstring''' snake_case_ = model_inputs.pop("""start_labels""" ) snake_case_ = model_inputs.pop("""end_labels""" ) snake_case_ = model_inputs.pop("""pooled_labels""" ) snake_case_ = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) snake_case_ , snake_case_ , snake_case_ = outputs snake_case_ = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __lowerCamelCase ( train_state.TrainState ): lowerCamelCase_ : Callable = struct.field(pytree_node=__snake_case ) @dataclass class __lowerCamelCase : lowerCamelCase_ : Args lowerCamelCase_ : Callable lowerCamelCase_ : Callable lowerCamelCase_ : Callable lowerCamelCase_ : Callable lowerCamelCase_ : wandb lowerCamelCase_ : Callable = None def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> Tuple: snake_case_ = model.params snake_case_ = TrainState.create( apply_fn=model.__call__ , params=lowerCamelCase , tx=lowerCamelCase , loss_fn=lowerCamelCase , ) if ckpt_dir is not None: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = restore_checkpoint(lowerCamelCase , lowerCamelCase ) snake_case_ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } snake_case_ , snake_case_ = build_tx(**lowerCamelCase ) snake_case_ = train_state.TrainState( step=lowerCamelCase , apply_fn=model.__call__ , params=lowerCamelCase , tx=lowerCamelCase , opt_state=lowerCamelCase , ) snake_case_ = args snake_case_ = data_collator snake_case_ = lr snake_case_ = params snake_case_ = jax_utils.replicate(lowerCamelCase ) return state def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: snake_case_ = self.args snake_case_ = len(lowerCamelCase ) // args.batch_size snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.split(lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): snake_case_ = jnp.array(0 , dtype=jnp.floataa ) snake_case_ = get_batched_dataset(lowerCamelCase , args.batch_size , seed=lowerCamelCase ) snake_case_ = 0 for batch in tqdm(lowerCamelCase , total=lowerCamelCase , desc=f'''Running EPOCH-{epoch}''' ): snake_case_ = self.data_collator(lowerCamelCase ) snake_case_ , snake_case_ , snake_case_ = self.train_step_fn(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: snake_case_ = jax_utils.unreplicate(state.step ) snake_case_ = running_loss.item() / i snake_case_ = self.scheduler_fn(state_step - 1 ) snake_case_ = self.evaluate(lowerCamelCase , lowerCamelCase ) snake_case_ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(lowerCamelCase ) ) self.logger.log(lowerCamelCase , commit=lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Any: snake_case_ = get_batched_dataset(lowerCamelCase , self.args.batch_size ) snake_case_ = len(lowerCamelCase ) // self.args.batch_size snake_case_ = jnp.array(0 , dtype=jnp.floataa ) snake_case_ = 0 for batch in tqdm(lowerCamelCase , total=lowerCamelCase , desc="""Evaluating ... """ ): snake_case_ = self.data_collator(lowerCamelCase ) snake_case_ = self.val_step_fn(lowerCamelCase , **lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = jax_utils.unreplicate(lowerCamelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(lowerCamelCase , params=state.params ) with open(os.path.join(lowerCamelCase , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCamelCase , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(lowerCamelCase , """data_collator.joblib""" ) ) with open(os.path.join(lowerCamelCase , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , lowerCamelCase ) print("""DONE""" ) def UpperCamelCase( lowercase_ , lowercase_ ) -> int: '''simple docstring''' print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: snake_case_ = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: snake_case_ = from_bytes(state.opt_state , f.read() ) snake_case_ = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) snake_case_ = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: snake_case_ = json.load(lowercase_ ) snake_case_ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' snake_case_ = num_train_steps - warmup_steps snake_case_ = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) snake_case_ = optax.linear_schedule(init_value=lowercase_ , end_value=1e-7 , transition_steps=lowercase_ ) snake_case_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' def weight_decay_mask(lowercase_ ): snake_case_ = traverse_util.flatten_dict(lowercase_ ) snake_case_ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) snake_case_ = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
706
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> int: super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> int: return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Dict: return x_in * self.stds[key] + self.means[key] def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[str]: if type(lowerCamelCase ) is dict: return {k: self.to_torch(lowerCamelCase ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase , device=self.unet.device ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: for key, val in cond.items(): snake_case_ = val.clone() return x_in def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , lowerCamelCase , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(lowerCamelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , predict_epsilon=lowerCamelCase )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.to_torch(lowerCamelCase ) return x, y def __call__( self , lowerCamelCase , lowerCamelCase=64 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=0.1 ) -> List[Any]: # normalize the observations and create batch dimension snake_case_ = self.normalize(lowerCamelCase , """observations""" ) snake_case_ = obs[None].repeat(lowerCamelCase , axis=0 ) snake_case_ = {0: self.to_torch(lowerCamelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(lowerCamelCase , device=self.unet.device ) snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.to_torch(lowerCamelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=lowerCamelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(lowerCamelCase , key="""actions""" ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , lowerCamelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
161
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
221
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a_ = logging.get_logger(__name__) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Tuple , *__lowerCAmelCase: str , **__lowerCAmelCase: Optional[Any] ) -> None: '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
221
1
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER a_ : Any = True a_ : Optional[Any] = """ml.p3.2xlarge""" a_ : Any = """accelerate_sagemaker_execution_role""" a_ : Optional[int] = """hf-sm""" a_ : Dict = """us-east-1""" a_ : Tuple = 1 a_ : Any = """accelerate-sagemaker-1""" a_ : Union[str, Any] = """1.6""" a_ : Optional[Any] = """4.4""" a_ : List[str] = """train.py""" a_ : Dict = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] a_ : Optional[int] = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCamelCase : Tuple = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , A ) assert isinstance(converted_args['do_train'] , A ) assert isinstance(converted_args['epochs'] , A ) assert isinstance(converted_args['learning_rate'] , A ) assert isinstance(converted_args['max_steps'] , A ) with pytest.raises(A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
707
"""simple docstring""" from collections import defaultdict from math import gcd def UpperCAmelCase_ ( __a : int = 1_50_00_00 ): '''simple docstring''' _lowerCamelCase : defaultdict = defaultdict(__a ) _lowerCamelCase : Tuple = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __a , 2 ): if gcd(__a , __a ) > 1: continue _lowerCamelCase : Optional[int] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__a , limit + 1 , __a ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
349
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( UpperCamelCase_ ): def __init__( self : List[str] ,a__ : Optional[Any] ,a__ : List[Any]) -> List[Any]: """simple docstring""" super().__init__() self.register_modules(unet=a__ ,scheduler=a__) @torch.no_grad() def __call__( self : List[str] ,a__ : int = 1 ,a__ : int = 100 ,a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,a__ : Optional[float] = None ,a__ : bool = True ,) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: _lowerCAmelCase:str = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCAmelCase:Tuple = audio_length_in_s * self.unet.config.sample_rate _lowerCAmelCase:Dict = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' F' {3 * down_scale_factor / self.unet.config.sample_rate}.') _lowerCAmelCase:Union[str, Any] = int(a__) if sample_size % down_scale_factor != 0: _lowerCAmelCase:int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ''' process.''') _lowerCAmelCase:Union[str, Any] = int(a__) _lowerCAmelCase:Optional[int] = next(iter(self.unet.parameters())).dtype _lowerCAmelCase:Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(a__ ,a__) and len(a__) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(a__)}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.') _lowerCAmelCase:Optional[int] = randn_tensor(a__ ,generator=a__ ,device=self.device ,dtype=a__) # set step values self.scheduler.set_timesteps(a__ ,device=audio.device) _lowerCAmelCase:Dict = self.scheduler.timesteps.to(a__) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowerCAmelCase:Optional[int] = self.unet(a__ ,a__).sample # 2. compute previous image: x_t -> t_t-1 _lowerCAmelCase:List[str] = self.scheduler.step(a__ ,a__ ,a__).prev_sample _lowerCAmelCase:Optional[Any] = audio.clamp(-1 ,1).float().cpu().numpy() _lowerCAmelCase:Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=a__)
227
"""simple docstring""" from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( snake_case : int , snake_case : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:Optional[Any] = [] _lowerCAmelCase:Dict = 11 _lowerCAmelCase:int = int('''1''' + '''0''' * digit_len ) for num in range(snake_case , snake_case ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(snake_case , snake_case ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 _lowerCAmelCase:Optional[Any] = 10 return solutions def UpperCAmelCase ( snake_case : int = 2 ): _lowerCAmelCase:Optional[int] = 1.0 for fraction in fraction_list(snake_case ): _lowerCAmelCase:Any = Fraction(snake_case ) result *= frac.denominator / frac.numerator return int(snake_case ) if __name__ == "__main__": print(solution())
227
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ :Any = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :str = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Union[str, Any] = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase__ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
374
"""simple docstring""" def lowerCamelCase_ ( ) ->str: """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Any = 2 while i * i <= n: __UpperCAmelCase : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase_ ( ) ->Optional[int]: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(UpperCAmelCase_ ) > 5_00 ) if __name__ == "__main__": print(solution())
374
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a_ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=18 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=False , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = size if size is not None else {'height': 20, 'width': 20} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_reduce_labels def A_( self ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowercase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) SCREAMING_SNAKE_CASE_ = Image.open(dataset[0]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(dataset[1]['file'] ) return image, map def lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(ds[1]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(ds[2]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): A = BeitImageProcessor if is_vision_available() else None def A_( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = BeitImageProcessingTester(self ) @property def A_( self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'do_center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'image_std' ) ) def A_( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , SCREAMING_SNAKE_CASE ) def A_( self ) -> Tuple: """simple docstring""" pass def A_( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def A_( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = image_processing(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
205
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class a_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): A = FlaxAutoencoderKL @property def A_( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ = jax.random.uniform(SCREAMING_SNAKE_CASE , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict
205
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _a = logging.get_logger("transformers.models.encodec") _a = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } _a = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } _a = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } _a = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } _a = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } _a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _a = [] _a = [] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Any: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__UpperCamelCase ,__UpperCamelCase ) if weight_type is not None: lowerCamelCase__ = getattr(__UpperCamelCase ,__UpperCamelCase ).shape else: lowerCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value elif weight_type == "running_mean": lowerCamelCase__ = value elif weight_type == "running_var": lowerCamelCase__ = value elif weight_type == "num_batches_tracked": lowerCamelCase__ = value elif weight_type == "weight_ih_l0": lowerCamelCase__ = value elif weight_type == "weight_hh_l0": lowerCamelCase__ = value elif weight_type == "bias_ih_l0": lowerCamelCase__ = value elif weight_type == "bias_hh_l0": lowerCamelCase__ = value elif weight_type == "weight_ih_l1": lowerCamelCase__ = value elif weight_type == "weight_hh_l1": lowerCamelCase__ = value elif weight_type == "bias_ih_l1": lowerCamelCase__ = value elif weight_type == "bias_hh_l1": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase__ , lowerCamelCase__ = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase__ = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase__ = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(__UpperCamelCase ,__UpperCamelCase ): logger.info(F'{name} was ignored' ) continue lowerCamelCase__ = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase__ , lowerCamelCase__ = key.split('''.*.''' ) if prefix in name and suffix in name: lowerCamelCase__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__UpperCamelCase )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__UpperCamelCase ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "weight_ih_l0" in name: lowerCamelCase__ = '''weight_ih_l0''' elif "weight_hh_l0" in name: lowerCamelCase__ = '''weight_hh_l0''' elif "bias_ih_l0" in name: lowerCamelCase__ = '''bias_ih_l0''' elif "bias_hh_l0" in name: lowerCamelCase__ = '''bias_hh_l0''' elif "weight_ih_l1" in name: lowerCamelCase__ = '''weight_ih_l1''' elif "weight_hh_l1" in name: lowerCamelCase__ = '''weight_hh_l1''' elif "bias_ih_l1" in name: lowerCamelCase__ = '''bias_ih_l1''' elif "bias_hh_l1" in name: lowerCamelCase__ = '''bias_hh_l1''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: lowerCamelCase__ = '''weight''' elif "running_mean" in name: lowerCamelCase__ = '''running_mean''' elif "running_var" in name: lowerCamelCase__ = '''running_var''' elif "num_batches_tracked" in name: lowerCamelCase__ = '''num_batches_tracked''' else: lowerCamelCase__ = None set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case=None ,__snake_case=None ,) -> int: '''simple docstring''' if config_path is not None: lowerCamelCase__ = EncodecConfig.from_pretrained(__UpperCamelCase ) else: lowerCamelCase__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase__ = [8, 5, 4, 4] lowerCamelCase__ = [2.2] lowerCamelCase__ = 64 lowerCamelCase__ = 32000 lowerCamelCase__ = 2048 lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False elif model_name == "encodec_48khz": lowerCamelCase__ = [8, 5, 4, 2] lowerCamelCase__ = [3.0, 6.0, 1_2.0, 2_4.0] lowerCamelCase__ = 48000 lowerCamelCase__ = 2 lowerCamelCase__ = False lowerCamelCase__ = '''time_group_norm''' lowerCamelCase__ = True lowerCamelCase__ = 1.0 lowerCamelCase__ = 0.0_1 else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCamelCase__ = EncodecModel(__UpperCamelCase ) lowerCamelCase__ = EncodecFeatureExtractor( feature_size=config.audio_channels ,sampling_rate=config.sampling_rate ,chunk_length_s=config.chunk_length_s ,overlap=config.overlap ,) feature_extractor.save_pretrained(__UpperCamelCase ) lowerCamelCase__ = torch.load(__UpperCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase__ = original_checkpoint['''best_state'''] recursively_load_weights(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _a = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
707
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case = None ,__snake_case = None ) -> None: '''simple docstring''' if start is None: lowerCamelCase__ = 0 if end is None: lowerCamelCase__ = len(__snake_case ) - 1 if start >= end: return lowerCamelCase__ = (start + end) // 2 slowsort(__snake_case ,__snake_case ,__snake_case ) slowsort(__snake_case ,mid + 1 ,__snake_case ) if sequence[end] < sequence[mid]: lowerCamelCase__ , lowerCamelCase__ = sequence[mid], sequence[end] slowsort(__snake_case ,__snake_case ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
29
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : Union[str, Any] , lowercase : str=13 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=3 , lowercase : Optional[int]=4 , lowercase : Optional[int]=[10, 20, 30, 40] , lowercase : str=[2, 2, 3, 2] , lowercase : str=True , lowercase : Optional[int]=True , lowercase : Dict=37 , lowercase : Optional[int]="gelu" , lowercase : str=10 , lowercase : int=0.02 , lowercase : Any=["stage2", "stage3", "stage4"] , lowercase : int=3 , lowercase : Any=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def A ( self : Dict ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def A ( self : Any ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def A ( self : Optional[int] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def A ( self : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' _snake_case = UperNetForSemanticSegmentation(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () _UpperCAmelCase : Any = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : int = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : Dict = False def A ( self : List[str] ): '''simple docstring''' _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : List[Any] ): '''simple docstring''' return def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def A ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] ): _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(lowercase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def A ( self : List[Any] ): '''simple docstring''' pass @slow def A ( self : Dict ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a_ ( ) -> int: _snake_case = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) _snake_case = Image.open(__lowercase ).convert('RGB' ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) _snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase ) _snake_case = prepare_img() _snake_case = processor(images=lowercase , return_tensors='pt' ).to(lowercase ) with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1E-4 ) ) def A ( self : Any ): '''simple docstring''' _snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) _snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase ) _snake_case = prepare_img() _snake_case = processor(images=lowercase , return_tensors='pt' ).to(lowercase ) with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1E-4 ) )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCamelCase : '''simple docstring''' _snake_case = 42 _snake_case = 42 class _UpperCamelCase : '''simple docstring''' def __init__( self , a_ ) -> Dict: lowercase : list[list[Edge]] = [[] for _ in range(a_ )] lowercase : int = size def __getitem__( self , a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def a__ ( self ) -> Any: return self._size def a__ ( self , a_ , a_ , a_ ) -> List[str]: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(a_ , a_ ) ) def a__ ( self , a_ , a_ ) -> int | None: lowercase : Optional[Any] = deque([start_vertex] ) lowercase : list[int | None] = [None] * self.size lowercase : Dict = 0 while queue: lowercase : int = queue.popleft() lowercase : Optional[int] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase : Optional[int] = current_distance + edge.weight lowercase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ , a_ ) and new_distance >= dest_vertex_distance ): continue lowercase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
425
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Any: lowercase : List[str] = parent lowercase : str = batch_size lowercase : int = seq_length lowercase : Any = is_training lowercase : List[Any] = use_input_mask lowercase : str = use_token_type_ids lowercase : List[str] = use_labels lowercase : Optional[Any] = vocab_size lowercase : List[Any] = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : str = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Dict = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : int = num_labels lowercase : int = num_choices lowercase : Tuple = scope def a__ ( self ) -> Dict: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None lowercase : str = None lowercase : Optional[int] = None if self.use_labels: lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[Any]: lowercase : Tuple = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , a_ ) lowercase : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: lowercase : List[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> int: lowercase : Optional[Any] = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowercase : List[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : Union[str, Any] = self.num_labels lowercase : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowercase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : List[Any] = self.num_labels lowercase : Optional[Any] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: lowercase : Optional[int] = self.num_choices lowercase : Tuple = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() lowercase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Tuple = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self ) -> Tuple: lowercase : Any = self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : int = config_and_inputs lowercase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def a__ ( self ) -> int: lowercase : str = DistilBertModelTester(self ) lowercase : Optional[Any] = ConfigTester(self , config_class=a_ , dim=3_7 ) def a__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def a__ ( self ) -> Tuple: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def a__ ( self ) -> Union[str, Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def a__ ( self ) -> List[str]: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def a__ ( self ) -> List[Any]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def a__ ( self ) -> Tuple: lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase : Any = True lowercase : List[str] = model_class(config=a_ ) lowercase : Optional[int] = self._prepare_for_class(a_ , a_ ) lowercase : Union[str, Any] = torch.jit.trace( a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) ) lowercase : str = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ ) loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) ) @require_torch class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' @slow def a__ ( self ) -> List[str]: lowercase : Dict = DistilBertModel.from_pretrained("distilbert-base-uncased" ) lowercase : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Union[str, Any] = model(a_ , attention_mask=a_ )[0] lowercase : List[str] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) lowercase : Optional[int] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) )
425
1
from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase__ ( lowerCAmelCase__ ): for param in module.parameters(): lowercase = False def UpperCamelCase__ ( ): lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues""" """ with generations.""" ) return device def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def UpperCamelCase__ ( ): lowercase = datetime.now() lowercase = current_time.strftime("""%H:%M:%S""" ) return timestamp
428
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2 , __UpperCamelCase=99 , __UpperCamelCase=0 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase="last" , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=0 , ): '''simple docstring''' __a : List[str] = parent __a : Any = batch_size __a : List[Any] = seq_length __a : Optional[int] = is_training __a : Optional[int] = use_input_lengths __a : Optional[int] = use_token_type_ids __a : Any = use_labels __a : Optional[int] = gelu_activation __a : Dict = sinusoidal_embeddings __a : Union[str, Any] = causal __a : List[str] = asm __a : Dict = n_langs __a : List[Any] = vocab_size __a : List[Any] = n_special __a : List[str] = hidden_size __a : Tuple = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : List[str] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Optional[Any] = type_sequence_label_size __a : List[Any] = initializer_range __a : Dict = num_labels __a : str = num_choices __a : Union[str, Any] = summary_type __a : int = use_proj __a : Optional[Any] = scope __a : int = bos_token_id def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Union[str, Any] = None if self.use_input_lengths: __a : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a : List[Any] = None if self.use_token_type_ids: __a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a : List[str] = None __a : Dict = None __a : Any = None if self.use_labels: __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Any = ids_tensor([self.batch_size] , 2 ).float() __a : int = ids_tensor([self.batch_size] , self.num_choices ) __a : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCamelCase ( self ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : Any = XLMModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Union[str, Any] = model(__UpperCamelCase , lengths=__UpperCamelCase , langs=__UpperCamelCase ) __a : Union[str, Any] = model(__UpperCamelCase , langs=__UpperCamelCase ) __a : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : Optional[Any] = XLMWithLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : Optional[int] = XLMForQuestionAnsweringSimple(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Any = model(__UpperCamelCase ) __a : Dict = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) __a : int = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : List[Any] = XLMForQuestionAnswering(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase ) __a : Optional[int] = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , p_mask=__UpperCamelCase , ) __a : Tuple = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , ) (__a ) : int = result_with_labels.to_tuple() __a : Tuple = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) (__a ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : Dict = XLMForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Union[str, Any] = model(__UpperCamelCase ) __a : Tuple = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : int = self.num_labels __a : List[Any] = XLMForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : int = self.num_choices __a : Dict = XLMForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.prepare_config_and_inputs() ( __a ) : str = config_and_inputs __a : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase__ = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' __a : List[Any] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) __a : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' __a : str = XLMModelTester(self ) __a : int = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=1 ): '''simple docstring''' self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual( [isinstance(__UpperCamelCase , __UpperCamelCase ) for iter_attentions in attentions] , [True] * len(__UpperCamelCase ) ) self.assertEqual(len(__UpperCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__UpperCamelCase ): # adds PAD dummy token __a : Tuple = min_length + idx + 1 __a : Optional[Any] = min_length + idx + 1 __a : Union[str, Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__UpperCamelCase ) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=1 ): '''simple docstring''' self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual( [isinstance(__UpperCamelCase , __UpperCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(__UpperCamelCase ) , ) self.assertEqual(len(__UpperCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__UpperCamelCase ): # adds PAD dummy token __a : str = min_length + idx + 1 __a : List[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__UpperCamelCase ) , ) pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Union[str, Any] = XLMModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(__UpperCamelCase ) __a : Dict = torch.tensor([[14, 447]] , dtype=torch.long , device=__UpperCamelCase ) # the president __a : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a : List[Any] = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __UpperCamelCase )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __snake_case = threading.Lock() __snake_case = None __snake_case = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __snake_case = logging.WARNING __snake_case = True def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = os.getenv('TRANSFORMERS_VERBOSITY' , UpperCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def _lowercase ( ) -> str: '''simple docstring''' return __name__.split('.' )[0] def _lowercase ( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def _lowercase ( ) -> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE__ = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE__ = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE__ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE__ = False def _lowercase ( ) -> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE__ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE__ = None def _lowercase ( ) -> int: '''simple docstring''' return log_levels def _lowercase ( UpperCamelCase_ = None ) -> logging.Logger: '''simple docstring''' if name is None: SCREAMING_SNAKE_CASE__ = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase_ ) def _lowercase ( ) -> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowercase ( UpperCamelCase_ ) -> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase_ ) def _lowercase ( ) -> Any: '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _lowercase ( ) -> List[str]: '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _lowercase ( ) -> Tuple: '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' return set_verbosity(UpperCamelCase_ ) def _lowercase ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _lowercase ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _lowercase ( UpperCamelCase_ ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase_ ) def _lowercase ( ) -> None: '''simple docstring''' _configure_library_root_logger() SCREAMING_SNAKE_CASE__ = False def _lowercase ( ) -> None: '''simple docstring''' _configure_library_root_logger() SCREAMING_SNAKE_CASE__ = True def _lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE__ = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(UpperCamelCase_ ) def _lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase_ ) def _lowercase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , UpperCamelCase_ ) if no_advisory_warnings: return self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) __snake_case = warning_advice @functools.lru_cache(UpperCamelCase_ ) def _lowercase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: '''simple docstring''' self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) __snake_case = warning_once class lowercase__ : def __init__( self : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str] ): # pylint: disable=unused-argument SCREAMING_SNAKE_CASE__ = args[0] if args else None def __iter__( self : Optional[int] ): return iter(self._iterator ) def __getattr__( self : Dict , UpperCAmelCase_ : Tuple ): def empty_fn(*UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[Any] ): return self def __exit__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): return class lowercase__ : def __call__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Any ): if _tqdm_active: return tqdm_lib.tqdm(*_snake_case , **_snake_case ) else: return EmptyTqdm(*_snake_case , **_snake_case ) def A_ ( self : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_snake_case , **_snake_case ) def A_ ( self : List[str] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __snake_case = _tqdm_cls() def _lowercase ( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _lowercase ( ) -> int: '''simple docstring''' global _tqdm_active SCREAMING_SNAKE_CASE__ = True hf_hub_utils.enable_progress_bars() def _lowercase ( ) -> Optional[Any]: '''simple docstring''' global _tqdm_active SCREAMING_SNAKE_CASE__ = False hf_hub_utils.disable_progress_bars()
472
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
504
0
"""simple docstring""" import os def SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) as in_file: SCREAMING_SNAKE_CASE__ = in_file.read() SCREAMING_SNAKE_CASE__ = [[int(__UpperCAmelCase ) for cell in row.split("," )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ = len(grid[0] ) SCREAMING_SNAKE_CASE__ = [[0 for i in range(__UpperCAmelCase )] for j in range(__UpperCAmelCase )] SCREAMING_SNAKE_CASE__ = grid[0][0] for i in range(1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = grid[0][i] + dp[0][i - 1] for i in range(1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = grid[i][0] + dp[i - 1][0] for i in range(1 , __UpperCAmelCase ): for j in range(1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
538
"""simple docstring""" import collections import os import re from pathlib import Path _A = 'src/transformers' # Matches is_xxx_available() _A = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _A = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _A = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _A = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _A = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _A = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _A = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _A = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _A = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _A = re.compile(R'^\s*try:') # Catches a line with else: _A = re.compile(R'^\s*else:') def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[str]: if _re_test_backend.search(__UpperCAmelCase ) is None: return None SCREAMING_SNAKE_CASE__ = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Optional[Any]: with open(__UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() SCREAMING_SNAKE_CASE__ = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] SCREAMING_SNAKE_CASE__ = re.findall(R"\[([^\]]+)\]" , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue SCREAMING_SNAKE_CASE__ = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): SCREAMING_SNAKE_CASE__ = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: SCREAMING_SNAKE_CASE__ = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(", " ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: SCREAMING_SNAKE_CASE__ = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(", " ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE__ = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: def find_duplicates(__UpperCAmelCase ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE__ = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) SCREAMING_SNAKE_CASE__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE__ = "base imports" if key == "none" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE ( ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCAmelCase , "__init__.py" ) SCREAMING_SNAKE_CASE__ = parse_init(__UpperCAmelCase ) if objects is not None: SCREAMING_SNAKE_CASE__ = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError("\n\n".join(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob("*.py" ) ) ) == 0: continue SCREAMING_SNAKE_CASE__ = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = short_path.replace(os.path.sep , "." ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE__ = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules _A = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE__ = direct_transformers_import(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__UpperCAmelCase , "__init__.py" ) , "r" ) as f: SCREAMING_SNAKE_CASE__ = f.read() import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]" , __UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ = "\n".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
538
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( _lowerCamelCase ): A_ : List[Any] = (EulerDiscreteScheduler,) A_ : str = 1_0 def __UpperCamelCase ( self : Union[str, Any] , **__UpperCamelCase : Optional[Any] ) -> Tuple: A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__UpperCamelCase ) return config def __UpperCamelCase ( self : int ) -> List[str]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Dict: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) A = torch.manual_seed(0 ) A = self.dummy_model() A = self.dummy_sample_deter * scheduler.init_noise_sigma A = sample.to(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): A = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) A = model(__UpperCamelCase , __UpperCamelCase ) A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) A = output.prev_sample A = torch.sum(torch.abs(__UpperCamelCase ) ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> List[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type='v_prediction' ) A = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) A = torch.manual_seed(0 ) A = self.dummy_model() A = self.dummy_sample_deter * scheduler.init_noise_sigma A = sample.to(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): A = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) A = model(__UpperCamelCase , __UpperCamelCase ) A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) A = output.prev_sample A = torch.sum(torch.abs(__UpperCamelCase ) ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCamelCase ) A = torch.manual_seed(0 ) A = self.dummy_model() A = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A = sample.to(__UpperCamelCase ) for t in scheduler.timesteps: A = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) A = model(__UpperCamelCase , __UpperCamelCase ) A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) A = output.prev_sample A = torch.sum(torch.abs(__UpperCamelCase ) ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __UpperCamelCase ( self : Optional[Any] ) -> int: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase , use_karras_sigmas=__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCamelCase ) A = torch.manual_seed(0 ) A = self.dummy_model() A = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A = sample.to(__UpperCamelCase ) for t in scheduler.timesteps: A = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) A = model(__UpperCamelCase , __UpperCamelCase ) A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) A = output.prev_sample A = torch.sum(torch.abs(__UpperCamelCase ) ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
106
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : @staticmethod def lowerCAmelCase (*snake_case_ : int , **snake_case_ : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCAmelCase (self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCAmelCase (self : Tuple , snake_case_ : List[str] , snake_case_ : Any ): __a : Any = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) import datasets __a : List[Any] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __a : List[str] = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __a : Optional[int] = object_detector(snake_case_ , threshold=0.0 ) self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def lowerCAmelCase (self : int ): pass @require_torch def lowerCAmelCase (self : Tuple ): __a : str = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : int = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : List[str] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) __a : Dict = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : List[Any] ): __a : Optional[Any] = '''facebook/detr-resnet-50''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : str = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Tuple = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : Optional[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Optional[int] ): __a : Any = '''facebook/detr-resnet-50''' __a : Optional[Any] = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[int] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : List[str] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Union[str, Any] ): __a : Tuple = 0.9985 __a : Tuple = '''facebook/detr-resnet-50''' __a : int = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=snake_case_ ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def lowerCAmelCase (self : List[str] ): __a : Optional[int] = '''Narsil/layoutlmv3-finetuned-funsd''' __a : Any = 0.9993 __a : Tuple = pipeline('''object-detection''' , model=snake_case_ , threshold=snake_case_ ) __a : Optional[Any] = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
521
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = (DPMSolverSinglestepScheduler,) lowerCAmelCase_ = (("num_inference_steps", 25),) def __a ( self : List[str] , **_lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 10_00, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**_lowercase ) return config def __a ( self : List[Any] , _lowercase : Dict=0 , **_lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , _lowercase ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**_lowercase ) SCREAMING_SNAKE_CASE__ = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __a ( self : Union[str, Any] ): """simple docstring""" pass def __a ( self : int , _lowercase : str=0 , **_lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , _lowercase ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __a ( self : Optional[int] , _lowercase : List[Any]=None , **_lowercase : Dict ): """simple docstring""" if scheduler is None: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**_lowercase ) SCREAMING_SNAKE_CASE__ = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**_lowercase ) SCREAMING_SNAKE_CASE__ = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__ = 50 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE__ = model(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def __a ( self : List[str] ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__ = self.full_loop(scheduler=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 SCREAMING_SNAKE_CASE__ = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = self.full_loop(scheduler=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def __a ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type="""dpmsolver++""" , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def __a ( self : Any ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) SCREAMING_SNAKE_CASE__ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def __a ( self : Optional[int] ): """simple docstring""" self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def __a ( self : str ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __a ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(variance_type=_lowercase ) self.check_over_configs(variance_type="""learned_range""" ) def __a ( self : List[str] ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0 ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(use_karras_sigmas=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE__ = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample assert sample.dtype == torch.floataa
379
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0, 0, 0 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
379
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE__ : Optional[Any] = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE__ : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def _lowercase ( __lowerCAmelCase ) -> Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files SCREAMING_SNAKE_CASE__ : List[str] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
680
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Any = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''donut-swin''' _snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=2_2_4 , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=9_6 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[3, 6, 1_2, 2_4] , lowerCamelCase__=7 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase__ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) )
212
0
'''simple docstring''' def snake_case ( a_ : float , a_ : float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
543
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" random.seed(a_ ) np.random.seed(a_ ) torch.manual_seed(a_ ) torch.cuda.manual_seed_all(a_ ) # ^^ safe to call this function even if cuda is not available class A : """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 0.99_99 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 2 / 3 , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : Dict = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : str = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase_ : Optional[int] = True if kwargs.get("""max_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Tuple = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : str = kwargs["""max_value"""] if kwargs.get("""min_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Dict = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = kwargs["""min_value"""] UpperCamelCase_ : Optional[Any] = list(__lowerCAmelCase ) UpperCamelCase_ : Any = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) self.to(device=kwargs["""device"""] ) UpperCamelCase_ : List[Any] = None UpperCamelCase_ : Optional[Any] = decay UpperCamelCase_ : List[str] = min_decay UpperCamelCase_ : int = update_after_step UpperCamelCase_ : Optional[int] = use_ema_warmup UpperCamelCase_ : Optional[int] = inv_gamma UpperCamelCase_ : Any = power UpperCamelCase_ : str = 0 UpperCamelCase_ : List[str] = None # set in `step()` UpperCamelCase_ : Union[str, Any] = model_cls UpperCamelCase_ : Any = model_config @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ , UpperCamelCase_ : int = model_cls.load_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase ) UpperCamelCase_ : str = model_cls.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = cls(model.parameters() , model_cls=__lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(__lowerCAmelCase ) return ema_model def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCamelCase_ : int = self.model_cls.from_config(self.model_config ) UpperCamelCase_ : List[Any] = self.state_dict() state_dict.pop("""shadow_params""" , __lowerCAmelCase ) model.register_to_config(**__lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase_ : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase_ : List[Any] = (1 + step) / (10 + step) UpperCamelCase_ : Optional[Any] = min(__lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase_ : Optional[Any] = max(__lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def _UpperCAmelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : str = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : int = parameters.parameters() UpperCamelCase_ : Optional[int] = list(__lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase_ : Any = self.get_decay(self.optimization_step ) UpperCamelCase_ : List[str] = decay UpperCamelCase_ : Any = 1 - decay UpperCamelCase_ : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase_ : Optional[Any] = deepspeed.zero.GatheredParameters(__lowerCAmelCase , modifier_rank=__lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : str = list(__lowerCAmelCase ) for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def _UpperCAmelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ): UpperCamelCase_ : Union[str, Any] = [ p.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) if p.is_floating_point() else p.to(device=__lowerCAmelCase ) for p in self.shadow_params ] def _UpperCAmelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[str] = [param.detach().cpu().clone() for param in parameters] def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , __lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase_ : List[Any] = None def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = copy.deepcopy(__lowerCAmelCase ) UpperCamelCase_ : int = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCamelCase_ : Dict = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , __lowerCAmelCase ): raise ValueError("""Invalid min_decay""" ) UpperCamelCase_ : str = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , __lowerCAmelCase ): raise ValueError("""Invalid optimization_step""" ) UpperCamelCase_ : Dict = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , __lowerCAmelCase ): raise ValueError("""Invalid update_after_step""" ) UpperCamelCase_ : List[str] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __lowerCAmelCase ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCamelCase_ : Any = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCamelCase_ : str = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCamelCase_ : Dict = state_dict.get("""shadow_params""" , __lowerCAmelCase ) if shadow_params is not None: UpperCamelCase_ : Any = shadow_params if not isinstance(self.shadow_params , __lowerCAmelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(__lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
543
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "deit" def __init__( self ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1E-12 ,_A=224 ,_A=16 ,_A=3 ,_A=True ,_A=16 ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : List[Any] = qkv_bias _lowerCAmelCase : Optional[int] = encoder_stride class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
259
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase : Optional[Any] = tf.shape(_lowerCamelCase ) if tensor.shape == tf.TensorShape(_lowerCamelCase ): return dynamic _lowerCAmelCase : List[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowerCamelCase )] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowerCamelCase , name=_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-5 , _lowerCamelCase=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = tf.nn.moments(_lowerCamelCase , axes=[axis] , keepdims=_lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase : int = [1] * inputs.shape.rank _lowerCAmelCase : Tuple = shape_list(_lowerCamelCase )[axis] _lowerCAmelCase : List[str] = tf.reshape(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = tf.reshape(_lowerCamelCase , _lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase : Tuple = tf.nn.batch_normalization( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , offset=_lowerCamelCase , scale=_lowerCamelCase , variance_epsilon=_lowerCamelCase , ) return outputs def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase : Optional[Any] = tf.shape(_lowerCamelCase ) _lowerCAmelCase : int = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase : int = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , tf.Tensor ): _lowerCAmelCase : Optional[int] = tf.convert_to_tensor(_lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase : List[str] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase : Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( _lowerCamelCase , tf.cast(_lowerCamelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(_lowerCamelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase : Tuple = [x for x in data if len(_lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) _lowerCAmelCase : Tuple = np.asarray(_lowerCamelCase ) _lowerCAmelCase : Dict = 1 _lowerCAmelCase : List[Any] = np.array_split(_lowerCamelCase , _lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase : Tuple = np.array_split(_lowerCamelCase , _lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = chunk_data else: _lowerCAmelCase : Dict = data def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if name in group.attrs: _lowerCAmelCase : int = [n.decode('utf8' ) if hasattr(_lowerCamelCase , 'decode' ) else n for n in group.attrs[name]] else: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Any = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(_lowerCamelCase , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def _expand_single_ad_tensor(_lowerCamelCase ): if isinstance(_lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowerCamelCase )
259
1
'''simple docstring''' import doctest from collections import deque import numpy as np class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [2, 1, 2, -1] __SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2, 3, 4] def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(self.first_signal ) __SCREAMING_SNAKE_CASE : int = len(self.second_signal ) __SCREAMING_SNAKE_CASE : Tuple = max(_A , _A ) # create a zero matrix of max_length x max_length __SCREAMING_SNAKE_CASE : List[str] = [[0] * max_length for i in range(_A )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_A ): __SCREAMING_SNAKE_CASE : Any = deque(self.second_signal ) rotated_signal.rotate(_A ) for j, item in enumerate(_A ): matrix[i][j] += item # multiply the matrix with the first signal __SCREAMING_SNAKE_CASE : str = np.matmul(np.transpose(_A ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_A , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
716
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , _A : Optional[int] , _A : Tuple=7 , _A : Optional[int]=3 , _A : Optional[Any]=18 , _A : Dict=30 , _A : str=400 , _A : Optional[int]=True , _A : str=None , _A : str=True , _A : str=None , _A : List[str]=True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = size if size is not None else {'''shortest_edge''': 20} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Union[str, Any] = min_resolution __SCREAMING_SNAKE_CASE : Tuple = max_resolution __SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize __SCREAMING_SNAKE_CASE : int = size __SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop __SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size __SCREAMING_SNAKE_CASE : Optional[int] = do_flip_channel_order def UpperCAmelCase__ ( self : str ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_flip_channel_order''' ) ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
131
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCamelCase__ = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' lowerCamelCase__ = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' lowerCamelCase__ = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token") , id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token") , id="sequence") , id="references"), }) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict=4 , lowercase_ : int=False) -> Optional[int]: """simple docstring""" _UpperCamelCase = compute_bleu( reference_corpus=lowercase_ , translation_corpus=lowercase_ , max_order=lowercase_ , smooth=lowercase_) ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
547
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
547
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The column name of the images in the files.'} ) lowerCAmelCase__ = field(default=snake_case_ , metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase__ = field(default=snake_case_ , metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = {} if self.train_dir is not None: lowerCamelCase_ = self.train_dir if self.validation_dir is not None: lowerCamelCase_ = self.validation_dir lowerCamelCase_ = data_files if data_files else None @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field(default=snake_case_ , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. lowerCamelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase_ = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase__ ) and data_args.train_val_split > 0.0: lowerCamelCase_ = ds["train"].train_test_split(data_args.train_val_split ) lowerCamelCase_ = split["train"] lowerCamelCase_ = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCamelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase__ ) else: lowerCamelCase_ = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase_ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCamelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCamelCase__ ) else: lowerCamelCase_ = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase_ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCamelCase_ = ViTMAEForPreTraining(lowerCamelCase__ ) if training_args.do_train: lowerCamelCase_ = ds["train"].column_names else: lowerCamelCase_ = ds["validation"].column_names if data_args.image_column_name is not None: lowerCamelCase_ = data_args.image_column_name elif "image" in column_names: lowerCamelCase_ = "image" elif "img" in column_names: lowerCamelCase_ = "img" else: lowerCamelCase_ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase_ = image_processor.size["shortest_edge"] else: lowerCamelCase_ = (image_processor.size["height"], image_processor.size["width"]) lowerCamelCase_ = Compose( [ Lambda(lambda lowerCamelCase__ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCamelCase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCamelCase__ ): lowerCamelCase_ = [transforms(lowerCamelCase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCamelCase_ = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCamelCase_ = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase__ ) # Compute absolute learning rate lowerCamelCase_ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase_ = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase_ = trainer.evaluate() trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Write model card and (optionally) push to hub lowerCamelCase_ = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
313
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): lowerCAmelCase__ = 'pixel_values' lowerCAmelCase__ = False lowerCAmelCase__ = TimmBackboneConfig def __init__( self , lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , "timm" ) super().__init__(lowercase ) lowerCamelCase_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.' ) if hasattr(lowercase , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) lowerCamelCase_ = getattr(lowercase , "use_pretrained_backbone" , lowercase ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase_ = config.out_indices if getattr(lowercase , "out_indices" , lowercase ) is not None else (-1,) lowerCamelCase_ = timm.create_model( config.backbone , pretrained=lowercase , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowercase , **lowercase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase_ = self._backbone.return_layers lowerCamelCase_ = {layer["module"]: str(lowercase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase_ = kwargs.pop("config" , TimmBackboneConfig() ) lowerCamelCase_ = kwargs.pop("use_timm_backbone" , lowercase ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) lowerCamelCase_ = kwargs.pop("num_channels" , config.num_channels ) lowerCamelCase_ = kwargs.pop("features_only" , config.features_only ) lowerCamelCase_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) lowerCamelCase_ = kwargs.pop("out_indices" , config.out_indices ) lowerCamelCase_ = TimmBackboneConfig( backbone=lowercase , num_channels=lowercase , features_only=lowercase , use_pretrained_backbone=lowercase , out_indices=lowercase , ) return super()._from_config(lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: pass def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None , lowercase=None , lowercase=None , **lowercase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase_ = self._all_layers lowerCamelCase_ = self._backbone(lowercase , **lowercase ) lowerCamelCase_ = self._return_layers lowerCamelCase_ = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase_ = self._backbone(lowercase , **lowercase ) lowerCamelCase_ = None lowerCamelCase_ = tuple(lowercase ) lowerCamelCase_ = tuple(lowercase ) if hidden_states is not None else None if not return_dict: lowerCamelCase_ = (feature_maps,) if output_hidden_states: lowerCamelCase_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowercase , hidden_states=lowercase , attentions=lowercase )
313
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a_ :Tuple = False class lowercase ( unittest.TestCase ): pass @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[Any] = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = pipe( image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
35
def _a ( a :list ) -> list: if len(a ) < 2: return collection def circle_sort_util(a :list , a :int , a :int ) -> bool: a = False if low == high: return swapped a = low a = high while left < right: if collection[left] > collection[right]: a , a = ( collection[right], collection[left], ) a = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: a , a = ( collection[right + 1], collection[left], ) a = True a = low + int((high - low) / 2 ) a = circle_sort_util(a , a , a ) a = circle_sort_util(a , mid + 1 , a ) return swapped or left_swap or right_swap a = True while is_not_sorted is True: a = circle_sort_util(a , 0 , len(a ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
117
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : int = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
392
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Any = tempfile.mkdtemp() a__ : Tuple = 5 # Realm tok a__ : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] a__ : Any = os.path.join(self.tmpdirname , 'realm_tokenizer') os.makedirs(lowercase , exist_ok=lowercase) a__ : int = os.path.join(lowercase , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) a__ : List[str] = os.path.join(self.tmpdirname , 'realm_block_records') os.makedirs(lowercase , exist_ok=lowercase) def __lowercase ( self) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer')) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : int = RealmConfig(num_block_records=self.num_block_records) return config def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Tuple = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], }) return dataset def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=lowercase , ) return block_records def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowercase ( self) -> int: '''simple docstring''' a__ : List[Any] = self.get_config() a__ : Tuple = self.get_dummy_retriever() a__ : Tuple = retriever.tokenizer a__ : str = np.array([0, 3] , dtype='long') a__ : Optional[int] = tokenizer(['Test question']).input_ids a__ : List[str] = tokenizer( ['the fourth'] , add_special_tokens=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , ).input_ids a__ : str = config.reader_seq_len a__ , a__ , a__ , a__ : int = retriever( lowercase , lowercase , answer_ids=lowercase , max_length=lowercase , return_tensors='np') self.assertEqual(len(lowercase) , 2) self.assertEqual(len(lowercase) , 2) self.assertEqual(len(lowercase) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : List[str] = self.get_config() a__ : Union[str, Any] = self.get_dummy_retriever() a__ : List[Any] = retriever.tokenizer a__ : Any = np.array([0, 3, 5] , dtype='long') a__ : Tuple = tokenizer(['Test question']).input_ids a__ : Optional[Any] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , ).input_ids a__ : Dict = config.reader_seq_len a__ , a__ , a__ , a__ : Dict = retriever( lowercase , lowercase , answer_ids=lowercase , max_length=lowercase , return_tensors='np') self.assertEqual([False, True, True] , lowercase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) # Test local path a__ : Optional[int] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) self.assertEqual(retriever.block_records[0] , b'This is the first record') # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download') as mock_hf_hub_download: a__ : str = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records') , _REALM_BLOCK_RECORDS_FILENAME) a__ : str = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa') self.assertEqual(retriever.block_records[0] , b'This is the first record')
392
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['''LayoutLMv2FeatureExtractor'''] A : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
128
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any]=13 , SCREAMING_SNAKE_CASE : Any=7 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : str=99 , SCREAMING_SNAKE_CASE : Tuple=32 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : Optional[int]=4 , SCREAMING_SNAKE_CASE : int=37 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : List[str]=512 , SCREAMING_SNAKE_CASE : Optional[int]=16 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Dict=4 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): _A : Optional[int] = parent _A : List[Any] = batch_size _A : int = seq_length _A : List[str] = is_training _A : str = use_input_mask _A : Any = use_token_type_ids _A : List[str] = use_labels _A : Optional[Any] = vocab_size _A : Tuple = hidden_size _A : Dict = num_hidden_layers _A : int = num_attention_heads _A : Union[str, Any] = intermediate_size _A : str = hidden_act _A : Tuple = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Any = type_vocab_size _A : Optional[int] = type_sequence_label_size _A : Any = initializer_range _A : Tuple = num_labels _A : List[str] = num_choices _A : Any = scope def A ( self : Union[str, Any]): _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : Optional[Any] = None if self.use_input_mask: _A : str = random_attention_mask([self.batch_size, self.seq_length]) _A : Dict = None if self.use_token_type_ids: _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _A : Optional[int] = None _A : Tuple = None _A : Optional[int] = None if self.use_labels: _A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _A : int = ids_tensor([self.batch_size] , self.num_choices) _A : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any]): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): _A : str = BioGptModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE) _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , ): _A : int = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , *SCREAMING_SNAKE_CASE : List[Any]): _A : int = BioGptModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() # create attention mask _A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE) _A : List[Any] = self.seq_length // 2 _A : Any = 0 # first forward pass _A , _A : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE).to_tuple() # create hypothetical next token and extent to next_input_ids _A : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _A : Any = ids_tensor((1,) , SCREAMING_SNAKE_CASE).item() + 1 _A : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _A : int = random_other_next_tokens # append to next input_ids and attn_mask _A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) _A : Dict = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE)] , dim=1 , ) # get two different outputs _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] _A : List[Any] = model(SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] # select random slice _A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : str = output_from_no_past[:, -1, random_slice_idx].detach() _A : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , *SCREAMING_SNAKE_CASE : List[Any]): _A : int = BioGptModel(config=SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE).eval() _A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE) # first forward pass _A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE) _A , _A : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _A : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) _A : List[str] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _A : Any = torch.cat([input_ids, next_tokens] , dim=-1) _A : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1) _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE)[ 'last_hidden_state' ] # select random slice _A : Dict = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : int = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3)) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , *SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=False): _A : List[str] = BioGptForCausalLM(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) if gradient_checkpointing: model.gradient_checkpointing_enable() _A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Any , *SCREAMING_SNAKE_CASE : List[Any]): _A : Optional[Any] = BioGptModel(SCREAMING_SNAKE_CASE) _A : List[str] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def A ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , *SCREAMING_SNAKE_CASE : Optional[Any]): _A : List[Any] = self.num_labels _A : List[str] = BioGptForTokenClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A ( self : Dict): _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : int = config_and_inputs _A : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a = (BioGptForCausalLM,) if is_torch_available() else () a = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) a = False def A ( self : Dict): _A : Optional[int] = BioGptModelTester(self) _A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Dict): self.config_tester.run_common_tests() def A ( self : str): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Dict = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : str): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE , gradient_checkpointing=SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : List[Any]): _A : int = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(SCREAMING_SNAKE_CASE) _A : Tuple = BioGptTokenizer.from_pretrained('microsoft/biogpt') _A : Optional[Any] = 'left' # Define PAD Token = EOS Token = 50256 _A : Tuple = tokenizer.eos_token _A : str = model.config.eos_token_id # use different length sentences to test batching _A : Dict = [ 'Hello, my dog is a little', 'Today, I', ] _A : int = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE) _A : List[str] = inputs['input_ids'].to(SCREAMING_SNAKE_CASE) _A : Dict = model.generate( input_ids=SCREAMING_SNAKE_CASE , attention_mask=inputs['attention_mask'].to(SCREAMING_SNAKE_CASE) , ) _A : Tuple = tokenizer(sentences[0] , return_tensors='pt').input_ids.to(SCREAMING_SNAKE_CASE) _A : Dict = model.generate(input_ids=SCREAMING_SNAKE_CASE) _A : List[str] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _A : Any = tokenizer(sentences[1] , return_tensors='pt').input_ids.to(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings) _A : Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence]) @slow def A ( self : int): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Union[str, Any] = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Dict = input_dict['input_ids'] _A : Dict = input_ids.ne(1).to(SCREAMING_SNAKE_CASE) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _A : List[Any] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A ( self : Any): _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = 3 _A : Optional[int] = 'multi_label_classification' _A : str = input_dict['input_ids'] _A : int = input_ids.ne(1).to(SCREAMING_SNAKE_CASE) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _A : Optional[int] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : str): _A : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt') _A : Dict = torch.tensor([[2, 4805, 9, 656, 21]]) _A : Optional[Any] = model(SCREAMING_SNAKE_CASE)[0] _A : Optional[Any] = 42384 _A : int = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE) _A : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def A ( self : Optional[int]): _A : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt') _A : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(SCREAMING_SNAKE_CASE) torch.manual_seed(0) _A : List[Any] = tokenizer('COVID-19 is' , return_tensors='pt').to(SCREAMING_SNAKE_CASE) _A : Optional[int] = model.generate( **SCREAMING_SNAKE_CASE , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE , ) _A : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
128
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCAmelCase : List[Any] = 16 __lowerCAmelCase : Any = 32 def a_ (_lowerCAmelCase : Optional[int] )-> str: return int(x / 2**20 ) class lowerCamelCase : def __enter__( self ) -> Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero snake_case: List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *__lowerCamelCase ) -> Tuple: '''simple docstring''' gc.collect() torch.cuda.empty_cache() snake_case: Union[str, Any] = torch.cuda.memory_allocated() snake_case: Union[str, Any] = torch.cuda.max_memory_allocated() snake_case: Any = bamb(self.end - self.begin ) snake_case: str = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a_ (_lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 , _lowerCAmelCase : str = "bert-base-cased" , _lowerCAmelCase : int = 320 , _lowerCAmelCase : int = 160 , )-> int: snake_case: Tuple = AutoTokenizer.from_pretrained(_lowerCAmelCase ) snake_case: List[str] = load_dataset( """glue""" , """mrpc""" , split={"""train""": F"train[:{n_train}]", """validation""": F"validation[:{n_val}]"} ) def tokenize_function(_lowerCAmelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case: List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case: List[str] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case: Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case: Tuple = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) snake_case: Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader def a_ (_lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] )-> Optional[Any]: # Initialize accelerator snake_case: List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case: List[str] = config["""lr"""] snake_case: Any = int(config["""num_epochs"""] ) snake_case: Any = int(config["""seed"""] ) snake_case: str = int(config["""batch_size"""] ) snake_case: Dict = args.model_name_or_path set_seed(_lowerCAmelCase ) snake_case: str = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case: str = AutoModelForSequenceClassification.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) # Instantiate optimizer snake_case: Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case: int = optimizer_cls(params=model.parameters() , lr=_lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: snake_case: List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case: List[str] = 1 snake_case: Optional[Any] = (len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case: int = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=0 , num_training_steps=_lowerCAmelCase , ) else: snake_case: int = DummyScheduler(_lowerCAmelCase , total_num_steps=_lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case: Optional[Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over snake_case: Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case: Optional[Any] = 0 # Now we train the model snake_case: Tuple = {} for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_lowerCAmelCase ): snake_case: int = model(**_lowerCAmelCase ) snake_case: Dict = outputs.loss snake_case: Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) snake_case: Union[str, Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ()-> Tuple: snake_case: int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_lowerCAmelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowerCAmelCase , ) parser.add_argument( """--output_dir""" , type=_lowerCAmelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=_lowerCAmelCase , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=_lowerCAmelCase , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=_lowerCAmelCase , default=1 , help="""Number of train epochs.""" , ) snake_case: Optional[int] = parser.parse_args() snake_case: Tuple = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
701
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __lowerCAmelCase : List[Any] = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __lowerCAmelCase : str = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def a_ (_lowerCAmelCase : Optional[Any] )-> Optional[int]: snake_case: Dict = (images / 2 + 0.5).clamp(0 , 1 ) snake_case: Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case: int = numpy_to_pil(_lowerCAmelCase ) return images def a_ (_lowerCAmelCase : Union[str, Any] )-> Dict: if images.ndim == 3: snake_case: List[Any] = images[None, ...] snake_case: str = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case: int = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: snake_case: Dict = [Image.fromarray(_lowerCAmelCase ) for image in images] return pil_images
164
0
import argparse import json from tqdm import tqdm def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=lowerCamelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=lowerCamelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=lowerCamelCase_ , help='where to store parsed gold_data_path file' , ) SCREAMING_SNAKE_CASE_ : List[str] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.load(lowerCamelCase_ ) for dpr_record in tqdm(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = dpr_record['question'] SCREAMING_SNAKE_CASE_ : List[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(lowerCamelCase_ ) + '\n' ) if __name__ == "__main__": main()
105
"""simple docstring""" def __snake_case ( __A : int , __A : int ) -> float: '''simple docstring''' return base * power(__A , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') A_ : str = int(input('Enter the base: ').strip()) A_ : Dict = int(input('Enter the exponent: ').strip()) A_ : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A_ : Any = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
265
0
from math import sqrt def snake_case (__lowercase ) -> int: '''simple docstring''' _snake_case : str = 0 for i in range(1 , int(sqrt(__lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowercase ): total += i + n // i elif i == sqrt(__lowercase ): total += i return total - n def snake_case (__lowercase = 10_000 ) -> int: '''simple docstring''' _snake_case : str = sum( i for i in range(1 , __lowercase ) if sum_of_divisors(sum_of_divisors(__lowercase ) ) == i and sum_of_divisors(__lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
714
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ): _snake_case : Any = parent _snake_case : int = out_indices if out_indices is not None else [4] _snake_case : Any = stage_names _snake_case : Optional[Any] = out_features _snake_case : Dict = backbone _snake_case : List[str] = batch_size _snake_case : Optional[int] = image_size _snake_case : str = num_channels _snake_case : Optional[Any] = use_pretrained_backbone _snake_case : str = is_training def UpperCamelCase ( self ): _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[str] = self.get_config() return config, pixel_values def UpperCamelCase ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Dict = TimmBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _snake_case : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCamelCase ( self ): _snake_case : Dict = self.prepare_config_and_inputs() _snake_case ,_snake_case : List[Any] = config_and_inputs _snake_case : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = (TimmBackbone,) if is_torch_available() else () _lowerCamelCase = {'feature-extraction': TimmBackbone} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase ( self ): _snake_case : Dict = TimmBackboneModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCamelCase ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): _snake_case : Dict = "resnet18" _snake_case : Tuple = "microsoft/resnet-18" _snake_case : Tuple = AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ ) _snake_case : List[str] = AutoBackbone.from_pretrained(lowercase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _snake_case : List[str] = AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3] ) _snake_case : Optional[int] = AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def UpperCamelCase ( self ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def UpperCamelCase ( self ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def UpperCamelCase ( self ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def UpperCamelCase ( self ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def UpperCamelCase ( self ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def UpperCamelCase ( self ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def UpperCamelCase ( self ): pass @unittest.skip("Safetensors is not supported by timm." ) def UpperCamelCase ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): _snake_case ,_snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = model_class(lowercase_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Union[str, Any] = [*signature.parameters.keys()] _snake_case : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase ( self ): _snake_case ,_snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = True _snake_case : Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality _snake_case : Dict = self.all_model_classes[0] _snake_case : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) _snake_case : List[str] = self._prepare_for_class(lowercase_ , lowercase_ ) _snake_case : List[Any] = model(**lowercase_ ) _snake_case : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models _snake_case : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _snake_case : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCamelCase ( self ): _snake_case ,_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : Any = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _snake_case : Union[str, Any] = copy.deepcopy(lowercase_ ) _snake_case : int = None _snake_case : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : int = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _snake_case : Dict = copy.deepcopy(lowercase_ ) _snake_case : Dict = False _snake_case : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : Any = model(**lowercase_ )
580
0
from random import randint, random def _SCREAMING_SNAKE_CASE ( a , a , a , a = False , a = False , a = 5 , ) -> list: __A : List[str] = [[-1] * number_of_cells] # Create a highway without any car __A : List[Any] = 0 __A : Optional[Any] = max(UpperCAmelCase__ , 0 ) while i < number_of_cells: __A : Union[str, Any] = ( randint(0 , UpperCAmelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _SCREAMING_SNAKE_CASE ( a , a ) -> int: __A : str = 0 __A : int = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase__ , -1 ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> list: __A : str = len(UpperCAmelCase__ ) # Beforce calculations, the highway is empty __A : Optional[Any] = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __A : List[str] = min(highway_now[car_index] + 1 , UpperCAmelCase__ ) # Number of empty cell before the next car __A : List[Any] = get_distance(UpperCAmelCase__ , UpperCAmelCase__ ) - 1 # We can't have the car causing an accident __A : str = min(next_highway[car_index] , UpperCAmelCase__ ) if random() < probability: # Randomly, a driver will slow down __A : Optional[int] = max(next_highway[car_index] - 1 , 0 ) return next_highway def _SCREAMING_SNAKE_CASE ( a , a , a , a ) -> list: __A : int = len(highway[0] ) for i in range(UpperCAmelCase__ ): __A : Optional[int] = update(highway[i] , UpperCAmelCase__ , UpperCAmelCase__ ) __A : Optional[Any] = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): __A : Optional[int] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __A : Optional[int] = (car_index + speed) % number_of_cells # Commit the change of position __A : int = speed highway.append(UpperCAmelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
239
import os import sys lowercase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : List[str] ) -> List[str]: return AutoConfig.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Any: return AutoTokenizer.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> Union[str, Any]: return AutoModel.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: return AutoModelForCausalLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> int: return AutoModelForMaskedLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Any , **UpperCAmelCase__ : List[str] ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
272
0
from __future__ import annotations import collections import pprint from pathlib import Path def _a ( lowerCamelCase__ ) -> str: return "".join(sorted(lowerCamelCase__ ) ) def _a ( lowerCamelCase__ ) -> list[str]: return word_by_signature[signature(lowerCamelCase__ )] UpperCamelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') UpperCamelCase = sorted({word.strip().lower() for word in data.splitlines()}) UpperCamelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": UpperCamelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
721
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( UpperCAmelCase ): def UpperCAmelCase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = SMALL_MODEL_IDENTIFIER lowerCamelCase_ : str = 'pt' lowerCamelCase_ : List[Any] = 'tf' def UpperCAmelCase_ (self : List[str] , _snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_snake_case ) def UpperCAmelCase_ (self : Union[str, Any] , _snake_case : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ : Optional[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=_snake_case ) model_tf.save_pretrained(_snake_case ) def UpperCAmelCase_ (self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ : List[Any] = 'mock_framework' # Framework provided - return whatever the user provides lowerCamelCase_ : str = FeaturesManager.determine_framework(self.test_model , _snake_case ) self.assertEqual(_snake_case , _snake_case ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_snake_case ) lowerCamelCase_ : Optional[Any] = FeaturesManager.determine_framework(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_snake_case ) lowerCamelCase_ : Optional[Any] = FeaturesManager.determine_framework(_snake_case , _snake_case ) self.assertEqual(_snake_case , _snake_case ) def UpperCAmelCase_ (self : Tuple ) -> int: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_snake_case ) lowerCamelCase_ : str = FeaturesManager.determine_framework(_snake_case ) self.assertEqual(_snake_case , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_snake_case ) lowerCamelCase_ : List[str] = FeaturesManager.determine_framework(_snake_case ) self.assertEqual(_snake_case , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_snake_case ): lowerCamelCase_ : int = FeaturesManager.determine_framework(_snake_case ) def UpperCAmelCase_ (self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ : Union[str, Any] = MagicMock(return_value=_snake_case ) with patch('transformers.onnx.features.is_tf_available' , _snake_case ): lowerCamelCase_ : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase_ : str = MagicMock(return_value=_snake_case ) with patch('transformers.onnx.features.is_torch_available' , _snake_case ): lowerCamelCase_ : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase_ : Optional[Any] = MagicMock(return_value=_snake_case ) lowerCamelCase_ : Optional[Any] = MagicMock(return_value=_snake_case ) with patch('transformers.onnx.features.is_tf_available' , _snake_case ), patch( 'transformers.onnx.features.is_torch_available' , _snake_case ): lowerCamelCase_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase_ : Union[str, Any] = MagicMock(return_value=_snake_case ) lowerCamelCase_ : Optional[int] = MagicMock(return_value=_snake_case ) with patch('transformers.onnx.features.is_tf_available' , _snake_case ), patch( 'transformers.onnx.features.is_torch_available' , _snake_case ): with self.assertRaises(_snake_case ): lowerCamelCase_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
144
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase ( ): """simple docstring""" __lowercase = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__lowerCamelCase ) __lowercase = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__lowerCamelCase ) env_command_parser(subparsers=__lowerCamelCase ) launch_command_parser(subparsers=__lowerCamelCase ) tpu_command_parser(subparsers=__lowerCamelCase ) test_command_parser(subparsers=__lowerCamelCase ) # Let's go __lowercase = parser.parse_args() if not hasattr(__lowerCamelCase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__lowerCamelCase ) if __name__ == "__main__": main()
534
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=0.999, __lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = i / num_diffusion_timesteps _SCREAMING_SNAKE_CASE : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ), __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase, dtype=torch.floataa ) class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' __snake_case = [e.name for e in KarrasDiffusionSchedulers] __snake_case = 2 @register_to_config def __init__( self , __lowerCamelCase = 1_0_0_0 , __lowerCamelCase = 0.0_0085 , __lowerCamelCase = 0.012 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "epsilon" , __lowerCamelCase = "linspace" , __lowerCamelCase = 0 , ) -> int: if trained_betas is not None: _SCREAMING_SNAKE_CASE : Dict = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _SCREAMING_SNAKE_CASE : List[str] = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _SCREAMING_SNAKE_CASE : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _SCREAMING_SNAKE_CASE : str = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _SCREAMING_SNAKE_CASE : int = 1.0 - self.betas _SCREAMING_SNAKE_CASE : str = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> Dict: if schedule_timesteps is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.timesteps _SCREAMING_SNAKE_CASE : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _SCREAMING_SNAKE_CASE : str = 1 if len(__lowerCamelCase ) > 1 else 0 else: _SCREAMING_SNAKE_CASE : Dict = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep _SCREAMING_SNAKE_CASE : Dict = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ ( self ) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , ) -> torch.FloatTensor: _SCREAMING_SNAKE_CASE : Tuple = self.index_for_timestep(__lowerCamelCase ) if self.state_in_first_order: _SCREAMING_SNAKE_CASE : List[str] = self.sigmas[step_index] else: _SCREAMING_SNAKE_CASE : List[Any] = self.sigmas_interpol[step_index] _SCREAMING_SNAKE_CASE : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = num_inference_steps _SCREAMING_SNAKE_CASE : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _SCREAMING_SNAKE_CASE : str = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": _SCREAMING_SNAKE_CASE : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _SCREAMING_SNAKE_CASE : Optional[Any] = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _SCREAMING_SNAKE_CASE : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _SCREAMING_SNAKE_CASE : Optional[Any] = (np.arange(__lowerCamelCase , 0 , -step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(np.log(__lowerCamelCase ) ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase ) ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) # interpolate sigmas _SCREAMING_SNAKE_CASE : str = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _SCREAMING_SNAKE_CASE : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _SCREAMING_SNAKE_CASE : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowerCamelCase ).startswith("mps" ): # mps does not support float64 _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase , dtype=torch.floataa ) else: _SCREAMING_SNAKE_CASE : str = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) # interpolate timesteps _SCREAMING_SNAKE_CASE : Optional[int] = self.sigma_to_t(__lowerCamelCase ).to(__lowerCamelCase , dtype=timesteps.dtype ) _SCREAMING_SNAKE_CASE : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _SCREAMING_SNAKE_CASE : int = torch.cat([timesteps[:1], interleaved_timesteps] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _SCREAMING_SNAKE_CASE : Dict = defaultdict(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: # get log sigma _SCREAMING_SNAKE_CASE : Optional[int] = sigma.log() # get distribution _SCREAMING_SNAKE_CASE : Union[str, Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range _SCREAMING_SNAKE_CASE : Any = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _SCREAMING_SNAKE_CASE : int = low_idx + 1 _SCREAMING_SNAKE_CASE : Optional[int] = self.log_sigmas[low_idx] _SCREAMING_SNAKE_CASE : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas _SCREAMING_SNAKE_CASE : List[str] = (low - log_sigma) / (low - high) _SCREAMING_SNAKE_CASE : Optional[Any] = w.clamp(0 , 1 ) # transform interpolation to time range _SCREAMING_SNAKE_CASE : List[str] = (1 - w) * low_idx + w * high_idx _SCREAMING_SNAKE_CASE : List[str] = t.view(sigma.shape ) return t @property def UpperCamelCase_ ( self ) -> List[Any]: return self.sample is None def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: _SCREAMING_SNAKE_CASE : int = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 _SCREAMING_SNAKE_CASE : int = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _SCREAMING_SNAKE_CASE : Tuple = self.sigmas[step_index] _SCREAMING_SNAKE_CASE : Any = self.sigmas_interpol[step_index + 1] _SCREAMING_SNAKE_CASE : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _SCREAMING_SNAKE_CASE : Any = self.sigmas[step_index - 1] _SCREAMING_SNAKE_CASE : Tuple = self.sigmas_interpol[step_index] _SCREAMING_SNAKE_CASE : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _SCREAMING_SNAKE_CASE : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol _SCREAMING_SNAKE_CASE : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _SCREAMING_SNAKE_CASE : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _SCREAMING_SNAKE_CASE : str = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _SCREAMING_SNAKE_CASE : int = sigma_interpol - sigma_hat # store for 2nd order step _SCREAMING_SNAKE_CASE : Optional[int] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _SCREAMING_SNAKE_CASE : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _SCREAMING_SNAKE_CASE : str = sigma_next - sigma_hat _SCREAMING_SNAKE_CASE : Any = self.sample _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _SCREAMING_SNAKE_CASE : Union[str, Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 _SCREAMING_SNAKE_CASE : Union[str, Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE : Dict = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _SCREAMING_SNAKE_CASE : List[str] = self.timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE : List[Any] = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase ) for t in timesteps] _SCREAMING_SNAKE_CASE : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _SCREAMING_SNAKE_CASE : Optional[Any] = sigma.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE : str = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
249
0
"""simple docstring""" from functools import lru_cache def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> set: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(SCREAMING_SNAKE_CASE ) if n > 1: factors.add(SCREAMING_SNAKE_CASE ) return factors @lru_cache def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return len(unique_prime_factors(SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) in (0, 1) def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" _UpperCAmelCase = 2 while True: # Increment each value of a generated range _UpperCAmelCase = [base + i for i in range(SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. _UpperCAmelCase = [upf_len(SCREAMING_SNAKE_CASE ) for x in group] checker.append(SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def __lowerCamelCase ( SCREAMING_SNAKE_CASE = 4 ) -> int: """simple docstring""" _UpperCAmelCase = run(SCREAMING_SNAKE_CASE ) return results[0] if len(SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
494
"""simple docstring""" import argparse import os import re lowerCAmelCase_ = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase_ = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings lowerCAmelCase_ = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE = False ) -> Optional[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE,'r',encoding='utf-8' ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = content.split('\n' ) _UpperCAmelCase = [] _UpperCAmelCase = 0 while line_idx < len(SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCAmelCase = len(re.search(R'^(\s*)\S',lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCAmelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCAmelCase = sorted(SCREAMING_SNAKE_CASE,key=lambda SCREAMING_SNAKE_CASE : _re_identifier.search(SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE,'w',encoding='utf-8' ) as f: f.write('\n'.join(SCREAMING_SNAKE_CASE ) ) elif "\n".join(SCREAMING_SNAKE_CASE ) != content: return True def __lowerCamelCase ( SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) for f in os.listdir(SCREAMING_SNAKE_CASE ) if f.endswith('.py' )] _UpperCAmelCase = [sort_auto_mapping(SCREAMING_SNAKE_CASE,overwrite=SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [f for f, d in zip(SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {", ".join(SCREAMING_SNAKE_CASE )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
494
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __A ( unittest.TestCase ): '''simple docstring''' a_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : Tuple = ZeroShotClassificationPipeline( model=_snake_case , tokenizer=_snake_case , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Any = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) # No kwarg _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) _lowerCAmelCase : int = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) _lowerCAmelCase : Optional[Any] = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( _snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) _lowerCAmelCase : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( _snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) _lowerCAmelCase : List[str] = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : List[Any] = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} for i in range(1 ) ] , ) _lowerCAmelCase : List[str] = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(_snake_case ): classifier("" , candidate_labels="politics" ) with self.assertRaises(_snake_case ): classifier(_snake_case , candidate_labels="politics" ) with self.assertRaises(_snake_case ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(_snake_case ): classifier("Who are you voting for in 2020?" , candidate_labels=_snake_case ) with self.assertRaises(_snake_case ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(_snake_case ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=_snake_case , ) self.run_entailment_id(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : str = zero_shot_classifier.model.config _lowerCAmelCase : Any = config.labelaid _lowerCAmelCase : str = zero_shot_classifier.entailment_id _lowerCAmelCase : List[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _lowerCAmelCase : Optional[Any] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCAmelCase : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCAmelCase : Dict = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(_snake_case , zero_shot_classifier.entailment_id ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @slow @require_torch def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Tuple = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) _lowerCAmelCase : Any = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , )
424
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case ) }
424
1
from __future__ import annotations def lowerCamelCase__ ( lowercase ): """simple docstring""" if not nums: return 0 SCREAMING_SNAKE_CASE : int = nums[0] SCREAMING_SNAKE_CASE : int = 0 for num in nums[1:]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = ( max_excluding + num, max(lowercase , lowercase ), ) return max(lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
717
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [0] * len(lowercase ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Any = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase ) ): if indegree[i] == 0: queue.append(lowercase ) while queue: SCREAMING_SNAKE_CASE : Optional[Any] = queue.pop(0 ) cnt += 1 topo.append(lowercase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowercase ) if cnt != len(lowercase ): print("Cycle exists" ) else: print(lowercase ) # Adjacency List of Graph snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
488
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class _a ( UpperCamelCase__ ): _lowercase : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''audio''': Audio()} ) _lowercase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _lowercase : str = "audio" _lowercase : str = "labels" def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple ) -> List[str]: """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCamelCase_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) lowercase__ = copy.deepcopy(self ) lowercase__ = self.label_schema.copy() lowercase__ = features[self.label_column] lowercase__ = label_schema return task_template @property def lowerCamelCase_ ( self: Tuple ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
43
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase ( __a ): _lowercase =42 _lowercase =42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
290
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json'} a_ = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } a_ = {'mgp-str': 2_7} class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase_ , UpperCamelCase_="[GO]" , UpperCamelCase_="[GO]" , UpperCamelCase_="[s]" , UpperCamelCase_="[GO]" , **UpperCamelCase_ ) -> Optional[Any]: super().__init__( unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: __lowercase : List[str] = json.load(UpperCamelCase_ ) __lowercase : int = {v: k for k, v in self.vocab.items()} @property def _lowerCamelCase ( self ) -> int: return len(self.vocab ) def _lowerCamelCase ( self ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Any = [] for s in text: char_tokens.extend(UpperCamelCase_ ) return char_tokens def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict: return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: return self.decoder.get(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCamelCase_ ) ) return __lowercase : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) return (vocab_file,)
523
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[str]: __lowercase : Union[str, Any] = 10 def _lowerCamelCase ( self ) -> str: __lowercase : List[str] = [1, 2, 3, 4] __lowercase : List[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowercase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> int: __lowercase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowercase : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : List[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __lowercase ,__lowercase : Optional[Any] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = '''''' __lowercase ,__lowercase : Any = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def _lowerCamelCase ( self ) -> Dict: __lowercase : List[str] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __lowercase ,__lowercase : int = process_story(UpperCamelCase_ ) __lowercase : Union[str, Any] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : List[str] = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : Union[str, Any] = torch.tensor([1, 2, 3, 4] ) __lowercase : Union[str, Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowercase : Any = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowercase : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def _lowerCamelCase ( self ) -> Dict: __lowercase : List[Any] = 1_01 __lowercase : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) __lowercase : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowercase : Optional[int] = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
523
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = BlenderbotSmallConfig lowercase_ = {} lowercase_ = "gelu" def __init__(self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : Tuple=0 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =parent lowerCamelCase__: Optional[int] =batch_size lowerCamelCase__: Tuple =seq_length lowerCamelCase__: Tuple =is_training lowerCamelCase__: Union[str, Any] =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: Optional[int] =hidden_size lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: Tuple =intermediate_size lowerCamelCase__: Optional[Any] =hidden_dropout_prob lowerCamelCase__: int =attention_probs_dropout_prob lowerCamelCase__: List[Any] =max_position_embeddings lowerCamelCase__: Tuple =eos_token_id lowerCamelCase__: Tuple =pad_token_id lowerCamelCase__: Optional[int] =bos_token_id def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) lowerCamelCase__: List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) lowerCamelCase__: List[Any] =tf.concat([input_ids, eos_tensor] , axis=1) lowerCamelCase__: str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: List[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__: Optional[Any] =prepare_blenderbot_small_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =TFBlenderbotSmallModel(config=UpperCAmelCase_).get_decoder() lowerCamelCase__: str =inputs_dict["input_ids"] lowerCamelCase__: Optional[int] =input_ids[:1, :] lowerCamelCase__: List[str] =inputs_dict["attention_mask"][:1, :] lowerCamelCase__: List[str] =inputs_dict["head_mask"] lowerCamelCase__: Tuple =1 # first forward pass lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: int =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Dict =ids_tensor((self.batch_size, 3) , config.vocab_size) lowerCamelCase__: Optional[int] =tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and lowerCamelCase__: List[str] =tf.concat([input_ids, next_tokens] , axis=-1) lowerCamelCase__: str =tf.concat([attention_mask, next_attn_mask] , axis=-1) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_)[0] lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice lowerCamelCase__: List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1])) lowerCamelCase__: Dict =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__: Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3) def lowerCAmelCase_ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> List[str]: """simple docstring""" if attention_mask is None: lowerCamelCase__: List[str] =tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__: Any =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__: str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: List[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowercase_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowercase_ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFBlenderbotSmallModelTester(self) lowerCamelCase__: Optional[int] =ConfigTester(self , config_class=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_) @require_tokenizers @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] lowercase_ = "facebook/blenderbot_small-90M" @cached_property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M") @cached_property def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer(self.src_text , return_tensors="tf") lowerCamelCase__: Optional[int] =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCAmelCase_)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
59
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __UpperCamelCase ( a : Optional[Any] , a : int , a : List[Any] , a : Union[str, Any]=1024 ) ->Tuple: snake_case , snake_case = [], [] snake_case = list(zip(a , a ) ) snake_case , snake_case = sorted_examples[0] def is_too_big(a : Tuple ): return tok(a , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case = new_src + ''' ''' + src snake_case = new_tgt + ''' ''' + tgt if is_too_big(a ) or is_too_big(a ): # cant fit, finalize example finished_src.append(a ) finished_tgt.append(a ) snake_case , snake_case = src, tgt else: # can fit, keep adding snake_case , snake_case = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a ) finished_tgt.append(a ) return finished_src, finished_tgt def __UpperCamelCase ( a : List[str] , a : Path , a : Union[str, Any] , a : Optional[int] ) ->Optional[Any]: snake_case = Path(a ) save_path.mkdir(exist_ok=a ) for split in ["train"]: snake_case , snake_case = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" snake_case = [x.rstrip() for x in Path(a ).open().readlines()] snake_case = [x.rstrip() for x in Path(a ).open().readlines()] snake_case , snake_case = pack_examples(a , a , a , a ) print(f"""packed {split} split from {len(a )} examples -> {len(a )}.""" ) Path(save_path / f"""{split}.source""" ).open('''w''' ).write('''\n'''.join(a ) ) Path(save_path / f"""{split}.target""" ).open('''w''' ).write('''\n'''.join(a ) ) for split in ["val", "test"]: snake_case , snake_case = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(a , save_path / f"""{split}.source""" ) shutil.copyfile(a , save_path / f"""{split}.target""" ) def __UpperCamelCase ( ) ->Any: snake_case = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=a , default=128 ) parser.add_argument('''--data_dir''' , type=a ) parser.add_argument('''--save_path''' , type=a ) snake_case = parser.parse_args() snake_case = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
44
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
44
1
def _a ( lowercase__ : int = 1_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = set() SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Any = n + 1 # maximum limit for a in range(2 , lowercase__ ): for b in range(2 , lowercase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = a**b # calculates the current power collect_powers.add(lowercase__ ) # adds the result to the set return len(lowercase__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
85
from __future__ import annotations def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> tuple[float, list[float]]: __snake_case = list(range(len(__snake_case ) ) ) __snake_case = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __snake_case = 0 __snake_case = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __snake_case = 1 max_value += value[i] capacity -= weight[i] else: __snake_case = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
524
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''YolosFeatureExtractor'''] __lowercase = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = None a__ : Tuple = None @property def UpperCamelCase__ ( self) -> Any: return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(__lowercase , '''feature_size''')) self.assertTrue(hasattr(__lowercase , '''sampling_rate''')) self.assertTrue(hasattr(__lowercase , '''padding_value''')) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :str = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Optional[Any] = feat_extract.model_input_names[0] __UpperCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(__lowercase) == len(__lowercase) for x, y in zip(__lowercase , processed_features[input_name]))) __UpperCamelCase :Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowercase) __UpperCamelCase :Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''') __UpperCamelCase :Any = processed_features[input_name] if len(batch_features_input.shape) < 3: __UpperCamelCase :Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowercase) __UpperCamelCase :Tuple = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :str = feat_extract.model_input_names[0] __UpperCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''') __UpperCamelCase :Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape) < 3: __UpperCamelCase :str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowercase) __UpperCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Union[str, Any] = feat_extract.model_input_names[0] __UpperCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''') __UpperCamelCase :int = processed_features[input_name] if len(batch_features_input.shape) < 3: __UpperCamelCase :List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCamelCase__ ( self , __lowercase=False) -> Dict: def _inputs_have_equal_length(__lowercase): __UpperCamelCase :List[str] = len(input[0]) for input_slice in input[1:]: if len(__lowercase) != length: return False return True def _inputs_are_equal(__lowercase , __lowercase): if len(__lowercase) != len(__lowercase): return False for input_slice_a, input_slice_a in zip(__lowercase , __lowercase): if not np.allclose(np.asarray(__lowercase) , np.asarray(__lowercase) , atol=1E-3): return False return True __UpperCamelCase :List[str] = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowercase) __UpperCamelCase :Any = feat_extract.model_input_names[0] __UpperCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :Optional[Any] = self.feat_extract_tester.seq_length_diff __UpperCamelCase :Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff __UpperCamelCase :Tuple = self.feat_extract_tester.min_seq_length __UpperCamelCase :Optional[int] = self.feat_extract_tester.batch_size __UpperCamelCase :Any = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __UpperCamelCase :List[Any] = feat_extract.pad(__lowercase , padding=__lowercase) __UpperCamelCase :Tuple = input_a[input_name] __UpperCamelCase :int = feat_extract.pad(__lowercase , padding='''longest''') __UpperCamelCase :int = input_a[input_name] __UpperCamelCase :Optional[Any] = feat_extract.pad(__lowercase , padding='''max_length''' , max_length=len(speech_inputs[-1])) __UpperCamelCase :Dict = input_a[input_name] __UpperCamelCase :List[Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''') __UpperCamelCase :Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''max_length''')[input_name] __UpperCamelCase :Any = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=__lowercase , return_tensors='''np''') __UpperCamelCase :Tuple = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_are_equal(__lowercase , __lowercase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy __UpperCamelCase :int = feat_extract.pad(__lowercase , pad_to_multiple_of=10) __UpperCamelCase :Tuple = input_a[input_name] __UpperCamelCase :Optional[int] = feat_extract.pad(__lowercase , padding='''longest''' , pad_to_multiple_of=10) __UpperCamelCase :Tuple = input_a[input_name] __UpperCamelCase :str = feat_extract.pad( __lowercase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__lowercase) __UpperCamelCase :Any = input_a[input_name] __UpperCamelCase :List[str] = feat_extract.pad( __lowercase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__lowercase , return_tensors='''np''' , ) __UpperCamelCase :List[str] = input_a[input_name] self.assertTrue(all(len(__lowercase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(__lowercase , __lowercase)) __UpperCamelCase :str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__lowercase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct __UpperCamelCase :Optional[Any] = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCamelCase__ ( self , __lowercase=False) -> Dict: def _inputs_have_equal_length(__lowercase): __UpperCamelCase :Dict = len(input[0]) for input_slice in input[1:]: if len(__lowercase) != length: return False return True def _inputs_are_equal(__lowercase , __lowercase): if len(__lowercase) != len(__lowercase): return False for input_slice_a, input_slice_a in zip(__lowercase , __lowercase): if not np.allclose(np.asarray(__lowercase) , np.asarray(__lowercase) , atol=1E-3): return False return True __UpperCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowercase) __UpperCamelCase :Tuple = feat_extract.model_input_names[0] __UpperCamelCase :Dict = BatchFeature({input_name: speech_inputs}) # truncate to smallest __UpperCamelCase :List[Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , truncation=__lowercase) __UpperCamelCase :str = input_a[input_name] __UpperCamelCase :Optional[int] = feat_extract.pad(__lowercase , padding='''max_length''' , max_length=len(speech_inputs[0])) __UpperCamelCase :List[str] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertFalse(_inputs_have_equal_length(__lowercase)) # truncate to smallest with np __UpperCamelCase :Union[str, Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''' , truncation=__lowercase , ) __UpperCamelCase :List[Any] = input_a[input_name] __UpperCamelCase :int = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''') __UpperCamelCase :Optional[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowercase)) # truncate to middle __UpperCamelCase :Optional[Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__lowercase , return_tensors='''np''' , ) __UpperCamelCase :Dict = input_a[input_name] __UpperCamelCase :str = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__lowercase) __UpperCamelCase :Union[str, Any] = input_a[input_name] __UpperCamelCase :Optional[Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[1]) , return_tensors='''np''') __UpperCamelCase :Union[str, Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_are_equal(__lowercase , __lowercase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowercase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , truncation=__lowercase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''longest''' , truncation=__lowercase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''longest''' , truncation=__lowercase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''max_length''' , truncation=__lowercase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __UpperCamelCase :Dict = 12 __UpperCamelCase :str = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__lowercase , truncation=__lowercase , ) __UpperCamelCase :List[Any] = input_a[input_name] __UpperCamelCase :Tuple = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__lowercase , ) __UpperCamelCase :Any = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __UpperCamelCase :Optional[Any] = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: __UpperCamelCase :Dict = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertFalse(_inputs_have_equal_length(__lowercase)) def UpperCamelCase__ ( self) -> Any: self._check_padding(numpify=__lowercase) def UpperCamelCase__ ( self) -> Dict: self._check_padding(numpify=__lowercase) def UpperCamelCase__ ( self) -> Any: self._check_truncation(numpify=__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: self._check_truncation(numpify=__lowercase) @require_torch def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :str = feat_extract.model_input_names[0] __UpperCamelCase :int = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :List[str] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''')[input_name] __UpperCamelCase :List[Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''pt''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Any = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :Any = feat_extract.model_input_names[0] __UpperCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :str = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''')[input_name] __UpperCamelCase :Optional[Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''tf''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :List[Any] = self.feat_extract_dict __UpperCamelCase :Dict = True __UpperCamelCase :Dict = self.feature_extraction_class(**__lowercase) __UpperCamelCase :List[Any] = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :Any = [len(__lowercase) for x in speech_inputs] __UpperCamelCase :int = feat_extract.model_input_names[0] __UpperCamelCase :Optional[int] = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :Union[str, Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''') self.assertIn('''attention_mask''' , __lowercase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[int] = self.feat_extract_dict __UpperCamelCase :Optional[int] = True __UpperCamelCase :Dict = self.feature_extraction_class(**__lowercase) __UpperCamelCase :List[str] = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :List[Any] = [len(__lowercase) for x in speech_inputs] __UpperCamelCase :List[Any] = feat_extract.model_input_names[0] __UpperCamelCase :int = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :Dict = min(__lowercase) __UpperCamelCase :Union[str, Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=__lowercase , truncation=__lowercase , return_tensors='''np''') self.assertIn('''attention_mask''' , __lowercase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
452
1
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' return str(A ) == str(A )[::-1] def lowerCamelCase__ ( A : int ): '''simple docstring''' return int(A ) + int(str(A )[::-1] ) def lowerCamelCase__ ( A : int = 1_00_00 ): '''simple docstring''' UpperCAmelCase = [] for num in range(1 , A ): UpperCAmelCase = 0 UpperCAmelCase = num while iterations < 50: UpperCAmelCase = sum_reverse(A ) iterations += 1 if is_palindrome(A ): break else: lychrel_nums.append(A ) return len(A ) if __name__ == "__main__": print(F"""{solution() = }""")
210
'''simple docstring''' from string import ascii_uppercase _lowercase : Dict = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' if isinstance(A , A ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(A , A ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(A , A ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) UpperCAmelCase = '''''' UpperCAmelCase = 0 UpperCAmelCase = 0 while div != 1: UpperCAmelCase , UpperCAmelCase = divmod(A , A ) if base >= 11 and 9 < mod < 36: UpperCAmelCase = ALPHABET_VALUES[str(A )] else: UpperCAmelCase = str(A ) new_value += actual_value UpperCAmelCase = num // base UpperCAmelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(A ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
210
1
import colorsys from PIL import Image # type: ignore def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : int = x lowerCamelCase_ : Dict = y for step in range(lowerCAmelCase_): # noqa: B007 lowerCamelCase_ : Union[str, Any] = a * a - b * b + x lowerCamelCase_ : List[str] = 2 * a * b + y lowerCamelCase_ : Union[str, Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(lowerCAmelCase_ , 1 , 1)) def __magic_name__ ( lowerCAmelCase_ = 800 , lowerCAmelCase_ = 600 , lowerCAmelCase_ = -0.6 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 3.2 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = True , ): '''simple docstring''' lowerCamelCase_ : Tuple = Image.new("RGB" , (image_width, image_height)) lowerCamelCase_ : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase_): for image_y in range(lowerCAmelCase_): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ : List[str] = figure_width / image_width * image_height lowerCamelCase_ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ : Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ : Any = get_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ : Optional[int] = get_color_coded_rgb(lowerCAmelCase_) else: lowerCamelCase_ : Union[str, Any] = get_black_and_white_rgb(lowerCAmelCase_) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __magic_name__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
73
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowerCamelCase, __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = StableDiffusionDiffEditPipeline __UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} __UpperCAmelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : List[str] = frozenset([] ) def _UpperCamelCase ( self ): torch.manual_seed(0 ) lowerCamelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) lowerCamelCase_ : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) lowerCamelCase_ : Dict = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_zero=a_ , ) torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase_ : Optional[Any] = CLIPTextModel(a_ ) lowerCamelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ : Optional[Any] = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _UpperCamelCase ( self , a_ , a_=0 ): lowerCamelCase_ : str = floats_tensor((1, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : List[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : List[Any] = torch.manual_seed(a_ ) else: lowerCamelCase_ : List[str] = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : Tuple = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _UpperCamelCase ( self , a_ , a_=0 ): lowerCamelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Any = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : Tuple = torch.manual_seed(a_ ) else: lowerCamelCase_ : List[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : int = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _UpperCamelCase ( self , a_ , a_=0 ): lowerCamelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Optional[int] = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : Optional[int] = torch.manual_seed(a_ ) else: lowerCamelCase_ : Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : Union[str, Any] = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def _UpperCamelCase ( self ): if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : int = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a_ , a_ , a_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCamelCase_ : int = self.get_dummy_inputs(a_ ) lowerCamelCase_ : int = pipe(**a_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a_ ) lowerCamelCase_ : Optional[int] = self.pipeline_class.from_pretrained(a_ ) pipe_loaded.to(a_ ) pipe_loaded.set_progress_bar_config(disable=a_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(a_ , a_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCamelCase_ : List[str] = self.get_dummy_inputs(a_ ) lowerCamelCase_ : Optional[int] = pipe_loaded(**a_ )[0] lowerCamelCase_ : Optional[int] = np.abs(output - output_loaded ).max() self.assertLess(a_ , 1E-4 ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = "cpu" lowerCamelCase_ : int = self.get_dummy_components() lowerCamelCase_ : List[Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Any = self.get_dummy_mask_inputs(a_ ) lowerCamelCase_ : int = pipe.generate_mask(**a_ ) lowerCamelCase_ : List[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCamelCase_ : List[str] = np.array([0] * 9 ) lowerCamelCase_ : Optional[int] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = "cpu" lowerCamelCase_ : Union[str, Any] = self.get_dummy_components() lowerCamelCase_ : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Dict = self.get_dummy_inversion_inputs(a_ ) lowerCamelCase_ : Dict = pipe.invert(**a_ ).images lowerCamelCase_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase_ : Dict = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) lowerCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) def _UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = "cpu" lowerCamelCase_ : int = self.get_dummy_components() lowerCamelCase_ : int = {"beta_start": 0.0_00_85, "beta_end": 0.0_12, "beta_schedule": "scaled_linear"} lowerCamelCase_ : Optional[Any] = DPMSolverMultistepScheduler(**a_ ) lowerCamelCase_ : List[str] = DPMSolverMultistepInverseScheduler(**a_ ) lowerCamelCase_ : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : int = self.get_dummy_inversion_inputs(a_ ) lowerCamelCase_ : str = pipe.invert(**a_ ).images lowerCamelCase_ : int = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase_ : Union[str, Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) lowerCamelCase_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _UpperCamelCase ( cls ): lowerCamelCase_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCamelCase_ : int = raw_image.convert("RGB" ).resize((768, 768) ) lowerCamelCase_ : List[Any] = raw_image def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = torch.manual_seed(0 ) lowerCamelCase_ : Tuple = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a_ , torch_dtype=torch.floataa ) lowerCamelCase_ : str = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_ : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : str = "a bowl of fruit" lowerCamelCase_ : Optional[int] = "a bowl of pears" lowerCamelCase_ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=a_ , target_prompt=a_ , generator=a_ , ) lowerCamelCase_ : str = pipe.invert( prompt=a_ , image=self.raw_image , inpaint_strength=0.7 , generator=a_ ).latents lowerCamelCase_ : List[str] = pipe( prompt=a_ , mask_image=a_ , image_latents=a_ , generator=a_ , negative_prompt=a_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCamelCase_ : List[str] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a_ , torch_dtype=torch.floataa ) lowerCamelCase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_ : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Any = "a bowl of fruit" lowerCamelCase_ : Dict = "a bowl of pears" lowerCamelCase_ : Optional[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=a_ , target_prompt=a_ , generator=a_ , ) lowerCamelCase_ : str = pipe.invert( prompt=a_ , image=self.raw_image , inpaint_strength=0.7 , generator=a_ , num_inference_steps=25 , ).latents lowerCamelCase_ : Any = pipe( prompt=a_ , mask_image=a_ , image_latents=a_ , generator=a_ , negative_prompt=a_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCamelCase_ : List[str] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
73
1
"""simple docstring""" def __magic_name__ ( _lowerCamelCase: Optional[int], _lowerCamelCase: str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = len(_lowerCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_lowerCamelCase ): return None lowerCAmelCase = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCAmelCase = left lowerCAmelCase = point elif point > right: lowerCAmelCase = right lowerCAmelCase = point else: if item < current_item: lowerCAmelCase = point - 1 else: lowerCAmelCase = point + 1 return None def __magic_name__ ( _lowerCamelCase: int, _lowerCamelCase: Any, _lowerCamelCase: Optional[Any], _lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_lowerCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) elif point > right: return interpolation_search_by_recursion(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, point - 1 ) else: return interpolation_search_by_recursion( _lowerCamelCase, _lowerCamelCase, point + 1, _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase: Dict ) -> int: '''simple docstring''' if collection != sorted(_lowerCamelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys UpperCAmelCase = 0 if debug == 1: UpperCAmelCase = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") UpperCAmelCase = 6_7 UpperCAmelCase = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("""Not found""")
535
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
535
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a__ ( __SCREAMING_SNAKE_CASE ): _A = (EulerDiscreteScheduler,) _A = 10 def lowerCAmelCase ( self : Optional[Any] , **A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Tuple = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**A_ ) return config def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Optional[int] = self.get_scheduler_config() lowerCamelCase_: Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_: Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_: Optional[Any] = self.dummy_model() lowerCamelCase_: List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_: Optional[int] = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: Dict = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: Tuple = model(A_ , A_ ) lowerCamelCase_: int = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: Union[str, Any] = output.prev_sample lowerCamelCase_: int = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Optional[int] = self.scheduler_classes[0] lowerCamelCase_: Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase_: Any = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_: Any = torch.manual_seed(0 ) lowerCamelCase_: Dict = self.dummy_model() lowerCamelCase_: Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_: Any = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: int = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: Optional[Any] = model(A_ , A_ ) lowerCamelCase_: List[str] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: str = output.prev_sample lowerCamelCase_: int = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Optional[Any] = self.get_scheduler_config() lowerCamelCase_: int = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_: Dict = torch.manual_seed(0 ) lowerCamelCase_: Union[str, Any] = self.dummy_model() lowerCamelCase_: str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_: str = sample.to(A_ ) for t in scheduler.timesteps: lowerCamelCase_: str = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: str = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: int = output.prev_sample lowerCamelCase_: List[Any] = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Dict = self.get_scheduler_config() lowerCamelCase_: int = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_: List[str] = torch.manual_seed(0 ) lowerCamelCase_: Union[str, Any] = self.dummy_model() lowerCamelCase_: Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_: List[str] = sample.to(A_ ) for t in scheduler.timesteps: lowerCamelCase_: int = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: int = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: List[Any] = output.prev_sample lowerCamelCase_: Optional[int] = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
584
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase_ ( _UpperCAmelCase = 1_0_0_0_0_0_0 , _UpperCAmelCase = 1_0 ): lowerCamelCase_: defaultdict = defaultdict(_UpperCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase_: Dict = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase_: List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F"{solution() = }")
584
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableUnCLIPImgaImgPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase = frozenset([] ) def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = 32 UpperCAmelCase_ = embedder_hidden_size # image encoding components UpperCAmelCase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase_ = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase ) UpperCAmelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : int=True ) -> str: '''simple docstring''' if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if pil_image: UpperCAmelCase_ = input_image * 0.5 + 0.5 UpperCAmelCase_ = input_image.clamp(0 , 1 ) UpperCAmelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = DiffusionPipeline.numpy_to_pil(_UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline(**_UpperCAmelCase ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) inputs.update({"image_embeds": None} ) UpperCAmelCase_ = sd_pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_UpperCAmelCase ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(_UpperCAmelCase , "anime turle" , generator=_UpperCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(_UpperCAmelCase , "anime turle" , generator=_UpperCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = pipe( _UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
82
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __SCREAMING_SNAKE_CASE : str = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __SCREAMING_SNAKE_CASE : List[Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def a_ ( UpperCamelCase_ , UpperCamelCase_ ): with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: A_ = json.loads(f.read() ) A_ = collections.OrderedDict() A_ = collections.OrderedDict() A_ = collections.OrderedDict() with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: A_ = f.readlines() A_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(UpperCamelCase_ ): A_ = b A_ = idx for wd in b: A_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowerCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase : str =VOCAB_FILES_NAMES _UpperCAmelCase : str =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] =["input_ids", "attention_mask"] def __init__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]="<|endoftext|>" , lowerCAmelCase : Optional[int]="<|endoftext|>" , lowerCAmelCase : Tuple="<|startoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : List[Any]=False , **lowerCAmelCase : Optional[Any] , ): super().__init__( unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , do_clean_text=lowerCAmelCase , **lowerCAmelCase , ) if not os.path.isfile(lowerCAmelCase ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(lowerCAmelCase ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) A_ = do_clean_text A_ , A_ , A_ , A_ = load_vocab_and_emoji(lowerCAmelCase , lowerCAmelCase ) A_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _UpperCAmelCase ( self : str ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _UpperCAmelCase ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple ): return self.subword_tokenizer.tokenize(lowerCAmelCase , clean=self.do_clean_text ) def _UpperCAmelCase ( self : str , lowerCAmelCase : int ): return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token ) ) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[str] ): return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[Any] ): A_ = "".join(lowerCAmelCase ).strip() return out_string def _UpperCAmelCase ( self : Any , lowerCAmelCase : "Conversation" ): A_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: A_ = input_ids[-self.model_max_length :] return input_ids def _UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): A_ = 0 if os.path.isdir(lowerCAmelCase ): A_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: A_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) A_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) A_ = token_index writer.write(",".join(lowerCAmelCase ) + "\n" ) index += 1 with open(lowerCAmelCase , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , lowerCAmelCase ) return vocab_file, emoji_file class __lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): A_ = vocab # same as swe A_ = ids_to_tokens # same as bpe A_ = emoji A_ = np.max([len(lowerCAmelCase ) for w in self.vocab.keys()] ) A_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) A_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) A_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) A_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) A_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) A_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) A_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" A_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" A_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Union[str, Any] ): return len(self.ids_to_tokens ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase : int ): A_ = self.content_repattera.sub("<URL>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<EMAIL>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<TEL>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<DATE>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<DATE>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<PRICE>" , lowerCAmelCase ) A_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _UpperCAmelCase ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple=False ): A_ = text.replace(" " , "<SP>" ) A_ = text.replace(" " , "<SP>" ) A_ = text.replace("\r\n" , "<BR>" ) A_ = text.replace("\n" , "<BR>" ) A_ = text.replace("\r" , "<BR>" ) A_ = text.replace("\t" , "<TAB>" ) A_ = text.replace("—" , "ー" ) A_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: A_ = text.replace(lowerCAmelCase , lowerCAmelCase ) if clean: A_ = self.clean_text(lowerCAmelCase ) def check_simbol(lowerCAmelCase : Tuple ): A_ = x.encode() if len(lowerCAmelCase ) == 1 and len(lowerCAmelCase ) == 2: A_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checkuae(lowerCAmelCase : Tuple ): A_ = x.encode() if len(lowerCAmelCase ) == 1 and len(lowerCAmelCase ) == 3: A_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_8080 and c <= 0xE2_B07F: return True return False A_ = 0 A_ = [] while pos < len(lowerCAmelCase ): A_ = min(len(lowerCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 A_ = [] # (token_id, token, pos) for e in range(lowerCAmelCase , lowerCAmelCase , -1 ): A_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase ) > 2: A_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase ) > 0: # the smallest token_id is adopted A_ , A_ , A_ = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[0] )[0] result.append(lowerCAmelCase ) A_ = e else: A_ = pos + 1 A_ = text[pos:end] if check_simbol(lowerCAmelCase ): result.append("<KIGOU>" ) elif checkuae(lowerCAmelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) A_ = end return result def _UpperCAmelCase ( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any]="\n" ): A_ = [] A_ = [] A_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase ) > 0: words.append(bytearray(lowerCAmelCase ).decode("utf-8" , errors="replace" ) ) A_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(lowerCAmelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: words.append(bytearray(lowerCAmelCase ).decode("utf-8" , errors="replace" ) ) A_ = "".join(lowerCAmelCase ) return text
452
0
class lowerCamelCase : def __init__( self , lowercase__ = "" , lowercase__ = False): __UpperCAmelCase : Tuple = {} # A node will be a leaf if the tree contains its word __UpperCAmelCase : str = is_leaf __UpperCAmelCase : Optional[int] = prefix def A( self , lowercase__): __UpperCAmelCase : Optional[int] = 0 for q, w in zip(self.prefix , lowercase__): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A( self , lowercase__): for word in words: self.insert(lowercase__) def A( self , lowercase__): if self.prefix == word: __UpperCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __UpperCAmelCase : List[Any] = RadixNode(prefix=lowercase__ , is_leaf=lowercase__) else: __UpperCAmelCase : int = self.nodes[word[0]] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = incoming_node.match( lowercase__) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowercase__) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __UpperCAmelCase : List[Any] = remaining_prefix __UpperCAmelCase : Union[str, Any] = self.nodes[matching_string[0]] __UpperCAmelCase : int = RadixNode(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = aux_node if remaining_word == "": __UpperCAmelCase : str = True else: self.nodes[matching_string[0]].insert(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Tuple = self.nodes.get(word[0] , lowercase__) if not incoming_node: return False else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = incoming_node.match( lowercase__) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowercase__) def A( self , lowercase__): __UpperCAmelCase : str = self.nodes.get(word[0] , lowercase__) if not incoming_node: return False else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = incoming_node.match( lowercase__) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowercase__) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: __UpperCAmelCase : List[Any] = list(self.nodes.values())[0] __UpperCAmelCase : int = merging_node.is_leaf self.prefix += merging_node.prefix __UpperCAmelCase : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: __UpperCAmelCase : Optional[Any] = False # If there is 1 edge, we merge it with its child else: __UpperCAmelCase : List[str] = list(incoming_node.nodes.values())[0] __UpperCAmelCase : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __UpperCAmelCase : Any = merging_node.nodes return True def A( self , lowercase__ = 0): if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''') for value in self.nodes.values(): value.print_tree(height + 1) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = '''banana bananas bandana band apple all beast'''.split() __UpperCAmelCase : Union[str, Any] = RadixNode() root.insert_many(lowercase_ ) assert all(root.find(lowercase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' assert test_trie() def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = RadixNode() __UpperCAmelCase : List[str] = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowercase_ ) print('''Words:''' , lowercase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
'''simple docstring''' from __future__ import annotations import math __UpperCAmelCase = "2020.9.26" __UpperCAmelCase = "xcodz-dot, cclaus, dhruvmanila" def lowerCAmelCase_ ( __A : int , __A : str , __A : Union[str, Any] , __A : Any , __A : Dict ): '''simple docstring''' if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in locals().values() ): snake_case: Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(SCREAMING_SNAKE_CASE_ ) snake_case: int = ((x * distance) / (z + distance)) * scale snake_case: Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCAmelCase_ ( __A : str , __A : List[Any] , __A : Tuple , __A : Tuple , __A : Union[str, Any] ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Axis must be a str' ) snake_case: Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in input_variables.values() ): snake_case: Optional[Any] = ( 'Input values except axis must either be float or int: ' f"""{list(input_variables.values() )}""" ) raise TypeError(SCREAMING_SNAKE_CASE_ ) snake_case: List[Any] = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": snake_case: int = x * math.cos(SCREAMING_SNAKE_CASE_ ) - y * math.sin(SCREAMING_SNAKE_CASE_ ) snake_case: List[Any] = y * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ ) snake_case: Any = z elif axis == "x": snake_case: Optional[Any] = y * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ ) snake_case: Optional[Any] = z * math.cos(SCREAMING_SNAKE_CASE_ ) + y * math.sin(SCREAMING_SNAKE_CASE_ ) snake_case: str = x elif axis == "y": snake_case: Dict = x * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ ) snake_case: Optional[Any] = z * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ ) snake_case: List[Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(F'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
329
'''simple docstring''' import requests __snake_case = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def A_ ( SCREAMING_SNAKE_CASE_ ) ->None: # fetching a list of articles in json format lowercase_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
451
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "AutoImageProcessor" _a = "AutoTokenizer" def __init__( self , _a , _a ) -> Dict: super().__init__(_a , _a ) _A : Tuple = self.image_processor def __call__( self , _a=None , _a=None , _a=None , **_a ) -> List[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _A : Dict = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: _A : Union[str, Any] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[int]: return ["input_ids", "attention_mask", "pixel_values"]
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _UpperCamelCase (_lowerCamelCase : Any )-> Any: '''simple docstring''' __snake_case = tmp_path / '''file.csv''' __snake_case = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(_lowerCamelCase , '''w''' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = tmp_path / '''malformed_file.csv''' __snake_case = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(_lowerCamelCase , '''w''' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple )-> List[str]: '''simple docstring''' __snake_case = tmp_path / '''csv_with_image.csv''' __snake_case = textwrap.dedent( f'''\ image {image_file} ''' ) with open(_lowerCamelCase , '''w''' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def _UpperCamelCase (_lowerCamelCase : Any )-> Tuple: '''simple docstring''' __snake_case = tmp_path / '''csv_with_label.csv''' __snake_case = textwrap.dedent( '''\ label good bad good ''' ) with open(_lowerCamelCase , '''w''' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) @pytest.fixture def _UpperCamelCase (_lowerCamelCase : Any )-> Union[str, Any]: '''simple docstring''' __snake_case = tmp_path / '''csv_with_int_list.csv''' __snake_case = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(_lowerCamelCase , '''w''' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any )-> Union[str, Any]: '''simple docstring''' __snake_case = Csv() __snake_case = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCamelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(_lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def _UpperCamelCase (_lowerCamelCase : Dict )-> Optional[Any]: '''simple docstring''' with open(_lowerCamelCase , encoding='''utf-8''' ) as f: __snake_case = f.read().splitlines()[1] __snake_case = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) __snake_case = csv._generate_tables([[csv_file_with_image]] ) __snake_case = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() __snake_case = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _UpperCamelCase (_lowerCamelCase : Any )-> int: '''simple docstring''' with open(_lowerCamelCase , encoding='''utf-8''' ) as f: __snake_case = f.read().splitlines()[1:] __snake_case = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) __snake_case = csv._generate_tables([[csv_file_with_label]] ) __snake_case = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() __snake_case = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(_lowerCamelCase ) for label in labels] def _UpperCamelCase (_lowerCamelCase : Tuple )-> Any: '''simple docstring''' __snake_case = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda _lowerCamelCase : [int(_lowerCamelCase ) for i in x.split()]} ) __snake_case = csv._generate_tables([[csv_file_with_int_list]] ) __snake_case = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) __snake_case = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
24
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
UpperCamelCase = 9.8_0665 def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
144
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: lowerCamelCase_ : int = b.T lowerCamelCase_ : Tuple = np.sum(np.square(lowerCamelCase__ ) , axis=1 ) lowerCamelCase_ : int = np.sum(np.square(lowerCamelCase__ ) , axis=0 ) lowerCamelCase_ : Optional[Any] = np.matmul(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Tuple = aa[:, None] - 2 * ab + ba[None, :] return d def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: lowerCamelCase_ : Any = x.reshape(-1 , 3 ) lowerCamelCase_ : List[Any] = squared_euclidean_distance(lowerCamelCase__ , lowerCamelCase__ ) return np.argmin(lowerCamelCase__ , axis=1 ) class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : int = ['pixel_values'] def __init__(self : Tuple , _snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : bool = True , **_snake_case : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**_snake_case ) lowerCamelCase_ : Union[str, Any] = size if size is not None else {'height': 256, 'width': 256} lowerCamelCase_ : Union[str, Any] = get_size_dict(_snake_case ) lowerCamelCase_ : int = np.array(_snake_case ) if clusters is not None else None lowerCamelCase_ : Dict = do_resize lowerCamelCase_ : str = size lowerCamelCase_ : str = resample lowerCamelCase_ : Any = do_normalize lowerCamelCase_ : Any = do_color_quantize def UpperCAmelCase_ (self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : List[Any] , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : Union[str, Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( _snake_case , size=(size['height'], size['width']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Optional[Any] , _snake_case : np.ndarray , _snake_case : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : List[str] = rescale(image=_snake_case , scale=1 / 127.5 , data_format=_snake_case ) lowerCamelCase_ : int = image - 1 return image def UpperCAmelCase_ (self : Dict , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **_snake_case : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowerCamelCase_ : Dict = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : Optional[int] = size if size is not None else self.size lowerCamelCase_ : Any = get_size_dict(_snake_case ) lowerCamelCase_ : str = resample if resample is not None else self.resample lowerCamelCase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowerCamelCase_ : List[Any] = clusters if clusters is not None else self.clusters lowerCamelCase_ : Tuple = np.array(_snake_case ) lowerCamelCase_ : Optional[Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ : Optional[int] = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowerCamelCase_ : int = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_normalize: lowerCamelCase_ : List[Any] = [self.normalize(image=_snake_case ) for image in images] if do_color_quantize: lowerCamelCase_ : str = [to_channel_dimension_format(_snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowerCamelCase_ : Optional[int] = np.array(_snake_case ) lowerCamelCase_ : Any = color_quantize(_snake_case , _snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowerCamelCase_ : Optional[Any] = images.shape[0] lowerCamelCase_ : int = images.reshape(_snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowerCamelCase_ : Optional[int] = list(_snake_case ) else: lowerCamelCase_ : str = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCamelCase_ : int = {'input_ids': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
144
1
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[str]) -> List[str]: '''simple docstring''' _lowercase : int = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowercase : Tuple = 1_28 elif "12-12" in model_name: _lowercase : int = 12 _lowercase : Optional[Any] = 12 elif "14-14" in model_name: _lowercase : Union[str, Any] = 14 _lowercase : List[Any] = 14 elif "16-16" in model_name: _lowercase : int = 16 _lowercase : str = 16 else: raise ValueError('Model not supported') _lowercase : List[str] = 'huggingface/label-files' if "speech-commands" in model_name: _lowercase : Tuple = 35 _lowercase : List[str] = 'speech-commands-v2-id2label.json' else: _lowercase : Optional[Any] = 5_27 _lowercase : Dict = 'audioset-id2label.json' _lowercase : Any = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset') , 'r')) _lowercase : Optional[int] = {int(lowerCAmelCase__): v for k, v in idalabel.items()} _lowercase : Any = idalabel _lowercase : int = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any) -> Any: '''simple docstring''' if "module.v" in name: _lowercase : Dict = name.replace('module.v' , 'audio_spectrogram_transformer') if "cls_token" in name: _lowercase : Union[str, Any] = name.replace('cls_token' , 'embeddings.cls_token') if "dist_token" in name: _lowercase : str = name.replace('dist_token' , 'embeddings.distillation_token') if "pos_embed" in name: _lowercase : Optional[Any] = name.replace('pos_embed' , 'embeddings.position_embeddings') if "patch_embed.proj" in name: _lowercase : Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection') # transformer blocks if "blocks" in name: _lowercase : Optional[int] = name.replace('blocks' , 'encoder.layer') if "attn.proj" in name: _lowercase : Optional[int] = name.replace('attn.proj' , 'attention.output.dense') if "attn" in name: _lowercase : str = name.replace('attn' , 'attention.self') if "norm1" in name: _lowercase : str = name.replace('norm1' , 'layernorm_before') if "norm2" in name: _lowercase : int = name.replace('norm2' , 'layernorm_after') if "mlp.fc1" in name: _lowercase : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: _lowercase : Optional[Any] = name.replace('mlp.fc2' , 'output.dense') # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowercase : Union[str, Any] = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm') # classifier head if "module.mlp_head.0" in name: _lowercase : Optional[int] = name.replace('module.mlp_head.0' , 'classifier.layernorm') if "module.mlp_head.1" in name: _lowercase : Tuple = name.replace('module.mlp_head.1' , 'classifier.dense') return name def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowercase : List[Any] = orig_state_dict.pop(lowerCAmelCase__) if "qkv" in key: _lowercase : Union[str, Any] = key.split('.') _lowercase : int = int(key_split[3]) _lowercase : Union[str, Any] = config.hidden_size if "weight" in key: _lowercase : str = val[:dim, :] _lowercase : Optional[Any] = val[dim : dim * 2, :] _lowercase : List[str] = val[-dim:, :] else: _lowercase : List[Any] = val[:dim] _lowercase : str = val[dim : dim * 2] _lowercase : Tuple = val[-dim:] else: _lowercase : List[str] = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int) -> Optional[Any]: '''simple docstring''' _lowercase : str = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__) @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]=False) -> List[str]: '''simple docstring''' _lowercase : int = get_audio_spectrogram_transformer_config(lowerCAmelCase__) _lowercase : Any = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict _lowercase : Union[str, Any] = model_name_to_url[model_name] _lowercase : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu') # remove some keys remove_keys(lowerCAmelCase__) # rename some keys _lowercase : Any = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__) # load 🤗 model _lowercase : Union[str, Any] = ASTForAudioClassification(lowerCAmelCase__) model.eval() model.load_state_dict(lowerCAmelCase__) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowercase : Union[str, Any] = -4.2_6_7_7_3_9_3 if 'speech-commands' not in model_name else -6.8_4_5_9_7_8 _lowercase : Optional[int] = 4.5_6_8_9_9_7_4 if 'speech-commands' not in model_name else 5.5_6_5_4_5_2_6 _lowercase : Dict = 10_24 if 'speech-commands' not in model_name else 1_28 _lowercase : Optional[Any] = ASTFeatureExtractor(mean=lowerCAmelCase__ , std=lowerCAmelCase__ , max_length=lowerCAmelCase__) if "speech-commands" in model_name: _lowercase : List[Any] = load_dataset('speech_commands' , 'v0.02' , split='validation') _lowercase : Tuple = dataset[0]['audio']['array'] else: _lowercase : List[str] = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) _lowercase , _lowercase : Dict = torchaudio.load(lowerCAmelCase__) _lowercase : Union[str, Any] = waveform.squeeze().numpy() _lowercase : Any = feature_extractor(lowerCAmelCase__ , sampling_rate=1_60_00 , return_tensors='pt') # forward pass _lowercase : str = model(**lowerCAmelCase__) _lowercase : int = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowercase : Union[str, Any] = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2]) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowercase : Any = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8]) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowercase : int = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4]) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowercase : Optional[int] = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7]) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowercase : Tuple = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3]) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowercase : Any = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3]) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowercase : Optional[int] = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0]) elif model_name == "ast-finetuned-speech-commands-v2": _lowercase : Union[str, Any] = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4]) else: raise ValueError('Unknown model name') if not torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4): raise ValueError('Logits don\'t match') print('Looks ok!') if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__).mkdir(exist_ok=lowerCAmelCase__) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(lowerCAmelCase__) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''') feature_extractor.save_pretrained(lowerCAmelCase__) if push_to_hub: print('Pushing model and feature extractor to the hub...') model.push_to_hub(F'''MIT/{model_name}''') feature_extractor.push_to_hub(F'''MIT/{model_name}''') if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
125
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) A = '''hf-internal-testing/tiny-random-bert''' A = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') A = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: _lowercase : Tuple = cached_file(UpperCamelCase ,UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase ,UpperCamelCase ) ) ) with open(os.path.join(UpperCamelCase ,'refs' ,'main' ) ) as f: _lowercase : Optional[Any] = f.read() self.assertEqual(UpperCamelCase ,os.path.join(UpperCamelCase ,'snapshots' ,UpperCamelCase ,UpperCamelCase ) ) self.assertTrue(os.path.isfile(UpperCamelCase ) ) # File is cached at the same place the second time. _lowercase : Optional[int] = cached_file(UpperCamelCase ,UpperCamelCase ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) # Using a specific revision to test the full commit hash. _lowercase : Tuple = cached_file(UpperCamelCase ,UpperCamelCase ,revision='9b8c223' ) self.assertEqual(UpperCamelCase ,os.path.join(UpperCamelCase ,'snapshots' ,UpperCamelCase ,UpperCamelCase ) ) def _lowerCamelCase ( self : Any ) -> Optional[int]: with self.assertRaisesRegex(UpperCamelCase ,'is not a valid model identifier' ): _lowercase : List[str] = cached_file('tiny-random-bert' ,UpperCamelCase ) with self.assertRaisesRegex(UpperCamelCase ,'is not a valid git identifier' ): _lowercase : Tuple = cached_file(UpperCamelCase ,UpperCamelCase ,revision='aaaa' ) with self.assertRaisesRegex(UpperCamelCase ,'does not appear to have a file named' ): _lowercase : Tuple = cached_file(UpperCamelCase ,'conf' ) def _lowerCamelCase ( self : Optional[Any] ) -> List[str]: with self.assertRaisesRegex(UpperCamelCase ,'does not appear to have a file named' ): _lowercase : Tuple = cached_file(UpperCamelCase ,'conf' ) with open(os.path.join(UpperCamelCase ,'refs' ,'main' ) ) as f: _lowercase : Union[str, Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase ,'.no_exist' ,UpperCamelCase ,'conf' ) ) ) _lowercase : Dict = cached_file(UpperCamelCase ,'conf' ,_raise_exceptions_for_missing_entries=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) _lowercase : Optional[Any] = cached_file(UpperCamelCase ,'conf' ,local_files_only=UpperCamelCase ,_raise_exceptions_for_missing_entries=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) _lowercase : List[Any] = mock.Mock() _lowercase : Dict = 500 _lowercase : List[Any] = {} _lowercase : List[Any] = HTTPError _lowercase : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=UpperCamelCase ) as mock_head: _lowercase : List[str] = cached_file(UpperCamelCase ,'conf' ,_raise_exceptions_for_connection_errors=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self : Any ) -> Optional[int]: self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' ,UpperCamelCase ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' ,UpperCamelCase ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' ,UpperCamelCase ) ) def _lowerCamelCase ( self : Any ) -> Any: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' ,'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase ,'is not a valid model identifier' ): get_file_from_repo('bert-base-case' ,UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase ,'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' ,UpperCamelCase ,revision='ahaha' ) _lowercase : int = get_file_from_repo('bert-base-cased' ,UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowercase : List[str] = json.loads(open(UpperCamelCase ,'r' ).read() ) self.assertEqual(config['hidden_size'] ,768 ) def _lowerCamelCase ( self : Any ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : str = Path(UpperCamelCase ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase ,'a.txt' ) ,str(UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase ,'b.txt' ) )
125
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __a : int = logging.get_logger(__name__) __a : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a : Optional[Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __a : Tuple = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __a : Tuple = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self : Any , UpperCamelCase_ : Any=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : int="[UNK]" , UpperCamelCase_ : Tuple="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Optional[int]="[CLS]" , UpperCamelCase_ : Optional[int]="[MASK]" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : Dict , ): """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars ): __A = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**UpperCamelCase_ ) __A = do_lower_case def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple=None ): """simple docstring""" __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): """simple docstring""" __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): """simple docstring""" __A = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
199
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] ) -> Dict: """simple docstring""" __A = 3_8_4 __A = 7 if "tiny" in model_name: __A = 9_6 __A = (2, 2, 6, 2) __A = (3, 6, 1_2, 2_4) elif "small" in model_name: __A = 9_6 __A = (2, 2, 1_8, 2) __A = (3, 6, 1_2, 2_4) elif "base" in model_name: __A = 1_2_8 __A = (2, 2, 1_8, 2) __A = (4, 8, 1_6, 3_2) __A = 1_2 __A = 5_1_2 elif "large" in model_name: __A = 1_9_2 __A = (2, 2, 1_8, 2) __A = (6, 1_2, 2_4, 4_8) __A = 1_2 __A = 7_6_8 # set label information __A = 1_5_0 __A = """huggingface/label-files""" __A = """ade20k-id2label.json""" __A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="""dataset""" ) , """r""" ) ) __A = {int(__lowercase ): v for k, v in idalabel.items()} __A = {v: k for k, v in idalabel.items()} __A = SwinConfig( embed_dim=__lowercase , depths=__lowercase , num_heads=__lowercase , window_size=__lowercase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) __A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] ) -> Dict: """simple docstring""" __A = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[int] ) -> Any: """simple docstring""" __A = dct.pop(__lowercase ) __A = val def _SCREAMING_SNAKE_CASE ( __lowercase : List[str] , __lowercase : int ) -> Any: """simple docstring""" __A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __A = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) __A = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[:dim, :] __A = in_proj_bias[: dim] __A = in_proj_weight[ dim : dim * 2, : ] __A = in_proj_bias[ dim : dim * 2 ] __A = in_proj_weight[ -dim :, : ] __A = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE ( __lowercase : Any ) -> List[str]: """simple docstring""" __A , __A = x.shape __A = x.reshape(__lowercase , 4 , in_channel // 4 ) __A = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__lowercase , __lowercase ) return x def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] ) -> Dict: """simple docstring""" __A , __A = x.shape __A = x.reshape(__lowercase , in_channel // 4 , 4 ) __A = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__lowercase , __lowercase ) return x def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple ) -> Tuple: """simple docstring""" __A = x.shape[0] __A = x.reshape(4 , in_channel // 4 ) __A = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__lowercase ) return x def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" __A = x.shape[0] __A = x.reshape(in_channel // 4 , 4 ) __A = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__lowercase ) return x def _SCREAMING_SNAKE_CASE ( __lowercase : Dict , __lowercase : List[Any] , __lowercase : str ) -> Tuple: """simple docstring""" __A = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } __A = model_name_to_url[model_name] __A = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" , file_name=__lowercase )[ """state_dict""" ] for name, param in state_dict.items(): print(__lowercase , param.shape ) __A = get_upernet_config(__lowercase ) __A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __A = state_dict.pop(__lowercase ) if "bn" in key: __A = key.replace("""bn""" , """batch_norm""" ) __A = val # rename keys __A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __A = reverse_correct_unfold_reduction_order(__lowercase ) if "norm" in key: __A = reverse_correct_unfold_norm_order(__lowercase ) model.load_state_dict(__lowercase ) # verify on image __A = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("""RGB""" ) __A = SegformerImageProcessor() __A = processor(__lowercase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): __A = model(__lowercase ) __A = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __A = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": __A = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": __A = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": __A = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": __a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __a : List[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
199
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : Tuple , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Dict , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = size if size is not None else {'''shortest_edge''': 2_24} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ) -> Optional[int]: """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Any , ) -> PIL.Image.Image: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(lowerCAmelCase_ , param_name='''size''' , default_to_square=lowerCAmelCase_ ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Any = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class A ( _a ): lowercase_ = 'roformer' def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size if embedding_size is None else embedding_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = rotary_value _a = use_cache class A ( _a ): @property def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
22
1
def lowercase ( _a ) -> bool: if not isinstance(_a ,_a ): UpperCAmelCase_: Dict = f"Input value of [number={number}] must be an integer" raise TypeError(_a ) if number < 0: return False UpperCAmelCase_: Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
306
import os def lowercase ( _a = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(_a ) ,_a ) ) as in_file: UpperCAmelCase_: str = in_file.read() UpperCAmelCase_: Union[str, Any] = [[int(_a ) for cell in row.split("," )] for row in data.strip().splitlines()] UpperCAmelCase_: List[Any] = [[0 for cell in row] for row in grid] UpperCAmelCase_: Any = len(grid[0] ) UpperCAmelCase_: int = [[0 for i in range(_a )] for j in range(_a )] UpperCAmelCase_: int = grid[0][0] for i in range(1 ,_a ): UpperCAmelCase_: List[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 ,_a ): UpperCAmelCase_: Any = grid[i][0] + dp[i - 1][0] for i in range(1 ,_a ): for j in range(1 ,_a ): UpperCAmelCase_: Union[str, Any] = grid[i][j] + min(dp[i - 1][j] ,dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class UpperCamelCase_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase_ = 'gptsan-japanese' UpperCamelCase_ = [ 'past_key_values', ] UpperCamelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , UpperCamelCase=3_60_00 , UpperCamelCase=12_80 , UpperCamelCase=10_24 , UpperCamelCase=81_92 , UpperCamelCase=40_96 , UpperCamelCase=1_28 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase=16 , UpperCamelCase=16 , UpperCamelCase=1_28 , UpperCamelCase=0.0 , UpperCamelCase=1E-5 , UpperCamelCase=False , UpperCamelCase=0.0 , UpperCamelCase="float32" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=0.002 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=3_59_98 , UpperCamelCase=3_59_95 , UpperCamelCase=3_59_99 , **UpperCamelCase , ) -> Dict: UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : List[Any] = max_position_embeddings UpperCamelCase__ : Optional[int] = d_model UpperCamelCase__ : Tuple = d_ff UpperCamelCase__ : int = d_ext UpperCamelCase__ : Tuple = d_spout UpperCamelCase__ : Tuple = num_switch_layers UpperCamelCase__ : Any = num_ext_layers UpperCamelCase__ : Union[str, Any] = num_switch_layers + num_ext_layers UpperCamelCase__ : Optional[Any] = num_heads UpperCamelCase__ : List[str] = num_experts UpperCamelCase__ : Any = expert_capacity UpperCamelCase__ : Tuple = dropout_rate UpperCamelCase__ : Any = layer_norm_epsilon UpperCamelCase__ : List[str] = router_bias UpperCamelCase__ : Union[str, Any] = router_jitter_noise UpperCamelCase__ : Optional[Any] = router_dtype UpperCamelCase__ : Tuple = router_ignore_padding_tokens UpperCamelCase__ : str = output_hidden_states UpperCamelCase__ : int = output_attentions UpperCamelCase__ : Optional[int] = initializer_factor UpperCamelCase__ : Union[str, Any] = output_router_logits UpperCamelCase__ : Tuple = use_cache super().__init__( separator_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , )
410
__UpperCAmelCase : int = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def lowerCamelCase_ ( UpperCamelCase_ ): _a : Optional[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __UpperCAmelCase : list[bool | None] = [None] * 10_000_000 __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[Any] = False def lowerCamelCase_ ( UpperCamelCase_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _a : Optional[Any] = chain(next_number(UpperCamelCase_ ) ) _a : Dict = number_chain while number < 1000_0000: _a : Any = number_chain number *= 10 return number_chain def lowerCamelCase_ ( UpperCamelCase_ = 1000_0000 ): for i in range(1 , UpperCamelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
471
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for attribute in key.split('''.''' ): A_ : Dict = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: A_ : Union[str, Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: A_ : int = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A_ : Optional[Any] = value elif weight_type == "weight_g": A_ : str = value elif weight_type == "weight_v": A_ : List[Any] = value elif weight_type == "bias": A_ : str = value else: A_ : Optional[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = [] A_ : List[str] = fairseq_model.state_dict() A_ : List[str] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ : Any = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) A_ : str = True else: for key, mapped_key in MAPPING.items(): A_ : str = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): A_ : Optional[Any] = True if "*" in mapped_key: A_ : List[str] = name.split(_UpperCAmelCase )[0].split('''.''' )[-2] A_ : List[Any] = mapped_key.replace('''*''' , _UpperCAmelCase ) if "weight_g" in name: A_ : List[str] = '''weight_g''' elif "weight_v" in name: A_ : int = '''weight_v''' elif "weight" in name: A_ : int = '''weight''' elif "bias" in name: A_ : List[Any] = '''bias''' else: A_ : Tuple = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[int] = full_name.split('''conv_layers.''' )[-1] A_ : Any = name.split('''.''' ) A_ : Optional[int] = int(items[0] ) A_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A_ : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A_ : Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A_ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A_ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True ): """simple docstring""" if config_path is not None: A_ : List[Any] = HubertConfig.from_pretrained(_UpperCAmelCase ) else: A_ : Optional[Any] = HubertConfig() if is_finetuned: if dict_path: A_ : Optional[Any] = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : List[Any] = target_dict.pad_index A_ : List[str] = target_dict.bos_index A_ : int = target_dict.eos_index A_ : Union[str, Any] = len(target_dict.symbols ) A_ : str = os.path.join(_UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _UpperCAmelCase ) A_ : List[str] = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_UpperCAmelCase , ) A_ : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False A_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) A_ : List[Any] = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) A_ : Dict = HubertForCTC(_UpperCAmelCase ) else: A_ : str = HubertModel(_UpperCAmelCase ) if is_finetuned: A_ , A_ , A_ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: A_ , A_ , A_ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ : Tuple = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
361
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase : List[Any] = 'Create a default config file for Accelerate with only a few flags set.' def lowercase_ ( _UpperCAmelCase="no" , _UpperCAmelCase = default_json_config_file , _UpperCAmelCase = False ): """simple docstring""" A_ : int = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False A_ : List[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) A_ : Tuple = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): A_ : Optional[Any] = torch.cuda.device_count() A_ : Optional[Any] = num_gpus A_ : int = False if num_gpus > 1: A_ : List[str] = '''MULTI_GPU''' else: A_ : Optional[int] = '''NO''' elif is_xpu_available() and use_xpu: A_ : Union[str, Any] = torch.xpu.device_count() A_ : Dict = num_xpus A_ : List[str] = False if num_xpus > 1: A_ : str = '''MULTI_XPU''' else: A_ : str = '''NO''' elif is_npu_available(): A_ : Tuple = torch.npu.device_count() A_ : Tuple = num_npus A_ : List[str] = False if num_npus > 1: A_ : Any = '''MULTI_NPU''' else: A_ : List[Any] = '''NO''' else: A_ : List[Any] = 0 A_ : Dict = True A_ : Tuple = 1 A_ : int = '''NO''' A_ : Union[str, Any] = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Union[str, Any] = parser.add_parser('''default''' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '''--config_file''' , default=_UpperCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_UpperCAmelCase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Dict = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
361
1
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _lowerCamelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) ) return round(_lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
434
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase=None , **__UpperCAmelCase ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __A : Optional[Any] = model __A : str = kwargs.get("model_save_dir" , __UpperCAmelCase ) __A : List[str] = kwargs.get("latest_model_name" , __UpperCAmelCase ) def __call__( self , **__UpperCAmelCase ): __A : Any = {k: np.array(__UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(__UpperCAmelCase , __UpperCAmelCase ) @staticmethod def __UpperCAmelCase( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __A : Optional[Any] = "CPUExecutionProvider" return ort.InferenceSession(__UpperCAmelCase , providers=[provider] , sess_options=__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): __A : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME __A : Any = self.model_save_dir.joinpath(self.latest_model_name ) __A : List[str] = Path(__UpperCAmelCase ).joinpath(__UpperCAmelCase ) try: shutil.copyfile(__UpperCAmelCase , __UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __A : str = self.model_save_dir.joinpath(__UpperCAmelCase ) if src_path.exists(): __A : Any = Path(__UpperCAmelCase ).joinpath(__UpperCAmelCase ) try: shutil.copyfile(__UpperCAmelCase , __UpperCAmelCase ) except shutil.SameFileError: pass def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase , ): if os.path.isfile(__UpperCAmelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) # saving model weights/files self._save_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def __UpperCAmelCase( cls , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): __A : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__UpperCAmelCase ): __A : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , provider=__UpperCAmelCase , sess_options=__UpperCAmelCase ) __A : List[Any] = Path(__UpperCAmelCase ) # load model from hub else: # download model __A : List[str] = hf_hub_download( repo_id=__UpperCAmelCase , filename=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , revision=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , ) __A : Optional[int] = Path(__UpperCAmelCase ).parent __A : List[str] = Path(__UpperCAmelCase ).name __A : List[str] = OnnxRuntimeModel.load_model(__UpperCAmelCase , provider=__UpperCAmelCase , sess_options=__UpperCAmelCase ) return cls(model=__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def __UpperCAmelCase( cls , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): __A : Tuple = None if len(str(__UpperCAmelCase ).split("@" ) ) == 2: __A , __A : int = model_id.split("@" ) return cls._from_pretrained( model_id=__UpperCAmelCase , revision=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , **__UpperCAmelCase , )
520
0
class A__ : """simple docstring""" def __init__( self : List[Any] ): a__ : Optional[int] = {} def _UpperCamelCase( self : List[Any] ): print(self.vertex ) for i in self.vertex: print(lowerCamelCase__ , " -> " , " -> ".join([str(lowerCamelCase__ ) for j in self.vertex[i]] ) ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase__ ) else: # else make a new vertex a__ : Optional[Any] = [to_vertex] def _UpperCamelCase( self : Union[str, Any] ): # visited array for storing already visited nodes a__ : Tuple = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] ): # mark start vertex as visited a__ : Dict = True print(lowerCamelCase__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": UpperCamelCase : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
702
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
151
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = [] for part_id in partition_order: _lowerCAmelCase : List[str] = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowerCAmelCase__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Union[str, Any] = spark.range(1_00 ).repartition(1 ) _lowerCAmelCase : str = Spark(lowerCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Union[str, Any] = spark.range(10 ).repartition(2 ) _lowerCAmelCase : Tuple = [1, 0] _lowerCAmelCase : str = _generate_iterable_examples(lowerCAmelCase__ , lowerCAmelCase__ ) # Reverse the partitions. _lowerCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , lowerCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCAmelCase , _lowerCAmelCase : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : List[Any] = spark.range(10 ).repartition(1 ) _lowerCAmelCase : Tuple = SparkExamplesIterable(lowerCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : List[str] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Dict = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: _lowerCAmelCase : Dict = lambda lowerCAmelCase__ : x.reverse() _lowerCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [2, 1, 0] ) _lowerCAmelCase : Union[str, Any] = SparkExamplesIterable(lowerCAmelCase__ ).shuffle_data_sources(lowerCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _lowerCAmelCase : List[Any] = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): _lowerCAmelCase , _lowerCAmelCase : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCAmelCase : Union[str, Any] = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): _lowerCAmelCase , _lowerCAmelCase : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase : Optional[Any] = spark.range(1_00 ).repartition(1 ) _lowerCAmelCase : Union[str, Any] = Spark(lowerCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
424
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCAmelCase : Optional[Any] = model_type_to_module_name(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = importlib.import_module(f""".{module_name}""" , "transformers.models" ) try: return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase__ , "__name__" , lowerCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCAmelCase : Any = importlib.import_module("transformers" ) if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) return None def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): """simple docstring""" _lowerCAmelCase : str = get_file_from_repo( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(lowerCAmelCase__ , encoding="utf-8" ) as reader: return json.load(lowerCAmelCase__ ) class __A : '''simple docstring''' def __init__( self ): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def SCREAMING_SNAKE_CASE__ ( cls , _snake_case , **_snake_case ): _lowerCAmelCase : Tuple = kwargs.pop("config" , _snake_case ) _lowerCAmelCase : Optional[Any] = kwargs.pop("trust_remote_code" , _snake_case ) _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(_snake_case , **_snake_case ) _lowerCAmelCase : Optional[int] = config_dict.get("image_processor_type" , _snake_case ) _lowerCAmelCase : Optional[Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _lowerCAmelCase : Dict = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowerCAmelCase : Dict = config_dict.pop("feature_extractor_type" , _snake_case ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _lowerCAmelCase : Any = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _lowerCAmelCase : Dict = config_dict["auto_map"]["AutoFeatureExtractor"] _lowerCAmelCase : List[Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase : str = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.image_processor_type`` _lowerCAmelCase : Any = getattr(_snake_case , "image_processor_type" , _snake_case ) if hasattr(_snake_case , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _lowerCAmelCase : Optional[int] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _lowerCAmelCase : str = image_processor_class_from_name(_snake_case ) _lowerCAmelCase : List[Any] = image_processor_auto_map is not None _lowerCAmelCase : Optional[int] = image_processor_class is not None or type(_snake_case ) in IMAGE_PROCESSOR_MAPPING _lowerCAmelCase : List[Any] = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: _lowerCAmelCase : str = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) _lowerCAmelCase : Optional[Any] = kwargs.pop("code_revision" , _snake_case ) if os.path.isdir(_snake_case ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_snake_case , **_snake_case ) elif image_processor_class is not None: return image_processor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_snake_case ) in IMAGE_PROCESSOR_MAPPING: _lowerCAmelCase : Dict = IMAGE_PROCESSOR_MAPPING[type(_snake_case )] return image_processor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _snake_case , _snake_case ): IMAGE_PROCESSOR_MAPPING.register(_snake_case , _snake_case )
424
1
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Union[str, Any] = 'philschmid/bart-large-cnn-samsum' __lowerCAmelCase : List[str] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) __lowerCAmelCase : List[Any] = 'summarizer' __lowerCAmelCase : Optional[Any] = AutoTokenizer __lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM __lowerCAmelCase : int = ['text'] __lowerCAmelCase : str = ['text'] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , truncation=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return self.model.generate(**_SCREAMING_SNAKE_CASE )[0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return self.pre_processor.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
704
"""simple docstring""" def _snake_case ( UpperCamelCase : int , UpperCamelCase : int ): return 1 if input_a == input_a else 0 def _snake_case ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
359
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : complex , _SCREAMING_SNAKE_CASE : str = "x" , _SCREAMING_SNAKE_CASE : float = 10**-10 , _SCREAMING_SNAKE_CASE : int = 1 , ): '''simple docstring''' _UpperCAmelCase = symbols(snake_case__ ) _UpperCAmelCase = lambdify(snake_case__ , snake_case__ ) _UpperCAmelCase = lambdify(snake_case__ , diff(snake_case__ , snake_case__ ) ) _UpperCAmelCase = starting_point while True: if diff_function(snake_case__ ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(snake_case__ ) / diff_function( snake_case__ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson("exp(x) - 1", 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
602
import os import string import sys SCREAMING_SNAKE_CASE__ : List[str] = 1 << 8 SCREAMING_SNAKE_CASE__ : str = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } SCREAMING_SNAKE_CASE__ : List[str] = KEYMAP['up'] SCREAMING_SNAKE_CASE__ : Optional[int] = KEYMAP['left'] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Dict = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE__ : List[str] = ord(str(i)) def a__ ( ): if os.name == "nt": import msvcrt _UpperCAmelCase : int = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(snake_case__ ) == 0: # Read the keystroke _UpperCAmelCase : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _UpperCAmelCase : str = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _UpperCAmelCase : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(snake_case__ ) if ord(snake_case__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _UpperCAmelCase : Any = chr(KEYMAP["""esc"""] ) except KeyError: _UpperCAmelCase : Optional[int] = cha[1] else: _UpperCAmelCase : Union[str, Any] = ch.decode(snake_case__ ) else: _UpperCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _UpperCAmelCase : List[str] = sys.stdin.fileno() _UpperCAmelCase : Optional[Any] = termios.tcgetattr(snake_case__ ) try: tty.setraw(snake_case__ ) _UpperCAmelCase : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(snake_case__ , termios.TCSADRAIN , snake_case__ ) return ch def a__ ( ): _UpperCAmelCase : int = get_raw_chars() if ord(snake_case__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(snake_case__ ) == KEYMAP["esc"]: _UpperCAmelCase : int = get_raw_chars() if ord(snake_case__ ) == KEYMAP["mod_int"]: _UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(snake_case__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(snake_case__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(snake_case__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
643
0
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = False ) -> Optional[int]: if radian_mode: return [magnitude * cos(lowerCamelCase_ ), magnitude * sin(lowerCamelCase_ )] return [magnitude * cos(radians(lowerCamelCase_ ) ), magnitude * sin(radians(lowerCamelCase_ ) )] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = 10**-1 ) -> Tuple: _snake_case = cross(lowerCamelCase_ , lowerCamelCase_ ) _snake_case = sum(lowerCamelCase_ ) return abs(lowerCamelCase_ ) < eps if __name__ == "__main__": # Test to check if it works lowercase : Union[str, Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowercase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase : Optional[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowercase : Optional[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase : Dict = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) lowercase : str = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
702
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionInstructPixaPixPipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('RGB' ) if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'french fries' _snake_case = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = [inputs['prompt']] * 2 _snake_case = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 _snake_case = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) _snake_case = image / 2 + 0.5 _snake_case = image.permute(0 , 3 , 1 , 2 ) _snake_case = image.repeat(2 , 1 , 1 , 1 ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _snake_case = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' ) _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] _snake_case = [round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_dummy_components() _snake_case = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _snake_case = VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) )[0] _snake_case = components['vae'] _snake_case = self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _snake_case = vae.encode(inputs[image_param] ).latent_dist.mode() _snake_case = pipe(**lowerCAmelCase_ )[0] _snake_case = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.manual_seed(lowerCAmelCase_ ) _snake_case = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) _snake_case = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ ) _snake_case = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase ( self ): """simple docstring""" _snake_case = 0 def callback_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _snake_case = False _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _snake_case = inputs['image'].resize((5_04, 5_04) ) _snake_case = 'timbrooks/instruct-pix2pix' _snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = pipe(**lowerCAmelCase_ ) _snake_case = output.images[0] _snake_case = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) _snake_case = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
542
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[Any] = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
155
import json import sys def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Optional[int]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""") as f: __snake_case: Tuple = json.load(SCREAMING_SNAKE_CASE__) __snake_case: Union[str, Any] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(SCREAMING_SNAKE_CASE__): __snake_case: str = results[benchmark_name] __snake_case: List[Any] = benchmark_name.split("""/""")[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''') __snake_case: Optional[Any] = """| metric |""" __snake_case: Optional[Any] = """|--------|""" __snake_case: Dict = """| new / old (diff) |""" for metric_name in sorted(SCREAMING_SNAKE_CASE__): __snake_case: Tuple = benchmark_res[metric_name] __snake_case: int = metric_vals["""new"""] __snake_case: List[str] = metric_vals.get("""old""" , SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = metric_vals.get("""diff""" , SCREAMING_SNAKE_CASE__) __snake_case: Optional[int] = F''' {new_val:f}''' if isinstance(SCREAMING_SNAKE_CASE__ , (int, float)) else """None""" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(SCREAMING_SNAKE_CASE__ , (int, float)) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(SCREAMING_SNAKE_CASE__ , (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""") with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""") as f: f.writelines("""\n""".join(SCREAMING_SNAKE_CASE__)) if __name__ == "__main__": __UpperCAmelCase : List[Any] = sys.argv[1] __UpperCAmelCase : Any = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
155
1
'''simple docstring''' from math import factorial _UpperCamelCase = {str(digit): factorial(digit) for digit in range(10)} def a_ ( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase = 60 ,_lowerCAmelCase = 1000000 ) -> int: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length __lowerCamelCase : Dict = 0 # the cached sizes of the previous chains __lowerCamelCase : List[Any] = {} for start_chain_element in range(1 ,_lowerCAmelCase ): # The temporary set will contain the elements of the chain __lowerCamelCase : Optional[Any] = set() __lowerCamelCase : Dict = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __lowerCamelCase : Union[str, Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCAmelCase ) chain_set_length += 1 __lowerCamelCase : Union[str, Any] = digit_factorial_sum(_lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __lowerCamelCase : Optional[int] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
459
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : Optional[Any] = 'MCTCTFeatureExtractor' UpperCamelCase_ : List[Any] = 'AutoTokenizer' def __init__( self :Tuple , lowercase :List[str] , lowercase :Dict ) -> Tuple: """simple docstring""" super().__init__(lowercase , lowercase ) SCREAMING_SNAKE_CASE = self.feature_extractor SCREAMING_SNAKE_CASE = False def __call__( self :Union[str, Any] , *lowercase :Union[str, Any] , **lowercase :str ) -> int: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE = kwargs.pop('''audio''' , lowercase ) SCREAMING_SNAKE_CASE = kwargs.pop('''sampling_rate''' , lowercase ) SCREAMING_SNAKE_CASE = kwargs.pop('''text''' , lowercase ) if len(lowercase ) > 0: SCREAMING_SNAKE_CASE = args[0] SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE = encodings['''input_ids'''] return inputs def snake_case__ ( self :Dict , *lowercase :Union[str, Any] , **lowercase :List[str] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def snake_case__ ( self :List[Any] , *lowercase :List[Any] , **lowercase :List[str] ) -> int: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) SCREAMING_SNAKE_CASE = kwargs.pop('''input_features''' , lowercase ) SCREAMING_SNAKE_CASE = kwargs.pop('''labels''' , lowercase ) if len(lowercase ) > 0: SCREAMING_SNAKE_CASE = args[0] SCREAMING_SNAKE_CASE = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: SCREAMING_SNAKE_CASE = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE = labels['''input_ids'''] return input_features def snake_case__ ( self :Dict , *lowercase :List[str] , **lowercase :Union[str, Any] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def snake_case__ ( self :str ) -> Union[str, Any]: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer yield SCREAMING_SNAKE_CASE = self.feature_extractor SCREAMING_SNAKE_CASE = False
201
0
'''simple docstring''' def lowercase_ ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = set() # Replace all the whitespace in our sentence lowerCamelCase_ : Any = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 26 def lowercase_ ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' lowerCamelCase_ : int = [False] * 26 for char in input_str: if char.islower(): lowerCamelCase_ : str = True elif char.isupper(): lowerCamelCase_ : Tuple = True return all(_lowercase ) def lowercase_ ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase_ ( ) -> None: '''simple docstring''' from timeit import timeit lowerCamelCase_ : Tuple = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=_lowercase ) ) print(timeit('''is_pangram_faster()''' , setup=_lowercase ) ) print(timeit('''is_pangram_fastest()''' , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
706
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[str] = '''▁''' __lowercase : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowercase : List[str] = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } __lowercase : Union[str, Any] = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class __lowercase ( _lowercase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A = None , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowerCamelCase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowerCamelCase_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ : int = 1 lowerCamelCase_ : Union[str, Any] = len(self.sp_model ) + self.fairseq_offset lowerCamelCase_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): lowerCamelCase_ : Any = self.__dict__.copy() lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : int = self.sp_model.serialized_model_proto() return state def __setstate__(self , A ): lowerCamelCase_ : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ : str = {} lowerCamelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ (self , A , A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ : Optional[int] = [self.cls_token_id] lowerCamelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : List[str] = [self.sep_token_id] lowerCamelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ (self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCAmelCase__ (self ): lowerCamelCase_ : str = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ (self , A ): return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase__ (self , A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : int = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ (self , A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : str = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowerCamelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
357
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) @dataclass class A_ : _SCREAMING_SNAKE_CASE = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class A_ : _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _SCREAMING_SNAKE_CASE = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=a_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __A ( ): """simple docstring""" __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __a , __a , __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , _A ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(_A ) datasets.utils.logging.set_verbosity(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __a = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __a = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a = train_dataset.features["label"].names if training_args.do_eval: __a = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a = eval_dataset.features["label"].names if training_args.do_predict: __a = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a = predict_dataset.features["label"].names # Labels __a = len(_A ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , idalabel={str(_A ): label for i, label in enumerate(_A )} , labelaid={label: i for i, label in enumerate(_A )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __a = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a = False def preprocess_function(_A ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=_A , max_length=data_args.max_seq_length , truncation=_A , ) if training_args.do_train: if data_args.max_train_samples is not None: __a = min(len(_A ) , data_args.max_train_samples ) __a = train_dataset.select(range(_A ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __a = train_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(_A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __a = min(len(_A ) , data_args.max_eval_samples ) __a = eval_dataset.select(range(_A ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __a = eval_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __a = min(len(_A ) , data_args.max_predict_samples ) __a = predict_dataset.select(range(_A ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): __a = predict_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function __a = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_A ): __a = p.predictions[0] if isinstance(p.predictions , _A ) else p.predictions __a = np.argmax(_A , axis=1 ) return metric.compute(predictions=_A , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a = default_data_collator elif training_args.fpaa: __a = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) else: __a = None # Initialize our Trainer __a = Trainer( model=_A , args=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=_A ) __a = train_result.metrics __a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) __a = min(_A , len(_A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _A ) trainer.save_metrics("train" , _A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __a = trainer.evaluate(eval_dataset=_A ) __a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_A ) __a = min(_A , len(_A ) ) trainer.log_metrics("eval" , _A ) trainer.save_metrics("eval" , _A ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) __a , __a , __a = trainer.predict(_A , metric_key_prefix="predict" ) __a = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_A ) ) __a = min(_A , len(_A ) ) trainer.log_metrics("predict" , _A ) trainer.save_metrics("predict" , _A ) __a = np.argmax(_A , axis=1 ) __a = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(_A , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(_A ): __a = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
712
class A_ : def __init__( self : List[Any] ): __a = {} # Mapping from char to TrieNode __a = False def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : list[str] ): for word in words: self.insert(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any , __SCREAMING_SNAKE_CASE : str ): __a = self for char in word: if char not in curr.nodes: __a = TrieNode() __a = curr.nodes[char] __a = True def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): __a = self for char in word: if char not in curr.nodes: return False __a = curr.nodes[char] return curr.is_leaf def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): def _delete(__SCREAMING_SNAKE_CASE : TrieNode , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> bool: if index == len(__SCREAMING_SNAKE_CASE ): # If word does not exist if not curr.is_leaf: return False __a = False return len(curr.nodes ) == 0 __a = word[index] __a = curr.nodes.get(__SCREAMING_SNAKE_CASE ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __a = _delete(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __SCREAMING_SNAKE_CASE , 0 ) def __A ( _A , _A ): """simple docstring""" if node.is_leaf: print(_A , end=" " ) for key, value in node.nodes.items(): print_words(_A , word + key ) def __A ( ): """simple docstring""" __a = "banana bananas bandana band apple all beast".split() __a = TrieNode() root.insert_many(_A ) # print_words(root, "") assert all(root.find(_A ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __A ( _A , _A ): """simple docstring""" print(str(_A ) , "works!" if passes else "doesn't work :(" ) def __A ( ): """simple docstring""" assert test_trie() def __A ( ): """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
525
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __lowercase = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
203
def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
203
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=_UpperCAmelCase , ) assert hasattr(self , 'env' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" __lowercase = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings __lowercase = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_UpperCAmelCase , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version='py36' , ) def a__ ( self : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" TrainingJobAnalytics(_UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = self.create_estimator(_UpperCAmelCase ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
714
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
0
from math import pi def UpperCamelCase (lowercase_: int , lowercase_: int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
456
import collections import os import re from pathlib import Path A_ : List[str] = 'src/transformers' # Matches is_xxx_available() A_ : Any = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} A_ : Optional[int] = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A_ : Dict = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available A_ : Dict = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") A_ : Tuple = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A_ : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", A_ : Dict = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], A_ : Tuple = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo A_ : Union[str, Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: A_ : Any = re.compile(r'^\s*try:') # Catches a line with else: A_ : Optional[Any] = re.compile(r'^\s*else:') def UpperCamelCase (lowercase_: Optional[Any] ) -> Any: if _re_test_backend.search(lowercase_ ) is None: return None A__ : Optional[int] = [b[0] for b in _re_backend.findall(lowercase_ )] backends.sort() return "_and_".join(lowercase_ ) def UpperCamelCase (lowercase_: Any ) -> Dict: with open(lowercase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : Optional[Any] = f.readlines() A__ : Optional[Any] = 0 while line_index < len(lowercase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase_ ): return None # First grab the objects without a specific backend in _import_structure A__ : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: A__ : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase_ ): A__ : str = _re_one_line_import_struct.search(lowercase_ ).groups()[0] A__ : Union[str, Any] = re.findall(r"""\[([^\]]+)\]""" , lowercase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue A__ : int = _re_import_struct_key_value.search(lowercase_ ) if single_line_import_search is not None: A__ : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 A__ : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. A__ : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): A__ : Any = lines[line_index] if _re_import_struct_add_one.search(lowercase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase_ ) is not None: A__ : Any = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(""", """ ) A__ : int = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_between_brackets.search(lowercase_ ) is not None: A__ : Any = _re_between_brackets.search(lowercase_ ).groups()[0].split(""", """ ) A__ : Any = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_quote_object.search(lowercase_ ) is not None: objects.append(_re_quote_object.search(lowercase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 A__ : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ : Any = [] while ( line_index < len(lowercase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): A__ : Dict = lines[line_index] A__ : Any = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ : List[str] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase_ ): # If the line is an if is_backend_available, we grab all objects associated. A__ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): A__ : Union[str, Any] = lines[line_index] A__ : List[str] = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 A__ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> List[Any]: def find_duplicates(lowercase_: Tuple ): return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ : str = [] for key in import_dict_objects.keys(): A__ : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) A__ : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ : Tuple = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCamelCase () -> str: A__ : str = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: A__ : Tuple = os.path.join(lowercase_ , """__init__.py""" ) A__ : Union[str, Any] = parse_init(lowercase_ ) if objects is not None: A__ : List[Any] = analyze_results(*lowercase_ ) if len(lowercase_ ) > 0: A__ : int = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(lowercase_ ) ) if len(lowercase_ ) > 0: raise ValueError("""\n\n""".join(lowercase_ ) ) def UpperCamelCase () -> Dict: A__ : int = [] for path, directories, files in os.walk(lowercase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue A__ : Union[str, Any] = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) ) A__ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowercase_ ) for fname in files: if fname == "__init__.py": continue A__ : Any = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) ) A__ : Union[str, Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase_ ) return submodules A_ : str = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCamelCase () -> str: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import A__ : Any = direct_transformers_import(lowercase_ ) A__ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase_ , """__init__.py""" ) , """r""" ) as f: A__ : str = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowercase_ ) ) ) A__ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase_ ) > 0: A__ : Dict = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
456
1
from __future__ import annotations class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _snake_case : str , _snake_case : str ): """simple docstring""" A__ , A__ = text, pattern A__ , A__ = len(_snake_case ), len(_snake_case ) def _a ( self : Optional[Any] , _snake_case : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _a ( self : Any , _snake_case : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _a ( self : List[Any] ): """simple docstring""" A__ = [] for i in range(self.textLen - self.patLen + 1 ): A__ = self.mismatch_in_text(_snake_case ) if mismatch_index == -1: positions.append(_snake_case ) else: A__ = self.match_in_pattern(self.text[mismatch_index] ) A__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE__ = '''ABAABA''' SCREAMING_SNAKE_CASE__ = '''AB''' SCREAMING_SNAKE_CASE__ = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
717
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE__ = '''sshleifer/bart-tiny-random''' SCREAMING_SNAKE_CASE__ = '''patrickvonplaten/t5-tiny-random''' @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Optional[int] ): """simple docstring""" return AutoConfig.from_pretrained(_snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _a ( self : Optional[int] ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) def _a ( self : int ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _a ( self : str ): """simple docstring""" A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _a ( self : str ): """simple docstring""" with self.assertRaises(_snake_case ): create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=_snake_case , d=_snake_case )
52
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : str="<sep>" , __SCREAMING_SNAKE_CASE : Any="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<cls>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Tuple=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: __UpperCAmelCase =AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token __UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =3 __UpperCAmelCase =do_lower_case __UpperCAmelCase =remove_space __UpperCAmelCase =keep_accents __UpperCAmelCase =vocab_file __UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) __UpperCAmelCase =jieba __UpperCAmelCase =str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _a ( self : Optional[Any] ) -> List[Any]: return len(self.sp_model ) def _a ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase ={self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> List[str]: __UpperCAmelCase =self.__dict__.copy() __UpperCAmelCase =None return state def __setstate__( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> str: __UpperCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase ={} __UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: if self.remove_space: __UpperCAmelCase =""" """.join(inputs.strip().split() ) else: __UpperCAmelCase =inputs __UpperCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __UpperCAmelCase =unicodedata.normalize("""NFKD""" , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: __UpperCAmelCase =outputs.lower() return outputs def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: __UpperCAmelCase =self.preprocess_text(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __UpperCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCAmelCase =cur_pieces[1:] else: __UpperCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : str , __SCREAMING_SNAKE_CASE : int ) -> Any: return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: __UpperCAmelCase ="""""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase =[self.sep_token_id] __UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase =[self.sep_token_id] __UpperCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: __UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Dict ) -> Dict: __UpperCAmelCase =super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
68
# Imports import numpy as np class UpperCamelCase_ : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :List[str]=None ) ->int: self.set_matricies(red=lowerCAmelCase__ , green=lowerCAmelCase__ , blue=lowerCAmelCase__ , red_edge=lowerCAmelCase__ , nir=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[Any]=None ) ->List[Any]: if red is not None: lowercase = red if green is not None: lowercase = green if blue is not None: lowercase = blue if red_edge is not None: lowercase = red_edge if nir is not None: lowercase = nir return True def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :Dict="" , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :Union[str, Any]=None ) ->Optional[Any]: self.set_matricies(red=lowerCAmelCase__ , green=lowerCAmelCase__ , blue=lowerCAmelCase__ , red_edge=lowerCAmelCase__ , nir=lowerCAmelCase__ ) lowercase = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def SCREAMING_SNAKE_CASE( self :Any ) ->int: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def SCREAMING_SNAKE_CASE( self :List[str] ) ->int: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def SCREAMING_SNAKE_CASE( self :int ) ->Tuple: return self.nir * (self.red / (self.green**2)) def SCREAMING_SNAKE_CASE( self :List[str] ) ->Dict: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def SCREAMING_SNAKE_CASE( self :str ) ->Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def SCREAMING_SNAKE_CASE( self :str ) ->int: return (self.nir - self.blue) / (self.nir + self.blue) def SCREAMING_SNAKE_CASE( self :List[str] ) ->List[str]: return (self.redEdge - self.red) / (self.redEdge + self.red) def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->str: return (self.nir - self.green) / (self.nir + self.green) def SCREAMING_SNAKE_CASE( self :int ) ->Any: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->List[Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Union[str, Any]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def SCREAMING_SNAKE_CASE( self :Any ) ->Union[str, Any]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :Union[str, Any]=0.08 , lowerCAmelCase__ :Dict=1.22 , lowerCAmelCase__ :Tuple=0.03 ) ->Tuple: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def SCREAMING_SNAKE_CASE( self :Dict ) ->Any: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->int: return (self.nir / self.green) - 1 def SCREAMING_SNAKE_CASE( self :int ) ->List[str]: return (self.nir / self.redEdge) - 1 def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->List[Any]: return (self.red - self.blue) / self.red def SCREAMING_SNAKE_CASE( self :Any ) ->int: lowercase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[Any]: return self.nir - self.green def SCREAMING_SNAKE_CASE( self :str ) ->int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[Any]: lowercase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def SCREAMING_SNAKE_CASE( self :Union[str, Any] , lowerCAmelCase__ :Tuple=0.16 ) ->Any: return (self.nir - self.green) / (self.nir + self.green + y) def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :Any=0.5 ) ->str: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def SCREAMING_SNAKE_CASE( self :int ) ->List[str]: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Tuple=None ) ->Dict: return (self.nir - b) / (a * self.red) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Dict: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def SCREAMING_SNAKE_CASE( self :str ) ->List[Any]: return (self.red + self.green + self.blue) / 30.5 def SCREAMING_SNAKE_CASE( self :Tuple ) ->Optional[Any]: return self.nir / self.red def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Dict: return (self.rvi() - 1) / (self.rvi() + 1) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def SCREAMING_SNAKE_CASE( self :str ) ->int: return self.green / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE( self :Any ) ->Any: return self.nir / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE( self :int ) ->Tuple: return self.red / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->List[Any]: return (self.green - self.red) / (self.green + self.red) def SCREAMING_SNAKE_CASE( self :List[str] ) ->str: return (self.red - self.green) / (self.red + self.green) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->List[str]: lowercase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowercase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def SCREAMING_SNAKE_CASE( self :List[str] ) ->Any: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def SCREAMING_SNAKE_CASE( self :List[str] ) ->List[Any]: return self.nir / self.red def SCREAMING_SNAKE_CASE( self :Any ) ->List[str]: return (self.ndvi() + 0.5) ** (1 / 2) def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Union[str, Any]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
441
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' for attribute in key.split('.' ): UpperCamelCase = getattr(lowercase , lowercase ) if weight_type is not None: UpperCamelCase = getattr(lowercase , lowercase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(lowercase )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , lowercase ) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' else: UpperCamelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> List[Any]: '''simple docstring''' if config_path is not None: UpperCamelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: UpperCamelCase = UniSpeechSatConfig() UpperCamelCase = '' if is_finetuned: UpperCamelCase = UniSpeechSatForCTC(lowercase ) else: UpperCamelCase = UniSpeechSatForPreTraining(lowercase ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) UpperCamelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) UpperCamelCase = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase ( unittest.TestCase ): __lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __UpperCamelCase ( cls ) -> Tuple: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def __UpperCamelCase ( cls ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self ) -> int: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase = Trie() UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
3
1
from math import pi, sqrt def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(SCREAMING_SNAKE_CASE_ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(SCREAMING_SNAKE_CASE_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __lowerCAmelCase ( ): assert gamma(0.5 ) == sqrt(SCREAMING_SNAKE_CASE_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = 1.0 while num: lowercase_ = float(input("""Gamma of: """)) print(F'gamma({num}) = {gamma(num)}') print("""\nEnter 0 to exit...""")
413
import numpy as np def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
413
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _lowercase ( lowerCamelCase__ , unittest.TestCase ): _UpperCAmelCase = XLNetTokenizer _UpperCAmelCase = XLNetTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case = XLNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> int: snake_case = '''<s>''' snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(__lowerCamelCase ) , 10_06 ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCamelCase ( self ) -> List[Any]: snake_case = XLNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [2_85, 46, 10, 1_70, 3_82] ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) snake_case = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase ( self ) -> Dict: snake_case = XLNetTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def UpperCamelCase ( self ) -> Tuple: snake_case = XLNetTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def UpperCamelCase ( self ) -> List[Any]: snake_case = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCamelCase ( self ) -> int: snake_case = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
701
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCamelCase ( a : List[str] ) ->str: snake_case = [] for line in lines: snake_case = re.sub(R'''#.*''' , '''''' , a ) # remove comments if line: filtered_lines.append(a ) snake_case = '''\n'''.join(a ) # Make a hash from all this code snake_case = full_str.encode('''utf-8''' ) return shaaaa(a ).hexdigest() # get importable module names and hash for caching _lowercase = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _lowercase = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _lowercase = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name _lowercase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
44
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Optional[int] = list(snake_case__ ) A_ : List[Any] = list(snake_case__ ) A_ : List[str] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 A_ : Optional[int] = """_""" if count > 1: return False else: return "".join(snake_case__ ) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = [] while True: A_ : Any = ["""$"""] * len(snake_case__ ) A_ : int = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): A_ : int = compare_string(binary[i] , binary[j] ) if k is False: A_ : Optional[int] = """*""" A_ : str = """*""" temp.append("""X""" ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi A_ : Tuple = list(set(snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : str = [] for minterm in minterms: A_ : Any = """""" for _ in range(snake_case__ ): A_ : int = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : str = list(snake_case__ ) A_ : List[Any] = list(snake_case__ ) A_ : Optional[Any] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : str = [] A_ : Tuple = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): A_ : Optional[int] = 0 A_ : List[str] = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 A_ : Union[str, Any] = j if count == 1: A_ : str = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): A_ : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A_ : List[str] = 0 A_ : List[str] = -1 A_ : Union[str, Any] = 0 for i in range(len(snake_case__ ) ): A_ : List[str] = chart[i].count(1 ) if count_n > max_n: A_ : Union[str, Any] = count_n A_ : Optional[int] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): A_ : Optional[Any] = 0 def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Optional[int] = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): A_ : List[str] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): A_ : Union[str, Any] = 1 return chart def __UpperCamelCase ( ): A_ : Union[str, Any] = int(input("""Enter the no. of variables\n""" ) ) A_ : List[Any] = [ float(snake_case__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] A_ : List[str] = decimal_to_binary(snake_case__ , snake_case__ ) A_ : str = check(snake_case__ ) print("""Prime Implicants are:""" ) print(snake_case__ ) A_ : List[str] = prime_implicant_chart(snake_case__ , snake_case__ ) A_ : int = selection(snake_case__ , snake_case__ ) print("""Essential Prime Implicants are:""" ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
180
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[Any] = """informer""" _A : Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "student_t" , lowerCAmelCase_ = "nll" , lowerCAmelCase_ = 1 , lowerCAmelCase_ = None , lowerCAmelCase_ = "mean" , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = True , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.05 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 100 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_=True , lowerCAmelCase_ = "prob" , lowerCAmelCase_ = 5 , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): # time series specific configuration A_ : Optional[Any] = prediction_length A_ : Dict = context_length or prediction_length A_ : Dict = distribution_output A_ : Tuple = loss A_ : Dict = input_size A_ : Union[str, Any] = num_time_features A_ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A_ : Optional[int] = scaling A_ : Optional[Any] = num_dynamic_real_features A_ : Tuple = num_static_real_features A_ : Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A_ : List[str] = cardinality else: A_ : List[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A_ : int = embedding_dimension else: A_ : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : Optional[int] = num_parallel_samples # Transformer architecture configuration A_ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features A_ : Dict = d_model A_ : Dict = encoder_attention_heads A_ : Dict = decoder_attention_heads A_ : Any = encoder_ffn_dim A_ : Tuple = decoder_ffn_dim A_ : Tuple = encoder_layers A_ : Optional[int] = decoder_layers A_ : List[str] = dropout A_ : List[str] = attention_dropout A_ : Any = activation_dropout A_ : Any = encoder_layerdrop A_ : List[Any] = decoder_layerdrop A_ : str = activation_function A_ : Optional[Any] = init_std A_ : Optional[int] = use_cache # Informer A_ : Dict = attention_type A_ : List[Any] = sampling_factor A_ : List[Any] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase(self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
180
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
579
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Optional[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def __A ( self ) -> int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _UpperCAmelCase = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _UpperCAmelCase = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _UpperCAmelCase = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: _UpperCAmelCase = self.num_choices _UpperCAmelCase = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : List[Any] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) A__ : Dict = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) A__ : str = False A__ : Union[str, Any] = False def __A ( self ) -> Dict: _UpperCAmelCase = NystromformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __A ( self ) -> int: self.config_tester.run_common_tests() def __A ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __A ( self ) -> str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*snake_case_ ) def __A ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def __A ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __A ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __A ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def __A ( self ) -> Dict: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Any: _UpperCAmelCase = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _UpperCAmelCase = model(snake_case_ )[0] _UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1e-4 ) ) @slow def __A ( self ) -> Any: _UpperCAmelCase = "the [MASK] of Belgium is Brussels" _UpperCAmelCase = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) _UpperCAmelCase = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) _UpperCAmelCase = tokenizer(snake_case_ , return_tensors="pt" ) with torch.no_grad(): _UpperCAmelCase = model(encoding.input_ids ).logits _UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , "capital" )
579
1
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if n == 0: return 0 lowerCAmelCase__ :Union[str, Any] = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase__ :Optional[Any] = max( _SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , _SCREAMING_SNAKE_CASE ) ) return max_revue def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCAmelCase__ :int = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase__ :int = max( _SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) lowerCAmelCase__ :int = max_revenue return max_rev[n] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCAmelCase__ :Any = [float('-inf' ) for _ in range(n + 1 )] lowerCAmelCase__ :Tuple = 0 for i in range(1 , n + 1 ): lowerCAmelCase__ :Any = max_rev[i] for j in range(1 , i + 1 ): lowerCAmelCase__ :Tuple = max(_SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) lowerCAmelCase__ :Union[str, Any] = max_revenue_i return max_rev[n] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" if n < 0: lowerCAmelCase__ :Union[str, Any] = F"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_SCREAMING_SNAKE_CASE ) if n > len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = ( 'Each integral piece of rod must have a corresponding price. ' F"Got n = {n} but length of prices = {len(_SCREAMING_SNAKE_CASE )}" ) raise ValueError(_SCREAMING_SNAKE_CASE ) def __A () ->int: """simple docstring""" lowerCAmelCase__ :Optional[int] = [6, 10, 12, 15, 20, 23] lowerCAmelCase__ :Optional[int] = len(_SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCAmelCase__ :Union[str, Any] = 36 lowerCAmelCase__ :str = top_down_cut_rod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = bottom_up_cut_rod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = naive_cut_rod_recursive(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
93
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" lowercase__ = [int(A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(A ) == 4 and all(0 <= int(A ) <= 254 for octet in octets ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = input().strip() lowerCamelCase : Union[str, Any] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
460
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase : Dict = random.Random() def lowerCAmelCase__ ( _a : str , _a : Optional[int]=1.0 , _a : List[str]=None , _a : str=None ): if rng is None: snake_case_ : List[Any] = global_rng snake_case_ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=2000 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=1_6000 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , ) -> List[Any]: snake_case_ : Dict = parent snake_case_ : Optional[int] = batch_size snake_case_ : Dict = min_seq_length snake_case_ : Tuple = max_seq_length snake_case_ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Dict = feature_size snake_case_ : List[Any] = padding_value snake_case_ : str = sampling_rate snake_case_ : Optional[int] = return_attention_mask snake_case_ : Optional[int] = do_normalize def _lowerCAmelCase ( self ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: def _flatten(_SCREAMING_SNAKE_CASE ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: snake_case_ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : int = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[str] = WavaVecaFeatureExtractor def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Tuple = WavaVecaFeatureExtractionTester(self ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCAmelCase ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : Dict = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input snake_case_ : str = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values snake_case_ : Dict = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test batched snake_case_ : str = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values snake_case_ : str = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ : str = np.asarray(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values snake_case_ : Any = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : List[Any] = ["longest", "max_length", "do_not_pad"] snake_case_ : int = [None, 1600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Any = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case_ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Any = range(800 , 1400 , 200 ) snake_case_ : Tuple = [floats_list((1, x) )[0] for x in lengths] snake_case_ : Optional[Any] = ["longest", "max_length", "do_not_pad"] snake_case_ : Optional[Any] = [None, 1600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Optional[int] = feat_extract(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : str = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=1000 , padding="max_length" , return_tensors="np" ) snake_case_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCAmelCase ( self ) -> str: snake_case_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : Any = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=1000 , padding="longest" , return_tensors="np" ) snake_case_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) snake_case_ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : Optional[int] = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=2000 , padding="longest" , return_tensors="np" ) snake_case_ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch snake_case_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : List[Any] = np.random.rand(100 ).astype(np.floataa ) snake_case_ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : List[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowerCAmelCase ( self ) -> Optional[int]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case_ : Dict = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
703
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowercase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : List[str] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(_SCREAMING_SNAKE_CASE ) ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : List[str] = [sequences] snake_case_ : List[str] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_SCREAMING_SNAKE_CASE )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE=ZeroShotClassificationArgumentHandler() , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : Dict = args_parser super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowerCAmelCase ( self ) -> str: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=TruncationStrategy.ONLY_FIRST , **_SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ : List[Any] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) snake_case_ : List[str] = self.tokenizer.eos_token try: snake_case_ : Union[str, Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , ) except Exception as e: if "too short" in str(_SCREAMING_SNAKE_CASE ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. snake_case_ : Union[str, Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: if kwargs.get("multi_class" , _SCREAMING_SNAKE_CASE ) is not None: snake_case_ : Any = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) snake_case_ : Any = {} if "candidate_labels" in kwargs: snake_case_ : Tuple = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: snake_case_ : Optional[Any] = kwargs["hypothesis_template"] snake_case_ : Dict = {} if "multi_label" in kwargs: snake_case_ : List[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) -> str: if len(_SCREAMING_SNAKE_CASE ) == 0: pass elif len(_SCREAMING_SNAKE_CASE ) == 1 and "candidate_labels" not in kwargs: snake_case_ : int = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="This example is {}." ) -> str: snake_case_ , snake_case_ : Optional[int] = self._args_parser(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, (candidate_label, sequence_pair) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): snake_case_ : str = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_SCREAMING_SNAKE_CASE ) - 1, **model_input, } def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ : Optional[Any] = inputs["candidate_label"] snake_case_ : Dict = inputs["sequence"] snake_case_ : Optional[int] = {k: inputs[k] for k in self.tokenizer.model_input_names} snake_case_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: snake_case_ : str = [outputs["candidate_label"] for outputs in model_outputs] snake_case_ : Union[str, Any] = [outputs["sequence"] for outputs in model_outputs] snake_case_ : List[Any] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) snake_case_ : Tuple = logits.shape[0] snake_case_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) snake_case_ : int = N // n snake_case_ : Optional[Any] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_SCREAMING_SNAKE_CASE ) == 1: # softmax over the entailment vs. contradiction dim for each label independently snake_case_ : Any = self.entailment_id snake_case_ : List[str] = -1 if entailment_id == 0 else 0 snake_case_ : Dict = reshaped_outputs[..., [contradiction_id, entailment_id]] snake_case_ : List[str] = np.exp(_SCREAMING_SNAKE_CASE ) / np.exp(_SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels snake_case_ : List[str] = reshaped_outputs[..., self.entailment_id] snake_case_ : Optional[Any] = np.exp(_SCREAMING_SNAKE_CASE ) / np.exp(_SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=_SCREAMING_SNAKE_CASE ) snake_case_ : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
114
0
"""simple docstring""" def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _UpperCAmelCase = sorted(string.lower() ) return len(UpperCamelCase__ ) == len(set(UpperCamelCase__ ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
657
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __magic_name__ : ClassVar[Features] = Features({'image': Image()} ) __magic_name__ : ClassVar[Features] = Features({'labels': ClassLabel} ) __magic_name__ : str = "image" __magic_name__ : str = "labels" def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase : List[str] = copy.deepcopy(self ) __UpperCamelCase : List[Any] = self.label_schema.copy() __UpperCamelCase : List[str] = features[self.label_column] __UpperCamelCase : List[str] = label_schema return task_template @property def lowerCamelCase__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
279
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( UpperCAmelCase__ ): lowercase_ : Any = ['''image_processor''', '''tokenizer'''] lowercase_ : int = '''BlipImageProcessor''' lowercase_ : Dict = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): __snake_case = False super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = self.image_processor def __call__( self : List[Any] , __lowerCAmelCase : ImageInput = None , __lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Union[str, Any] , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __snake_case = self.tokenizer __snake_case = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) return text_encoding # add pixel_values __snake_case = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) if text is not None: __snake_case = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) else: __snake_case = None if text_encoding is not None: encoding_image_processor.update(__lowerCAmelCase ) return encoding_image_processor def lowercase__ ( self : Dict , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[Any] ): return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : List[str] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Optional[int] ): return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def lowercase__ ( self : List[Any] ): __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
704
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : int = RobertaTokenizer lowercase_ : int = RobertaTokenizerFast lowercase_ : int = True lowercase_ : Dict = {'''cls_token''': '''<s>'''} def lowercase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case = {'unk_token': '<unk>'} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCAmelCase ) ) def lowercase__ ( self : Tuple , **__lowerCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Dict , **__lowerCAmelCase : Tuple ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : int ): __snake_case = 'lower newer' __snake_case = 'lower newer' return input_text, output_text def lowercase__ ( self : Union[str, Any] ): __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = 'lower newer' __snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowercase__ ( self : int ): __snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) __snake_case = tokenizer.encode('sequence builders' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : int ): __snake_case = self.get_tokenizer() __snake_case = 'Encode this sequence.' __snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens __snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) __snake_case = 'Encode <mask> sequence' __snake_case = 'Encode <mask>sequence' __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = 'A, <mask> AllenNLP sentence.' __snake_case = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) __snake_case = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase__ ( self : Optional[int] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , __lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = F'{text_of_1_token} {text_of_1_token}' __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
427
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : Dict = "bart" SCREAMING_SNAKE_CASE : str = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Dict: if LOAD_DENSE_INDEX: _lowercase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowercase : Any = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowercase : str = qar_model.eval() else: _lowercase , _lowercase : str = (None, None) if MODEL_TYPE == "bart": _lowercase : Any = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowercase : Dict = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowercase : int = sas_model.eval() else: _lowercase , _lowercase : int = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> Optional[Any]: if LOAD_DENSE_INDEX: _lowercase : List[Any] = faiss.StandardGpuResources() _lowercase : List[Any] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowercase : Dict = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowercase : Any = faiss.IndexFlatIP(128 ) _lowercase : Optional[int] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: _lowercase , _lowercase : Union[str, Any] = (None, None) _lowercase : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def UpperCamelCase_( ) -> List[Any]: _lowercase : Tuple = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowercase : int = elia['train_eli5'] _lowercase : Any = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowercase : Any = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = load_train_data() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=10 ) -> List[Any]: _lowercase : Any = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) _lowercase , _lowercase : Any = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Any = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ) -> Dict: if source == "none": _lowercase , _lowercase : List[Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowercase , _lowercase : Optional[Any] = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase , _lowercase : List[str] = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) _lowercase : int = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowercase : Tuple = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=256 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ) -> List[str]: with torch.no_grad(): _lowercase : Dict = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : List[Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : str = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Any = action_list.index(action_st) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : str = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : str = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : Optional[int] = "wiki40b" SCREAMING_SNAKE_CASE : List[Any] = "dense" SCREAMING_SNAKE_CASE : str = "beam" SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 64 SCREAMING_SNAKE_CASE : List[Any] = 256 SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : str = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : Tuple = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : Dict = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : str = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : Dict = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : List[Any] = None # start main text SCREAMING_SNAKE_CASE : Optional[int] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : Optional[Any] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : int = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : int = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : int = support_list[:10] SCREAMING_SNAKE_CASE : Dict = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : int = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : str = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : Optional[int] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : Union[str, Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : List[str] = find_nearest_training(question) SCREAMING_SNAKE_CASE : Optional[int] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : Any = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : str = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
89
# Lint as: python3 import itertools import os import re _lowercase = re.compile(r'''([A-Z]+)([A-Z][a-z])''') _lowercase = re.compile(r'''([a-z\d])([A-Z])''') _lowercase = re.compile(r'''(?<!_)_(?!_)''') _lowercase = re.compile(r'''(_{2,})''') _lowercase = r'''^\w+(\.\w+)*$''' _lowercase = r'''<>:/\|?*''' def _A (UpperCamelCase : str ) ->str: '''simple docstring''' lowerCamelCase__ : List[str] = _uppercase_uppercase_re.sub(r"""\1_\2""" , UpperCamelCase ) lowerCamelCase__ : Optional[int] = _lowercase_uppercase_re.sub(r"""\1_\2""" , UpperCamelCase ) return name.lower() def _A (UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' lowerCamelCase__ : Optional[int] = _single_underscore_re.split(UpperCamelCase ) lowerCamelCase__ : int = [_multiple_underscores_re.split(UpperCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase ) if n != """""" ) def _A (UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if os.path.basename(UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(UpperCamelCase ) def _A (UpperCamelCase : int , UpperCamelCase : Dict ) ->List[Any]: '''simple docstring''' if os.path.basename(UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , UpperCamelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(UpperCamelCase )}-{split}" def _A (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=None ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Any = filename_prefix_for_split(UpperCamelCase , UpperCamelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" lowerCamelCase__ : List[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) return f"{filepath}*" def _A (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Dict=None ) ->Optional[int]: '''simple docstring''' lowerCamelCase__ : List[Any] = filename_prefix_for_split(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = os.path.join(UpperCamelCase , UpperCamelCase ) if shard_lengths: lowerCamelCase__ : Optional[int] = len(UpperCamelCase ) lowerCamelCase__ : List[Any] = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(UpperCamelCase )] if filetype_suffix: lowerCamelCase__ : Tuple = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowerCamelCase__ : List[str] = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
157
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowercase_ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class __a ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Any=None , snake_case_ : int=1)-> Optional[int]: __lowerCAmelCase = tokenizer __lowerCAmelCase = dataset __lowerCAmelCase = len(__snake_case) if n_tasks is None else n_tasks __lowerCAmelCase = n_copies def __iter__( self : Tuple)-> Dict: __lowerCAmelCase = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip()) __lowerCAmelCase = self.tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""") for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __a ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : int)-> Optional[Any]: __lowerCAmelCase = start_length __lowerCAmelCase = eof_strings __lowerCAmelCase = tokenizer def __call__( self : Any , snake_case_ : str , snake_case_ : Dict , **snake_case_ : List[str])-> Optional[int]: __lowerCAmelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) __lowerCAmelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(__snake_case) def __lowerCAmelCase ( __lowerCamelCase : Tuple ) -> int: __lowerCAmelCase = re.split("""(%s)""" % """|""".join(a_ ) , a_ ) # last string should be "" return "".join(string_list[:-2] ) def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=20 , **__lowerCamelCase : int ) -> Dict: __lowerCAmelCase = defaultdict(a_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_ ) ): with torch.no_grad(): __lowerCAmelCase = batch['''ids'''].shape[-1] __lowerCAmelCase = accelerator.unwrap_model(a_ ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=a_ , **a_ ) # each task is generated batch_size times __lowerCAmelCase = batch['''task_id'''].repeat(a_ ) __lowerCAmelCase = accelerator.pad_across_processes( a_ , dim=1 , pad_index=tokenizer.pad_token_id ) __lowerCAmelCase = accelerator.gather((generated_tokens, generated_tasks) ) __lowerCAmelCase = generated_tokens.cpu().numpy() __lowerCAmelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_ , a_ ): gen_token_dict[task].append(a_ ) __lowerCAmelCase = [[] for _ in range(a_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowerCAmelCase = tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) code_gens[task].append(remove_last_block(a_ ) ) return code_gens def __lowerCAmelCase ( ) -> str: # Setup configuration __lowerCAmelCase = HfArgumentParser(a_ ) __lowerCAmelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowerCAmelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowerCAmelCase = '''false''' if args.num_workers is None: __lowerCAmelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowerCAmelCase = Accelerator() set_seed(args.seed , device_specific=a_ ) # Load model and tokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowerCAmelCase = tokenizer.eos_token __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowerCAmelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , a_ , a_ )] ), } # Load evaluation dataset and metric __lowerCAmelCase = load_dataset("""openai_humaneval""" ) __lowerCAmelCase = load_metric("""code_eval""" ) __lowerCAmelCase = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) __lowerCAmelCase = args.n_samples // args.batch_size __lowerCAmelCase = TokenizedDataset(a_ , human_eval["""test"""] , n_copies=a_ , n_tasks=a_ ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowerCAmelCase = DataLoader(a_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowerCAmelCase = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception __lowerCAmelCase = accelerator.prepare(a_ , a_ ) __lowerCAmelCase = complete_code( a_ , a_ , a_ , a_ , n_tasks=a_ , batch_size=args.batch_size , **a_ , ) if accelerator.is_main_process: __lowerCAmelCase = [] for task in tqdm(range(a_ ) ): __lowerCAmelCase = human_eval['''test'''][task]['''test'''] __lowerCAmelCase = f"""check({human_eval['test'][task]['entry_point']})""" references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric __lowerCAmelCase = code_eval_metric.compute( references=a_ , predictions=a_ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(a_ , a_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
705
def __lowerCAmelCase ( __lowerCamelCase : List[Any] ) -> Any: __lowerCAmelCase =[] __lowerCAmelCase =set({"""(""", """[""", """{"""} ) __lowerCAmelCase =set({""")""", """]""", """}"""} ) __lowerCAmelCase ={"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__lowerCamelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__lowerCamelCase ) == 0 or (len(__lowerCamelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__lowerCamelCase ) == 0 def __lowerCAmelCase ( ) -> List[str]: __lowerCAmelCase =input("""Enter sequence of brackets: """ ) if is_balanced(__lowerCamelCase ): print(__lowerCamelCase , """is balanced""" ) else: print(__lowerCamelCase , """is not balanced""" ) if __name__ == "__main__": main()
456
0
from itertools import permutations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _A = [7, 11, 13, 17] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" return sum( int(''.join(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f"{solution() = }")
27
from typing import Dict, Optional import numpy as np import datasets a__ : int = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ a__ : Union[str, Any] = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ a__ : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def snake_case (UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : bool , UpperCamelCase : Optional[Dict[int, int]] = None , UpperCamelCase : bool = False , ): '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowerCamelCase__ = new_id # turn into Numpy arrays lowerCamelCase__ = np.array(UpperCamelCase ) lowerCamelCase__ = np.array(UpperCamelCase ) if reduce_labels: lowerCamelCase__ = 255 lowerCamelCase__ = label - 1 lowerCamelCase__ = 255 lowerCamelCase__ = label != ignore_index lowerCamelCase__ = np.not_equal(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ = pred_label[mask] lowerCamelCase__ = np.array(UpperCamelCase )[mask] lowerCamelCase__ = pred_label[pred_label == label] lowerCamelCase__ = np.histogram(UpperCamelCase , bins=UpperCamelCase , range=(0, num_labels - 1) )[0] lowerCamelCase__ = np.histogram(UpperCamelCase , bins=UpperCamelCase , range=(0, num_labels - 1) )[0] lowerCamelCase__ = np.histogram(UpperCamelCase , bins=UpperCamelCase , range=(0, num_labels - 1) )[0] lowerCamelCase__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def snake_case (UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : bool , UpperCamelCase : Optional[Dict[int, int]] = None , UpperCamelCase : bool = False , ): '''simple docstring''' lowerCamelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCamelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCamelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCamelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = intersect_and_union( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def snake_case (UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : bool , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Dict[int, int]] = None , UpperCamelCase : bool = False , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_intersect_and_union( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # compute metrics lowerCamelCase__ = {} lowerCamelCase__ = total_area_intersect.sum() / total_area_label.sum() lowerCamelCase__ = total_area_intersect / total_area_union lowerCamelCase__ = total_area_intersect / total_area_label lowerCamelCase__ = np.nanmean(UpperCamelCase ) lowerCamelCase__ = np.nanmean(UpperCamelCase ) lowerCamelCase__ = all_acc lowerCamelCase__ = iou lowerCamelCase__ = acc if nan_to_num is not None: lowerCamelCase__ = {metric: np.nan_to_num(UpperCamelCase , nan=UpperCamelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _UpperCamelCase ( self : Tuple , a_ : Dict , a_ : Any , a_ : int , a_ : bool , a_ : Optional[int] = None , a_ : Optional[Dict[int, int]] = None , a_ : bool = False , ): """simple docstring""" lowerCamelCase__ = mean_iou( results=a_ , gt_seg_maps=a_ , num_labels=a_ , ignore_index=a_ , nan_to_num=a_ , label_map=a_ , reduce_labels=a_ , ) return iou_result
165
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.9 , _lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = patch_size lowercase = tubelet_size lowercase = num_frames lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = mask_ratio lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase = (image_size // patch_size) ** 2 lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase = int(mask_ratio * self.seq_length ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> List[str]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.batch_size , -1 ).bool() lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches lowercase = mask.sum().item() lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = VideoMAEModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: '''simple docstring''' lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.model_tester.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _a ( self ) -> str: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def _a ( self ) -> int: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase = True lowercase = False lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowercase = np.load(lowercase_ ) return list(lowercase_ ) @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask lowercase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) lowercase = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size([1, 1408, 1536] ) lowercase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase = torch.tensor([0.5142] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = torch.tensor(torch.tensor([0.6469] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4 ) )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Dict = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
419
from __future__ import annotations from cmath import sqrt def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) a_ : Any = b * b - 4 * a * c a_ : List[str] = (-b + sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) a_ : Union[str, Any] = (-b - sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCamelCase ( ): """simple docstring""" a_ , a_ : str = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
419
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=99 , UpperCAmelCase__=16 , UpperCAmelCase__=36 , UpperCAmelCase__=6 , UpperCAmelCase__=6 , UpperCAmelCase__=6 , UpperCAmelCase__=37 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=16 , UpperCAmelCase__=2 , UpperCAmelCase__=0.02 , UpperCAmelCase__=3 , UpperCAmelCase__=4 , UpperCAmelCase__=None , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = embedding_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_hidden_groups SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = AlbertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A , token_type_ids=_A ) SCREAMING_SNAKE_CASE__ = model(_A , token_type_ids=_A ) SCREAMING_SNAKE_CASE__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = AlbertForPreTraining(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = AlbertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = AlbertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = AlbertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = AlbertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = AlbertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase : str = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : Optional[int] = True def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ): SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class in get_values(_A ): SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = AlbertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*_A ) @slow def lowerCAmelCase__ ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = AlbertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = AlbertModel.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) )
714
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase_ ( lowercase ): """simple docstring""" def __init__( self , UpperCAmelCase__ = "▁" , UpperCAmelCase__ = True , UpperCAmelCase__ = "<unk>" , UpperCAmelCase__ = "</s>" , UpperCAmelCase__ = "<pad>" , ): SCREAMING_SNAKE_CASE__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } SCREAMING_SNAKE_CASE__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): SCREAMING_SNAKE_CASE__ = token_dict["token"] SCREAMING_SNAKE_CASE__ = Tokenizer(Unigram() ) SCREAMING_SNAKE_CASE__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) SCREAMING_SNAKE_CASE__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ), pre_tokenizers.Digits(individual_digits=UpperCAmelCase__ ), pre_tokenizers.Punctuation(), ] ) SCREAMING_SNAKE_CASE__ = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) SCREAMING_SNAKE_CASE__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = 8000 , UpperCAmelCase__ = True , ): SCREAMING_SNAKE_CASE__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = [files] self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = 8000 , UpperCAmelCase__ = True , ): SCREAMING_SNAKE_CASE__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = json.loads(self._tokenizer.to_str() ) SCREAMING_SNAKE_CASE__ = self.special_tokens["unk"]["id"] SCREAMING_SNAKE_CASE__ = Tokenizer.from_str(json.dumps(UpperCAmelCase__ ) )
112
0
'''simple docstring''' from collections.abc import Generator def UpperCAmelCase_ ( ): lowercase_ , lowercase_ :str = 0, 1 while True: lowercase_ , lowercase_ :Optional[Any] = b, a + b yield b def UpperCAmelCase_ ( __lowerCamelCase : int = 10_00 ): lowercase_ :Tuple = 1 lowercase_ :Any = fibonacci_generator() while len(str(next(__lowerCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
172
'''simple docstring''' from typing import List import numpy as np def UpperCAmelCase_ ( __lowerCamelCase : dict ): lowercase_ :Dict = {key: len(__lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCamelCase ,__lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) lowercase_ :Any = max(lists_lengths.values() ,default=0 ) return max(1 ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int ): lowercase_ :Tuple = [] for group_idx in range(__lowerCamelCase ): lowercase_ :Any = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ :Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ :List[str] = range(__lowerCamelCase ,start + num_shards_to_add ) shards_indices_per_group.append(__lowerCamelCase ) return shards_indices_per_group def UpperCAmelCase_ ( __lowerCamelCase : dict ,__lowerCamelCase : int ): lowercase_ :Dict = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) if num_shards == 1: return [dict(__lowerCamelCase )] else: lowercase_ :Optional[Any] = _distribute_shards(num_shards=__lowerCamelCase ,max_num_jobs=__lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCamelCase ,__lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCamelCase ) ) ] def UpperCAmelCase_ ( __lowerCamelCase : List[dict] ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] ,__lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCAmelCase_ ( __lowerCamelCase : np.random.Generator ,__lowerCamelCase : dict ): lowercase_ :Tuple = {len(__lowerCamelCase ) for value in gen_kwargs.values() if isinstance(__lowerCamelCase ,__lowerCamelCase )} lowercase_ :Optional[Any] = {} for size in list_sizes: lowercase_ :int = list(range(__lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ :List[Any] = dict(__lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowercase_ :List[str] = [value[i] for i in indices_per_size[len(__lowerCamelCase )]] return shuffled_kwargs
172
1
from math import isqrt, loga def A_ ( __a : Optional[Any] ): """simple docstring""" a__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__ = False return [i for i in range(2 , _SCREAMING_SNAKE_CASE ) if is_prime[i]] def A_ ( __a : int = 800_800 , __a : Any = 800_800 ): """simple docstring""" a__ = degree * loga(_SCREAMING_SNAKE_CASE ) a__ = int(_SCREAMING_SNAKE_CASE ) a__ = calculate_prime_numbers(_SCREAMING_SNAKE_CASE ) a__ = 0 a__ = 0 a__ = len(_SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
702
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase): '''simple docstring''' def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ): torch.manual_seed(0 ) a__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def _a ( self ): torch.manual_seed(0 ) a__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def _a ( self ): torch.manual_seed(0 ) a__ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) a__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def _a ( self ): a__ = """cpu""" # ensure determinism for the device-dependent torch.Generator a__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a__ = DDPMScheduler() a__ = AudioDiffusionPipeline(vqvae=a_ , unet=self.dummy_unet , mel=a_ , scheduler=a_ ) a__ = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ = torch.Generator(device=a_ ).manual_seed(42 ) a__ = pipe(generator=a_ , steps=4 ) a__ = output.audios[0] a__ = output.images[0] a__ = torch.Generator(device=a_ ).manual_seed(42 ) a__ = pipe(generator=a_ , steps=4 , return_dict=a_ ) a__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] a__ = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] a__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a__ = DDIMScheduler() a__ = self.dummy_vqvae_and_unet a__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a_ , scheduler=a_ ) a__ = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) a__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a__ = torch.Generator(device=a_ ).manual_seed(42 ) a__ = pipe(raw_audio=a_ , generator=a_ , start_step=5 , steps=10 ) a__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] a__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a__ = self.dummy_unet_condition a__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a_ , mel=a_ , scheduler=a_ ) a__ = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) a__ = torch.rand((1, 1, 10) ) a__ = pipe(generator=a_ , encoding=a_ ) a__ = output.images[0] a__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] a__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): '''simple docstring''' def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): a__ = torch_device a__ = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) a__ = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ = torch.Generator(device=a_ ).manual_seed(42 ) a__ = pipe(generator=a_ ) a__ = output.audios[0] a__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] a__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
351
0
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Dict , lowercase__ : Optional[Any] , lowercase__ : str=1_3 , lowercase__ : List[str]=7 , lowercase__ : List[Any]=True , lowercase__ : Dict=True , lowercase__ : Dict=True , lowercase__ : Union[str, Any]=True , lowercase__ : List[str]=True , lowercase__ : Any=False , lowercase__ : str=False , lowercase__ : Optional[Any]=False , lowercase__ : List[str]=2 , lowercase__ : List[Any]=9_9 , lowercase__ : Optional[int]=0 , lowercase__ : Optional[int]=3_2 , lowercase__ : int=5 , lowercase__ : int=4 , lowercase__ : Dict=0.1 , lowercase__ : str=0.1 , lowercase__ : List[Any]=5_1_2 , lowercase__ : str=2 , lowercase__ : Dict=0.0_2 , lowercase__ : Dict=2 , lowercase__ : Tuple=4 , lowercase__ : Any="last" , lowercase__ : Optional[Any]=True , lowercase__ : Optional[int]=None , lowercase__ : int=0 , ): __lowercase : Union[str, Any] = parent __lowercase : str = batch_size __lowercase : Tuple = seq_length __lowercase : Tuple = is_training __lowercase : Union[str, Any] = use_input_lengths __lowercase : Tuple = use_token_type_ids __lowercase : Tuple = use_labels __lowercase : Any = gelu_activation __lowercase : Dict = sinusoidal_embeddings __lowercase : Any = causal __lowercase : Optional[int] = asm __lowercase : List[str] = n_langs __lowercase : str = vocab_size __lowercase : Optional[Any] = n_special __lowercase : Tuple = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : str = hidden_dropout_prob __lowercase : int = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : Optional[Any] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : List[str] = num_labels __lowercase : Tuple = num_choices __lowercase : Any = summary_type __lowercase : List[str] = use_proj __lowercase : str = scope __lowercase : Dict = bos_token_id def snake_case ( self : List[Any] ): __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None if self.use_input_lengths: __lowercase : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase : str = None if self.use_token_type_ids: __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = None __lowercase : Dict = None if self.use_labels: __lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[str] = ids_tensor([self.batch_size] , 2 ).float() __lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case ( self : Optional[int] ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def snake_case ( self : List[Any] , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : Any , lowercase__ : Any , lowercase__ : int , ): __lowercase : Tuple = XLMModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : List[str] = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) __lowercase : Optional[Any] = model(_UpperCAmelCase , langs=_UpperCAmelCase ) __lowercase : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Dict , ): __lowercase : List[Any] = XLMWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : Any = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , ): __lowercase : Tuple = XLMForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : Dict = model(_UpperCAmelCase ) __lowercase : Optional[int] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) __lowercase : Dict = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : int , ): __lowercase : Tuple = XLMForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : str = model(_UpperCAmelCase ) __lowercase : Tuple = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) __lowercase : Optional[Any] = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) (__lowercase ) : List[str] = result_with_labels.to_tuple() __lowercase : Union[str, Any] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) (__lowercase ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def snake_case ( self : str , lowercase__ : str , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , ): __lowercase : Dict = XLMForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : List[str] = model(_UpperCAmelCase ) __lowercase : Dict = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Tuple , ): __lowercase : Dict = self.num_labels __lowercase : str = XLMForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Tuple , lowercase__ : str , lowercase__ : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int , ): __lowercase : Optional[Any] = self.num_choices __lowercase : Union[str, Any] = XLMForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : List[str] ): __lowercase : int = self.prepare_config_and_inputs() ( __lowercase ) : List[str] = config_and_inputs __lowercase : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCAmelCase : int = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : Any , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case ( self : int , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : str=False ): __lowercase : Any = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) __lowercase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def snake_case ( self : Union[str, Any] ): __lowercase : Optional[int] = XLMModelTester(self ) __lowercase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=3_7 ) def snake_case ( self : Tuple ): self.config_tester.run_common_tests() def snake_case ( self : List[Any] ): __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_UpperCAmelCase ) def snake_case ( self : str ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_UpperCAmelCase ) def snake_case ( self : Optional[int] ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_UpperCAmelCase ) def snake_case ( self : List[str] ): __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_UpperCAmelCase ) def snake_case ( self : Tuple ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_UpperCAmelCase ) def snake_case ( self : Optional[Any] ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_UpperCAmelCase ) def snake_case ( self : Optional[Any] ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_UpperCAmelCase ) def snake_case ( self : Optional[int] , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : str=False , lowercase__ : Any=1 ): self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(_UpperCAmelCase ) ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_UpperCAmelCase ): # adds PAD dummy token __lowercase : Tuple = min_length + idx + 1 __lowercase : Optional[int] = min_length + idx + 1 __lowercase : Tuple = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_UpperCAmelCase ) ) def snake_case ( self : Optional[int] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : str , lowercase__ : str , lowercase__ : List[Any]=False , lowercase__ : List[str]=1 ): self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_UpperCAmelCase ) , ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_UpperCAmelCase ): # adds PAD dummy token __lowercase : List[str] = min_length + idx + 1 __lowercase : Union[str, Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_UpperCAmelCase ) , ) pass @slow def snake_case ( self : Any ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : int = XLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : str ): __lowercase : Optional[Any] = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_UpperCAmelCase ) __lowercase : Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=_UpperCAmelCase ) # the president __lowercase : List[str] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase : Any = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _UpperCAmelCase )
575
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=_lowerCamelCase ): '''simple docstring''' _lowerCamelCase =["note_seq"] def __init__( self : Dict , *a__ : Tuple , **a__ : Union[str, Any] ): requires_backends(self , ['''note_seq'''] ) @classmethod def __snake_case ( cls : Any , *a__ : int , **a__ : Optional[int] ): requires_backends(cls , ['''note_seq'''] ) @classmethod def __snake_case ( cls : List[str] , *a__ : str , **a__ : List[str] ): requires_backends(cls , ['''note_seq'''] )
700
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig a__ : Tuple = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring a__ : List[str] = 'UperNetConfig' class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , a__ : int , a__ : int , a__ : Union[int, Tuple[int, int]] , a__ : Union[int, Tuple[int, int], str] = 0 , a__ : bool = False , a__ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() UpperCAmelCase = nn.Convad( in_channels=a__ , out_channels=a__ , kernel_size=a__ , padding=a__ , bias=a__ , dilation=a__ , ) UpperCAmelCase = nn.BatchNormad(a__ ) UpperCAmelCase = nn.ReLU() def __snake_case ( self : Optional[int] , a__ : torch.Tensor ): UpperCAmelCase = self.conv(a__ ) UpperCAmelCase = self.batch_norm(a__ ) UpperCAmelCase = self.activation(a__ ) return output class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , a__ : int , a__ : int , a__ : int ): super().__init__() UpperCAmelCase = [ nn.AdaptiveAvgPoolad(a__ ), UperNetConvModule(a__ , a__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(a__ ) , a__ ) def __snake_case ( self : Dict , a__ : torch.Tensor ): UpperCAmelCase = input for layer in self.layers: UpperCAmelCase = layer(a__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , a__ : Tuple[int, ...] , a__ : int , a__ : int , a__ : bool ): super().__init__() UpperCAmelCase = pool_scales UpperCAmelCase = align_corners UpperCAmelCase = in_channels UpperCAmelCase = channels UpperCAmelCase = [] for i, pool_scale in enumerate(a__ ): UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=a__ , in_channels=a__ , channels=a__ ) self.blocks.append(a__ ) self.add_module(str(a__ ) , a__ ) def __snake_case ( self : str , a__ : torch.Tensor ): UpperCAmelCase = [] for ppm in self.blocks: UpperCAmelCase = ppm(a__ ) UpperCAmelCase = nn.functional.interpolate( a__ , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(a__ ) return ppm_outs class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Any , a__ : Dict , a__ : int ): super().__init__() UpperCAmelCase = config UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) UpperCAmelCase = in_channels UpperCAmelCase = config.hidden_size UpperCAmelCase = False UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCAmelCase = nn.ModuleList() UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCAmelCase = UperNetConvModule(a__ , self.channels , kernel_size=1 ) UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(a__ ) self.fpn_convs.append(a__ ) UpperCAmelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __snake_case ( self : List[str] ): self.apply(self._init_weights ) def __snake_case ( self : Tuple , a__ : Dict ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : List[str] , a__ : Optional[Any] ): UpperCAmelCase = inputs[-1] UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(a__ ) ) UpperCAmelCase = torch.cat(a__ , dim=1 ) UpperCAmelCase = self.bottleneck(a__ ) return output def __snake_case ( self : Tuple , a__ : torch.Tensor ): # build laterals UpperCAmelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(a__ ) ) # build top-down path UpperCAmelCase = len(a__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase = laterals[i - 1].shape[2:] UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=a__ , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCAmelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCAmelCase = torch.cat(a__ , dim=1 ) UpperCAmelCase = self.fpn_bottleneck(a__ ) UpperCAmelCase = self.classifier(a__ ) return output class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , a__ : Any , a__ : int = 2 , a__ : int = 3 , a__ : Union[int, Tuple[int, int]] = 1 ): super().__init__() UpperCAmelCase = config UpperCAmelCase = config.auxiliary_in_channels UpperCAmelCase = config.auxiliary_channels UpperCAmelCase = config.auxiliary_num_convs UpperCAmelCase = config.auxiliary_concat_input UpperCAmelCase = in_index UpperCAmelCase = (kernel_size // 2) * dilation UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) if self.num_convs == 0: UpperCAmelCase = nn.Identity() else: UpperCAmelCase = nn.Sequential(*a__ ) if self.concat_input: UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=a__ , padding=kernel_size // 2 ) UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __snake_case ( self : List[str] ): self.apply(self._init_weights ) def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __snake_case ( self : Any , a__ : torch.Tensor ): # just take the relevant feature maps UpperCAmelCase = encoder_hidden_states[self.in_index] UpperCAmelCase = self.convs(a__ ) if self.concat_input: UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCAmelCase = self.classifier(a__ ) return output class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =UperNetConfig _lowerCamelCase ="pixel_values" _lowerCamelCase =True def __snake_case ( self : Dict , a__ : List[str] ): if isinstance(a__ , a__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __snake_case ( self : Any ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __snake_case ( self : Union[str, Any] , a__ : Tuple , a__ : Optional[Any]=False ): if isinstance(a__ , a__ ): UpperCAmelCase = value a__ : Union[str, Any] = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a__ : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , UpperCAmelCase_ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , a__ : int ): super().__init__(a__ ) UpperCAmelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCAmelCase = UperNetHead(a__ , in_channels=self.backbone.channels ) UpperCAmelCase = UperNetFCNHead(a__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=a__ , config_class=_CONFIG_FOR_DOC ) def __snake_case ( self : Tuple , a__ : Optional[torch.Tensor] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , a__ : Optional[torch.Tensor] = None , a__ : Optional[bool] = None , ): UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( a__ , output_hidden_states=a__ , output_attentions=a__ ) UpperCAmelCase = outputs.feature_maps UpperCAmelCase = self.decode_head(a__ ) UpperCAmelCase = nn.functional.interpolate(a__ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=a__ ) UpperCAmelCase = None if self.auxiliary_head is not None: UpperCAmelCase = self.auxiliary_head(a__ ) UpperCAmelCase = nn.functional.interpolate( a__ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=a__ ) UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCAmelCase = loss_fct(a__ , a__ ) UpperCAmelCase = loss_fct(a__ , a__ ) UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCAmelCase = (logits,) + outputs[1:] else: UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=a__ , logits=a__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
570
0
def A__ ( snake_case_ : int = 1_000 ): SCREAMING_SNAKE_CASE__: Optional[int]= -1 SCREAMING_SNAKE_CASE__: Optional[Any]= 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__: Dict= (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__: str= n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__: List[Any]= a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__: Union[str, Any]= candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
64
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->tuple[complex, complex]: if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) _lowerCamelCase : List[str] = b * b - 4 * a * c _lowerCamelCase : int = (-b + sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) _lowerCamelCase : Tuple = (-b - sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCamelCase ( ) ->Optional[int]: _lowerCamelCase, _lowerCamelCase : List[str] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
434
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# a : Tuple = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] a : Tuple = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] a : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks a : Tuple = F'''down_blocks.{i}.resnets.{j}.''' a : Optional[int] = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 a : Dict = F'''down_blocks.{i}.attentions.{j}.''' a : int = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks a : Dict = F'''up_blocks.{i}.resnets.{j}.''' a : int = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 a : Any = F'''up_blocks.{i}.attentions.{j}.''' a : Optional[int] = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 a : Dict = F'''down_blocks.{i}.downsamplers.0.conv.''' a : int = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 a : Tuple = F'''up_blocks.{i}.upsamplers.0.''' a : Optional[Any] = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) a : Optional[Any] = '''mid_block.attentions.0.''' a : Optional[int] = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): a : List[str] = F'''mid_block.resnets.{j}.''' a : Optional[Any] = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase : str = v.replace(_lowercase , _lowercase ) UpperCAmelCase : Tuple = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase : Any = v.replace(_lowercase , _lowercase ) UpperCAmelCase : Any = v UpperCAmelCase : Any = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# a : Any = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): a : List[str] = F'''encoder.down_blocks.{i}.resnets.{j}.''' a : Dict = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: a : int = F'''down_blocks.{i}.downsamplers.0.''' a : List[Any] = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) a : Tuple = F'''up_blocks.{i}.upsamplers.0.''' a : List[str] = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): a : Union[str, Any] = F'''decoder.up_blocks.{i}.resnets.{j}.''' a : Optional[Any] = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): a : Dict = F'''mid_block.resnets.{i}.''' a : Tuple = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) a : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( _lowercase ) -> int: return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase : Tuple = v.replace(_lowercase , _lowercase ) UpperCAmelCase : int = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase : int = v.replace(_lowercase , _lowercase ) UpperCAmelCase : int = v UpperCAmelCase : Dict = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase : int = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) UpperCAmelCase : Optional[int] = reshape_weight_for_sd(_lowercase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# a : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] a : Dict = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} a : str = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp a : Optional[int] = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : int = {} UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): UpperCAmelCase : Dict = k[: -len(""".q_proj.weight""" )] UpperCAmelCase : str = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: UpperCAmelCase : List[Any] = [None, None, None] UpperCAmelCase : Union[str, Any] = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): UpperCAmelCase : str = k[: -len(""".q_proj.bias""" )] UpperCAmelCase : Tuple = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: UpperCAmelCase : List[Any] = [None, None, None] UpperCAmelCase : str = v continue UpperCAmelCase : str = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) UpperCAmelCase : Any = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCAmelCase : str = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) UpperCAmelCase : Dict = torch.cat(_lowercase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCAmelCase : Optional[Any] = textenc_pattern.sub(lambda _lowercase : protected[re.escape(m.group(0 ) )] , _lowercase ) UpperCAmelCase : str = torch.cat(_lowercase ) return new_state_dict def __lowerCamelCase ( _lowercase ) -> Optional[int]: return text_enc_dict if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) a : List[str] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors a : Any = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") a : Union[str, Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") a : Dict = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): a : Dict = load_file(unet_path, device="""cpu""") else: a : Optional[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") a : int = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): a : Dict = load_file(vae_path, device="""cpu""") else: a : Any = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") a : str = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): a : str = load_file(text_enc_path, device="""cpu""") else: a : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") a : Dict = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model a : Any = convert_unet_state_dict(unet_state_dict) a : List[Any] = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model a : Optional[int] = convert_vae_state_dict(vae_state_dict) a : Tuple = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper a : Optional[int] = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm a : int = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} a : List[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) a : Optional[int] = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: a : str = convert_text_enc_state_dict(text_enc_dict) a : List[Any] = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint a : Any = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: a : Optional[Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: a : str = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
401
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: _A = tempfile.mkdtemp() _A = BlipImageProcessor() _A = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _A = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _A = InstructBlipProcessor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).qformer_tokenizer def UpperCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> List[Any]: _A = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> List[str]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _A = qformer_tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase ( self ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
401
1
def lowerCAmelCase ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): """simple docstring""" UpperCAmelCase__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: UpperCAmelCase__ = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase : List[str] = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
364
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCamelCase ( lowerCAmelCase ): # to overwrite at feature extractactor specific tests UpperCAmelCase_ = None UpperCAmelCase_ = None @property def UpperCAmelCase_ ( self :int ) -> int: return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase_ ( self :Any ) -> str: UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase , "feature_size" ) ) self.assertTrue(hasattr(lowerCamelCase , "sampling_rate" ) ) self.assertTrue(hasattr(lowerCamelCase , "padding_value" ) ) def UpperCAmelCase_ ( self :str ) -> int: UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCAmelCase_ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCAmelCase_ ( self :Tuple ) -> Dict: UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCAmelCase_ ( self :int , lowerCamelCase :int=False ) -> str: def _inputs_have_equal_length(lowerCamelCase :Union[str, Any] ): UpperCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase ) != length: return False return True def _inputs_are_equal(lowerCamelCase :Dict , lowerCamelCase :Optional[Any] ): if len(lowerCamelCase ) != len(lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase , lowerCamelCase ): if not np.allclose(np.asarray(lowerCamelCase ) , np.asarray(lowerCamelCase ) , atol=1e-3 ): return False return True UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = self.feat_extract_tester.seq_length_diff UpperCAmelCase__ = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase__ = self.feat_extract_tester.min_seq_length UpperCAmelCase__ = self.feat_extract_tester.batch_size UpperCAmelCase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="max_length" )[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , pad_to_multiple_of=10 ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , pad_to_multiple_of=10 ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCamelCase , return_tensors="np" , ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(all(len(lowerCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :int=False ) -> str: def _inputs_have_equal_length(lowerCamelCase :Any ): UpperCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase ) != length: return False return True def _inputs_are_equal(lowerCamelCase :Optional[int] , lowerCamelCase :str ): if len(lowerCamelCase ) != len(lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase , lowerCamelCase ): if not np.allclose(np.asarray(lowerCamelCase ) , np.asarray(lowerCamelCase ) , atol=1e-3 ): return False return True UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) # truncate to smallest with np UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=lowerCamelCase , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) # truncate to middle UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase , return_tensors="np" , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , truncation=lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="longest" , truncation=lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="longest" , truncation=lowerCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="max_length" , truncation=lowerCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ = 12 UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase , truncation=lowerCamelCase , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase , ) UpperCAmelCase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) def UpperCAmelCase_ ( self :int ) -> List[str]: self._check_padding(numpify=lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] ) -> int: self._check_padding(numpify=lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> str: self._check_truncation(numpify=lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> str: self._check_truncation(numpify=lowerCamelCase ) @require_torch def UpperCAmelCase_ ( self :int ) -> Any: UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> Optional[Any]: UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def UpperCAmelCase_ ( self :List[str] ) -> str: UpperCAmelCase__ = self.feat_extract_dict UpperCAmelCase__ = True UpperCAmelCase__ = self.feature_extraction_class(**lowerCamelCase ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = [len(lowerCamelCase ) for x in speech_inputs] UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def UpperCAmelCase_ ( self :int ) -> int: UpperCAmelCase__ = self.feat_extract_dict UpperCAmelCase__ = True UpperCAmelCase__ = self.feature_extraction_class(**lowerCamelCase ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = [len(lowerCamelCase ) for x in speech_inputs] UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = min(lowerCamelCase ) UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
364
1
'''simple docstring''' from math import isqrt, loga def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a__ , a__ ): __SCREAMING_SNAKE_CASE = False return [i for i in range(2 , a__ ) if is_prime[i]] def a__ ( a__ = 80_08_00 , a__ = 80_08_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = degree * loga(a__ ) __SCREAMING_SNAKE_CASE = int(a__ ) __SCREAMING_SNAKE_CASE = calculate_prime_numbers(a__ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(a__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
627
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """depth_multiplier""" ) ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str=13 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.25 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int=1_024 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]="relu6" , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=10 , __SCREAMING_SNAKE_CASE : int=None , ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = depth_multiplier __SCREAMING_SNAKE_CASE = min_depth __SCREAMING_SNAKE_CASE = tf_padding __SCREAMING_SNAKE_CASE = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE = output_stride __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = classifier_dropout_prob __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MobileNetVaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE = MobileNetVaConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = 26 self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = MobileNetVaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
627
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=6_4, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_input_mask lowerCamelCase__ : Optional[Any] = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Dict = type_vocab_size lowerCamelCase__ : Union[str, Any] = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Union[str, Any] = num_choices lowerCamelCase__ : List[str] = scope lowerCamelCase__ : Dict = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, token_labels def a__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = True return config, input_ids, input_mask, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : str = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : Tuple = torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output_from_no_past['hidden_states'][0] lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : int = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTNeoXModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=6_4, num_attention_heads=8 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def a__ (self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ids_tensor([1, 1_0], config.vocab_size ) lowerCamelCase__ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Any = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowerCamelCase__ : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Optional[int] = {'type': scaling_type, 'factor': 10.0} lowerCamelCase__ : int = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowerCamelCase__ : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state lowerCamelCase__ : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCamelCase__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer('My favorite food is', return_tensors='pt' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase__ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCamelCase__ : Dict = model.generate(**lowerCamelCase_, do_sample=lowerCamelCase_, max_new_tokens=2_0 ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_, lowerCamelCase_ )
717
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = analyze_text(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : Tuple = single_char_strings[ch] lowerCamelCase__ : Union[str, Any] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowerCamelCase__ : Dict = sum(two_char_strings.values() ) lowerCamelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : int = cha + cha if sequence in two_char_strings: lowerCamelCase__ : int = two_char_strings[sequence] lowerCamelCase__ : Tuple = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
696
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class UpperCAmelCase ( _snake_case ): UpperCAmelCase = "imagegpt" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __lowerCamelCase : List[Any]=5_1_2 + 1 , __lowerCamelCase : Dict=3_2 * 3_2 , __lowerCamelCase : List[str]=5_1_2 , __lowerCamelCase : List[Any]=2_4 , __lowerCamelCase : Any=8 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any="quick_gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , **__lowerCamelCase : str , ): UpperCAmelCase__ :Dict = vocab_size UpperCAmelCase__ :str = n_positions UpperCAmelCase__ :Tuple = n_embd UpperCAmelCase__ :Dict = n_layer UpperCAmelCase__ :List[Any] = n_head UpperCAmelCase__ :str = n_inner UpperCAmelCase__ :Optional[Any] = activation_function UpperCAmelCase__ :str = resid_pdrop UpperCAmelCase__ :Optional[Any] = embd_pdrop UpperCAmelCase__ :Tuple = attn_pdrop UpperCAmelCase__ :int = layer_norm_epsilon UpperCAmelCase__ :List[Any] = initializer_range UpperCAmelCase__ :List[Any] = scale_attn_weights UpperCAmelCase__ :List[str] = use_cache UpperCAmelCase__ :Tuple = scale_attn_by_inverse_layer_idx UpperCAmelCase__ :Union[str, Any] = reorder_and_upcast_attn UpperCAmelCase__ :List[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class UpperCAmelCase ( _snake_case ): @property def __SCREAMING_SNAKE_CASE ( self : str ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __SCREAMING_SNAKE_CASE ( self : Dict , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , ): UpperCAmelCase__ :Tuple = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
467
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Any = (3, 3_2, 1_2_8) UpperCAmelCase__ :Optional[int] = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ :Union[str, Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase__ :str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCAmelCase__ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) UpperCAmelCase__ :Dict = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 3_2, '''width''': 1_2_8}, } UpperCAmelCase__ :Optional[Any] = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCamelCase : Any ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , **__lowerCamelCase : str ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int ): shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :Optional[int] = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) UpperCAmelCase__ :Union[str, Any] = Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) return image_input def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Optional[Any] = self.get_tokenizer() UpperCAmelCase__ :str = self.get_image_processor() UpperCAmelCase__ :List[str] = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ :Optional[int] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :Any = self.get_tokenizer() UpperCAmelCase__ :int = self.get_image_processor() UpperCAmelCase__ :Union[str, Any] = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ :List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase__ :List[Any] = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) UpperCAmelCase__ :Any = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ :Tuple = self.get_image_processor() UpperCAmelCase__ :Any = self.get_tokenizer() UpperCAmelCase__ :Any = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = self.prepare_image_inputs() UpperCAmelCase__ :str = image_processor(__lowerCamelCase , return_tensors='''np''' ) UpperCAmelCase__ :Tuple = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Optional[Any] = self.get_image_processor() UpperCAmelCase__ :List[Any] = self.get_tokenizer() UpperCAmelCase__ :List[str] = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = '''test''' UpperCAmelCase__ :Tuple = processor(text=__lowerCamelCase ) UpperCAmelCase__ :Tuple = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :int = self.get_image_processor() UpperCAmelCase__ :Dict = self.get_tokenizer() UpperCAmelCase__ :int = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase__ :List[Any] = '''test''' UpperCAmelCase__ :List[Any] = self.prepare_image_inputs() UpperCAmelCase__ :Any = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ :int = self.get_image_processor() UpperCAmelCase__ :Optional[int] = self.get_tokenizer() UpperCAmelCase__ :Union[str, Any] = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase__ :Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ :Optional[Any] = processor.char_decode(__lowerCamelCase ) UpperCAmelCase__ :int = tokenizer.batch_decode(__lowerCamelCase ) UpperCAmelCase__ :int = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :int = self.get_image_processor() UpperCAmelCase__ :Optional[int] = self.get_tokenizer() UpperCAmelCase__ :Dict = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :Optional[int] = self.prepare_image_inputs() UpperCAmelCase__ :Tuple = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ :Dict = self.get_image_processor() UpperCAmelCase__ :int = self.get_tokenizer() UpperCAmelCase__ :Any = MgpstrProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = torch.randn(1 , 2_7 , 3_8 ) UpperCAmelCase__ :Any = torch.randn(1 , 2_7 , 5_0_2_5_7 ) UpperCAmelCase__ :Union[str, Any] = torch.randn(1 , 2_7 , 3_0_5_2_2 ) UpperCAmelCase__ :Optional[Any] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
467
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = """▁""" _SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _SCREAMING_SNAKE_CASE = { """google/pegasus-xsum""": 5_1_2, } _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__(self , lowerCAmelCase__ , lowerCAmelCase__="<pad>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<mask_2>" , lowerCAmelCase__="<mask_1>" , lowerCAmelCase__=None , lowerCAmelCase__=1_03 , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): '''simple docstring''' _UpperCamelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError( F"additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is" F" {type(lowerCAmelCase__ )}" ) _UpperCamelCase : Any = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(lowerCAmelCase__ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) _UpperCamelCase : Dict = additional_special_tokens_extended else: _UpperCamelCase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] _UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _UpperCamelCase : Dict = mask_token_sent _UpperCamelCase : List[str] = vocab_file _UpperCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # add special tokens to encoder dict _UpperCamelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _UpperCamelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def lowercase_ (self ): '''simple docstring''' return len(self.sp_model ) + self.offset def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' _UpperCamelCase : List[str] = self.__dict__.copy() _UpperCamelCase : Optional[int] = None return state def __setstate__(self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase : Any = {} _UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _UpperCamelCase : Union[str, Any] = self.sp_model.piece_to_id(lowerCAmelCase__ ) return sp_id + self.offset def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _UpperCamelCase : Tuple = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : int = [] _UpperCamelCase : Dict = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _UpperCamelCase : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def lowercase_ (self , lowerCAmelCase__=False ): '''simple docstring''' return 1 def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCamelCase : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: _UpperCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
239
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = DDIMPipeline __UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } __UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase = False def lowercase_ (self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) _UpperCamelCase : Dict = DDIMScheduler() _UpperCamelCase : Union[str, Any] = {"unet": unet, "scheduler": scheduler} return components def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__=0 ): '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCamelCase : List[Any] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = "cpu" _UpperCamelCase : Optional[int] = self.get_dummy_components() _UpperCamelCase : Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = pipe(**lowerCAmelCase__ ).images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _UpperCamelCase : str = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) _UpperCamelCase : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = "google/ddpm-cifar10-32" _UpperCamelCase : List[Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : Tuple = DDIMScheduler() _UpperCamelCase : int = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type="numpy" ).images _UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : int = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = "google/ddpm-ema-bedroom-256" _UpperCamelCase : Tuple = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : Dict = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = torch.manual_seed(0 ) _UpperCamelCase : Tuple = ddpm(generator=lowerCAmelCase__ , output_type="numpy" ).images _UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCamelCase : Dict = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
239
1